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Recurrent Neural Networks for volatility estimation – A comparative study 

Financial decisions are largely based on a tradeoff between risk and return. While the definition 

of risk is not equal to volatility, it is often used as a proxy for it. Hence, volatility forecasting is 

of great importance and an essential part of asset pricing, portfolio optimization and risk 

management. The purpose of this paper is to investigate if a Recurrent Neural Network could 

provide more precise estimations of seasonal volatility and if so, how it compares to other 

commonly used models. We prove that they do provide good estimations as well as outperform 

the other models in doing so.  
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1. Introduction 

Volatility is related to the dynamics of the time-dependent variance in series of returns on an 

asset. The estimation of volatility is of great interest to the financial market, and it is the most 

important variable when pricing derivative securities. It is used as a risk measure for other types 

of assets and it is an important parameter to take into consideration when hedging for risk. As 

opposed to asset prices, volatility cannot be directly observed but must be estimated. Volatility 

modeling has been a popular research topic for the last 40 years and will probably continue to be. 

(Poon, Granger 2003) (Bauwens, Hafner et al. 2012). 

 

According to financial theory, the price of an asset is the present value of its expected future cash 

flows. However, the price might change when the investors’ expectations about future incomes 

change or when new information becomes available. This results in sudden changes in prices and 

returns, which therefore affects volatility. (Bauwens, Hafner et al. 2012) An assumption to make 

is that some of the change in volatility is due to seasonal behavior that repeats from year to year, 

such as scheduled releases of information, while all other parts are due to other circumstances. 

This raises the question of how to estimate the seasonal component of the volatility in the best 

way possible. 

 

While there are currently many ways to estimate volatility, we see a gap in the research when it 

comes to using machine learning, and more precisely neural networks to do so. To reduce this 

gap and estimate time-series volatility with machine learning, we started with a Recurrent Neural 

Network (RNN), an existing machine learning architecture for time-series prediction. We 

adapted the model to not only predict the next day returns but also the uncertainty in the 

prediction in terms of the standard deviation. With these two parameters, we assumed a normal 

distribution of each log-return and optimized the model’s parameters by maximizing the log-

likelihood of the data by using a numerical optimizer.  

 

In this paper the purpose was to examine whether a model using an RNN structure could provide 

more precise predictions than two other commonly used models for predicting seasonal 
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volatility. Hence, the research question was stipulated as follows: How do recurrent neural 

networks compare to classical models, for seasonal volatility estimation? 

 

The results from our study show that recurrent neural network tends to perform volatility 

estimation well. Compared to the two other models (the Auto Regressive Conditional 

Heteroscedasticity model, ARCH and Generalized Auto Regressive Conditional 

Heteroscedasticity model), GARCH, our model performs better on all error and performance 

metrics we measured. All results are statistically significant at a confidence level of 95 %. 

 

However, in this paper, we have used synthesized data. This implies that we might have missed 

some important phenomena existing in the real market due to, for example, the day of the week, 

holidays, and dividend payments. This could affect the external validity of our model, and in 

future research, it could be interesting to look at real time-series data. Moreover, the type of 

RNN model used in this paper is less complex compared to other neural networks models, and 

one could in further research develop the machine learning architecture to gain further 

knowledge and do better predictions.  

 

2. Background  

One of the most commonly used assumptions in financial economics is “The law of one price”, 

which states that for any given security there can only be one price. This theory implies that a 

financial asset should be equal to the present value of future cash flows, regardless of how these 

cash flows are generated. The changes in the price of an asset are due to changes in the 

expectations of the future cash flows, which could be due to both macro- and micro-events. The 

bigger price fluctuations the bigger variance of the price, and with the assumption that these 

updated expectations often come in clusters and are not evenly spread throughout the year, the 

variance is not constant over time and hence, the volatility for a security is not constant. 

(Bauwens, Hafner et al. 2012) 

 

Volatility is defined as the standard deviation of the log-returns of an underlying asset. As the 

volatility cannot be directly observed it must be estimated. Furthermore, as all returns are 
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assumed to be an outcome of a stochastic variable with a time varying standard deviation, only 

looking at the realized return at one point in time will not reveal much information about the 

underlying volatility, so other methods have to be employed. When calculating volatility, two 

different volatility measures are frequently used: realized volatility and implied volatility. The 

realized volatility is the estimation of the actual volatility seen in the market. Therefore, 

assumptions must be made regarding the structure of the volatility and several points in time 

must be used. Implied volatility is the market’s expectation of the volatility for an underlying 

asset and is often calculated with the inverted Black-Scholes model. By using assuming that the 

price, which is given, is a function of volatility as described in the Black Scholes model one can 

solve for the unknown volatility. (Shaikh, Padhi 2013) These two volatilities do not necessarily 

coincide with each other nor the true volatility.  

 

The simplest type of option consists of a contract giving the owner a right to sell or buy a certain 

quantity of an asset. The contract stipulates a predetermined price at a predetermined time in the 

future, relative to the beginning of the contract, called the exercise date. A call option gives the 

right to buy and a put option the right to sell. If the predetermined price is greater than the spot 

price at the exercise date, a put option is valuable, and the call option is worthless and vice versa 

if the spot price is greater. Options are used to mitigate risk. With a call option on oil, you have a 

guarantee that you will be able to heat your house for, at most, a predetermined price during 

winter. A put option on wheat allows you to sell what you have produced for, at least, some fixed 

price. If the underlying asset has a stable, non-volatile, return one can assume where the spot 

price will be with more certainty, lowering the risk for the one selling the option. This, in turn, 

lowers the price of the option and explains why volatility is such an important factor for deciding 

the price of an option. Options are a commonly traded security, allowing producers and hedge 

fund manager to hedge for risk. To price these options, one must take into consideration the 

volatility of the underlying asset price. 

 

In 1973, Fischer Black and Myron Scholes introduced a new method to pricing options with the 

Black-Scholes model. The model requires five different parameters in order to calculate the 

option price. (Black, Scholes 1973)  
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 The spot price of the underlying asset,  

 The strike-price  

 The risk-free rate 

 The time to maturity 

 The implied volatility of the underlying 

The only non-observable parameter is the implied volatility of the underlying, which has led to 

that the model is often used in reverse to observe the volatility in the market. However, having a 

reliable way to forecast the volatility and price the option independently, is of great importance. 

(Bossu 2014)  

 

To derive their model, Black and Scholes made several assumptions regarding the underlying 

stock data, which is used in this paper. One assumption regarding the stocks in the Black Scholes 

model is that the stocks follow a random walk in continuous time with a variance rate 

proportional to the square of the stock price. This implies that the distribution of future stock 

prices at the end of an interval will be log-normal. (Black, Scholes 1973)  

 

Not long ago, theoretical models assumed constant volatility, as in the Black-Scholes model. 

(Black, Scholes 1973) In applied econometrics, the ordinary least squares model is a very 

common tool to use, since it works well to determine how a variable change in response to a 

change in some other variable(s). However, the forecasting part of econometrics is becoming 

more and more important, such as forecasting and analyzing the size of the errors of the model. 

Two of the most well-known non-linear volatility models are the Auto Regressive Conditional 

Heteroscedasticity model (ARCH) and the Generalized Auto Regressive Conditional 

Heteroscedasticity model (GARCH). (Engle, Robert 2001) 

 

The ordinary least squares model assumes that the expected value of the squared error terms is 

constant at any given time, an assumption that often is called homoscedasticity, and it is this 

assumption that is the focus of the ARCH and the GARCH models. When this assumption is not 
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fulfilled, due to the variance of the error terms is instead larger at some point and lower at other, 

the error terms are heteroscedastic. With heteroscedasticity, an ordinary least squares model will 

still be unbiased, but the standard errors and confidence intervals estimated will be biased. What 

is distinct with the ARCH and GARCH models is that they do not see this as a problem to be 

corrected, but rather as a variable to be modeled. (Engle 2001)  

 

At the foundation of the ARCH and the GARCH model are two assumptions. Firstly, the 

volatility of a certain time-series depends on where in time we look.  Secondly, the volatility 

today will likely be close to the volatility yesterday, and the day before. This is called volatility 

clustering, a phenomenon implying that there tend to be periods of low volatility as well as 

periods of high volatility, and as previously explained, the volatility depends on the updated 

expectations. However, there seems to be a trend that news that update expectations come in a 

cluster, resulting in periods of volatility trends. For example, in times of crisis, news and 

specifically bad news, tend to not come alone. The presence of volatility clustering leads to 

heteroscedasticity (time varying variance), and it also results in positive autocorrelation 

coefficients of squared returns. This means that an error of a given sign tends to be followed by 

an error of the same sign, causing periods of high volatility and periods of low volatility. 

(Bauwens, Hafner et al. 2012)  

 

The Autoregressive Conditional Heteroscedastic Model (ARCH) was first published by Robert 

F. Engle in 1982. The ARCH model forecasts the volatility using yesterday’s time-series value 

and a constant parameter. ARCH assumes that the error term of the variance of a time-series is a 

function of previous days’ error terms, often as the squares of the previous error terms. The error 

terms in an ARCH model is assumed to follow an autoregressive model (AR). (Engle, Robert F. 

1982) (Engle, Robert F. 2001)  

 

To explain the theory behind the model, we let the dependent variable be labeled 𝑟𝑡, which 

represents the return on an asset and that 𝑟𝑡 = 𝜇 + 𝜖𝑡. Further, we assume that 𝑟𝑡 = 𝑠𝑡𝑧𝑡, where 

𝑧𝑡 is a white noise, and that 𝑧𝑡~𝒩(0,1). With this notation, the ARCH model assumes that the 

volatility σ(𝑡) will satisfy the equation 
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σ𝑡
2 = α0 + α1𝑟𝑡−1

2 + ⋯ + α𝑞𝑟𝑡−𝑞
2 = α0 + ∑ α𝑖𝑟𝑡−𝑖

2

𝑞

𝑖=1

 

 

where 

𝛼0 > 0 and 𝑎𝑖 ≥ 0, 𝑖 > 0 

 

The GARCH model relies on the same logic as the ARCH model, however, the GARCH model 

forecasts today’s volatility using both the value of the time-series yesterday and the volatility 

yesterday, while the ARCH model only uses yesterday’s time-series value. The GARCH model 

assumes that the error terms follow an autoregressive moving average model (ARMA) 

((Bauwens, Hafner et al. 2012) (Engle, Robert F. 2001)  

 

As in the ARCH model, we let the dependent variable be labeled 𝑟𝑡, which represent the return 

on an asset. Further, we assume that  𝑟𝑡 = 𝜇 + 𝜖𝑡 and that 𝜖𝑡 = 𝑠𝑡𝑧𝑡, where 𝑧𝑡 is a white noise, 

and that 𝑧𝑡~ 𝑁 (0,1). Finally, we assume that 𝜎𝑡
2 satisfy the equation 

 

σt
2 = ω + α1𝑟t0

2 + ⋯ + αq𝑟t−q
2 + β1σt−1

2 + ⋯ + βpσt−p
2 = ω + ∑ αi

q

i=1

𝑟t−i
2 + ∑ βi

p

i=1

σt−i
2  

 

where 

𝜔 > 0 

 

With the formulation of the GARCH and ARCH model, we have to estimate the models’ 

parameters. The parameter estimation for optimal variance forecasting can be formulated as an 

optimization problem, where the goal is to find the forecast that minimizes the expected loss 

conditional on the available information at the time. (Patton 2011)  

 

Mathematical optimization is the science of finding a value that is optimum for a given function 

with some known prerequisites and constraints. (Kropko, Jonathan 2016). Essentially, any 

mathematical model with adjustable parameters could, in theory, be used to estimate volatility. 
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Now, how well these different models would predict the volatility in practice is a different 

matter. In the field of machine learning, several models that have shown their adapting 

capabilities in various settings such as image recognition (Miles 2014), (He, Zhang et al. 2016), 

text classification (Liu, Qiu et al. 2016) and time-series prediction (Connor, Martin et al. 1994)  

 

Machine learning is the study of computer algorithms that improve through or learn from 

experience. The foundation of most of machine learning is optimization. (Tom, Mitchell 1997) 

The way many machine learning models use optimization is through adjustment of the model’s 

parameters to extremize a specific optimization objective. The assumption is that such an 

extremization results in a set of parameters that allows the model to find patterns in the training 

data that exist also exists in unseen data. This is called to generalize. To summarize, machine 

learning models are trained to learn from data, find patterns, and make decisions with minimal 

human interference. (P. Bennett, Kristin et al. 2006)  

 

In this thesis, a specific type of machine learning model is used, namely a neural network. A 

neural network can be thought of as a universal approximator. It can be used for regression and 

classification. Regression is, for a given input return a value belonging to some continuous range 

of values. An example would be predicting sales of ice-cream on a sunny day. Classification is to 

return a value from a finite set given some other input. For example, predict whether someone is 

allowed to drink alcohol given the country they are in and their age. A neural network consists of 

a sequence of layers. Each layer is a function with parameters that can be adjusted to change the 

transformation that the layer performs. Each layer transforms its input and pass it to the next 

layer(s). The layers are chosen based on their input data. In this thesis, all layers are linear 

transformations of their inputs, the output of the transformation is then transformed with the 

SoftPlus function, a non-linear function allowing the network to approximate non-linear 

relationships. (Csanád C., Balázs 2001) 

 

Recurrent neural networks (RNN) are a certain type of neural network designed to recognize 

patterns in sequences of data. These networks have an inbuilt summary, or memory, of what it 

has previously seen, making it suitable for estimation of time-series.  As depicted in Figure 1, the 

input x is used together with the hidden state h to create an output o and a new hidden state. The 
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hidden state works as the memory or summary of the sequence of x’s the network have seen so 

far. This gives the network an ability to summarize an arbitrary number of previous inputs as 

compared to many other models that use a fixed number of previous values as parameters, for 

example linear models that uses a sliding window for volatility prediction, such as ARCH.  

(Cleeremans, Servan-Schreiber et al. 1989) 

 

Figure 1. This figure shows the folded and unfolded graph of a recurrent neural network. We see that the 

input U and the previous hidden state V together form the current hidden state that is used to generate the 

output W. (Wikipedia 2020) 

 

3. Literature review  

In the paper “Neural network volatility forecasts”, the authors show that a one-layer neural 

network with enough neurons activated with a non-linear function can approximate any non-

linear function. (Aragonés, Blanco et al. 2007) We know that the formula calculating the standard 

deviation for a set of points is a non-linear function of their values. Neural networks should, 

therefore, provide a solid foundation for transforming prices into volatility in a slightly more 

advanced manner than taking the standard deviation of all prices. Aragonés, Blanco et al. further 

proves in their paper that neural networks are good at predicting volatility. (Aragonés, Blanco et 

al. 2007)  

 

In addition, RNNs works well for problems where the data set has sequential nature, and 

therefore, time-series estimation with RNNs has been a successful research area even though it is 

not the primary usage area. In the paper “Recurrent Neural Networks and Robust Time-series 

Prediction” by Connor and Martin, they successfully used a recurrent neural network to predict 
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time-series. Further, the RNNs are especially good at finding seasonal patterns in time-series 

data, and in the paper “Seasonality in Variance is common in Macro Time-series" from 2000, 

seasonal patterns were identified and statistically significant in the variance of macro time-series, 

which leads to a hypothesis that RNNs would work well in predicting these. (Jaditz 2000)  

 

Moreover, in the article “Volatility Prediction with Mixture Density Networks” by Schittenkopf 

and Dorffner, a comparison of the performance of standard volatility models and the 

performance of a Mixture Density Networks was made. A Mixture Density Network is a network 

used for problems where regular regression models are inapplicable because the variable of 

interest cannot be used as the target in the regression, such as volatility estimation. The concept 

is to generate the parameters of a chosen probability distribution for each sample. With these 

parameters, each sample is given a probability. By maximizing the joint probability of the data, 

we can hope to get reasonable parameters of the generating distribution for each datapoint. In 

this paper, we have used a normal distribution to produce the likelihood. This means that the 

model produced a mean and a standard deviation for the log-return at each point in time. The 

likelihood is the largest when the model outputs the correct mean and the correct standard 

deviation at each point in time. In the study by Schittenkopf and Dorffner, the GARCH model 

was the model that performed best. This was because it seemed to be important to not only look 

at the time-series value from previous days but also the conditional variance. Hence, it was found 

that there is a need for long-term memory in the models estimating for volatility, and they 

recommended further research in the area. The writers especially recommended looking at a 

recurrent structure of the machine learning model. (Schittenkopf, Dorffner et al. 1998) 

 

4. Data 

In this study, we have used synthesized data. Although real-world stock data is not hard to come 

by, the underlying volatility is unknown. As we wanted to compare our predicted volatility with 

some ground truth, we needed data for comparison. By artificially generating stock data, a 

precise value for the volatility generating the logarithmic returns is known at all points in time. 

For real-world stock data, as mentioned, the implied volatility and realized volatility are 

imperfect proxies for true underlying volatility, and a comparison with these proxies could lead 
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to some models overperforming due to bias. Therefore, we chose to generate data from time-

varying volatility.  

 

To generate the data, we assumed that 𝑙𝑜𝑔(𝑟𝑡) ∼ 𝑁(0, σ(𝑡)) where 𝜎(𝑡) is a function of our 

choice. We assume that the data is without trend by setting the mean of log-returns to zero. This 

way we can isolate the objective of the model and only estimate the volatility without having to 

estimate returns at the same time. By sampling a logarithmic change for all trading days and 

exponentiate the logarithmic changes we got a series of returns. Coupling these with an initial 

price set to 1 we got the price for all points in time. We chose 1 as the initial price does not affect 

the returns.  

 

Although every logarithmic return is normally distributed at every point in time, all logarithmic 

returns, in general, are not. To illustrate this, we conducted a Shapiro-Wilks test of normality. 

This test tests the null hypothesis of whether a list of values come from a normally distributed 

population. (Razali, Wah 2011) We did the test with the hypothesis that they are not normally 

distributed. In Figure 2 we can observe the results of the test. As no p-value is larger than the 

chosen significance level of 5 %, we can reject the null hypothesis that they are normally 

distributed at the chosen level of significance. 
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Figure 2. This graph shows the p-value for the Shapiro-Wilks test for the log-returns of each experiment. 

This test tests if the distribution is normal. As we sample the log-returns from a normal distribution at 

each point in time but with different standard deviations we expect that this distribution is not normal. 

The test confirms that at a confidence level of 95 %, the distributuon is . 

  

With the Shapiro-Wilks p-values we can look at the distribution of log-return that look the most 

normally distributed in Figure 3 and we can see its returns in Figure 4. 
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Figure 3. This is a histogram showing the distribution of log-returns for the tenth random experiment. 

This experiment is the one where the distribution of log-returns looks the most normal based on the p-

values of the Shapiro-Wilks test. 

 

 

Figure 4. This histogram shows how the returns are distributed for one of our experiments. The lowest 

limit is -100 % which is not observed but some returns come close. 
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Figure 5. This is a histogram showing the distribution of log-returns for the twenty-sixth random 

experiment. This experiment is the one where the distribution of log-returns looks the least normal based 

on the p-values of the Shapiro-Wilks test. 

 

We wanted the data to display seasonal behavior in volatility. To create a seasonal trend in 

volatility, we chose sigma(t) to be the cumulative sum of uniformly distributed variables between 

– 1 and 1 for each day in a year. This allows the volatility to increase and decrease. We 

normalized the volatility so that the volatility is the same the first and last day of the year and 

between 0.01 and 0.045 for all days. This results in a set of cyclical volatilities that repeat every 

365 days. An example is shown in Figure 6. 
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Figure 6. This graph shows the standard deviation used to sample the log-returns for all trading days in 

the data set. The graph displays the intended repeating seasonality in the synthesized data. 

 

 

Figure 7. This graph shows the standard deviation for the log-returns of the last trading year for the 

previous figure.  
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The maximum of 0.045 and minimum of 0.01 for the value of the volatility was chosen based on 

some real-world stocks shown below. Their volatility was calculated as a 31-day rolling window 

standard deviation. Although none of our stocks cycled between these two extremes, we assume 

that there are some far more and some far less volatile stocks so it seemed like a reasonable 

tradeoff. 

 

Figure 8. Graph showing the median volatility for some stocks by the day of the year 

 

Figure 9. Graph showing the median volatility for some stocks by the day of the year 
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Figure 10. Bar chart showing the number of years per stock used to calculate the mean volatility by day in 

that can be seen in Figure 8 and Figure 9. 

 

Figure 11. The graph shows a synthesized, normalized sample stock price for all trading days. In this 

graph we can observe that the generated stock prices look like actual stock prices. 
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5. Method 

We built a single layer per output recurrent neural network with a hidden dimension of 20 and 

trained it on training data. With a trained model available we estimated its performance on 

unseen data by letting it predict future volatility. To quantitatively assess its performance, the 

same procedure was made with two well-used models for volatility estimation, an ARCH and a 

GARCH model, as well and compared the results of the three models. 

 

The recurrent neural network used in the study has a hidden state dimension of 20. The input 

used is the logarithm of the change factor. To use both the hidden state and the input they are 

concatenated to create a combined state.  The network then uses two different linear transforms 

activated with Softplus to create a new hidden state and output standard deviation. 

 

Softplus 

softplus(𝑥) = log(1 + exp(𝑥)) 

 

Hidden state at time d: 

ℎ𝑑 = (ℎ𝑑,1, ℎ𝑑,2, … , ℎ𝑑,20)
⊤

 

 

Which means that the standard deviation at time i+1 is predicted the following manner 

 

𝑖𝑛𝑝𝑢𝑡𝑑 = (ℎ𝑑,1, ℎ𝑑,2, … , ℎ𝑑,20, 𝑙𝑜𝑔(𝑟𝑑))
⊤

 

σ𝑑+1 = softplus(𝐴 ⋅ 𝑖𝑛𝑝𝑢𝑡𝑑 + 𝐵) 

ℎ𝑑+1 = softplus(𝐶 ⋅ 𝑖𝑛𝑝𝑢𝑡𝑑 + 𝐷) 

 

Where A is a 1 by 21 matrix, B a scalar, C is a 20 by 21 matrix and D is a 20 by 1 matrix, all 

randomly initialized. 

 

To avoid the problem of overfitting, we used a train, validation and test split of the data. The 

training dataset consisted of the initial 70 % trading day prices, the validation data contains the 
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next 20 %, and the test data contains the last 10 %. The different datasets are used in the 

following way: the model’s parameters are adjusted as to increase the optimization objective (the 

log-likelihood) evaluated on the training data set until the loss log-likelihood no longer increase 

on the validation set. To get an unbiased estimation of the model’s performance, the model is 

then used to predict volatility for the test set. The optimization objective was the following, 

where the expression inside the logarithm is the likelihood of the log returns in the dataset it is 

evaluated on: 

max
parameters

 log (∏
1

σd√2π
exp (−

1

2
(

log(rd)

σd
)

2

)

d∈P

) 

 

P is the set of trading days on which to evaluate the loss. We maximized the log likelihood with a 

numerical optimizer called ADAM that iteratively update the parameters of the model. ADAM 

has some parameters that can be fine-tuned but we used the default values in PyTorch, a library 

for graph calculations in which we constructed the RNN. We chose ADAM because it is a well 

performing numerical optimizer.(Kingma, Ba 2014)  

 

For numerical reasons, we used the log-likelihood to provide more stability. This is because the 

joint likelihood of all datapoints consists of a product of their respective probability. As all 

probabilities are smaller than one, this number quickly becomes small with the number of data 

points. With the log-likelihood, this product becomes a sum of the logarithms for the individual 

probabilities which do not become small in the same way. For consistency in objectives it is 

worth noting that the logarithm is a monotonic function, so if the log-likelihood is extremized, it 

corresponds to the maximization of the regular likelihood. (Bishop 1994) 

 

We trained the ARCH and GARCH models in a similar manner, but instead of dividing the data 

into three parts as before, these models were trained on the first 90 % of the datapoints and then 

they did a prediction on the last 10 %, like the RNN. This is because they are less prone to 

overfitting and that this way of updating the parameters is not supported by the programming 

package that we used. For the optimization of the ARCH and GARCH models, the package’s 

inbuilt optimizer was used with its default values. 
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To compare our model with the classic volatility estimation models, we used some different error 

metrics. An error is the difference between the predicted value and the actual value in a 

regression. An error metric aims to aggregate all errors a model makes for all data points. In the 

formulas below, P is the set of all trading days, and d is an index in the set P. 

 

RMSE is the root of the average squared error. This is an error measurement that gives large 

errors greater importance. While being more sensitive to outliers than other measures it gives a 

better picture when larger errors are relatively less desired. 

𝑅𝑀𝑆𝐸 = √
1

|𝑃|
∑(𝑦𝑑 − 𝑓𝑑)2

𝑑∈𝑃

 

 

MSE is the average squared error. It is the RMSE but squared and their properties are almost 

identical, except that MSE cannot be compared to MAE as it represents a squared error. 

𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸2 

 

MAE is the average absolute error. This gives equal weight to all error measures and is less 

prone to outliers. This error measurement provides a more natural interpretation of the error 

compared to RMSE. (Willmott, Matsuura 2005)  

𝑀𝐴𝐸 =
1

|𝑃|
∑|𝑦𝑑 − 𝑓𝑑|

𝑑∈𝑃

 

 

MAPE is the average percentage error. That is, the error is divided by the actual value. This 

makes the error measurement more interpretable. 

𝑀𝐴𝑃𝐸 =
1

|𝑃|
∑

|𝑦𝑑 − 𝑓𝑑|

|𝑦𝑑|
𝑑∈𝑃

 

 

MaxAE is the largest absolute error and can be used to see how a model performs at its absolute 

worst.  

𝑀𝑎𝑥𝐴𝐸 = max
𝑑∈𝑃

|𝑦𝑑 − 𝑓𝑑| 
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R2 tells us how much of the variance in the dependent variable that can be predicted from the 

independent variable relative to all variance in the dependent variable. (Miles 2014)  R2 can be 

thought to measure the goodness of fit and as opposed to the error metrics, higher R2 is better. 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑑 − 𝑓𝑑)2
𝑑∈𝑃

∑ (𝑦𝑑 − �̅�)2
𝑑∈𝑃

 

 

To compare the performance of the model with the performance of the ARCH and GARCH 

model we did a pairwise test of the difference in error metrics as well as the coefficient of 

determination, R2. We tested one-sidedly if the mean difference is non-zero. The statistical 

significance for the difference in performance for the models was also tested for.  

 

6. Results 

The ARCH model, the GARCH model and the RNN were trained on 40 different generated 

datasets to be able to compare their performance. In the graphs, we can see a sampled experiment 

and, in the tables, we can see aggregations for all experiments. 

 

Figure 12. This is the training and test set for the ARCH model for random experiment 8. This can 

provide some illustration to the tables of metrics. 
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Figure 13. This is the training and test set for the GARCH model for random experiment 8. This can 

provide some illustration to the tables of metrics. 

 

Figure 14. This is the training and test set for the RNN model for random experiment 8. This can provide 

some illustration to the tables of metrics. 
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From each training session, the metrics were recorded as previously described, and the results 

could be found below.  

 

Average value Arch Garch RNN 

MAE 0.0062 0.0060 0.0023 

MAPD 0.2272 0.2235 0.0929 

MaxAE 0.0265 0.0252 0.0102 

MSE 0.0001 0.0001 0.0000 

R2 0.5889 0.6306 0.8707 

RMSE 0.0076 0.0073 0.0029 

 

Figure 15. This table shows the average value for each metric recorded in all experiments for every 

model. The RNN model model consistently performs better than the GARCH mode which performs 

better than the ARCH model.  

 

Standard deviation Arch Garch RNN 

MAE 0.00103 0.00100 0.00037 

MAPD 0.03939 0.03998 0.01432 

MaxAE 0.00963 0.00868 0.00321 

MSE 0.00002 0.00002 0.00000 

R2 0.14877 0.13642 0.05645 

RMSE 0.00127 0.00120 0.00045 

 

Figure 16. This table shows the standard deviation for each metric. We note that the GARCH model has a 

lower standard deviation in its performance than the ARCH model but a larger one than RNN for all 

metrics. 

 

To see if these error metrics differ significantly for the models, a significance test was performed 

to test the hypothesis that an error metric of RNN is higher than the same error metric for the 

other models and lower for the performance metric R2. This was done through a pairwise 

difference test at a significance level of 95 %. 

 

For all error metrics we want to test if:  

𝐻0: μ𝑅𝑁𝑁 ≥ μ𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 < μ𝐴𝑅𝐶𝐻 

𝐻0: μ𝑅𝑁𝑁 ≥ μ𝐺𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 < μ𝐺𝐴𝑅𝐶𝐻 
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And for R2 we want to test the opposite, namely: 

𝐻0: μ𝑅𝑁𝑁 ≤ μ𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 > μ𝐴𝑅𝐶𝐻 

𝐻0: μ𝑅𝑁𝑁 ≤ μ𝐺𝐴𝑅𝐶𝐻 𝐻1: μ𝑅𝑁𝑁 > μ𝐺𝐴𝑅𝐶𝐻 

The pairwise t-statistics for the ARCH and GARCH model can be found in the table below 

together with the critical value for the t-statistics. 

 

 

Metric 

t-statistics 

ARCH - 

RNN 

t-statistics 

GARCH - 

RNN 

Critical 

t-value 

MAE 8.091 7.754 1.685 

MAPD 19.359 18.723 1.685 

MaxAE 11.626 11.905 1.685 

MSE 15.406 15.577 1.685 

R2 16.961 16.030 1.685 

RMSE 23.004 22.872 1.685 

 

Figure 17. This table shows the t-statistics for the hypothesis test that the RNN-model would perform 

worse than ARCH and GARCH at each metric together with the critical t-value. All t-statistics are larger 

than the critical value, so the hypothesis is rejected at a confidence level of 95 %. 

 

As all observed t-statistics exceed the critical value we reject the null hypothesis that RNN 

would perform worse than ARCH. We also reject the null hypothesis that RNN would perform 

worse than GARCH for the same reason. 

 

Standard ARCH   GARCH   RNN   

deviation Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit 

MAE 0.00085 0.00133 0.00082 0.00129 0.00030 0.00048 

MAPD 0.03227 0.05058 0.03275 0.05133 0.01173 0.01839 

MaxAE 0.00789 0.01237 0.00711 0.01114 0.00263 0.00412 

MSE 0.00002 0.00003 0.00002 0.00002 0.00000 0.00000 

R2 0.12187 0.19102 0.11175 0.17517 0.04624 0.07248 

RMSE 0.00104 0.00163 0.00099 0.00155 0.00037 0.00058 

 

Figure 18. This table shows the confidence interval for each model and metric at a 95 % confidence level. 
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Looking at Figure 18 we can see that the upper limit on the RNN confidence interval for each 

error metric is lower than the lower limit for both the ARCH and GARCH model at the 

confidence level of 95 %. To see if the difference in standard deviations is statistically 

significant, we test the following hypotheses. 

𝐻0: σ𝐴𝑅𝐶𝐻 = σ𝑅𝑁𝑁 𝐻1: σ𝐴𝑅𝐶𝐻 ≠ σ𝑅𝑁𝑁 

𝐻0: σ𝐺𝐴𝑅𝐶𝐻 = σ𝑅𝑁𝑁 𝐻1: σ𝐺𝐴𝑅𝐶𝐻 ≠ σ𝑅𝑁𝑁 

 

The result of the hypothesis test can be found in Figure 19. 

 

Metric 

F-statistic 

ARCH/RNN 

F-statistic 

GARCH/RNN F-critical p-Value 

MAE 7.7663 7.3089 0.5867 3.4035E-09 

MAPD 7.5656 7.7905 0.5867 5.1746E-09 

MaxAE 9.0159 7.3117 0.5867 2.9757E-10 

MSE 59.327 49.443 0.5867 1.5776E-25 

R2 6.9454 5.8405 0.5867 1.9936E-08 

RMSE 7.8394 7.0448 0.5867 2.9278E-09 

 

Figure 19. Hypothesis test of difference in standard deviation in metrics for the models. As all F-statistics 

exceed the critical value we reject the hypothesis that the standard deviations are the same at a confidence 

level of 95 %. 

 

7. Conclusions 

This study aims to explore the possibility of volatility forecasting with the help of a Recurrent 

Neural Network. Our results indicate that RNN outperforms ARCH and GARCH. The mean 

absolute error is about a third of that of ARCH and GARCH meaning that the model performs 

better on average. The RMSE error which is related to MAE tells a similar story. It also shows 

that the RNN does not perform better on the average error by only shifting its distribution of 

errors to create more small errors at the expense of some larger errors. By looking at the largest 

absolute error, we see that it is about half for RNN compared to ARCH and GARCH. This 

means that at its absolute worst, RNN is still a better model than both the ARCH and GARCH 

model. 
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The mean average percentage deviation shows that the RNN performs better not only in absolute 

terms but also relative to the value in each data point. Finally, as the RNN has a higher R2 than 

ARCH and GARCH, we could conclude that the RNN model is better at explaining the variance 

in the time-series volatility. 

 

Our tests of the standard deviations in the error and performance metrics also show that while 

RNN not only performs better than ARCH and GARCH in terms of the metrics employed, it also 

performs significantly different in terms of the standard deviation in all metrics. Given that its 

standard deviation is lower for all metrics, we assume that it performs better in terms of the 

standard deviation, but we cannot test this statistically. 

 

The purpose of this paper was to examine if RNNs would provide knowledge in the research of 

volatility estimation. With our results, we have proven that this is the case, and this implies that 

RNNs could be a valuable tool for this purpose in the future, both in research, but also for 

businesses.  

 

8. Discussion 

As previously brought up, our analysis is based on synthesized stock price data, which therefore 

brings the question of the external validity of the results. As we have sampled a large number of 

different time-varying but yearly repeating stock volatilities our results should not be only due to 

selection bias in the volatility functions. However, we assumed that the change in volatility was 

uniformly distributed at each point in time. Figure 7 shows what the generating standard 

deviation looks like for an experiment, this can be compared to Figure 8 in which some 

calculated real-world standard deviations are shown. Although they look slightly less jagged, 

they were calculated with a 31-day rolling window which smoothens some of the irregularities. 

By decreasing the window size, the graphs look more similar which implies that this assumption 

made to create the time-varying standard deviations is reasonable. Arguably, this could prove to 

be detrimental to external validity if the real-world distribution of log-returns and volatilities 

might differ from the distribution in this study. Since we created the generating volatility in a 

certain manner, we cannot guarantee that our conclusions hold for other types of generating 
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volatilities. With that said, as neural networks are universal approximators, it should in theory be 

possible to model any kind of generating volatility, although for some cases ARCH or GARCH 

might yield better results. 

 

An assumption made in the synthetization process was that the data was without a trend. While 

real stock world data usually have trends, there are methods than can remove the trends in time 

series data. (Watson 1986) This would allow the RNN model to perform well on such data.  

 

The stocks that we used were chosen to reflect several American industries. By choosing only 

American stocks this study might be subject to selection bias. While it does not necessarily have 

to be the case, the conclusions from this study might not be applicable on, for example, Asian 

companies. However, as the stocks were only used to find span in which the volatility lies and 

the model should in theory be able to predict volatilities in any scale this the span itself is not 

detrimental external validity as one could simply scale the log-returns on other stocks for the 

volatility to match the American volatility span.  

 

The stocks were also chosen from companies that have been around for at least 10 years. 

Although this gives us more proof of repeating seasonal volatility it also raises the question of 

survivorship bias. Fortunately, as we are interested in estimating the seasonal volatility and not 

testing if it exists, this does not affect the external validity of the experiment. 

 

Therefore, we conclude that some assumptions were made in the synthetization of data that limit 

the applicability of this method on real-world data. However, if methods for removing trends in 

data are used, none of the assumptions should diminish the external validity of the results. 

 

It is worth noting, that the model’s performance on the other component of the volatility, the 

non-repeating part, which cannot be explained by the date data alone, is unlikely to be properly 

estimated by any model, including this, as long as the model cannot take other data into account. 

Fortunately, (recurrent) neural networks are useful in that way as they can take several types of 

input into account. With more factors known to affect the volatility in the model it should, in 

theory, be possible to estimate that component to some degree as well. By incorporating more 
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variables than the log return in the input, the model should also be able to handle effects due to 

the day of the week, holidays and dividend payments. As this was not performed in our 

experiment, these conclusions are not fully applicable for stocks were these effects occur unless 

the model is given more variables as inputs.  
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Appendices 

The following table shows all results from all experiments. 

  MAE MAPD MaxAE MSE R2 RMSE 

ARCH             

Random experiment 1 0.004797 0.168841 0.017958 0.000037 0.603296 0.006073 

Random experiment 10 0.006099 0.209510 0.032092 0.000059 0.351146 0.007660 

Random experiment 11 0.006269 0.251495 0.021158 0.000055 0.498935 0.007412 

Random experiment 12 0.005790 0.198231 0.037481 0.000058 0.696003 0.007633 

Random experiment 13 0.006050 0.228928 0.027024 0.000054 0.630323 0.007350 

Random experiment 14 0.005914 0.193823 0.019407 0.000053 0.376869 0.007285 

Random experiment 15 0.007052 0.271594 0.037397 0.000068 0.767637 0.008218 

Random experiment 16 0.005826 0.259690 0.023957 0.000044 0.795160 0.006641 

Random experiment 17 0.006763 0.231955 0.032238 0.000069 0.431564 0.008330 

Random experiment 18 0.007862 0.270888 0.022294 0.000081 0.570284 0.009023 

Random experiment 19 0.005935 0.223174 0.022094 0.000050 0.672470 0.007073 

Random experiment 2 0.007174 0.263078 0.040676 0.000079 0.677145 0.008896 

Random experiment 20 0.005393 0.225680 0.016961 0.000043 0.796113 0.006538 

Random experiment 21 0.004270 0.151795 0.017662 0.000029 0.571733 0.005357 

Random experiment 22 0.005629 0.239889 0.016177 0.000045 0.763026 0.006696 

Random experiment 23 0.005208 0.175726 0.023792 0.000045 0.499391 0.006683 

Random experiment 24 0.009572 0.335641 0.024580 0.000117 0.400672 0.010832 

Random experiment 25 0.005397 0.231659 0.019493 0.000041 0.741731 0.006409 

Random experiment 26 0.006569 0.249351 0.050169 0.000089 0.759197 0.009424 

Random experiment 27 0.004866 0.203768 0.032287 0.000039 0.780877 0.006231 

Random experiment 28 0.006027 0.205587 0.022384 0.000053 0.526094 0.007297 

Random experiment 29 0.005332 0.185045 0.024959 0.000045 0.579728 0.006683 

Random experiment 3 0.008581 0.334722 0.021451 0.000093 0.653198 0.009636 

Random experiment 30 0.004970 0.180167 0.016393 0.000037 0.332852 0.006074 

Random experiment 31 0.007879 0.253968 0.059704 0.000130 0.625732 0.011392 

Random experiment 32 0.006855 0.245520 0.021611 0.000070 0.413813 0.008372 

Random experiment 33 0.005924 0.213152 0.023654 0.000054 0.391888 0.007331 

Random experiment 34 0.005660 0.199252 0.015600 0.000043 0.692317 0.006576 

Random experiment 35 0.006212 0.226734 0.025728 0.000057 0.602229 0.007568 

Random experiment 36 0.006260 0.237327 0.031299 0.000058 0.329412 0.007626 

Random experiment 37 0.006567 0.251429 0.018708 0.000061 0.633598 0.007781 

Random experiment 38 0.005760 0.214252 0.025449 0.000050 0.517968 0.007054 

Random experiment 39 0.005497 0.187496 0.014374 0.000042 0.632974 0.006507 

Random experiment 4 0.006361 0.219951 0.041864 0.000074 0.473117 0.008627 

Random experiment 40 0.006729 0.249052 0.032167 0.000077 0.706583 0.008757 

Random experiment 5 0.006296 0.250003 0.028137 0.000056 0.720483 0.007458 

Random experiment 6 0.005538 0.187573 0.028036 0.000052 0.760467 0.007186 
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Random experiment 7 0.006316 0.242686 0.022452 0.000065 0.703166 0.008082 

Random experiment 8 0.006510 0.247840 0.030430 0.000061 0.603156 0.007822 

Random experiment 9 0.004933 0.173239 0.019274 0.000039 0.271683 0.006251 

GARCH             

Random experiment 1 0.004614 0.168012 0.015555 0.000032 0.693274 0.005698 

Random experiment 10 0.005384 0.175972 0.033918 0.000047 0.564969 0.006892 

Random experiment 11 0.006239 0.250568 0.021092 0.000054 0.506122 0.007372 

Random experiment 12 0.005786 0.198129 0.037560 0.000058 0.696041 0.007604 

Random experiment 13 0.006038 0.228319 0.026760 0.000054 0.632376 0.007332 

Random experiment 14 0.005892 0.193187 0.019382 0.000053 0.379746 0.007259 

Random experiment 15 0.007027 0.270553 0.037628 0.000067 0.766883 0.008195 

Random experiment 16 0.005759 0.257280 0.024261 0.000043 0.799122 0.006577 

Random experiment 17 0.005427 0.202493 0.021113 0.000042 0.680529 0.006505 

Random experiment 18 0.007213 0.253029 0.019897 0.000068 0.661278 0.008245 

Random experiment 19 0.005827 0.224335 0.018187 0.000046 0.756479 0.006794 

Random experiment 2 0.007195 0.268330 0.040751 0.000077 0.692803 0.008779 

Random experiment 20 0.005323 0.222573 0.016910 0.000042 0.797737 0.006467 

Random experiment 21 0.004184 0.147733 0.017465 0.000028 0.594233 0.005245 

Random experiment 22 0.005618 0.239146 0.016482 0.000045 0.762371 0.006682 

Random experiment 23 0.005220 0.176156 0.023866 0.000045 0.498297 0.006694 

Random experiment 24 0.009485 0.332829 0.024735 0.000115 0.409724 0.010735 

Random experiment 25 0.005109 0.221659 0.019009 0.000036 0.769910 0.006039 

Random experiment 26 0.006344 0.247965 0.039451 0.000075 0.818024 0.008683 

Random experiment 27 0.005539 0.235797 0.028946 0.000046 0.794180 0.006790 

Random experiment 28 0.005989 0.204148 0.022320 0.000053 0.526496 0.007258 

Random experiment 29 0.005305 0.184082 0.024323 0.000044 0.582735 0.006649 

Random experiment 3 0.008217 0.325357 0.019584 0.000083 0.707368 0.009136 

Random experiment 30 0.004896 0.177040 0.015918 0.000035 0.357650 0.005950 

Random experiment 31 0.007679 0.249010 0.053126 0.000116 0.714173 0.010791 

Random experiment 32 0.006599 0.242248 0.020809 0.000062 0.515369 0.007889 

Random experiment 33 0.005943 0.213744 0.023680 0.000054 0.392884 0.007349 

Random experiment 34 0.005632 0.198190 0.015541 0.000043 0.692717 0.006543 

Random experiment 35 0.006160 0.224242 0.025366 0.000056 0.602580 0.007512 

Random experiment 36 0.006252 0.237014 0.031289 0.000058 0.329175 0.007618 

Random experiment 37 0.005754 0.232785 0.017985 0.000047 0.750155 0.006837 

Random experiment 38 0.005751 0.213848 0.025448 0.000049 0.519542 0.007035 

Random experiment 39 0.005420 0.185134 0.014241 0.000041 0.635918 0.006425 

Random experiment 4 0.006375 0.225330 0.038941 0.000069 0.536168 0.008319 

Random experiment 40 0.006729 0.248821 0.032684 0.000076 0.703878 0.008735 

Random experiment 5 0.006266 0.249259 0.028527 0.000055 0.724410 0.007432 

Random experiment 6 0.005484 0.186100 0.027815 0.000051 0.760998 0.007115 

Random experiment 7 0.006265 0.245293 0.022249 0.000063 0.728473 0.007931 
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Random experiment 8 0.006065 0.237474 0.028519 0.000053 0.693698 0.007286 

Random experiment 9 0.004246 0.148377 0.015502 0.000029 0.474178 0.005346 

RNN             

Random experiment 1 0.002087 0.088861 0.006967 0.000007 0.905363 0.002613 

Random experiment 10 0.002791 0.096900 0.019589 0.000014 0.745476 0.003691 

Random experiment 11 0.002237 0.096883 0.008756 0.000008 0.826489 0.002805 

Random experiment 12 0.001740 0.066697 0.010017 0.000005 0.939415 0.002258 

Random experiment 13 0.002554 0.106968 0.010782 0.000010 0.857034 0.003201 

Random experiment 14 0.002491 0.093670 0.008202 0.000010 0.803824 0.003118 

Random experiment 15 0.002146 0.081531 0.015230 0.000008 0.924186 0.002769 

Random experiment 16 0.001630 0.068737 0.008546 0.000004 0.957113 0.002079 

Random experiment 17 0.002076 0.077714 0.006826 0.000007 0.899938 0.002587 

Random experiment 18 0.002576 0.099562 0.012862 0.000010 0.847785 0.003178 

Random experiment 19 0.002213 0.088378 0.009760 0.000008 0.907112 0.002826 

Random experiment 2 0.002142 0.083189 0.007321 0.000007 0.908901 0.002672 

Random experiment 20 0.002052 0.081031 0.014923 0.000007 0.926137 0.002719 

Random experiment 21 0.002165 0.084727 0.006832 0.000007 0.870392 0.002639 

Random experiment 22 0.001887 0.076108 0.009734 0.000006 0.929395 0.002402 

Random experiment 23 0.003008 0.121312 0.010236 0.000014 0.771197 0.003788 

Random experiment 24 0.003022 0.113173 0.010248 0.000014 0.812662 0.003709 

Random experiment 25 0.002156 0.095408 0.010968 0.000008 0.909157 0.002843 

Random experiment 26 0.002510 0.102971 0.017749 0.000012 0.904120 0.003471 

Random experiment 27 0.002554 0.109449 0.011728 0.000012 0.885037 0.003402 

Random experiment 28 0.002558 0.097552 0.009905 0.000010 0.824541 0.003084 

Random experiment 29 0.002579 0.101258 0.008158 0.000010 0.825061 0.003184 

Random experiment 3 0.001688 0.070583 0.013698 0.000005 0.931191 0.002208 

Random experiment 30 0.002548 0.100556 0.008824 0.000010 0.786272 0.003117 

Random experiment 31 0.002671 0.096747 0.015719 0.000012 0.891842 0.003459 

Random experiment 32 0.002485 0.102378 0.008025 0.000009 0.825209 0.003051 

Random experiment 33 0.002192 0.089827 0.008739 0.000007 0.856621 0.002708 

Random experiment 34 0.001787 0.069757 0.005987 0.000005 0.914162 0.002186 

Random experiment 35 0.002429 0.102519 0.011115 0.000009 0.893155 0.002993 

Random experiment 36 0.002389 0.104141 0.008872 0.000009 0.768520 0.003017 

Random experiment 37 0.002430 0.107538 0.007227 0.000009 0.885327 0.002930 

Random experiment 38 0.002477 0.100174 0.009524 0.000010 0.783273 0.003119 

Random experiment 39 0.003372 0.132241 0.010544 0.000016 0.897696 0.004015 

Random experiment 4 0.002393 0.087152 0.006865 0.000008 0.858411 0.002906 

Random experiment 40 0.002105 0.083927 0.007331 0.000007 0.927323 0.002620 

Random experiment 5 0.001925 0.081864 0.010165 0.000006 0.923961 0.002356 

Random experiment 6 0.002185 0.082281 0.015002 0.000008 0.911995 0.002783 

Random experiment 7 0.002293 0.093261 0.007067 0.000008 0.917287 0.002777 

Random experiment 8 0.001974 0.079778 0.007651 0.000006 0.899230 0.002489 
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Random experiment 9 0.002620 0.097623 0.008314 0.000010 0.776055 0.003184 
 


