

ALICIA OHLSSON

MAXIMILIAN KARLSTRÖM

Bachelor Thesis

Stockholm School of Economics

2020

RECURRENT NEURAL

NETWORKS FOR VOLATILITY

ESTIMATION

A COMPARATIVE STUDY OF MACHINE LEARNING AND

TRADITIONAL METHODS FOR VOLATILITY ESTIMATION

Recurrent Neural Networks for volatility estimation – A comparative study

Financial decisions are largely based on a tradeoff between risk and return. While the definition

of risk is not equal to volatility, it is often used as a proxy for it. Hence, volatility forecasting is

of great importance and an essential part of asset pricing, portfolio optimization and risk

management. The purpose of this paper is to investigate if a Recurrent Neural Network could

provide more precise estimations of seasonal volatility and if so, how it compares to other

commonly used models. We prove that they do provide good estimations as well as outperform

the other models in doing so.

Keywords:

Volatility forecasting, Recurrent Neural Networks, GARCH, ARCH, Machine Learning

Authors:

Alicia Ohlsson (24159)

Maximilian Karlström (23799)

Tutor:

Marcus Opp, Associate Professor, Department of Finance

Examiner:

Adrien d´Avernas, Assistant Professor, Department of Finance

Bachelor Thesis

Bachelor Program in Business and Economics

Stockholm School of Economics

© Alicia Ohlsson and Maximilian Karlström, 2020

 3

1. Introduction

Volatility is related to the dynamics of the time-dependent variance in series of returns on an

asset. The estimation of volatility is of great interest to the financial market, and it is the most

important variable when pricing derivative securities. It is used as a risk measure for other types

of assets and it is an important parameter to take into consideration when hedging for risk. As

opposed to asset prices, volatility cannot be directly observed but must be estimated. Volatility

modeling has been a popular research topic for the last 40 years and will probably continue to be.

(Poon, Granger 2003) (Bauwens, Hafner et al. 2012).

According to financial theory, the price of an asset is the present value of its expected future cash

flows. However, the price might change when the investors’ expectations about future incomes

change or when new information becomes available. This results in sudden changes in prices and

returns, which therefore affects volatility. (Bauwens, Hafner et al. 2012) An assumption to make

is that some of the change in volatility is due to seasonal behavior that repeats from year to year,

such as scheduled releases of information, while all other parts are due to other circumstances.

This raises the question of how to estimate the seasonal component of the volatility in the best

way possible.

While there are currently many ways to estimate volatility, we see a gap in the research when it

comes to using machine learning, and more precisely neural networks to do so. To reduce this

gap and estimate time-series volatility with machine learning, we started with a Recurrent Neural

Network (RNN), an existing machine learning architecture for time-series prediction. We

adapted the model to not only predict the next day returns but also the uncertainty in the

prediction in terms of the standard deviation. With these two parameters, we assumed a normal

distribution of each log-return and optimized the model’s parameters by maximizing the log-

likelihood of the data by using a numerical optimizer.

In this paper the purpose was to examine whether a model using an RNN structure could provide

more precise predictions than two other commonly used models for predicting seasonal

 4

volatility. Hence, the research question was stipulated as follows: How do recurrent neural

networks compare to classical models, for seasonal volatility estimation?

The results from our study show that recurrent neural network tends to perform volatility

estimation well. Compared to the two other models (the Auto Regressive Conditional

Heteroscedasticity model, ARCH and Generalized Auto Regressive Conditional

Heteroscedasticity model), GARCH, our model performs better on all error and performance

metrics we measured. All results are statistically significant at a confidence level of 95 %.

However, in this paper, we have used synthesized data. This implies that we might have missed

some important phenomena existing in the real market due to, for example, the day of the week,

holidays, and dividend payments. This could affect the external validity of our model, and in

future research, it could be interesting to look at real time-series data. Moreover, the type of

RNN model used in this paper is less complex compared to other neural networks models, and

one could in further research develop the machine learning architecture to gain further

knowledge and do better predictions.

2. Background

One of the most commonly used assumptions in financial economics is “The law of one price”,

which states that for any given security there can only be one price. This theory implies that a

financial asset should be equal to the present value of future cash flows, regardless of how these

cash flows are generated. The changes in the price of an asset are due to changes in the

expectations of the future cash flows, which could be due to both macro- and micro-events. The

bigger price fluctuations the bigger variance of the price, and with the assumption that these

updated expectations often come in clusters and are not evenly spread throughout the year, the

variance is not constant over time and hence, the volatility for a security is not constant.

(Bauwens, Hafner et al. 2012)

Volatility is defined as the standard deviation of the log-returns of an underlying asset. As the

volatility cannot be directly observed it must be estimated. Furthermore, as all returns are

 5

assumed to be an outcome of a stochastic variable with a time varying standard deviation, only

looking at the realized return at one point in time will not reveal much information about the

underlying volatility, so other methods have to be employed. When calculating volatility, two

different volatility measures are frequently used: realized volatility and implied volatility. The

realized volatility is the estimation of the actual volatility seen in the market. Therefore,

assumptions must be made regarding the structure of the volatility and several points in time

must be used. Implied volatility is the market’s expectation of the volatility for an underlying

asset and is often calculated with the inverted Black-Scholes model. By using assuming that the

price, which is given, is a function of volatility as described in the Black Scholes model one can

solve for the unknown volatility. (Shaikh, Padhi 2013) These two volatilities do not necessarily

coincide with each other nor the true volatility.

The simplest type of option consists of a contract giving the owner a right to sell or buy a certain

quantity of an asset. The contract stipulates a predetermined price at a predetermined time in the

future, relative to the beginning of the contract, called the exercise date. A call option gives the

right to buy and a put option the right to sell. If the predetermined price is greater than the spot

price at the exercise date, a put option is valuable, and the call option is worthless and vice versa

if the spot price is greater. Options are used to mitigate risk. With a call option on oil, you have a

guarantee that you will be able to heat your house for, at most, a predetermined price during

winter. A put option on wheat allows you to sell what you have produced for, at least, some fixed

price. If the underlying asset has a stable, non-volatile, return one can assume where the spot

price will be with more certainty, lowering the risk for the one selling the option. This, in turn,

lowers the price of the option and explains why volatility is such an important factor for deciding

the price of an option. Options are a commonly traded security, allowing producers and hedge

fund manager to hedge for risk. To price these options, one must take into consideration the

volatility of the underlying asset price.

In 1973, Fischer Black and Myron Scholes introduced a new method to pricing options with the

Black-Scholes model. The model requires five different parameters in order to calculate the

option price. (Black, Scholes 1973)

 6

 The spot price of the underlying asset,

 The strike-price

 The risk-free rate

 The time to maturity

 The implied volatility of the underlying

The only non-observable parameter is the implied volatility of the underlying, which has led to

that the model is often used in reverse to observe the volatility in the market. However, having a

reliable way to forecast the volatility and price the option independently, is of great importance.

(Bossu 2014)

To derive their model, Black and Scholes made several assumptions regarding the underlying

stock data, which is used in this paper. One assumption regarding the stocks in the Black Scholes

model is that the stocks follow a random walk in continuous time with a variance rate

proportional to the square of the stock price. This implies that the distribution of future stock

prices at the end of an interval will be log-normal. (Black, Scholes 1973)

Not long ago, theoretical models assumed constant volatility, as in the Black-Scholes model.

(Black, Scholes 1973) In applied econometrics, the ordinary least squares model is a very

common tool to use, since it works well to determine how a variable change in response to a

change in some other variable(s). However, the forecasting part of econometrics is becoming

more and more important, such as forecasting and analyzing the size of the errors of the model.

Two of the most well-known non-linear volatility models are the Auto Regressive Conditional

Heteroscedasticity model (ARCH) and the Generalized Auto Regressive Conditional

Heteroscedasticity model (GARCH). (Engle, Robert 2001)

The ordinary least squares model assumes that the expected value of the squared error terms is

constant at any given time, an assumption that often is called homoscedasticity, and it is this

assumption that is the focus of the ARCH and the GARCH models. When this assumption is not

 7

fulfilled, due to the variance of the error terms is instead larger at some point and lower at other,

the error terms are heteroscedastic. With heteroscedasticity, an ordinary least squares model will

still be unbiased, but the standard errors and confidence intervals estimated will be biased. What

is distinct with the ARCH and GARCH models is that they do not see this as a problem to be

corrected, but rather as a variable to be modeled. (Engle 2001)

At the foundation of the ARCH and the GARCH model are two assumptions. Firstly, the

volatility of a certain time-series depends on where in time we look. Secondly, the volatility

today will likely be close to the volatility yesterday, and the day before. This is called volatility

clustering, a phenomenon implying that there tend to be periods of low volatility as well as

periods of high volatility, and as previously explained, the volatility depends on the updated

expectations. However, there seems to be a trend that news that update expectations come in a

cluster, resulting in periods of volatility trends. For example, in times of crisis, news and

specifically bad news, tend to not come alone. The presence of volatility clustering leads to

heteroscedasticity (time varying variance), and it also results in positive autocorrelation

coefficients of squared returns. This means that an error of a given sign tends to be followed by

an error of the same sign, causing periods of high volatility and periods of low volatility.

(Bauwens, Hafner et al. 2012)

The Autoregressive Conditional Heteroscedastic Model (ARCH) was first published by Robert

F. Engle in 1982. The ARCH model forecasts the volatility using yesterday’s time-series value

and a constant parameter. ARCH assumes that the error term of the variance of a time-series is a

function of previous days’ error terms, often as the squares of the previous error terms. The error

terms in an ARCH model is assumed to follow an autoregressive model (AR). (Engle, Robert F.

1982) (Engle, Robert F. 2001)

To explain the theory behind the model, we let the dependent variable be labeled 𝑟𝑡, which

represents the return on an asset and that 𝑟𝑡 = 𝜇 + 𝜖𝑡. Further, we assume that 𝑟𝑡 = 𝑠𝑡𝑧𝑡, where

𝑧𝑡 is a white noise, and that 𝑧𝑡~𝒩(0,1). With this notation, the ARCH model assumes that the

volatility σ(𝑡) will satisfy the equation

 8

σ𝑡
2 = α0 + α1𝑟𝑡−1

2 + ⋯ + α𝑞𝑟𝑡−𝑞
2 = α0 + ∑ α𝑖𝑟𝑡−𝑖

2

𝑞

𝑖=1

where

𝛼0 > 0 and 𝑎𝑖 ≥ 0, 𝑖 > 0

The GARCH model relies on the same logic as the ARCH model, however, the GARCH model

forecasts today’s volatility using both the value of the time-series yesterday and the volatility

yesterday, while the ARCH model only uses yesterday’s time-series value. The GARCH model

assumes that the error terms follow an autoregressive moving average model (ARMA)

((Bauwens, Hafner et al. 2012) (Engle, Robert F. 2001)

As in the ARCH model, we let the dependent variable be labeled 𝑟𝑡, which represent the return

on an asset. Further, we assume that 𝑟𝑡 = 𝜇 + 𝜖𝑡 and that 𝜖𝑡 = 𝑠𝑡𝑧𝑡, where 𝑧𝑡 is a white noise,

and that 𝑧𝑡~ 𝑁 (0,1). Finally, we assume that 𝜎𝑡
2 satisfy the equation

σt
2 = ω + α1𝑟t0

2 + ⋯ + αq𝑟t−q
2 + β1σt−1

2 + ⋯ + βpσt−p
2 = ω + ∑ αi

q

i=1

𝑟t−i
2 + ∑ βi

p

i=1

σt−i
2

where

𝜔 > 0

With the formulation of the GARCH and ARCH model, we have to estimate the models’

parameters. The parameter estimation for optimal variance forecasting can be formulated as an

optimization problem, where the goal is to find the forecast that minimizes the expected loss

conditional on the available information at the time. (Patton 2011)

Mathematical optimization is the science of finding a value that is optimum for a given function

with some known prerequisites and constraints. (Kropko, Jonathan 2016). Essentially, any

mathematical model with adjustable parameters could, in theory, be used to estimate volatility.

 9

Now, how well these different models would predict the volatility in practice is a different

matter. In the field of machine learning, several models that have shown their adapting

capabilities in various settings such as image recognition (Miles 2014), (He, Zhang et al. 2016),

text classification (Liu, Qiu et al. 2016) and time-series prediction (Connor, Martin et al. 1994)

Machine learning is the study of computer algorithms that improve through or learn from

experience. The foundation of most of machine learning is optimization. (Tom, Mitchell 1997)

The way many machine learning models use optimization is through adjustment of the model’s

parameters to extremize a specific optimization objective. The assumption is that such an

extremization results in a set of parameters that allows the model to find patterns in the training

data that exist also exists in unseen data. This is called to generalize. To summarize, machine

learning models are trained to learn from data, find patterns, and make decisions with minimal

human interference. (P. Bennett, Kristin et al. 2006)

In this thesis, a specific type of machine learning model is used, namely a neural network. A

neural network can be thought of as a universal approximator. It can be used for regression and

classification. Regression is, for a given input return a value belonging to some continuous range

of values. An example would be predicting sales of ice-cream on a sunny day. Classification is to

return a value from a finite set given some other input. For example, predict whether someone is

allowed to drink alcohol given the country they are in and their age. A neural network consists of

a sequence of layers. Each layer is a function with parameters that can be adjusted to change the

transformation that the layer performs. Each layer transforms its input and pass it to the next

layer(s). The layers are chosen based on their input data. In this thesis, all layers are linear

transformations of their inputs, the output of the transformation is then transformed with the

SoftPlus function, a non-linear function allowing the network to approximate non-linear

relationships. (Csanád C., Balázs 2001)

Recurrent neural networks (RNN) are a certain type of neural network designed to recognize

patterns in sequences of data. These networks have an inbuilt summary, or memory, of what it

has previously seen, making it suitable for estimation of time-series. As depicted in Figure 1, the

input x is used together with the hidden state h to create an output o and a new hidden state. The

 10

hidden state works as the memory or summary of the sequence of x’s the network have seen so

far. This gives the network an ability to summarize an arbitrary number of previous inputs as

compared to many other models that use a fixed number of previous values as parameters, for

example linear models that uses a sliding window for volatility prediction, such as ARCH.

(Cleeremans, Servan-Schreiber et al. 1989)

Figure 1. This figure shows the folded and unfolded graph of a recurrent neural network. We see that the

input U and the previous hidden state V together form the current hidden state that is used to generate the

output W. (Wikipedia 2020)

3. Literature review

In the paper “Neural network volatility forecasts”, the authors show that a one-layer neural

network with enough neurons activated with a non-linear function can approximate any non-

linear function. (Aragonés, Blanco et al. 2007) We know that the formula calculating the standard

deviation for a set of points is a non-linear function of their values. Neural networks should,

therefore, provide a solid foundation for transforming prices into volatility in a slightly more

advanced manner than taking the standard deviation of all prices. Aragonés, Blanco et al. further

proves in their paper that neural networks are good at predicting volatility. (Aragonés, Blanco et

al. 2007)

In addition, RNNs works well for problems where the data set has sequential nature, and

therefore, time-series estimation with RNNs has been a successful research area even though it is

not the primary usage area. In the paper “Recurrent Neural Networks and Robust Time-series

Prediction” by Connor and Martin, they successfully used a recurrent neural network to predict

 11

time-series. Further, the RNNs are especially good at finding seasonal patterns in time-series

data, and in the paper “Seasonality in Variance is common in Macro Time-series" from 2000,

seasonal patterns were identified and statistically significant in the variance of macro time-series,

which leads to a hypothesis that RNNs would work well in predicting these. (Jaditz 2000)

Moreover, in the article “Volatility Prediction with Mixture Density Networks” by Schittenkopf

and Dorffner, a comparison of the performance of standard volatility models and the

performance of a Mixture Density Networks was made. A Mixture Density Network is a network

used for problems where regular regression models are inapplicable because the variable of

interest cannot be used as the target in the regression, such as volatility estimation. The concept

is to generate the parameters of a chosen probability distribution for each sample. With these

parameters, each sample is given a probability. By maximizing the joint probability of the data,

we can hope to get reasonable parameters of the generating distribution for each datapoint. In

this paper, we have used a normal distribution to produce the likelihood. This means that the

model produced a mean and a standard deviation for the log-return at each point in time. The

likelihood is the largest when the model outputs the correct mean and the correct standard

deviation at each point in time. In the study by Schittenkopf and Dorffner, the GARCH model

was the model that performed best. This was because it seemed to be important to not only look

at the time-series value from previous days but also the conditional variance. Hence, it was found

that there is a need for long-term memory in the models estimating for volatility, and they

recommended further research in the area. The writers especially recommended looking at a

recurrent structure of the machine learning model. (Schittenkopf, Dorffner et al. 1998)

4. Data

In this study, we have used synthesized data. Although real-world stock data is not hard to come

by, the underlying volatility is unknown. As we wanted to compare our predicted volatility with

some ground truth, we needed data for comparison. By artificially generating stock data, a

precise value for the volatility generating the logarithmic returns is known at all points in time.

For real-world stock data, as mentioned, the implied volatility and realized volatility are

imperfect proxies for true underlying volatility, and a comparison with these proxies could lead

 12

to some models overperforming due to bias. Therefore, we chose to generate data from time-

varying volatility.

To generate the data, we assumed that 𝑙𝑜𝑔(𝑟𝑡) ∼ 𝑁(0, σ(𝑡)) where 𝜎(𝑡) is a function of our

choice. We assume that the data is without trend by setting the mean of log-returns to zero. This

way we can isolate the objective of the model and only estimate the volatility without having to

estimate returns at the same time. By sampling a logarithmic change for all trading days and

exponentiate the logarithmic changes we got a series of returns. Coupling these with an initial

price set to 1 we got the price for all points in time. We chose 1 as the initial price does not affect

the returns.

Although every logarithmic return is normally distributed at every point in time, all logarithmic

returns, in general, are not. To illustrate this, we conducted a Shapiro-Wilks test of normality.

This test tests the null hypothesis of whether a list of values come from a normally distributed

population. (Razali, Wah 2011) We did the test with the hypothesis that they are not normally

distributed. In Figure 2 we can observe the results of the test. As no p-value is larger than the

chosen significance level of 5 %, we can reject the null hypothesis that they are normally

distributed at the chosen level of significance.

 13

Figure 2. This graph shows the p-value for the Shapiro-Wilks test for the log-returns of each experiment.

This test tests if the distribution is normal. As we sample the log-returns from a normal distribution at

each point in time but with different standard deviations we expect that this distribution is not normal.

The test confirms that at a confidence level of 95 %, the distributuon is .

With the Shapiro-Wilks p-values we can look at the distribution of log-return that look the most

normally distributed in Figure 3 and we can see its returns in Figure 4.

1E-22

1E-21

1E-20

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

0 5 10 15 20 25 30 35 40 45
S

h
ap

ir
o

-W
il

k
s

p
-v

al
u
e

Experiment number

Shapiro-Wilks test for normality

 14

Figure 3. This is a histogram showing the distribution of log-returns for the tenth random experiment.

This experiment is the one where the distribution of log-returns looks the most normal based on the p-

values of the Shapiro-Wilks test.

Figure 4. This histogram shows how the returns are distributed for one of our experiments. The lowest

limit is -100 % which is not observed but some returns come close.

 15

Figure 5. This is a histogram showing the distribution of log-returns for the twenty-sixth random

experiment. This experiment is the one where the distribution of log-returns looks the least normal based

on the p-values of the Shapiro-Wilks test.

We wanted the data to display seasonal behavior in volatility. To create a seasonal trend in

volatility, we chose sigma(t) to be the cumulative sum of uniformly distributed variables between

– 1 and 1 for each day in a year. This allows the volatility to increase and decrease. We

normalized the volatility so that the volatility is the same the first and last day of the year and

between 0.01 and 0.045 for all days. This results in a set of cyclical volatilities that repeat every

365 days. An example is shown in Figure 6.

 16

Figure 6. This graph shows the standard deviation used to sample the log-returns for all trading days in

the data set. The graph displays the intended repeating seasonality in the synthesized data.

Figure 7. This graph shows the standard deviation for the log-returns of the last trading year for the

previous figure.

 17

The maximum of 0.045 and minimum of 0.01 for the value of the volatility was chosen based on

some real-world stocks shown below. Their volatility was calculated as a 31-day rolling window

standard deviation. Although none of our stocks cycled between these two extremes, we assume

that there are some far more and some far less volatile stocks so it seemed like a reasonable

tradeoff.

Figure 8. Graph showing the median volatility for some stocks by the day of the year

Figure 9. Graph showing the median volatility for some stocks by the day of the year

 18

Figure 10. Bar chart showing the number of years per stock used to calculate the mean volatility by day in

that can be seen in Figure 8 and Figure 9.

Figure 11. The graph shows a synthesized, normalized sample stock price for all trading days. In this

graph we can observe that the generated stock prices look like actual stock prices.

 19

5. Method

We built a single layer per output recurrent neural network with a hidden dimension of 20 and

trained it on training data. With a trained model available we estimated its performance on

unseen data by letting it predict future volatility. To quantitatively assess its performance, the

same procedure was made with two well-used models for volatility estimation, an ARCH and a

GARCH model, as well and compared the results of the three models.

The recurrent neural network used in the study has a hidden state dimension of 20. The input

used is the logarithm of the change factor. To use both the hidden state and the input they are

concatenated to create a combined state. The network then uses two different linear transforms

activated with Softplus to create a new hidden state and output standard deviation.

Softplus

softplus(𝑥) = log(1 + exp(𝑥))

Hidden state at time d:

ℎ𝑑 = (ℎ𝑑,1, ℎ𝑑,2, … , ℎ𝑑,20)
⊤

Which means that the standard deviation at time i+1 is predicted the following manner

𝑖𝑛𝑝𝑢𝑡𝑑 = (ℎ𝑑,1, ℎ𝑑,2, … , ℎ𝑑,20, 𝑙𝑜𝑔(𝑟𝑑))
⊤

σ𝑑+1 = softplus(𝐴 ⋅ 𝑖𝑛𝑝𝑢𝑡𝑑 + 𝐵)

ℎ𝑑+1 = softplus(𝐶 ⋅ 𝑖𝑛𝑝𝑢𝑡𝑑 + 𝐷)

Where A is a 1 by 21 matrix, B a scalar, C is a 20 by 21 matrix and D is a 20 by 1 matrix, all

randomly initialized.

To avoid the problem of overfitting, we used a train, validation and test split of the data. The

training dataset consisted of the initial 70 % trading day prices, the validation data contains the

 20

next 20 %, and the test data contains the last 10 %. The different datasets are used in the

following way: the model’s parameters are adjusted as to increase the optimization objective (the

log-likelihood) evaluated on the training data set until the loss log-likelihood no longer increase

on the validation set. To get an unbiased estimation of the model’s performance, the model is

then used to predict volatility for the test set. The optimization objective was the following,

where the expression inside the logarithm is the likelihood of the log returns in the dataset it is

evaluated on:

max
parameters

 log (∏
1

σd√2π
exp (−

1

2
(

log(rd)

σd
)

2

)

d∈P

)

P is the set of trading days on which to evaluate the loss. We maximized the log likelihood with a

numerical optimizer called ADAM that iteratively update the parameters of the model. ADAM

has some parameters that can be fine-tuned but we used the default values in PyTorch, a library

for graph calculations in which we constructed the RNN. We chose ADAM because it is a well

performing numerical optimizer.(Kingma, Ba 2014)

For numerical reasons, we used the log-likelihood to provide more stability. This is because the

joint likelihood of all datapoints consists of a product of their respective probability. As all

probabilities are smaller than one, this number quickly becomes small with the number of data

points. With the log-likelihood, this product becomes a sum of the logarithms for the individual

probabilities which do not become small in the same way. For consistency in objectives it is

worth noting that the logarithm is a monotonic function, so if the log-likelihood is extremized, it

corresponds to the maximization of the regular likelihood. (Bishop 1994)

We trained the ARCH and GARCH models in a similar manner, but instead of dividing the data

into three parts as before, these models were trained on the first 90 % of the datapoints and then

they did a prediction on the last 10 %, like the RNN. This is because they are less prone to

overfitting and that this way of updating the parameters is not supported by the programming

package that we used. For the optimization of the ARCH and GARCH models, the package’s

inbuilt optimizer was used with its default values.

 21

To compare our model with the classic volatility estimation models, we used some different error

metrics. An error is the difference between the predicted value and the actual value in a

regression. An error metric aims to aggregate all errors a model makes for all data points. In the

formulas below, P is the set of all trading days, and d is an index in the set P.

RMSE is the root of the average squared error. This is an error measurement that gives large

errors greater importance. While being more sensitive to outliers than other measures it gives a

better picture when larger errors are relatively less desired.

𝑅𝑀𝑆𝐸 = √
1

|𝑃|
∑(𝑦𝑑 − 𝑓𝑑)2

𝑑∈𝑃

MSE is the average squared error. It is the RMSE but squared and their properties are almost

identical, except that MSE cannot be compared to MAE as it represents a squared error.

𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸2

MAE is the average absolute error. This gives equal weight to all error measures and is less

prone to outliers. This error measurement provides a more natural interpretation of the error

compared to RMSE. (Willmott, Matsuura 2005)

𝑀𝐴𝐸 =
1

|𝑃|
∑|𝑦𝑑 − 𝑓𝑑|

𝑑∈𝑃

MAPE is the average percentage error. That is, the error is divided by the actual value. This

makes the error measurement more interpretable.

𝑀𝐴𝑃𝐸 =
1

|𝑃|
∑

|𝑦𝑑 − 𝑓𝑑|

|𝑦𝑑|
𝑑∈𝑃

MaxAE is the largest absolute error and can be used to see how a model performs at its absolute

worst.

𝑀𝑎𝑥𝐴𝐸 = max
𝑑∈𝑃

|𝑦𝑑 − 𝑓𝑑|

 22

R2 tells us how much of the variance in the dependent variable that can be predicted from the

independent variable relative to all variance in the dependent variable. (Miles 2014) R2 can be

thought to measure the goodness of fit and as opposed to the error metrics, higher R2 is better.

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑑 − 𝑓𝑑)2
𝑑∈𝑃

∑ (𝑦𝑑 − �̅�)2
𝑑∈𝑃

To compare the performance of the model with the performance of the ARCH and GARCH

model we did a pairwise test of the difference in error metrics as well as the coefficient of

determination, R2. We tested one-sidedly if the mean difference is non-zero. The statistical

significance for the difference in performance for the models was also tested for.

6. Results

The ARCH model, the GARCH model and the RNN were trained on 40 different generated

datasets to be able to compare their performance. In the graphs, we can see a sampled experiment

and, in the tables, we can see aggregations for all experiments.

Figure 12. This is the training and test set for the ARCH model for random experiment 8. This can

provide some illustration to the tables of metrics.

 23

Figure 13. This is the training and test set for the GARCH model for random experiment 8. This can

provide some illustration to the tables of metrics.

Figure 14. This is the training and test set for the RNN model for random experiment 8. This can provide

some illustration to the tables of metrics.

 24

From each training session, the metrics were recorded as previously described, and the results

could be found below.

Average value Arch Garch RNN

MAE 0.0062 0.0060 0.0023

MAPD 0.2272 0.2235 0.0929

MaxAE 0.0265 0.0252 0.0102

MSE 0.0001 0.0001 0.0000

R2 0.5889 0.6306 0.8707

RMSE 0.0076 0.0073 0.0029

Figure 15. This table shows the average value for each metric recorded in all experiments for every

model. The RNN model model consistently performs better than the GARCH mode which performs

better than the ARCH model.

Standard deviation Arch Garch RNN

MAE 0.00103 0.00100 0.00037

MAPD 0.03939 0.03998 0.01432

MaxAE 0.00963 0.00868 0.00321

MSE 0.00002 0.00002 0.00000

R2 0.14877 0.13642 0.05645

RMSE 0.00127 0.00120 0.00045

Figure 16. This table shows the standard deviation for each metric. We note that the GARCH model has a

lower standard deviation in its performance than the ARCH model but a larger one than RNN for all

metrics.

To see if these error metrics differ significantly for the models, a significance test was performed

to test the hypothesis that an error metric of RNN is higher than the same error metric for the

other models and lower for the performance metric R2. This was done through a pairwise

difference test at a significance level of 95 %.

For all error metrics we want to test if:

𝐻0: μ𝑅𝑁𝑁 ≥ μ𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 < μ𝐴𝑅𝐶𝐻

𝐻0: μ𝑅𝑁𝑁 ≥ μ𝐺𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 < μ𝐺𝐴𝑅𝐶𝐻

 25

And for R2 we want to test the opposite, namely:

𝐻0: μ𝑅𝑁𝑁 ≤ μ𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 > μ𝐴𝑅𝐶𝐻

𝐻0: μ𝑅𝑁𝑁 ≤ μ𝐺𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 > μ𝐺𝐴𝑅𝐶𝐻

The pairwise t-statistics for the ARCH and GARCH model can be found in the table below

together with the critical value for the t-statistics.

Metric

t-statistics

ARCH -

RNN

t-statistics

GARCH -

RNN

Critical

t-value

MAE 8.091 7.754 1.685

MAPD 19.359 18.723 1.685

MaxAE 11.626 11.905 1.685

MSE 15.406 15.577 1.685

R2 16.961 16.030 1.685

RMSE 23.004 22.872 1.685

Figure 17. This table shows the t-statistics for the hypothesis test that the RNN-model would perform

worse than ARCH and GARCH at each metric together with the critical t-value. All t-statistics are larger

than the critical value, so the hypothesis is rejected at a confidence level of 95 %.

As all observed t-statistics exceed the critical value we reject the null hypothesis that RNN

would perform worse than ARCH. We also reject the null hypothesis that RNN would perform

worse than GARCH for the same reason.

Standard ARCH GARCH RNN

deviation Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit

MAE 0.00085 0.00133 0.00082 0.00129 0.00030 0.00048

MAPD 0.03227 0.05058 0.03275 0.05133 0.01173 0.01839

MaxAE 0.00789 0.01237 0.00711 0.01114 0.00263 0.00412

MSE 0.00002 0.00003 0.00002 0.00002 0.00000 0.00000

R2 0.12187 0.19102 0.11175 0.17517 0.04624 0.07248

RMSE 0.00104 0.00163 0.00099 0.00155 0.00037 0.00058

Figure 18. This table shows the confidence interval for each model and metric at a 95 % confidence level.

 26

Looking at Figure 18 we can see that the upper limit on the RNN confidence interval for each

error metric is lower than the lower limit for both the ARCH and GARCH model at the

confidence level of 95 %. To see if the difference in standard deviations is statistically

significant, we test the following hypotheses.

𝐻0: σ𝐴𝑅𝐶𝐻 = σ𝑅𝑁𝑁 𝐻1: σ𝐴𝑅𝐶𝐻 ≠ σ𝑅𝑁𝑁

𝐻0: σ𝐺𝐴𝑅𝐶𝐻 = σ𝑅𝑁𝑁 𝐻1: σ𝐺𝐴𝑅𝐶𝐻 ≠ σ𝑅𝑁𝑁

The result of the hypothesis test can be found in Figure 19.

Metric

F-statistic

ARCH/RNN

F-statistic

GARCH/RNN F-critical p-Value

MAE 7.7663 7.3089 0.5867 3.4035E-09

MAPD 7.5656 7.7905 0.5867 5.1746E-09

MaxAE 9.0159 7.3117 0.5867 2.9757E-10

MSE 59.327 49.443 0.5867 1.5776E-25

R2 6.9454 5.8405 0.5867 1.9936E-08

RMSE 7.8394 7.0448 0.5867 2.9278E-09

Figure 19. Hypothesis test of difference in standard deviation in metrics for the models. As all F-statistics

exceed the critical value we reject the hypothesis that the standard deviations are the same at a confidence

level of 95 %.

7. Conclusions

This study aims to explore the possibility of volatility forecasting with the help of a Recurrent

Neural Network. Our results indicate that RNN outperforms ARCH and GARCH. The mean

absolute error is about a third of that of ARCH and GARCH meaning that the model performs

better on average. The RMSE error which is related to MAE tells a similar story. It also shows

that the RNN does not perform better on the average error by only shifting its distribution of

errors to create more small errors at the expense of some larger errors. By looking at the largest

absolute error, we see that it is about half for RNN compared to ARCH and GARCH. This

means that at its absolute worst, RNN is still a better model than both the ARCH and GARCH

model.

 27

The mean average percentage deviation shows that the RNN performs better not only in absolute

terms but also relative to the value in each data point. Finally, as the RNN has a higher R2 than

ARCH and GARCH, we could conclude that the RNN model is better at explaining the variance

in the time-series volatility.

Our tests of the standard deviations in the error and performance metrics also show that while

RNN not only performs better than ARCH and GARCH in terms of the metrics employed, it also

performs significantly different in terms of the standard deviation in all metrics. Given that its

standard deviation is lower for all metrics, we assume that it performs better in terms of the

standard deviation, but we cannot test this statistically.

The purpose of this paper was to examine if RNNs would provide knowledge in the research of

volatility estimation. With our results, we have proven that this is the case, and this implies that

RNNs could be a valuable tool for this purpose in the future, both in research, but also for

businesses.

8. Discussion

As previously brought up, our analysis is based on synthesized stock price data, which therefore

brings the question of the external validity of the results. As we have sampled a large number of

different time-varying but yearly repeating stock volatilities our results should not be only due to

selection bias in the volatility functions. However, we assumed that the change in volatility was

uniformly distributed at each point in time. Figure 7 shows what the generating standard

deviation looks like for an experiment, this can be compared to Figure 8 in which some

calculated real-world standard deviations are shown. Although they look slightly less jagged,

they were calculated with a 31-day rolling window which smoothens some of the irregularities.

By decreasing the window size, the graphs look more similar which implies that this assumption

made to create the time-varying standard deviations is reasonable. Arguably, this could prove to

be detrimental to external validity if the real-world distribution of log-returns and volatilities

might differ from the distribution in this study. Since we created the generating volatility in a

certain manner, we cannot guarantee that our conclusions hold for other types of generating

 28

volatilities. With that said, as neural networks are universal approximators, it should in theory be

possible to model any kind of generating volatility, although for some cases ARCH or GARCH

might yield better results.

An assumption made in the synthetization process was that the data was without a trend. While

real stock world data usually have trends, there are methods than can remove the trends in time

series data. (Watson 1986) This would allow the RNN model to perform well on such data.

The stocks that we used were chosen to reflect several American industries. By choosing only

American stocks this study might be subject to selection bias. While it does not necessarily have

to be the case, the conclusions from this study might not be applicable on, for example, Asian

companies. However, as the stocks were only used to find span in which the volatility lies and

the model should in theory be able to predict volatilities in any scale this the span itself is not

detrimental external validity as one could simply scale the log-returns on other stocks for the

volatility to match the American volatility span.

The stocks were also chosen from companies that have been around for at least 10 years.

Although this gives us more proof of repeating seasonal volatility it also raises the question of

survivorship bias. Fortunately, as we are interested in estimating the seasonal volatility and not

testing if it exists, this does not affect the external validity of the experiment.

Therefore, we conclude that some assumptions were made in the synthetization of data that limit

the applicability of this method on real-world data. However, if methods for removing trends in

data are used, none of the assumptions should diminish the external validity of the results.

It is worth noting, that the model’s performance on the other component of the volatility, the

non-repeating part, which cannot be explained by the date data alone, is unlikely to be properly

estimated by any model, including this, as long as the model cannot take other data into account.

Fortunately, (recurrent) neural networks are useful in that way as they can take several types of

input into account. With more factors known to affect the volatility in the model it should, in

theory, be possible to estimate that component to some degree as well. By incorporating more

 29

variables than the log return in the input, the model should also be able to handle effects due to

the day of the week, holidays and dividend payments. As this was not performed in our

experiment, these conclusions are not fully applicable for stocks were these effects occur unless

the model is given more variables as inputs.

 30

References

ARAGONÉS, J.R., BLANCO, C. and ESTÉVEZ, P.G., 2007. Neural network volatility forecasts.

Intelligent Systems in Accounting, Finance & Management: International Journal, 15(3‐ 4), pp. 107-121.

BAUWENS, L., HAFNER, C. and LAURENT, S., 2012. Handbook of volatility models and their

applications. Hoboken, N.J: John Wiley & Sons, Inc. 3(1) pp. 1-33, 50-61

BISHOP, C.M., 1994. Mixture density networks. Aston University. pp. 4

BLACK, F. and SCHOLES, M., 1973. The pricing of options and corporate liabilities. Journal of

political economy, 81(3), pp. 637-654.

BOSSU, S., 2014. Advanced equity derivatives: volatility and correlation. Hoboken, New Jersey: John

Wiley & Sons.

CLEEREMANS, A., SERVAN-SCHREIBER, D. and MCCLELLAND, J.L., 1989. Finite state automata

and simple recurrent networks. Neural Computation 1(1) pp. 372-381

CONNOR, J.T., MARTIN, R.D. and ATLAS, L.E., 1994. Recurrent neural networks and robust time

series prediction. IEEE Transactions on Neural Networks, 5(2), pp. 240-254.

BALÁZS, C.C., 2001. Approximation with artificial neural networks. Faculty of Sciences, Etvs

Lornd University, Hungar, 48(24) pp. 22.

ENGLE, R., 2001. GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. The

Journal of Economic Perspectives, 15(4), pp. 157-168.

Engle RF. Autoregressive conditional heteroscedasticity with estimates of the variance of United

Kingdom inflation. Econometrica. 1982;50(4), pp. 987-1007.

HE, K., ZHANG, X., REN, S. and SUN, J., 2016. Deep residual learning for image recognition,

Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp. 770-778.

KINGMA, D.P. and BA, J., 2014. Adam: A method for stochastic optimization. Conference paper at

ICLR 2015, pp. 1-8

KROPKO and JONATHAN, 2016. Mathematics for Social Scientists. Reading [u.a]: Taylor & Francis.

LIU, P., QIU, X. and HUANG, X., 2016. Recurrent neural network for text classification with multi-task

learning. Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, pp. 2873-

2879

MILES, J., 2014. R squared; adjusted R squared. Wiley StatsRef: Statistics Reference Online.

P. BENNETT, KRISTIN, PARRADO-HERNANDEZ and EMILIO, 2006. The Interplay of Optimization

and Machine Learning Research. Journal of Machine Learning Research, pp 1-8.

PATTON, A.J., 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of

Econometrics, 160(1), pp. 246-256.

POON, S. and GRANGER, C.W.J., 2003. Forecasting Volatility in Financial Markets: A Review. Journal

of Economic Literature, 41(2), pp. 478-479, 508.

 31

RAZALI, N.M. and WAH, Y.B., 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov,

lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), pp. 21-33.

SCHITTENKOPF, C., DORFFNER, G. and DOCKNER, E.J., 1998. Volatility prediction with mixture

density networks. SFB Adaptive Information Systems and Modelling in Economics and Management

Science, WU Vienna University of Economics and Business, pp 1-15.

SHAIKH, I. and PADHI, P., 2013. A Simultaneous Equation Approach on the Relationship between

Implied, Realised and Historical Volatility. Asia Pacific Journal of Management Research and

Innovation, 9(2), pp. 139-155.

TOM and MITCHELL, 1997. Machine Learning, McGraw Hill, pp. 15-30, 59-70

WATSON, M.W., 1986. Univariate detrending methods with stochastic trends. Journal of Monetary

Economics 18(1), pp 49-75

WILLMOTT, C.J. and MATSUURA, K., 2005. Advantages of the mean absolute error (MAE) over the

root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), pp. 79-

82.

Wikipedia (2020). Recurrent Neural Networks. https://en.wikipedia.org/wiki/Recurrent_neural_network

(accessed 2020-04-15)

 32

Appendices

The following table shows all results from all experiments.

 MAE MAPD MaxAE MSE R2 RMSE

ARCH

Random experiment 1 0.004797 0.168841 0.017958 0.000037 0.603296 0.006073

Random experiment 10 0.006099 0.209510 0.032092 0.000059 0.351146 0.007660

Random experiment 11 0.006269 0.251495 0.021158 0.000055 0.498935 0.007412

Random experiment 12 0.005790 0.198231 0.037481 0.000058 0.696003 0.007633

Random experiment 13 0.006050 0.228928 0.027024 0.000054 0.630323 0.007350

Random experiment 14 0.005914 0.193823 0.019407 0.000053 0.376869 0.007285

Random experiment 15 0.007052 0.271594 0.037397 0.000068 0.767637 0.008218

Random experiment 16 0.005826 0.259690 0.023957 0.000044 0.795160 0.006641

Random experiment 17 0.006763 0.231955 0.032238 0.000069 0.431564 0.008330

Random experiment 18 0.007862 0.270888 0.022294 0.000081 0.570284 0.009023

Random experiment 19 0.005935 0.223174 0.022094 0.000050 0.672470 0.007073

Random experiment 2 0.007174 0.263078 0.040676 0.000079 0.677145 0.008896

Random experiment 20 0.005393 0.225680 0.016961 0.000043 0.796113 0.006538

Random experiment 21 0.004270 0.151795 0.017662 0.000029 0.571733 0.005357

Random experiment 22 0.005629 0.239889 0.016177 0.000045 0.763026 0.006696

Random experiment 23 0.005208 0.175726 0.023792 0.000045 0.499391 0.006683

Random experiment 24 0.009572 0.335641 0.024580 0.000117 0.400672 0.010832

Random experiment 25 0.005397 0.231659 0.019493 0.000041 0.741731 0.006409

Random experiment 26 0.006569 0.249351 0.050169 0.000089 0.759197 0.009424

Random experiment 27 0.004866 0.203768 0.032287 0.000039 0.780877 0.006231

Random experiment 28 0.006027 0.205587 0.022384 0.000053 0.526094 0.007297

Random experiment 29 0.005332 0.185045 0.024959 0.000045 0.579728 0.006683

Random experiment 3 0.008581 0.334722 0.021451 0.000093 0.653198 0.009636

Random experiment 30 0.004970 0.180167 0.016393 0.000037 0.332852 0.006074

Random experiment 31 0.007879 0.253968 0.059704 0.000130 0.625732 0.011392

Random experiment 32 0.006855 0.245520 0.021611 0.000070 0.413813 0.008372

Random experiment 33 0.005924 0.213152 0.023654 0.000054 0.391888 0.007331

Random experiment 34 0.005660 0.199252 0.015600 0.000043 0.692317 0.006576

Random experiment 35 0.006212 0.226734 0.025728 0.000057 0.602229 0.007568

Random experiment 36 0.006260 0.237327 0.031299 0.000058 0.329412 0.007626

Random experiment 37 0.006567 0.251429 0.018708 0.000061 0.633598 0.007781

Random experiment 38 0.005760 0.214252 0.025449 0.000050 0.517968 0.007054

Random experiment 39 0.005497 0.187496 0.014374 0.000042 0.632974 0.006507

Random experiment 4 0.006361 0.219951 0.041864 0.000074 0.473117 0.008627

Random experiment 40 0.006729 0.249052 0.032167 0.000077 0.706583 0.008757

Random experiment 5 0.006296 0.250003 0.028137 0.000056 0.720483 0.007458

Random experiment 6 0.005538 0.187573 0.028036 0.000052 0.760467 0.007186

 33

Random experiment 7 0.006316 0.242686 0.022452 0.000065 0.703166 0.008082

Random experiment 8 0.006510 0.247840 0.030430 0.000061 0.603156 0.007822

Random experiment 9 0.004933 0.173239 0.019274 0.000039 0.271683 0.006251

GARCH

Random experiment 1 0.004614 0.168012 0.015555 0.000032 0.693274 0.005698

Random experiment 10 0.005384 0.175972 0.033918 0.000047 0.564969 0.006892

Random experiment 11 0.006239 0.250568 0.021092 0.000054 0.506122 0.007372

Random experiment 12 0.005786 0.198129 0.037560 0.000058 0.696041 0.007604

Random experiment 13 0.006038 0.228319 0.026760 0.000054 0.632376 0.007332

Random experiment 14 0.005892 0.193187 0.019382 0.000053 0.379746 0.007259

Random experiment 15 0.007027 0.270553 0.037628 0.000067 0.766883 0.008195

Random experiment 16 0.005759 0.257280 0.024261 0.000043 0.799122 0.006577

Random experiment 17 0.005427 0.202493 0.021113 0.000042 0.680529 0.006505

Random experiment 18 0.007213 0.253029 0.019897 0.000068 0.661278 0.008245

Random experiment 19 0.005827 0.224335 0.018187 0.000046 0.756479 0.006794

Random experiment 2 0.007195 0.268330 0.040751 0.000077 0.692803 0.008779

Random experiment 20 0.005323 0.222573 0.016910 0.000042 0.797737 0.006467

Random experiment 21 0.004184 0.147733 0.017465 0.000028 0.594233 0.005245

Random experiment 22 0.005618 0.239146 0.016482 0.000045 0.762371 0.006682

Random experiment 23 0.005220 0.176156 0.023866 0.000045 0.498297 0.006694

Random experiment 24 0.009485 0.332829 0.024735 0.000115 0.409724 0.010735

Random experiment 25 0.005109 0.221659 0.019009 0.000036 0.769910 0.006039

Random experiment 26 0.006344 0.247965 0.039451 0.000075 0.818024 0.008683

Random experiment 27 0.005539 0.235797 0.028946 0.000046 0.794180 0.006790

Random experiment 28 0.005989 0.204148 0.022320 0.000053 0.526496 0.007258

Random experiment 29 0.005305 0.184082 0.024323 0.000044 0.582735 0.006649

Random experiment 3 0.008217 0.325357 0.019584 0.000083 0.707368 0.009136

Random experiment 30 0.004896 0.177040 0.015918 0.000035 0.357650 0.005950

Random experiment 31 0.007679 0.249010 0.053126 0.000116 0.714173 0.010791

Random experiment 32 0.006599 0.242248 0.020809 0.000062 0.515369 0.007889

Random experiment 33 0.005943 0.213744 0.023680 0.000054 0.392884 0.007349

Random experiment 34 0.005632 0.198190 0.015541 0.000043 0.692717 0.006543

Random experiment 35 0.006160 0.224242 0.025366 0.000056 0.602580 0.007512

Random experiment 36 0.006252 0.237014 0.031289 0.000058 0.329175 0.007618

Random experiment 37 0.005754 0.232785 0.017985 0.000047 0.750155 0.006837

Random experiment 38 0.005751 0.213848 0.025448 0.000049 0.519542 0.007035

Random experiment 39 0.005420 0.185134 0.014241 0.000041 0.635918 0.006425

Random experiment 4 0.006375 0.225330 0.038941 0.000069 0.536168 0.008319

Random experiment 40 0.006729 0.248821 0.032684 0.000076 0.703878 0.008735

Random experiment 5 0.006266 0.249259 0.028527 0.000055 0.724410 0.007432

Random experiment 6 0.005484 0.186100 0.027815 0.000051 0.760998 0.007115

Random experiment 7 0.006265 0.245293 0.022249 0.000063 0.728473 0.007931

 34

Random experiment 8 0.006065 0.237474 0.028519 0.000053 0.693698 0.007286

Random experiment 9 0.004246 0.148377 0.015502 0.000029 0.474178 0.005346

RNN

Random experiment 1 0.002087 0.088861 0.006967 0.000007 0.905363 0.002613

Random experiment 10 0.002791 0.096900 0.019589 0.000014 0.745476 0.003691

Random experiment 11 0.002237 0.096883 0.008756 0.000008 0.826489 0.002805

Random experiment 12 0.001740 0.066697 0.010017 0.000005 0.939415 0.002258

Random experiment 13 0.002554 0.106968 0.010782 0.000010 0.857034 0.003201

Random experiment 14 0.002491 0.093670 0.008202 0.000010 0.803824 0.003118

Random experiment 15 0.002146 0.081531 0.015230 0.000008 0.924186 0.002769

Random experiment 16 0.001630 0.068737 0.008546 0.000004 0.957113 0.002079

Random experiment 17 0.002076 0.077714 0.006826 0.000007 0.899938 0.002587

Random experiment 18 0.002576 0.099562 0.012862 0.000010 0.847785 0.003178

Random experiment 19 0.002213 0.088378 0.009760 0.000008 0.907112 0.002826

Random experiment 2 0.002142 0.083189 0.007321 0.000007 0.908901 0.002672

Random experiment 20 0.002052 0.081031 0.014923 0.000007 0.926137 0.002719

Random experiment 21 0.002165 0.084727 0.006832 0.000007 0.870392 0.002639

Random experiment 22 0.001887 0.076108 0.009734 0.000006 0.929395 0.002402

Random experiment 23 0.003008 0.121312 0.010236 0.000014 0.771197 0.003788

Random experiment 24 0.003022 0.113173 0.010248 0.000014 0.812662 0.003709

Random experiment 25 0.002156 0.095408 0.010968 0.000008 0.909157 0.002843

Random experiment 26 0.002510 0.102971 0.017749 0.000012 0.904120 0.003471

Random experiment 27 0.002554 0.109449 0.011728 0.000012 0.885037 0.003402

Random experiment 28 0.002558 0.097552 0.009905 0.000010 0.824541 0.003084

Random experiment 29 0.002579 0.101258 0.008158 0.000010 0.825061 0.003184

Random experiment 3 0.001688 0.070583 0.013698 0.000005 0.931191 0.002208

Random experiment 30 0.002548 0.100556 0.008824 0.000010 0.786272 0.003117

Random experiment 31 0.002671 0.096747 0.015719 0.000012 0.891842 0.003459

Random experiment 32 0.002485 0.102378 0.008025 0.000009 0.825209 0.003051

Random experiment 33 0.002192 0.089827 0.008739 0.000007 0.856621 0.002708

Random experiment 34 0.001787 0.069757 0.005987 0.000005 0.914162 0.002186

Random experiment 35 0.002429 0.102519 0.011115 0.000009 0.893155 0.002993

Random experiment 36 0.002389 0.104141 0.008872 0.000009 0.768520 0.003017

Random experiment 37 0.002430 0.107538 0.007227 0.000009 0.885327 0.002930

Random experiment 38 0.002477 0.100174 0.009524 0.000010 0.783273 0.003119

Random experiment 39 0.003372 0.132241 0.010544 0.000016 0.897696 0.004015

Random experiment 4 0.002393 0.087152 0.006865 0.000008 0.858411 0.002906

Random experiment 40 0.002105 0.083927 0.007331 0.000007 0.927323 0.002620

Random experiment 5 0.001925 0.081864 0.010165 0.000006 0.923961 0.002356

Random experiment 6 0.002185 0.082281 0.015002 0.000008 0.911995 0.002783

Random experiment 7 0.002293 0.093261 0.007067 0.000008 0.917287 0.002777

Random experiment 8 0.001974 0.079778 0.007651 0.000006 0.899230 0.002489

 35

Random experiment 9 0.002620 0.097623 0.008314 0.000010 0.776055 0.003184

