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Abstract 
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in the US-China soybean meal futures markets are weakened after the breaking out of the 

trade war. This indicates a decoupling of the US-China trade in the agriculture area. 
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1. Introduction  

In the modern history, the trade conflicts happen from time to time, which 

can cause huge impacts on countries from different aspects. The United 

States passed the Trade Act of 1974 in 1974. In this act, the No. 301 term 

allows the United States to impose extra tariff to their trade partner s when 

determined to compete in a not improper way. In March 2018, President 

Trump announced a tariff to China, which signifies the opening of 

US-China trade war. As a return, China decides to cut the import of 

soybean from the United States in order to blow the ticket box of Trump.  

A lot of people concern that the trade war may update to an ove rall 

decouple in terms of trade, technology, education and culture. This 

decouple may not only make the depressed global economy even worse but 

also create significant uncertainty.  Since they offer standardized contract  

and convenient financing and have no need for physical delivery, the 

futures markets absorb new information and react quickly. The special 

features of futures market make it a perfect sample to study the impact of 

trade war on soybean meal trading. 

The existing literature related to our topic mainly includes the studies on 

the US-China trade conflicts, the futures market and the spillover effects 

among different markets. Current studies tend to assess the reasons and 

impact of the trade war between the US and China. The methodologies, 

including the event analysis and computable general equilibri um (CGE) 

model, have been used to quantitatively identify the impact s of the trade 

war (Fang et al. 2019, Itakura 2019). Most studies on the impacts have 

focused on the financial risks on financial markets. For the studies on the 

spillovers of both price and volatility, the research methods range from the 

Vector Autoregressive Model (VAR), Vector Error Correction Model 

(VECM) to Generalized Autoregressive Conditional Heteroscedasticity 
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Model (GARCH) and various multivariate GARCH models. As most of 

them having focused on the stock, bond, foreign exchange and futures 

markets, these studies explore the spillover relationships among the 

regional markets and the global markets, as well as the spillovers among 

the developed markets and the developing markets  (Eun and Shim 1989, 

Kasa 1992, etc.). Additionally, the price transmission process between the 

spot market and the futures market is a field of interest  in early studies 

(Bigman 1983).  

This thesis is designed to identify the impacts of the US-China trade war 

on the price and risk spillovers between the US-China soybean meal 

futures markets. To achieve that objective, we compare the spillovers 

before and after the breaking out of the trade war. The contribution to the 

literature would be: 1) provide insights on  the substantial impact of trade 

war on the agricultural trading by means of the futures and expanding the 

research perspectives from stock market  and a frequently researched area 

under the trade-war topic. 2) supplement the literature of spillovers among 

the futures markets through considering the stability of the spillovers after 

an external event shock from a dynamic perspective.  

This thesis is structured in the following manner. In Section 2, we provide 

the background of soybean meal trade, including the production and usage, 

the big picture of international trade and the recent situation about soybean  

meal market in China and in US. In Section 3, we discuss some literature 

related to our topic in order to familiarize readers with the academic 

background. In Section 4, we build up empirical models, including VAR, 

cointegration, GARCH model and Diagonal-BEKK model in order to study 

the changes of price transmission and risk spillover effect. In Section 5, we 

summarize our conclusions and give out some suggestions for further 

studies. 
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2. Background  

2.1 The usage and production of soybean meal 

Soybean meal is one of the most productive and widely used meal among 

12 kinds of animal and plant oil and vegetable oil feed products, such as 

cotton seed meal, peanut meal and rapeseed meal.  

As a high protein, soybean meal is mainly used in the livestock industry 

and feed processing industry, so as to produce the feed of livestock and 

poultry. Soybean meal is also used in the food processing, paper, 

coatings, pharmaceutical and other industries in order to produce pastry 

food, health food and cosmetics and antibiotic raw materials.  In addition, 

about 85% of soybean meal is used to raise poultry and pigs. Since 

contains multiple amino acids, the soybean meal is a suitable source for 

the nutritional needs of poultry and pigs . 

 

Figure 1: 2017 Soybean meal usage and proportion 

 

Source：China Feed Industry Association 

Pourtry Pig Beef cattle Cow Pet Others
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Soybean meal is a by-product produced when crushing soybean to 

soybean oil.  The basic process of producing soybean meal by dipping is 

as follows: 

1. Oil plant buys soybeans 

2. Remove impurities 

3. Break (a soybean is about 6-8 pieces) 

4. Warm and adjust the moisture content (destroy the original tissue, 

and easy to produce oil)  

5. Press into pieces and continue to adjust the moisture content 

6. Spray with solvent to quench soy oil  

7. Dissolvent 

8. Soybean meal produced 

 

Figure 2: Soybean meal flowchart  

 

Source：China Feed Industry Association 

2.2 Global soybean and soybean meal business 

The global soybean is mainly exported to China by the Americas. The 

United States, Brazil and Argentina are the world's three largest soybean 
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producers, with the output of approximately 120 million tons, 113 

million tons and 47 million tons in 2017/18, accounting for 82% of 

global production. China is the world's largest consumer of soybeans. In 

2017, its consumption was 112 million tons, and its import volume was 

95.54 million tons, accounting for about 65% of the total global trade.  

The production of soybean meal is concentrated in 6 countries , including 

the United States, China, Argentina, Brazil, the European Union and 

India. Among them, Argentina is the world's largest exporter of soybean 

meal and soybean oil. In the recent years, the production of soybean meal 

is increasing with the increase of soybean. 

In recent years, there is a rapid growth of consumption, especially in 

China. In addition, the European Union, the Unit ed States and Brazil 

soybean meal consumption is also in a stable growth stage. The 

consumption of the emerging market countries, such as Vietnam, 

Indonesia, Thailand, South Korea and other countries, is also growing 

rapidly. 

Figure 3: Major soybean consumption markets 

 

Source：China Feed Industry Association 
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2.3 Soybean meal business in China 

2.3.1 Soybean meal production in China  

In 2017, China imported a total of 95.54 million tons of soybeans, of 

which 32,857,700 tons came from the United States, accoun ting for 

34.39% and ranking the second place. Brazil ranked first with 50.928 

million tons, and the soybeans sold to China exceeded 50% of China's 

total imports. Before 2015, the United States was the largest importers of 

Chinese soybeans. 

The world's major soybean meal production areas are the United States, 

Brazil, Argentina, China, India, the European Union and other countries. 

The U.S. has long accounted for more than 30% of the world's soybean 

meal. However, in recent years, China's soybean crushing industry has 

developed rapidly, and the growth rate of China's soybean mea l industry 

has maintained a rate of more than 20% in each year. 

In China, the annual output of soybean meal has exceeded 1500 tons for 

the first time in 2000. After 2001, the output of  soybean meal has been 

growing rapidly. In 2004, the soybean meal production of China 

surpassed Brazil and Argentina for the first time, second only to the 

United States in the world. 

2.3.2 Great changes from soybean meal net exporters to importer  

Before 1996, the output of soybean meal in China was greater than its 

domestic consumption, making China one of the major exporters in 

international trade. With the improvement of people's living standards, 

the livestock industry has expanded significantly , and the demand for 

soybean meal in the domestic aquaculture industry has  also risen sharply. 

Because of the higher prices of the domestic soybean meal production 

costs in China and the appealing prices of the international market 
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soybean meal, more and more cheap soybean meal was imported into 

China. After 1996, China's role in soybean meal international trade 

transformed from a net exporter to a net importer.  

In China's East China region, Shandong, Jiangsu and other provinces, the 

soybean processing capacity has been greatly improved since the middle 

of the 1990s, and thus these regions’ soybean meal production is also 

increasing rapidly. These areas have becoming the main areas of soybean 

processing and soybean meal production. Among them, East China is one 

of the main soybean meal consumption areas in China.  

There are 2 main factors that influence China soybean demand and price.  

The first one is the scale cycle of domestic aquaculture production on 

soybean meal. The scale cycle majorly affects three segments, namely pig, 

poultry and aquatic products. The pig cycle will last 8 months in order to 

get a piglet ready for slaughter. When the number of piglets in inventory 

rises, the consumption of feed goes up and therefore the demand of 

soybean meal becomes strong.  

The second one is the consumption cycle of soybean meal. The peak of 

China’s livestock consumption is majorly during the traditional festivals, 

namely the Spring Festival, the Later Festival and others. The catering 

industry is the main driver for the consumption. Due to the rapid 

economic growth, the meat demand is helpful to the soybean meal 

industry. 

2.3.3 Recent situation of soybean meal in China 

The outbreak of the US-China trade war has led to a change in the 

balance lasting for many years. The China's  soybean imports supply 

chain entered into the stage of constant adjustment. Last year, 25% of 

China’s tariff on U.S. soybean imports led to only 16.6 million tons of 
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U.S. soybeans imported in 2018, which is about half the 32.9 million 

tons in 2017, a 10-year low. The imports of Brazilian soybeans surged 30% 

year-on-year to 66.1 million tons, accounting for  75.1% of China's total 

soybean imports. For the whole of 2018, China imported 88.031 million 

tons of soybeans, which is the first decline in total imports in seven years, 

a down of 7.9% year-on-year. 

Figure 4: 2017 Source and proportion of soybean imports in China 

 

Source：China Customs Database 

Figure 5: 2018 Source and proportion of soybean imports in China  

 

Source：China Customs Database 
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Since the African swine fever in August 2018 extended to the whole 

country, the affected area launched some emergency mechanisms. All 

dead pigs and culled pigs went for harmless treatment, resulting in the 

continuous declining of the pigs with ability of breeding. The 

year-on-year decline is more than 20%. According to the Ministry of 

Agriculture, pig stocks decreased by 4.2% month-on-month in May 2019 

and by 22.9% compared to that of the last year. The number of sows 

decreased 4.1% month-on-month and 23.9% lower than that of the same 

period last year.  

It is originally expected by the market that the epidemic will lead to a 

sharp decline in domestic pig feed demand, which seriously affected the 

demand for soybean meal. But unexpectedly, due to increased demand 

for poultry and aquatic product, the soybean meal demand didn’t  drop 

significantly, and the trading volume even exceeded the last year. As a 

result, the inventories have fallen to a 3-year-low. 

Figure 6: DCE soybean meal market performance

Source：Qianzhan Database 
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2.4 Soybean meal in the United States 

The U.S. Department of Agriculture (USDA) continued to cut its 

end-of-year U.S. soybean inventory for 2019/20 in its October WASDE 

report, as it cut US soybean production for the month by 19/20 and until 

the current year. This report has a lot of impacts on the market. The 

report exceeded expectations by 19/20 to 46.9 bushels per acre, and the 

planting area remained unchangeable, resulting in an annual output 

reduction of 2.25 million tons to 96.62 million tons. 

Figure 7: CBOT soybean meal market performance 

 

Source：Qianzhan Database 

In the fall, wet weather in the Midwest is not conducive to soybean 

maturation, thus leading to slow crop drying, frosty weather in the 

northern Great Plains, or damage to immature crops. According to USDA 

data, the soybean deciduous rate was 72% as of October 6th, up from 90% 

a year earlier and 87% over five years. Soybean harvesting was 14%, 31 % 

year-on-year and 24% over five years. Soybean growth is 53%, with the 
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market average estimated at 55% and compared with 55% the week 

before. This is compared with 68% in the same period last year.  

After the breaking of the US-China trade war, the soybean industry of the 

United State received a heavy blow for China’s boycott. In an article 

published on its official website on June 15, the American Soybean 

Association (ASA) said that “the American Soybean Association is 

disappointed with the government’s decision on behalf of all US soybean 

growers, all of which will soon be affected by retaliatory tariffs.” It is 

reported that the ASA has twice asked for a meeting with President 

Trump, so as to discuss how to reduce the US trade deficit by increasing 

the export of Chinese soybeans without resorting to “destructive tariffs”.  

Former Oregon Senator Larry George said that Sino-US relations are 

important to both countries and their people, so "the current escalation of 

trade conflicts is very painful." In 2017, the Oregon House of 

Representatives and the Senate passed a joint resolution on strengthening 

economic and trade relations with China, becoming the first state in the 

United States to support the economic and trade cooperation with China 

in the form of a legislative resolution. The resolution states that China is 

Oregon's largest trading partner. In 2016, Oregon's exports to China 

reached US$5.8 billion, and there were over 20,000 jobs in Oregon gain 

benefits from the state's trade with China. In addition, China is the 

largest source of international tourists in Oregon, with more than 60,000 

Chinese visitors to Oregon each year.  

 

  



12 
 

3. Literature review 

3.1. US-China trade conflicts 

There are majorly qualitative and quantitative studies of US-China trade 

conflicts in terms of the cause and impact of the trade war. Generally 

speaking, the reasons of the trade conflicts come from multiple factors 

including the economics and politics. Xie (2006) argues that the economic 

reasons mainly lead to the anti-dumping to China by the United States. The 

frequency of anti-dumping investigation to China is significantly increased 

by the huge trade deficit with China and the deterioration of the US's 

industry. He argues that political factors are also one of the causes of the 

US-China trade conflict. Ren (2017) suggests that the economic cause of 

the US's "301" investigation to China includes the intention to restric t 

China's industrial upgrading and narrow the US trade deficit with China. 

She also thinks that the political factors include the mid-term elections in 

the US in 2018, and the active upgrading the industrial structure and 

expanding imports from the United States can better deal with trade 

conflicts. Miao (2009) proposes that the cause of the US-China trade 

friction contains the unbalanced economic development, industr y structure 

superposition, China's concentrated export market, and the U.S. strategic 

limitation of China's development and so on. Feinberg and Hirsch (1989), 

Krupp (1994) studies the driving factors of anti -dumping from the 

perspective of micro industries.  It is found by all these studies that more 

frequent anti-dumping can be caused by the overall industry outlook, the 

volatility of the employment market and the market demand . Anti-dumping 

has become the effective tools for the protection of some certain industries 

in the US. From another perspective, Feinberg  and Reynolds (2006), 

Knetter and Prusa (2003) studies the impact of macroeconomic factors on 

the US's anti-dumping. With the anti-dumping data from 1981 to 1995 for 

15 sample countries, these studies found that the macroeconomic situation 



13 
 

is an important influencing factor of America's ant i-dumping. During the 

recession, the foreign products are more vulnerable to the anti -dumping 

litigation by the US's manufacturers. Through the negative binomial 

regression model, Shen(2007) analyzes the macro factors of the US's 

anti-dumping to China. He finds the anti-dumping is more often associated 

with the lower industrial production growth rate and higher unemployment 

rate. For the US, there is less anti-dumping to China if the proportion of 

export increases. 

For the impact of US-China trade conflicts, the studies have tried to 

quantitatively identify the effects by means of various models. Fang et al.  

(2019) used the event method to quantify the impact of the trade war on 

China's bond market, stock market, and foreign exchange market, and the 

risk spillover effect between markets. It is indicated by the empirical 

results that the trade friction in the short term will cause the rise of risks in 

all the financial markets of China. There is both significant and lasting 

cross-market risk spillover effect of trade friction. With the data of 

Shanghai stock market index and the Dow Jones index , Li (2019) 

conducted research on China and US's stock market before and after the 

US-China trade war. Through the risk comparison based on IGARCH 

model and VaR, he also concluded that the trade war increased the absolute 

financial risks in China and the United States, and China is also facing the 

greater financial risk than the United States  from the point of overall risk 

mean size. Itakura (2019) evaluated the impact of the US-China trade 

conflict with a dynamic computable general equilibrium (CGE) model. Due 

to the acceleration of the trade conflict , the gross domestic product (GDP) 

of China and the US has been negatively influenced by -1.41% and -1.35% 

respectively. 
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3.2. Studies on futures market  

There are many studies on the price and volatility relationships among 

different futures markets, of which it is common to see the price guide 

mechanism between a local market and an international market. In these 

studies, there is a broad use of the Granger causality test, VECM models, 

multivariate GARCH models and so on.  

Goodwin (2000) found that the Canada wheat futures market is 

significantly influenced by the US market, while the Canada wheat futures 

market does not show the impact of the US market. Through studying the 

relationship between the oil futures at New York mercantile exchange 

(NYMEX) and the London international petroleum exchange (LIPE), Lin 

and Tamvakis (2001) showed that the risk spillovers are between the two 

futures markets. With the VAR models, Booth and Ciner (1997) studied the 

relationship and volatility correlation between the corn futures price at the 

Tokyo Grain Exchange (TGE) and the corn futures price at the Chicago 

Board of Trade (CBOT). The results show that the CBOT futures price 

determines the price transmission process. Likewise, with the VECM 

models, Tse and Booth (1997) studied the price guide mechanism between 

the New York oil futures market and the London oil futures market. 

Hernandez (2012) also studied the co-movement and the volatility effect 

among the global agricultural futures markets  by means of the MGARCH 

models.  

 

3.3. Studies on the spillover effect among markets 

There are many studies on the spillover effect among different markets. 

From the perspective of the researching methodology, there is a wide 

application of the first order moment models and second order moment 

models. The first order moment models mainly include linear model, 
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cointegration model, Vector Autoregressive Model (VAR) and Vector 

Error Correction Model (VECM). Besides, the second order moment 

models mainly include volatility variance model and autoregressive 

conditional heteroscedasticity model.  

In the early stage, the linear models are the scholars' major research 

methods on the spillover relationship between or among mark ets. Garbade 

and Silber (1983) reveal the impacts of futures price and spot price on the 

process of price discovery and the guide law of futures on the spot market 

prices. Through the linear regression analysis on the futures price and the 

spot price of corn, soybean meal and wheat contracts traded at the Chicago 

Board of Trade (CBOT), Bigman (1983) verified the futures market’s price 

discovery function. 

When studying the nonstationary sequences, Engel and Granger (1987) 

proposed the cointegration test, a new way, to study the equilibrium 

relationship between the nonstationary variables . The cointegration model 

has become a classical theoretical method and has been widely recognized 

in the research on the dynamic relationship between futures markets. 

Brenner and Kroner (1995), Kavussanos and Nomikos (1999) verified the 

effectiveness of the discovery function of futures price and found the 

existence of the cointegration relationships between the spot price and 

futures price for a lot of futures varieties. With the co-integration model, 

and the statistical inference of tools based on the maximum likelihood 

estimation method—Johansen rule, Johansen (1988), Johansen and Juselius 

(1990) tested the price discovery function of the futures markets. 

Engle and Granger (1987) put forward the vector autoregressive model 

(VAR) and the error correction model (ECM), which have been used to fit 

the dynamic relationship among the different markets. By means of the 

vector autoregressive models (VAR), Kasa (1992) gained insight into the 

dependencies between global stock markets. He concluded that ther e is a 
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consistent trend among the stock markets of the Britain, Germany, Japan, 

Canada and the United States. Based on the VAR, Eun and Shim (1989) 

also verified the strong impact of the US's stock market on the global stock 

market. 

For studies based on the second order moment models, it is concluded by 

French and Roll (1986) that the volatility variance could be used as the 

main source of information in order to study the dynamic spillover effect. 

T Ito and WL Lin (1994) identified the two-way volatility spillovers 

between the US's and Japan's stock markets by means of the volatility 

variance models. Engle proposed the autoregressive conditional 

heteroscedasticity (ARCH) models in 1982. Bollerslev (1986) further 

improved the ARCH models into generalized autoregressive conditional 

heteroscedasticity (GARCH) models, which could be used to fit the 

dynamic financial data series. When studying the volatility relationships 

among different markets, the multivariate GARCH models have been 

widely applied. With a Diagonal-BEKK model, P Katsiampa (2019)  

studied the dynamic volatility relationships of Bitcoin and Ether. Through 

the BEKK-MVGARCH models, Li and Giles (2014) discussed the volatility 

spillover effect of stock return among Japan, the US and six Asian 

emerging market and found that there is a significant two-way spillover 

between the US and the other six emerging economies.  
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4. Empirical research 

4.1. Data 

We select the price of soybean meal futures of Chicago Mercantile Exchange (CBOT) 

and the price of soybean meal futures of Dalian Commodity Exchange (DCE) as the 

research index of soybean meal futures prices in the United States and China. The 

time span for the sample is from January 2, 2013 to October 21, 2019. To identify the 

impact of the US-China trade war on the spillover effect between the two markets, the 

data are divided into two stages through taking the August 18, 2017 as a beginning of 

the trade war, at which time the Office of the United States Trade Representative 

officially launched the 301 investigation into China. Therefore, the data from January 

2, 2013 to August 17, 2017 is the first-stage sample, accordingly before the trade war, 

and the data from August 18, 2017 to October 21, 2019 is the second-stage sample, 

accordingly after the trade war. Bloomberg provides the data for both the two futures 

market. In the following parts of this paper, we mainly use the econometrical software 

Stata to do the data processing and modeling. 

 

4.1.1. Data preprocessing 

Before using the data in the empirical analysis, the data preprocessing needs to be 

carried out. Because the statutory holidays in China and the United States are not the 

same, sometimes normally with one market trading and the other closed, we choose to 

weed out non-resulting data and retain the common data at the same point. For the 

sample with the large time span, as in our paper, this method can stabilize the error in 

the controllable range to a large extent. Finally, we have 1588 observations in total 

after weeding out 178 observations from 1766 observations in the raw data. For the 

first stage, we have 1079 observations for CBOT and DCE soybean meal futures 

prices respectively from January 4, 2013 to August 17, 2017. In addition, for the 

second stage, we have 509 observations for CBOT and DCE soybean meal futures 

prices respectively from August 18, 2017 to October 21, 2019. 
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Table 1: Main indicators 

Indicators Meaning 

cbot the price of soybean meal futures of CBOT 

dce the price of soybean meal futures of DCE 

dlcbot the logarithmic rate of return: take the value after 

logarithmic difference for cbot 

dldce the logarithmic rate of return: take the value after 

logarithmic difference for dce 

Lp.dlcbot P order lag value of dlcbot (p = 1,2,3,…) 

Lq.dldce Q order lag value of dldce (q = 1,2,3,…) 

 

4.1.3. Data description 

In Figure 8, it is able to see the price evolution of soybean meal futures of CBOT and 

DCE from 2013 to 2019, respectively. There seem to be equal price trends. From 2014 

to 2016, both the soybean meal prices of CBOT and DCE show a continuous 

downward trend. Starting from the beginning of 2016, the futures prices in both 

markets rebounded slightly and continuously until the mid-and late July 2016, after 

which began to fluctuate up and down.  
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Figure 8: 2013-2019 Soybean meal futures prices of CBOT and DCE 

 

Source: Bloomberg 

In figure 9 and 10, it is able to see the volatility clustering effect in both markets. 

Compared with the CBOT market, the volatility in DCE market is relatively more 

stable over the years. Besides, the CBOT market shows higher volatility level during 

the first two years.  

Figure 9: 2013-2019 Soybean meal futures return of DCE  

 

Source: Bloomberg 
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Figure 10: 2013-2019 Soybean meal futures return of CBOT 

 

Source: Bloomberg  

Table 2 indicates the summary statistics of the identified variables. There are 1588 

observations for the price variables and 1587 observations for the return rate variables. 

For the soybean meal futures on the CBOT market, the average price is 352 RMB 

yuan per tons, and the min and max prices are 258 and 543 RMB yuan per tons. The 

skewness is about 0.8 as the distribution shows a slight right deviation. The kurtosis is 

2.6, which is close to the kurtosis of normal distribution at 3. For the soybean meal 

futures on the DCE market, the average price is 3085 USD dollars per tons, and the 

min and max prices are 2290 and 4100 USD dollars per tons. The skewness is about 

0.4, basically consistent with the normal distribution. The kurtosis is lower than 3, 

showing a slightly low peak distribution compared with the normal distribution. 

Generally speaking, the price distributions for both the two markets are relatively 

concentrated, which suggests a slightly similar pattern with the normal distribution, 

although the dispersion degree of data is higher for the DCE market than the CBOT 

market according to the variances comparison. For the return rate in the two markets, 

both of them propose the distribution patterns with the spike thick tail. The DCE 

market has a slightly higher average rate of return but a slightly lower variance than 

the CBOT market. 
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Table 2: Basic statistics for variables 

Variable cbot dce dlcbot dldce 

Obs 1,588 1,588 1,587 1,587 

Mean 351.9372 3085.224 -0.00016 -0.00012 

Std. 59.62073 449.3523 0.01875 0.016113 

Min 257.5 2290 -0.18134 -0.14714 

Max 543 4100 0.101664 0.130497 

Variance 3554.631 201917.5 0.000352 0.00026 

Skewness 0.829 0.407 -1.749 -0.766 

Kurtosis 2.620 2.099 20.604 15.973 

 

4.2. Stationarity test 

Before establishing the time series models, it is necessary to test the stationarity of the 

data in order to avoid spurious regression. ADF test proposed by Said and Dickey in 

1984 is used, which is one of the common methods to test the stationarity of the series. 

There are three types of model specifications for ADF test:  

i) Mean-zero data: under the null hypothesis is a random walk without drift. 

∆𝑦𝑡 = 𝛾𝑦𝑡−1 + ∑ 𝛽𝑖

𝑘

𝑡=1

∆𝑦𝑡−𝑖 + 𝜀𝑡 

ii) Mean non-zero data: under the null hypothesis is a random walk with nonzero 

drift. 

∆𝑦𝑡 = 𝑎0 + 𝛾𝑦𝑡−1 + ∑ 𝛽𝑖

𝑘

𝑡=1

∆𝑦𝑡−𝑖 + 𝜀𝑡 

iii) Linear trend: under the null hypothesis is a random walk, perhaps with drift. 
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∆𝑦𝑡 = 𝑎0 + 𝑎2𝑡 + 𝛾𝑦𝑡−1 + ∑ 𝛽𝑖

𝑘

𝑡=1

∆𝑦𝑡−𝑖 + 𝜀𝑡 

Criterion rules:  

𝐻0: 𝛾 = 0 

 𝐻1: 𝛾 ∈ (−2, 0) 

𝑡 =
𝛾 − 0

𝑠𝑒(𝛾)
 

From the visual inspection of the variables in the data description section, we apply 

model ii) and model iii) for the variables of prices, and apply model i) for the 

variables of returns. The test is carried out for the series divided into two stages. 

Table 3: Unit root test 

Stages Variables Model lag 
T 

statistics 

1% 

Critical 

value 

5% 

Critical 

value 

10% 

Critical 

value 

Stationary 

Stage 1 

cbot 
ii 7 -1.879 -3.43 -2.86 -2.57 N 

iii 7 -3.088 -3.96 -3.41 -3.12 N 

dce 
ii 6 -1.878 -3.43 -2.86 -2.57 N 

iii 6 -2.4 -3.96 -3.41 -3.12 N 

dlcbot i 5 -13.927 -2.58 -1.95 -1.62 Y 

dldce i 10 -11.007 -2.58 -1.95 -1.62 Y 

Stage 2 

cbot 
ii 8 -1.766 -3.44 -2.87 -2.57 N 

iii 8 -2.531 -3.98 -3.42 -3.13 N 

dce 
ii 1 -1.831 -3.43 -2.86 -2.57 N 

iii 1 -1.852 -3.96 -3.41 -3.12 N 

dlcbot i 7 -8.719 -2.58 -1.95 -1.62 Y 

dldce i 0 -25.458 -2.58 -1.95 -1.62 Y 
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From the test results, we could see the T statistics are all greater than the 5% critical 

values in terms of the price variables. Besides, we fail to reject the null hypothesis, 

and conclude that both the price variables contain the unit root before and after the 

trade war. For the return variables, the T statistics are all less than the 5% critical 

values, and thus we should reject the null hypothesis and conclude that both the price 

variables contain the unit root during both stages. 

4.3. Vector Auto Regression models 

Basically, the price of the soybean meal futures is determined by the supply and 

demand of the soybean meal in China’s and the US’s soybean meal market 

respectively. Due to the factors like global trading, it is able to propose that there is an 

equilibrium relationship between the price of soybean meal futures in different 

markets. From Figure 9, we could see that there is a roughly the same price evolution 

of soybean meal futures in the two markets. For example, the investors in DCE 

market could turn to buy the futures in the CBOT market if the price of soybean meals 

futures in DCE market rises. Besides, China imposes a 25% tariff on US soybeans 

during the trade war, which not only has impact on the demand and supply of the 

commodity, but also may have changed the equilibrium relationship between the two 

markets. Therefore, to verify the mean value spillover effect between the markets and 

to identify whether there is any change of the spillover effect before and after the 

US-China trade war, we set up the Vector Auto Regression (VAR) models for the two 

stages respectively as the following. To avoid spurious regression, the stationary 
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variables of return, dlcbot and dldce are also used in the VAR models.  

4.3.1. Model specification 

Under the circumstance where the exogeneity of a variable is not certain, VAR models 

treat each variable symmetrically. Therefore, a VAR is in a sense a systems regression 

model with more than one dependent variable. The simplest case is a bivariate VAR as 

follows: 

𝑦1,𝑡 = 𝛽10 + 𝛽11𝑦1,𝑡−1 + ⋯ + 𝛽1𝑘𝑦1,𝑡−𝑘 + 𝛼11𝑦2,𝑡−1 + ⋯ + 𝛼1𝑘𝑦2,𝑡−𝑘 + 𝜇1,𝑡 

𝑦2,𝑡 = 𝛽20 + 𝛽21𝑦2,𝑡−1 + ⋯ + 𝛽2𝑘𝑦2,𝑡−𝑘 + 𝛼21𝑦1,𝑡−1 + ⋯ + 𝛼2𝑘𝑦1,𝑡−𝑘 + 𝜇2,𝑡 

Where 𝑢𝑖,𝑡is an i.i.d. disturbance term with 𝐸[𝑢𝑖,𝑡] = 0, 𝑖 = 1,2 and 𝐸[𝑢1,𝑡𝑢2,𝑡] = 0 

The model could be extended to the case of g variables with k lags. Write the VAR(k) 

model with g variables in the compact form: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 … + 𝛽𝑘𝑦𝑡−𝑘 + 𝜇𝑡 

 

Where,       𝑦𝑡 =  [

𝑦1,𝑡

⋮
𝑦𝑔,𝑡

], 𝛽0 =  [

𝛽1,0

⋮
𝛽𝑔,0

], 𝛽𝑘 =  [

𝛽1,𝑘

⋮
𝛽𝑔,0

], 𝜇𝑡 =  [

𝜇1,𝑡

⋮
𝜇𝑔,𝑡

] 

4.3.2. Empirical specification 

To set up a VAR model, the optimal lags should be determined, usually based on the 

indicators, such as LR, AIC, SC, HQIC and FPE. According to the selection-order 

criteria, the indicators, including FPE, AIC, HQIC and SBIC, select the one-lag model 

for the first stage. The indicators, including LR, FPE, AIC and HQIC, select the 

one-lag model for the second stage.  

Hence, the VAR (1) model is set up for both stages, considering the selected optimal 

lag.  

𝑋𝑡 = C + 𝐴1𝑋𝑡−1 + 𝑒𝑡 



25 
 

Where:  

𝑋𝑡 = (
𝑑𝑙𝑐𝑏𝑜𝑡𝑡

𝑑𝑙𝑑𝑐𝑒𝑡
)   C = (

𝑐1

𝑐2
)  𝐴1 = (

𝑎11 𝑎12

𝑎21 𝑎22
)  𝑒𝑡 = (

𝑒1,𝑡

𝑒2,𝑡
) 

𝑑𝑙𝑐𝑏𝑜𝑡𝑡 and 𝑑𝑙𝑑𝑐𝑒𝑡 are the logarithmic rate of the return of soybean meal futures on 

the CBOT market and DCE market, respectively. 𝐴1is the coefficient matrix of the 

impact of return rate in the lag period on the return rate of the current period. C 

represents a constant term, and  𝑒𝑡 is a vector write noise process.  

4.3.3. Estimation results 

The following are the estimation results for the two stages: 

Table 4: VAR (1) Estimation Results for Stage One 

Variables dlcbot dldce 

L.dlcbot -0.0573 0.105*** 

 (-1.87) (4.50) 

L.dldce 0.0092 -0.126*** 

 (0.23) (-4.16) 

Constant -0.0003 -0.0003 

 (-0.49) (-0.60) 

Observations 1077 1077 

t statistics in parentheses  

* p<0.05, ** p<0.01, *** p<0.001  

For stage one, the return rate of soybean meal futures on CBOT market in the lag 

period has a positive impact on the return rate of soybean meal futures on DCE 

market in the current period. The coefficient is 0.105, which is significant at 0.1% 

significance level, indicating that one additional percent of increase in the price of 

soybean meal futures on CBOT market in the one lag period will lead to 10.5% of 

increase in the price of soybean meal futures on DCE market in the current period. In 
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addition, the return rate on DCE market in the one lag period itself has a significant 

impact (at 0.1% significance level) on the return rate on DCE market in the current 

period. From the Table, one additional percent of increase in the price of soybean 

meal futures on DCE market in the one lag period will lead to a 12.6% of decrease in 

the price of soybean meal futures on DCE market in the current period.  

Table 5: VAR (1) Estimation Results for Stage Two 

c dlcbot dldce 

L.dlcbot 0.0100  0.213*** 

 (0.23) (3.66) 

L.dldce 0.0165  -0.130**  

 (0.50) (-2.98)    

Constant 0.0001  0.0002  

 (0.14) -0.35 

Observations 507 507 

t statistics in parentheses  

* p<0.05, ** p<0.01, *** p<0.001  

 

Equally, for stage two, the impact of return rate in CBOT market and DCE market in 

one lag period on the return rate in DCE market in the current period is significant at 

0.1% and 1% significance levels, respectively. With one additional percent of increase 

in the price of soybean meal futures on CBOT market in the one lag period, the price 

on DCE market in the current period will increase by 10.8% higher compared with the 

stage 1. The impact of the return rate in DCE market in the one lag period itself on the 

return rate on DCE market in the current period does not change much after the trade 

war (stage two).  
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4.3.4. Tests for the models 

We test the residual normality with the Jarque-Bera Test for the two stages 

respectively, as the follows. From Table 6, it is able to conclude that all of the 

statistics are significant, and we reject the hypothesis that the residuals do not follow 

the normal distribution. Thus, the residuals from the regressions for both stages are 

normally distributed. 

Table 6: Jarque-Bera Test 

Equation  Stage  Chi2 Prob >chi2 

dlcbot Stage one 1.0e+04 0.00000 

 Stage two  84.139 0.00000 

dldce Stage one 1.2e+04 0.00000 

 Stage two  659.506    0.00000 

All  Stage one 2.3e+04 0.00000 

 Stage two  743.645 0.00000 

   

Next, we check the eigenvalue stability condition to verify the stability of the models. 

The results show that all the eigenvalues lie in the unit circle, and thus the VAR 

models can satisfy the stability condition.  

4.3.5. Granger Causality Test  

To identify the spillover effect between the variables, the Granger Causality Test are 

carried out for the two stages. From Table 7 and Table 8, we could conclude that, for 

bot stages, the return rate of soybean meal futures on CBOT market Granger Cause 

the return rate of soybean meal futures on DCE market, but not vice versa.  
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Table 7: Granger Causality Test for stage one 

Null hypothesis F statistics P value Conclusion 

dlcbot does not Granger Cause dldce 20.22 0.0000 Reject 

dldce does not Granger Cause dlcbot 0.05 0.8170 Accept 

 

Table 8: Granger Causality Test for stage two 

Null hypothesis F statistics P value Conclusion 

dlcbot does not Granger Cause dldce 13.41 0.0003 Reject 

dldce does not Granger Cause dlcbot 0.25 0.6188 Accept 

 

4.3.6. Impulse Response Analysis  

To study the marginal effects of the parameters in the coefficient matrix 𝐴1 in the 

VAR models, the impulse response analysis is carried out to identify the impact on the 

objective functions when a unit external shock occurs to the error terms. In order to 

conduct a pure analysis even when corr(𝑒1𝑡, 𝑒1𝑡) ≠  0, where we cannot keep 𝑒1𝑡 

unchanged and study the effect of 𝑒1𝑡, the orthogonalized impulse response functions 

(OIRF) are carried out.  

From Figure 11, it is able to see the impulse response graph for the stage one (before 

the trade war). The sending of the unit shock to the return rate of soybean meal 

futures on a market would lead to the obvious response by the return rate of soybean 

meal futures on the same market in the phase zero. In the first phase, the returns on 

both markets show an adverse response, which can be understood as a callback to the 

overreaction. In the second phase, the impulse is gradually digested by the market. No 

response occurs starting from the third phase. For the impulse response between the 
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two different markets, the CBOT market shows spillover effect on the DCE market, 

while the DCE market barely has impact on the CBOT market, conforming to the 

findings from our Granger Causality Tests. When the return rate of soybean meal 

futures on the CBOT market acts as the impulse variable, the DCE soybean meal 

futures return shows a moderate response in the phase zero immediately and 

maintained the response to the first phase. The impulse is gradually digested by the 

market in the second phase and disappears from then on. 

Figure 11: OIRF for stage one 

 

Comparatively, Figure 12 shows the impulse response graph for the stage two (after 

the trade war). Likewise, the sending of the unit shock to the return rate of soybean 

meal futures on a market would lead to the obvious response by the return rate of the 

soybean meal futures on the same market in the phase zero. But, only the returns on 

DCE market show an adverse response in the first phase. For the impulse response 
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between the two different markets, the spillover effect of CBOT market on the DCE 

market in stage two are likely to be weakened compared with the stage one. When 

sending a unit shock to the return rate of soybean meal futures on the CBOT market, 

there is barely an immediate response of DCE soybean meal futures return, as in the 

first stage. In the first phase, we did not observe obvious changes to the impact of 

CBOT impulse on the DCE response. In addition, similar to the first stage, the 

impulse is gradually digested by the market in the second phase and then disappears, 

as shown in the figure 12. Equally, the DCE market barely indicates the impact on the 

CBOT market.  

Figure 12: OIRF for stage two 

 

4.4. Cointegration testing 

From the previous unit root testing, we have concluded that the return variables are 
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stationary while the price variables are not. To find whither there is a long-run 

equilibrium relationship between the price variables containing a unit root, and to 

identify the impact of trade war on the cointegration relationship if any, we now 

conduct the cointegration tests with the Johansen methodology for both the stages.  

Johansen methodology is based on the Vector Error-correction Model (VECM). To 

conduct the Johansen test, we should select an appropriate lag length for the 

underlying VAR model of the VECM form. We use Stata to calculate various 

information criteria with up to six lags. According to the selection-order criteria, the 

indicators, including FPE, AIC and HQIC, select the lag length 2 for the first stage. 

The indicators, including LR, FPE, AIC and HQIC, select the lag length 2 for the 

second stage. Therefore, the VECM model has the form as VECM (1) for both stages.  

Δ𝑦𝑡 = Π𝑦𝑡−1 + Γ1Δ𝑦𝑡−1 + 𝜇𝑡 

𝑤ℎ𝑒𝑟𝑒,     𝑦𝑡 = (𝑐𝑏𝑜𝑡𝑡
𝑑𝑐𝑒𝑡

) ,  𝑢𝑡 = (𝑢1,𝑡
𝑢2,𝑡

) ~ VWN 

The test for the cointegration between the variables is calculated by observing the 

rank 𝑟  of the ∏  matrix via its eigenvalues 𝜆 . The rank of a matrix is equal to the 

number of its characteristic roots (eigenvalues) which are different from zero. A 

cointegration system of n variables has the maximum value of its ranks at n-1. The 

number of the cointegration relationships equals to the value of rank 𝑟. When the 

rank of a system that consists of the unit root series is zero, it is indicated that the 

system is not a cointegrated one.  

The trace test statistics for cointegration are formulated as: 

𝜆𝑡𝑟𝑎𝑐𝑒(𝑟) = −𝑇 ∑ ln (1 − 𝜆̂𝑖

𝑔

𝑖=𝑟+1

) 
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where 𝜆𝑖 is the estimated value for the ith ordered eigenvalue from the ∏  matrix. 

The testing sequence under the null is 𝑟 = 0, 1, … …, g-1, and thus the hypotheses 

for 𝜆𝑡𝑟𝑎𝑐𝑒 (𝑟) are: 

𝐻0: 𝑟 = 0      𝑣𝑠    𝐻1: 0 < 𝑟 ≤ 𝑔 

𝐻0: 𝑟 = 1      𝑣𝑠    𝐻1: 1 < 𝑟 ≤ 𝑔 

𝐻0: 𝑟 = 2      𝑣𝑠    𝐻1: 2 < 𝑟 ≤ 𝑔 

… …  

𝐻0: 𝑟 = 𝑔 − 1      𝑣𝑠    𝐻1: 𝑟 = 𝑔 

Where g is the maximum value of the possible ranks. 

To conduct the Johansen test, an appropriate lag length should be selected for the 

underlying VAR model of the VECM form. Stata is used to calculate various 

information criteria up to six lags. According to the selection-order criteria, the 

indicators, including FPE, AIC and HQIC, can select the lag length 2 for the first 

stage. The indicators, including LR, FPE, AIC and HQIC, can select the lag length 2 

for the second stage. Therefore, The VECM model has the form as VECM (1) for 

both stages.  

Then, we calculate the eigenvalues/characteristic roots of the matrix in a VECM (1), 

and conduct the trace tests in Stata. From the results, 𝜆𝑡𝑟𝑎𝑐𝑒 (0) is 22.60 for the first 

stage, which is greater than 19.96, the 5% critical value. Thus, it is able to reject the 

null of 𝑟 = 0, and accept the alternative hypothesis of 0 < 𝑟 ≤ 1. In addition, 

𝜆𝑡𝑟𝑎𝑐𝑒 (1) is 2.68, which is less than 9.42, the 5% critical value. Accordingly, we fail 

to reject the null of 𝑟 = 1. Besides, there is also one cointegration relationship for 

the price of soybean meal futures on the two markets before the trade war.  

For the second stage, 𝜆𝑡𝑟𝑎𝑐𝑒 (0) is 6.54, which is less than 19.96, the 5% critical 

value.Thus, we fail to reject the null of 𝑟 = 0. Besides, there is no cointegration 

relationship for the price of soybean meal futures on the two markets after the trade 

war.  
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4.5. Modeling volatility 

After analyzing the mean spillover effect between the DCE and CBOT soybean meal 

futures markets and the change of the relationships before and after the trade war, the 

spillover effect and the impact of the trade war are analysed from the perspective of 

volatility.  

4.5.1. GARCH Models 

Before analyzing the volatility correlation between the two markets for both the stages, 

we firstly model the volatility characteristics of the return series of the soybean meal 

futures at DCE and CBOT markets during the two stages, respectively.  

In the conventional econometric models, it is assumed that the variance of the 

disturbance term is constant, which is referred as the homoskedasticity assumption. 

However, many economic time series show the volatility clustering, in which case it is 

inappropriate to assume the variance is constant. Therefore, it is necessary to model 

the volatility, which is measured by the standard deviation or variance of returns. The 

basic idea behind volatility study lies in that the studied series is either serially 

uncorrelated or with minor lower order serial correlations, but a dependent series. To 

put the volatility models in a proper perspective, it is informative to not only consider 

the conditional variance of the series but also reveal the variance evolution. Therefore, 

the modeling of the conditional heteroscedasticity amounts to augmenting a dynamic 

equation, which can govern the time evolution of the conditional variance.  

To model the series volatility, we use the univariate Generalized Autoregressive 

Conditional Heteroskedasticity Model (GARCH model). GARCH model, which is 

proposed by Bollerslev (1986), is the generalized form of the Autoregressive 

Conditional Heteroskedasticity Model (ARCH model). Both ARCH and GARCH 

models are classified to be a type of the conditional heteroscedastic models, which 

govern the evolution of the variance with an exact function. The ARCH model takes 

available information as a condition and uses an autoregressive form to characterize 
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variance variation. For a time series, there are different corresponding conditional 

variances due to the different available information at various times. The ARCH 

model can be used to characterize conditional variance evolution over time. 

Compared with ARCH, the generalized form allows us to capture the persistence of 

conditional volatility parsimoniously. Here, the GARCH model is used to continue 

with the empirical research in this paper.  

Taking into account the trade-off between the introduction of parameters and the 

estimation accuracy, the GARCH (1,1) model is selected for the empirical 

specification. In fact, the GARCH (1, 1) models the volatility greatly for most 

practical purposes. 

For GARCH (1, 1): 

𝜎𝑡
2 = 𝑤 + 𝛼𝜇𝑡−1

2 + 𝛽𝜎𝑡−1
2  

We estimate the univariable GARCH models for soybean meal futures return in DCE 

and CBOT within the two stages. We use Function AUTO.ARIMA in the RUGARCH 

package in R program in order to identify the most suitable mean model for the four 

groups of data with AICs. After that, the ARCH effect is examined with the model 

residuals. From Table 9, it is able to reject the null of no ARCH effect. 

Table 9: Best models by AICs 

Data model P value of ARCH effect 

dldce in stage 1 ARMA (0,1) 0.000000 

dlcbot in stage 1 ARMA (2,2) 0.000000 

dldce in stage 2 ARMA (0,1) 0.000000 

dlcbot in stage 2 ARMA (0,0) 0.000000 

 

The results of the GARCH estimations are as follows: 

 

 



35 
 

Table 10: Estimation for GARCH (1,1) model of DCE in stage 1 

Parameters          Estimate   Std. Error    t value  Pr(>|t|) 

𝜇      - 0.000774 0.000416 -1.8594 0.062974 

𝛼1   0.027243 0.002408 11.3149 0.00000 

𝛽1    0.943979 0.004544 207.7240 0.00000 

According to Table 10, the variance model of DCE soybean meal futures return can be 

described as 

σ𝑡
2 =  −0.000774 +  0.027243μ𝑡−1

2 + 0.943979σ𝑡−1
2  

P values of alpha1 and beta1 are smaller than 0.05, which means both the ARCH 

effect and the GARCH effect are significant. The ARCH effect of the equation is 0. 

027243 and the GARCH effect is 0. 943979. This means the volatility of DCE 

soybean meal futures return is affected by both exogenous shock and previous 

volatility. Besides, the effect of previous volatility is the main source of volatility. The 

sum of alpha and beta is 0. 971222, which is smaller than 1, indicating that the 

equation satisfies the stationarity requirements. 

Table 11: Estimation for GARCH (1,1) model of DCE in stage 2 

Parameter  Estimate  Std. Error    t value  Pr(>|t|) 

𝜇      0.000172 0.000584 -0.66269  0.768238 

𝛼1   0.000154 0.000641 4.84012  0.810001 

𝛽1    0.996346 0.000232 4286.71346 0.000000 

According to table 11, the variance model of DCE soybean meal futures return can be 

described as 

σ𝑡
2 =  −0.000172 +  0.000154μ𝑡−1

2 + 0.996346σ𝑡−1
2  

P value of alpha1 become higher than 0.1 in stage2, which means the effect of 

exogenous shock becomes not so significant after the breaking out of the US-China 

trade war. The P value of beta1 is still smaller than 0.05, indicating that the GARCH 

effect is significant. The sum of alpha and beta is less than 1, which suggests that the 
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equation satisfies the stationarity requirements. 

Table 12: Estimation for GARCH (1,1) model of CBOT in stage1 

Parameter  Estimate  Std. Error    t value  Pr(>|t|) 

𝜇      -0.001022 0.000404 -2.5289 0.011441 

𝛼1   0.156905 0.024637 6.3686 0.000000 

𝛽1    0.842095 0.031654 26.6029 0.000000 

According to Table 12, the variance model of CBOT soybean meal futures return can 

be described as 

σ𝑡
2 =  −0.001022 +  0.156905μ𝑡−1

2 + 0.842095σ 𝑡−1
2  

P values of other parameters are much smaller than 0.05, which means that all of them 

are significant. The ARCH effect of the equation is 0. 156905 and the GARCH effect 

is 0. 842095. This means the volatility of DCE soybean meal futures return is affected 

by both exogenous shock and previous volatility. In addition, the effect of previous 

volatility is the main source of volatility. The sum of alpha and beta is 0.999000, 

which is smaller than 1, indicating that the equation satisfies the stationarity 

requirements.  

Table 13: Estimation for GARCH (1,1) model of CBOT in stage2 

Parameter  Estimate  Std. Error    t value  Pr(>|t|) 

𝜇      0.000109 0.000498 0.2183 0.8272 

𝛼1   0.027081 0.003376 8.0221 0.000000 

𝛽1    0.933870 0.007881 118.4908 0.000000 

According to Table 13, the variance model of CBOT soybean meal futures return can 

be described as 

σ𝑡
2 =  −0.000109 +  0.027081μ𝑡−1

2 + 0.933870σ𝑡−1
2  

P values of alpha1 and beta1 are smaller than 0.05, which means both the ARCH 

effect and the GARCH effect are significant. The ARCH effect equals to 0. 027081 
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and the GARCH effect is 0.933870. This means that the effect of previous volatility is 

still the main source of volatility and has been playing a bigger role since the breaking 

of the trade war. The sum of alpha and beta is 0. 960951, smaller than 1, indicating 

that the equation satisfies the stationarity requirements. 

Table 14: ARCH LM Test result 

Model Lag Statistic P-Value 

DCE 

stage 1 

ARCH Lag [3] 0.7081 0.4001 

ARCH Lag [5] 2.5676 0.3589 

ARCH Lag [7] 3.4696 0.4295 

CBOT 

stage 1 

ARCH Lag [3] 2.770 0.09604 

ARCH Lag [5] 3.202 0.26175 

ARCH Lag [7] 4.670 0.26009 

DCE 

stage 2 

ARCH Lag [3] 0.0079 0.9288 

ARCH Lag [5] 2.2639 0.4158 

ARCH Lag [7] 3.5211 0.4209 

CBOT 

stage 1 

ARCH Lag [3] 0.2364 0.6268 

ARCH Lag [5] 0.3941 0.9143 

ARCH Lag [7] 0.6129 0.9671 

Table 14 is the result of the ARCH LM method, which examines the ARCH effect of 

the residual of GARCH model. According to Table 14, all the corresponding P values 

are much higher than 0.05. This means the hypothesis that “the residuals of the 

GARCH models have no ARCH effect” can be accepted. 

4.5.2. Diagonal-BEKK model 

Next, we apply the multivariate GARCH model to capture the relationships, so as to 

understand the correlation of volatility between the different markets. We also use the 

Diagonal-BEKK model to conduct the empirical analysis. The Diagonal-BEKK 

model sets the parameter matrix to be diagonal, which has an advantage of 
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simplifying the estimation. To find out the changes of the volatility correlation 

between the CBOT and DCE markets, the Diagonal-BEKK models are established for 

the two stages respectively. The mean equations are the same as those identified in the 

univariable GARCH models. When the lag order in the multivariate GARCH models 

is 1, the model could show better fitting effects. Therefore, the Diagonal-BEKK (1,1) 

models is estimated with the following variance and covariance equation, obtaining 

the estimation results by EViews. 

 

𝐻𝑡 = 𝐶𝐶′ + 𝐴′𝜀𝑡−1𝜀𝑡−1
′
𝐴 + 𝐵′𝐻𝑡−1𝐵 

 

𝐻𝑡 = [
ℎ11,𝑡 ℎ12,𝑡

ℎ21,𝑡 ℎ22,𝑡
] , 𝐶 = [

𝑐11 0
𝑐21 𝑐22

] , 𝐴 = [
𝑎11 0
0 𝑎22

] , 𝐵 = [
𝑏11 0
0 𝑏22

] 

Where ℎ11,𝑡 represents the variance of the CBOT return rate of the soybean meal 

futures at time t, and  ℎ22,𝑡 represents the variance of the DCE return rate of the 

soybean meal futures at time t, and ℎ12,𝑡 (or ℎ21,𝑡) represents the covariance of the 

return series on the two markets at time t.  

The following are the estimation results of the two stages. 

Table 15: Diagonal-BEKK (1,1) Estimation Results for Stage One 

Parameters Coefficient Std. Error z-Statistic Prob. 

C (1,1) 1.00E-05 3.95E-06 2.533505 0.0113  

C (1,2) 3.38E-05 1.32E-05 2.561058 0.0104  

C (2,2) 0.000187 2.96E-05 6.33081 0.0000  

A (1,1) 0.252574 0.037378 6.757292 0.0000  

A (2,2) 0.668133 0.083477 8.003841 0.0000  

B (1,1) 0.968798 0.007496 129.2462 0.0000  

B (2,2) 0.120836 0.107764 1.1213 0.2622  
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Table 16: Diagonal-BEKK (1,1) Estimation Results for Stage Two 

Parameters Coefficient Std. Error z-Statistic Prob. 

C (1,1) 2.48E-05 2.23E-05 1.115534  0.2646  

C (1,2) 1.19E-05 1.26E-05 0.944298  0.3450  

C (2,2) 0.000158  2.93E-05 5.380100  0.0000  

A (1,1) 0.238175  0.094563 2.518679  0.0118  

A (2,2) 0.645839  0.102651 6.291597  0.0000  

B (1,1) 0.909853  0.071457 12.732860  0.0000  

B (2,2) 0.069880  0.395979 0.176473  0.8599  

For stage one, the table 15 shows that all the parameters are significant at 5% 

significance level, only except the parameter 𝑏22 in the B matrix as defined. For 

stage two, the table 16 shows that 𝑏11, 𝑐22 and the two parameters in matrix A are 

all significant at 5% significance level.  

Next, it is able to derive the dynamic correlation coefficients by the variance and 

covariance equations, and the equation is as below: 

𝐶𝑜𝑟𝑟(1,2)𝑡 = ℎ12,𝑡/ (√ℎ11,𝑡√ℎ22,𝑡) 
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Figure 13: Conditional correlation in stage one 

 

Figure 14: Conditional correlation in stage two 

 

Figure 13 and figure 14 show the evolution of conditional correlation over time 

between the return rate of soybean meal futures on the CBOT market and on the DCE 

market in stage one and stage two, respectively. From the figures, we could see that 

the values of dynamic correlation in stage one fluctuates around 0.2, while the values 

of dynamic correlation in stage two fluctuate around 0.1. After the trade war, the 

fluctuation interval is narrowed. To further illustrate the impact of the trade war, we 

look at the summary statistics and the boxplot in figure 15. It indicates that the mean 
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value of the correlation decreases from 0.128 to 0.069 after the trade war, and the 

standard deviation declines from 0.102 to 0.088. Generally speaking, the volatility 

correlation is weakened after the trade war.  

Figure 15: Basic statistics for conditional correlation in both stages 

 
  

Mean: 0.069 

Max: 0.492 

Min: -0.329 

Std: 0.088 

Mean: 0.128 

Max: 0.793 

Min: -0.568 

Std: 0.102 
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5. Conclusions 

In this thesis, three empirical models are built up, including VAR, cointegration and 

Diagonal-BEKK, to identify the impact of US-China trade war on the soybean meal 

trade. Based on those results, we believe the soybean meal trade between the US and 

China starts to uncouple after the breaking of the trade war, both in the mean level and 

in the volatility level.  

Firstly, in terms of the mean of soybean meal futures return in CBOT and DCE, we 

find that the CBOT return has a direct impact on DCE return while the DCE return is 

not affecting the CBOT return. This makes sense because the CBOT soybean meal 

futures is basically the center of global trading and DCE is only the center of a local 

market. It is shown by the result of impulse responds that the CBOT impact decreased 

after the trade war. 

Also, we find that there was a cointegration between the return of CBOT and DCE 

soybean meal futures before the trade war, which disappears after the breaking of the 

trade war. It is indicated that the equilibrium relationship of the soybean meal futures 

return in these two markets also breaks down because of the trade war. 

Lastly, we find that the correlation between two volatilities is weakened after the trade 

war after building up the models for the conditional heteroskedasticity. We interpret 

that to the change of risk transmission mechanism because of the trade war.  

Under the background of US-China conflict, some people predict that the trade war 

would upgrade from tariff punishment to economic decouple. From our research, it 

can be clearly seen that the soybean meal is decoupling in terms of the spillover 

effects. Since soybean is the most important component in and takes one-fourth of the 

US-China agriculture product trading, it is thought that our findings will be an 

alarming signal for the decoupling of US-China trade on agriculture. In addition, the 

decoupling will be a big challenge for not only the US and China government but also 

the globalization process. 
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6. Suggestions for future research 

The US-China trade conflict has great influences on every aspect of US-China trade, 

and the influence itself is also a brand-new area to study. Among those influences, the 

price transmission and risk spillover effect are only a small part. Besides, further 

researches could be conducted in this area. 

In the data aspect, data from the beginning of 2012 to the end of October 2019 is 

selected. Since the trade conflict is still in the process, we suggest researchers to 

include data after October 2019 in order to comprehensively evaluate the influence of 

the event. Also, the futures return of soybean meal is also traced with the daily data. If 

possible, further researcher could use minute-level price to better describe the 

volatility and risk of soybean meal return. 

In the model aspect, Diagonal-BEKK model is used to describe the conditional 

heteroskedasticity. In further study, researchers can try other models like 

DCC-GARCH, so as to identify that whether different models tell a same story or not. 

Also, soybean is only one part of the agriculture trading. Thus, the researchers can 

also conduct studies on other important agriculture products in order to reveal the full 

picture of US-China agriculture trading.  

Finally, it will be an interesting topic to study on what kind of impact this decoupling 

will make to the global economy and what can we do to prevent the damage caused 

by the anti-globalization course. 
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