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In order to properly value the equity of a bank, as well as credit risk and the pricing of derivatives,

investors need a reliable assessment of banks’ default risk. In general, when analysts try to model companies’

probability of default, they will use the standard structural approach, first presented by Merton (1974) and

commonly known as the Merton Model, assuming that the value of the assets of a firm follow a log-normal

process. This assumed process is why the equity and debt of firms can be valued similarly to how options

are valued using the Black and Scholes (1973) model.

While this assumption may be appropriate when approximating asset values for non-financial firms, there

are clear issues in regard to banks’ assets. This is because banks’ assets typically consist of debt claims, and

the upside of these debt claims are limited by their nature. Banks lose money when borrowers default on

their payments, but they do not receive any additional payo↵ if the underlying collateral asset value rises

above its initial value. A limited upside in asset value is inconsistent with the log-normality assumption of

the Merton model.

Nagel and Purnandam (2019) propose a modification of the Merton model, below referred to as the

modified Merton model, or simply the modified model, which takes into account the capped upside of bank

assets. The model consists of three main elements. First, applying a log-normal distribution to banks’

borrowers’ assets rather than the bank’s. Second, loans have staggered maturities. Third, the assets of the

bank are contingent claims on borrowers’ collateral assets. Thus, the equity and debt of banks are contingent

claims on these contingent claims. These elements are expanded upon below.

The first assumption of the model builds on the main idea that the underlying assets of a bank’s assets can

indeed be assumed to follow a log-normal distribution. The second assumption is that every period a fraction

of the loans will reach maturity, and the bank issues the repayment proceeds as new loans. These new loans

are issued at a fixed loan-to-equity ratio, and thus an increase in the assets’ values (the loan collateral) during

the previous periods will not be available to back the new loans issued by the bank. The third assumption

is where the limited upside of the bank’s payo↵ becomes very clear. To exemplify the ”options-on-options”

feature of bank equity, we assume that a bank has an arbitrary number of loans outstanding, all borrowers

being identical (perfectly correlated defaults) and with identical loan terms, with a collective face value of

100. Since the maximum payo↵ the bank can receive from the outstanding loans is 100, the bank’s asset

value is capped at 100. The bank’s asset value is only sensitive to borrowers’ asset values when the value of

said assets fall below 100. Consequently, the bank’s asset value cannot follow a log-normal distribution, as

it would imply an unlimited upside.

In their paper, Nagel and Purnanandam show how their model is better than the Merton model at

predicting probability of default for banks. However, the paper lacks extensive empirical validation and could

thus be improved further by examining the explanatory power of the modified model to other measures of
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bank risk.

Below, we aim to complement the findings of Nagel and Purnanandam by investigating how well their

modified Merton model holds compared to the standard Merton model. Specifically, we investigate how

the risk-neutral probability of default (RNPD) calculated using the modified Merton model explains credit

spreads for banks, and thus, if the modified Merton model can provide a better explanatory model for

bank credit risk than the standard Merton model. We do this by performing a number of regressions on

option-adjusted bond spreads, using RNPD and a set of control variables.

Additionally, we examine how well the modified Merton model explains credit risk in companies that

cannot be characterized as banks. We run the same regression model as previously mentioned, however

substituting the bank data for data concerning non-financial corporations. This serves as a placebo test,

ensuring that the model is, in fact, bank-specific and not applicable on an arbitrary set of firms.

To paraphrase our results: After amending our measure of conditional volatility with a constant term,

we are able to successfully replicate the findings of Nagel and Purnanandam. Furthermore, we do not find

that the modified Merton model is better at explaining banks’ credit spreads, as it yields a marginally lower

adjusted R
2 than the standard Merton model. Both the standard and modified model show strong statistical

significance in explaining credit spreads. In addition, we observe that the modified model, while significant,

shows limited explanatory power when applied to non-financial corporations.

These findings suggest that the modified Merton model does realistically explain credit risk in banks,

however not better than the standard Merton model. We note that the comparability of the two models is

heavily reliant on, and sensitive to, the equity volatility measure that goes into the simulation. Moreover,

we interpret our findings as suggesting the modified model does not accurately explain credit risk in non-

financials. Our results indicate a need for further empirical validation of the model proposed by Nagel and

Purnanandam (2019).

This paper is organized as follows. In section I, we explore the modified Merton model replicated in this

paper and its connection to existing literature. In section II, we describe the data used in the replication, and

define the variables used in our contribution. In section III, we outline our methodology. First, we replicate

the findings of Nagel and Purnanandam. Second, we perform a regression on credit spreads using RNPD

from our replication. Lastly, we perform the same regression on a set of non-financial firms. In section IV,

we present and discuss our findings. Section V concludes.
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I. Literature Review

Forecasting Probability of Default and the Merton Model

The term risk-neutral probability of default (RNPD) for firms stems from the work of Black and Scholes

(1973) and Merton (1974), and their seminal papers on the theory of option pricing. Actual probability

of default is the real-world number and generally depends on historical figures, while RNPD is what can

be inferred from market prices of securities (Bharath and Shumway, 2008). See Appendix A for further

explanation of how to derive risk-neutral probability of default for the Merton model. The attractiveness

of the risk-neutral measure, is that the pricing formula of a derivative deduced from the Black-Scholes-

Merton framework is a function of directly observable parameters (expect for asset volatility). Using the

Merton Model to estimate RNPD is still one of the most common methods used in finance (Charitou et al.,

2013). Two key contributions that extended the framework set up by Merton are Black and Cox (1976),

and Leland (1994) which all, including the Merton model, constitute so-called structural models of credit

risk (Sundaresan, 2013). Structural models require strong assumptions about a firm’s assets, its debt, and

how its capital is structured, and one of their main advantages is that they provide an intuitive, as well as

endogenous explanation for default.

Our study derives directly from the paper by Stefan Nagel and Amiyatosh Purnanandam (2019), who

provide a structural extension of the Merton model for valuing banks. Their structural model includes more

realistic assumptions about bank assets and capital structure. Essentially, their thesis suggests that their

modified Merton model is a better way of valuing banks as it more appropriately, as well as accurately,

models the probability of default for banks compared to the Merton Model; especially during times of stable

financial markets – or ”good times” as the authors put it. The idea is that during times when asset values are

high, bank volatility will be low due to the capped upside of bank assets. Implications of this suggested by

the authors include charging a higher insurance premium for commercial banks during good times, referring

to the findings of Du�e et al. (2003).

The model’s way of simulating loan repayment bears reminiscence to Vasicek (1991) as the underlying

asset values (i.e. the collateral) act as basis for calculating the value of repayments. Khandani, Lo, and

Merton (2013) find that homeowners increase their leverage in good times, however without the option to

decrease leverage when times become worse. This asymmetry is captured by the modified Merton model,

as any excess collateral is removed when the loans are refinanced, and defaulted loans are replenished up to

the initial leverage ratio.

Nagel and Purnanandam assess their findings by comparing the two models’ ability to predict what they
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call ”pseudo” bank defaults, where they classify banks into default, and non-default groups. They do this by

classifying banks below the 75th or 90th percentile of the return distribution as defaults, where the average

sample return is the mean. With this classification, Nagel and Purnanandam find that the Modified Merton

model yields more accurate results in predicting default over the period 1987-2016. As mentioned in our

introduction, their paper lacks extensive external validation of their findings through use of other measures

of credit risk. Thus, a natural extension to the paper by Nagel and Purnanadam would be to include such

a validation. One such measure, and one of the most common indicators of credit risk, is the credit spread.

The theoretical credit spread is known to be a function of probability of default and the rate of recovery, i.e.

the value of a bond when the firm emerges from bankruptcy. Using probability of (or distance to) default

when investigating credit spreads has been done by, for example, Acharya, Anginer, and Warburton (2016),

in the context of implicit government guarantees. They base their measure of distance to default on the

standard Merton model. Should the modified Merton model prove to be more accurate, the implication is

that it should be used instead in future research on banks, and the pricing of bank derivatives.

Determinants of Credit Spreads

To create a proper regression model for examining the relationship between RNPD and credit spreads, we look

to past research on the nature of credit spreads, defined as the di↵erence between the risk-free government

interest rate and the yield of a bond. Noteable research has been conducted on the topic of determinants

of changes in credit spreads, i.e. which economic, and firm-specific factors can best explain the movements

in credit spreads. One such paper, by Collin-Dufresne et al. (2001), explores many potential explanatory

variables and provides a foundation for conducting similar regressions. In their paper, we are able to discern

a number of factors that can be used as control variables for the measure of default probability. It should

be noted that we approach the subject slightly di↵erently; our ambition is to test the explanatory power of

a certain set of variables, rather than discerning what inputs out of all possible are best at explaining credit

spreads. This a↵ects our choice of control variables, and likely how we choose to interpret our findings.

It has been shown that structural models fall short in explaining credit spreads in what has been called

the credit spread puzzle [Chen et al. (2009), Goldstein, R. (2009)]. Consequently, it would be interesting

to examine how the structural model proposed by Nagel and Purnanadam fares in explaining bank credit

spreads. Potentially, this novel approach to estimating bank probability of default could help demystify this

enigma.
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Contribution to Existing Literature

What we do is replicate, as accurately as possible, the findings of Nagel and Purnanandam (2019). Using our

retrieved data, we use their MatLab code to calculate the risk-neutral probability of default with the modified

Merton model, as well as the standard Merton model. Furthermore, we take the estimated probabilites of

default (RNPD) from the two models on a company level and regress these against the same companies’

credit spreads during the same time periods. While the paper by Nagel and Purnanandam includes an

external validation of their proposed model, it is limited in its scope of time. This study seeks to externally

validate the model using data from the entire timeline suggested by their sample. If the modified model is

better at predicting bank default, it should be better at explaining the credit risk inherent in option-adjusted

bond spreads. Furthermore, we examine whether their model can provide similar explanatory power when

applied to non-financial companies. If the model is equally fit to explain credit risk in non-financials, it

should be called into question whether it can be considered a bank-specific model. We define the accuracy of

the estimate as the adjusted R
2 of the regression, due to our inclusion of dummy variables. Considering that

the modified model is, to a larger extent, representative of how banks work, the model should, in theory, be

more accurate at predicting bank credit risk than the standard Merton model.
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II. Data

To the largest possible extent, we construct our data consistently with Nagel and Purnanandam. Our

primary source of data is the CRSP/Compustat merged quarterly database. A full breakdown of sources

can be found in Appendix B.

A Replication of Nagel and Purnanandam (2019)

We use our CRSP/Compustat data to construct the variables for equity and debt. Furthermore, we use

monthly data for the risk-free rate obtained from the Federal Reserve Bank. Our only notable deviation

from the original data construction is our measure of equity volatility. The authors do not provide a full

explanation of how they compute volatility, leaving us to excercise some guesswork. The implications of this

is explored below. Our sample encompasses commercial banks in the United States found in the CRSP-FRB

linked dataset from 1986 to 2018.

Our measure of debt is constructed by adding together the following quarterly measures: current debt,

long-term debt, deposits, and preferred stock. We amend the debt variable for the non-financial companies

by not including deposits, as this is a bank-specific balance sheet item.

In order to fit the data to the MatLab model, we construct an equity value that is normalized to the debt

value. First, we multiply the share price, or bid/ask average, (prc) by the number of outstanding shares

(shrout). We then normalize the value by dividing by debt. For equity values that show up as negative

numbers, we elect to multiply them by (-1), which seems to yield plausible market capitalization values.

For our measure of volatility, we obtain daily returns for every stock in our sample. From these daily

returns, we calculate annualized volatility, and winsorize at 2.5% from both tails. To be consistent with

the original authors, this annualized volatility is regressed against its 12-month lagged volatility in a panel

regression. We then fit the volatility to the coe�cients from the regression, creating a more dynamic measure

of forward-looking, conditional equity volatility. As there is no way to ensure that our volatility data are

identical to that of the authors, we expect the results from this regression to di↵er somewhat from theirs.

Moreover, we construct the same conditional volatility measure for our non-financial firms, including a new

regression on 12-month lagged values.

Summary Statistics

In Table 1 are the summary statistics of the variables included in the simulation of default probability of

banks. Although we are able to successfully replicate the debt, equity and risk-free rate, our measure of
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equity volatility is notably higher than that of Nagel and Purnanandam. Note that the statistics for equity

volatility are recorded after being fitted to the regression on 12-month lagged values.

Table 1: Summary statistics of input data that goes in to the model when calculating RNPD for the Merton
model and the modified model. Market equity is normalized to debt.

Mean S.D. Min 25th percentile 75th percentile Max
Market Equity 0.155 0.140 0.000 0.097 0.195 16.133
Equity Volatility 0.397 0.123 0.266 0.316 0.430 0.846
Risk-free Rate 0.045 0.018 0.015 0.030 0.058 0.091
Observations 49,522

B Regression

Below, the data used in the credit spread regression are described. Our data include listed companies in

the United States that have outstanding bonds during the time period from 1986 to 2018, in order to be

consistent with our replication. Both credit spreads as well as our control variables are discussed.

We base our regression on option-adjusted credit spreads on the paper by Collin-Dufresne et al. (2001).

In order to help ascertain the explanatory power of the RNPD measure, we pick a number of variables from

their paper to use as control variables in our regression. We present these suggested variables individually.

1. Credit Spreads. We obtain credit spread data from Lehman/Warga, and ICE/BAML. For a given

company, there are sometimes multiple bonds from which to obtain the option-adjusted credit spread.

To determine the credit spread CSi,t for firm i at time t, we choose to use the one with the maturity

closest to five years, considering that in our calculations of RNPD for the Merton model and modified

Merton model, we assume that the banks’ debt matures in 5 years. Some spreads show up as negative

numbers, providing extreme outliers. These observations are omitted in order to get accurate results

from our regression. Likewise, we remove a number of duplicate observations; we note that in this step

we could potentially keep an observation with missing or incorrect information.

2. Risk-Neutral Probability of Default. This is our primary variable of interest. It is obtained from our

estimations at given quarters using both the modified model and the standard Merton model.

3. Spot Rate. We include the 10-year Treasury rate, r10t , also used as the risk-free rate in our replication. A

higher spot rate reduces the probability of default in the model, and should thus have a negative e↵ect

on the credit spread. We likewise expect to see some negative correlation to the RNPD measures.

Furthermore, as the Treasury yield is the basis for calculating credit spreads, a higher rate should

reduce this wedge. Note that the exponent of the spot rate is only an index denotion.
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4. Slope of the Yield Curve. Consistent with Collin-Dufresne et al. (2001), we choose to use a proxy for

the slope of the yield curve and define it as follows: slopet = (r10t � r
2
t ). This provides an indicator for

the overall economic condition, which in worse times has been observed to a↵ect credit spreads (Fama

and French, 1989). Thus, an increase in the slope of the yield curve (signalling a better economic

outlook) should have a negative impact on credit spreads.

5. Firm Leverage. We compute this firm-specific variable as follows:

Book Value of Debt

Market Value of Equity+ Book Value of Debt

As a higher firm leverage ratio should decrease the distance to default, it should likewise be expected

that credit spreads increase with added leverage. We recognize that this variable could be strongly

correlated with our measure of RNPD, as the simulation includes the equity-to-debt ratio as an input

variable.

6. Credit Rating. In order to account for the rating of the bond, we make the distinction between high-

yield and investment grade bonds by use of a dummy variable. The variable is set to equal 1 when the

bond has a rating that is not considered investment grade. Thus, we expect this variable to show a

positive coe�cient. We use rating data from the ICE/BAML database.
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III. Methodology

A Replication of Nagel and Purnanandam (2019)

Our initial objective is to replicate the main part of the paper by Nagel and Purnanandam (2019). We

examine the therein proposed modified Merton model’s implied risk-neutral probability of default (RNPD),

and its variation across time on an aggregate level for the time period 1986–2018 (note that we extend the

sample period by two years). We expect to see a significant di↵erence versus the standard Merton model’s

implied RNPD for the sample period, especially during times with less turbulence in the market, as we

expect to obtain similar results to those of Nagel and Purnanandam. We use their MatLab code, and mimic

their data as closely as achievable. This includes calibrating a ValueSurface to inhibit our empirical values.

Exogenous parameters used in the modified model can be found in Appendix C.

We calculate conditional equity volatility by first calculating the realized equity volatility (annualized) by

using a one-year (252 trading days), backward-looking moving window. We then perform a panel regression

on 12-month lagged, realized volatility in our estimation of conditional volatility:

�i,t+1 = ↵+ ��i,t + ✏i,t (1)

Thus, we obtain a proxy for the conditional equity volatility which we use in our calculations of RNPD.

Find our estimated equations in Appendix D.

After successfully constructing the relevant data, we move to running the MatLab simulation. We make

some minor amendments to the ”ValueSurface” used in the simulation in order to accomodate our data. We

use the original authors’ code for running both the Merton model and the modified model. Finally, the two

models yield a measure of 5-year, risk-neutral probability of default. Following Nagel and Purnanandam, we

winsorize our results from both models at 0.5% from both tails.

In addition to the replication itself, we run a test on how the model responds to changes in equity

volatility.

B Credit Spread Regression

Having satisfactorily recreated the results of Nagel and Purnanandam, we continue to performing two validity

checks on their model. Our approach is centered around regressing RNPD on option-adjusted credit spreads.

We retrieve corporate bond data and add them to our dataset. We choose only to include firms that have

more than one observation of option-adjusted credit spreads. This has a negligible e↵ect on the size of our
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sample. Also included in this regression are a number of control variables consistent with related literature, as

presented in section II. Note that we take logs of the credit spreads. The initial equation can be represented

as follows:

log(CSi,t) = �0 + �1RNPDi,t + �2r
10
t + �3slopet + �4levi,t + �5ratingi,t + �i + ✏i,t (2)

In equation (2), �i represents the firm fixed e↵ects obtained in the panel regression and ✏i,t is the

residual. Having performed a Hausman test, we choose to run a group (firm) fixed-e↵ects regression in order

to compensate for time invariant e↵ects of the individual banks. We end up with the following equation:

ˆlog(CSi,t) = �1
ˆRNPDi,t + �2r̂

10
t + �3

ˆslopet + �4
ˆlevi,t + �5ratingi,t + ✏̂i,t (3)

where X̂i,t = Xi,t–Xi represent all dependent as well as explanatory variables. ✏̂i,t is the residual term.

The rating variable included is a dummy variable. Included in our regression model are time fixed-e↵ects,

based on four long time periods inspired by the observations of Nagel and Purnanandam (2019), defined as

follows:

1. 1986-1993. The savings and loans crisis.

2. 1994-2006. Subsequent years and those leading up to the financial crisis.

3. 2007-2012. Years including the financial crisis and the early stages of recovery.

4. 2013-2018. Post-crisis years.

Having defined the control variables we move on to perform a number of panel regressions on our data.

If the authors’ proposed model is truly superior to the Merton model, we would expect it to be better at

explaining credit risk. We test this by regressing RNPD from both models against the option-adjusted credit

spread for the banks’ bonds. This reduces the number of observations drastically since not all firms issue

bonds. We expect to see a higher adjusted R
2 from the modified model, and moreover expect the probability

of default from both models to have a positive coe�cient in the regression. A higher RNPD means higher

credit risk, which should imply a higher credit spread. Table 2 contains our predicted sign for each included

variable, as mentioned in section II.
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Table 2: Explanatory variables and expected signs of the coe�cient of the regression.

Variable Description Predicted Sign

pdmodmertoni,t Modified model RNPD +

pdmertoni,t Merton model RNPD +

r
10
t 10-year Treasury rate -

slopet Slope of the yield curve -

S&Pt Return on S&P 500 -

levi,t Firm leverage ratio +

ratingi,t Bond rating below investment grade +

We run the regression multiple times for both RNPD measures, adding one control variable at a time.

Firm fixed e↵ects are included across all regressions.

Previous studies of determinants of credit spreads have grouped bonds by rating, including Collin-

Dusfresne et al. (2001). For robustness, we investigate the e↵ect of RNPD on credit spreads using this

method as well, with results presented in Table 6. Lastly, in order to investigate one of the main findings

in the paper by Nagel and Purnandam, we perform a regression for every time period previously defined.

If, as claimed, the Merton model does underestimate bank credit risk during ”good times”, we expect the

modified model to show higher explanatory power especially during such periods.

C Placebo Test

Finally, we perform the same regression as above on our sample of non-financial companies. We expect the

Merton model to show similar results as in the previous section, however we expect a clear drop in adjusted

R
2 when examining the modified model. Before running the MatLab simulation to obtain RNPD, we remove

outliers with a normalized equity value above 200 in order to fit the simulation.
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IV. Results

A Replication of Nagel and Purnanandam (2019)

Risk-Neutral Probability of Default

In Figure 1, we have to some extent replicated the findings of Nagel and Purnanandam (2019). In Table 3,

we note that the modified model yields a higher average RNPD. However, we do not observe the expected

pattern of the modified model’s RNPD being consistently higher during ”good” times. We suspect that this

is due to our high volatility, as this is our only input variable that deviates from Nagel and Purnanandam,

and proceed to running the simulation again with an amended conditional volatility. As we observe the

biggest discrepancy compared to the authors for RNPD in the Merton model, we suspect that this is the

more sensitive of the two in regard to volatility. This is elaborated on below.

Table 3: We calibrate the Merton model and our modified model quarterly from 1986-2018, based on the
data in Table 1. For each bank in each period, we compute the risk-neutral default probability using the
two models. Presented are the summary statistics of RNPD.

Mean S.D. Min Max
Merton RNPD 0.247 0.205 0.042 0.978

Modified model RNPD 0.260 0.177 0.051 0.917
Observations 49,522

Figure 1: Comparison of calibrated risk-neutral default probabilities (5-year horizon, cumulative).
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Compensating for High Volatility

As previously mentioned, we note a discrepancy in how our conditional volatility compares to that of the

original paper; which yields unsatisfactory RNPD values even after winsorizing. After adjusting for our

high volatility values by applying a constant term of (�0.1), we perform the same computations once more

(Figure 2). This yields results that are far more in line with the original authors. Worth noting is the gap

between the two models, reversed only during the peak of the financial crisis, reinforcing the notion that

the Merton Model underestimates RNPD in times of financial stability. As shown in Table 4, the average

RNPD of the modified model is about ten percentage points higher than that of the Merton model. While

we do feel confident about using these output values as basis for subsequent steps, these results point to

some ambiguity in how well the modified model works. We observe that we have reason to believe that

when equity volatility reaches a certain threshold, the the two models react very di↵erently. To improve

our intuition about the behavior of the two models, we move to performing a simulation where we vary the

equity volatility input for the two models.

Figure 2: Comparison of calibrated risk-neutral default probabilities (5-year horizon, cumulative), after
adding (�0.1) to all volatility values.
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Table 4: Summary statistics of risk-neutral default probabilities when adding -0.1 to all equity volatility
input values, after winsorizing.

Mean S.D. Min Max
Merton Model PD 0.134 0.201 0.002 0.976
Modified Model PD 0.221 0.174 0.027 0.916

Observations 49,522

In Figure 3, we confirm our suspicions that the Merton model is more sensitive to changes in volatility

compared to the modified model, at least for volatilities in the range of 0.2 � 0.5, corresponding to the

majority of our empirical data. For a constant equity value of 0.155 (the mean value of equity in our

sample), the Merton model RNPD exceeds the modified model’s RNPD at volatilities of approximately 0.35.

This explains why we are unable to replicate the findings of Nagel and Purnandam without adjusting the

high volatility from our initial calculations, wherein we obtained an average equity volatility of 0.39; slightly

above the 0.35 threshold. What we infer from this is that the model relies heavily on providing it with

conditional volatility computed in a very specific manner. Either that, or the volatility put into the model

not surpassing a certain threshold, around 0.35, given our equity-to-debt ratios and risk-free rates. When

the average annualized volatility of the banks exceeds 0.35, the modified model does not provide a higher

figure of estimated RNPD anymore.

Hence, we verify that volatility plays a large part in explaining the di↵erences in RNPD of the two models.

This is important, as Nagel and Purnandam specify that their model is better at predicting default in times

of financial stability – or as they put it: ”in good times when asset values are high”. Thus, we reiterate

the importance of distinguishing between ”good” and ”bad” times, and its relation to the volatility of bank

returns. We carry this notion into our regression below.
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Figure 3: Merton and modified RNPD as a function of volatility. Equity is normalized to debt, and set
constant to 0.155. The jump in RNPD at ⇠ 0.55 for the modified model is likely due to a slight miscalibration
of the ValueSurface.

B Regression Results

As shown in Table 5, the two models show similar values for the adjusted R
2. The gap between the two

narrows when adding the control variables, however the standard Merton model exhibits higher R2 in every

iteration. Both models’ probability of default show strong statistical significance regardless of whether we

account for time fixed e↵ects. Additionally, we note that RNPD from the modified model shows higher

economic significance when all control variables are included.

As predicted, the ten-year Treasury rate shows a negative coe�cient. In other words, credit spreads go

down when the risk-free rate goes up.

The slope of the yield curve is statistically significant only when looking at the modified model, and

shows a di↵erent sign than anticipated. Furthermore, it does not yield a significant increase in the adjusted

R
2 of the model. We note that there may be some clashing correlation between our proxy for the slope of

the yield curve and the ten-year Treasury rate.

Fascinatingly, the firm leverage ratio’s coe�cient has di↵erent signs for the two models. Paired with

the standard model, it shows a positive coe�cient, which is in line with our predictions. For the modified

model, however, it seems to imply that credit spreads should decrease as banks take on more leverage. This
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could be an e↵ect of how the modified model is constructed, since the model simulates bank equity and debt

values as contingent claims on contingent claims. The e↵ect of debt on credit spreads is therefore not as

easily interpreted when including our measure of RNPD. We recognize that adding this variable could be

the reason for the di↵erence in the size of the coe�cients of RNPD for the two models. This a↵ects our

interpretation of their respective economic significance.

Intuitively, bonds categorized as high yield, or speculative grade, investments have a positive coe�cient.

While statistically significant, the coe�cient is relatively small. The e↵ect of rating categorization is explored

further below.

In Table 6, we see a monotonic increase in the e↵ect of the risk-free rate when the bond rating decreases,

albeit not for the B-rated group of bonds. The e↵ect of the slope of the yield curve is highly ambiguous, and

we deem it extreme in the case of B-rated bonds.

Once more, we observe that the coe�cient for firm leverage behaves in a strange fashion. We realize that

some of the results are obscured by collinearity between RNPD and leverage, why we perform a univariate

regression of logged credit spreads and the two RNPD measures, pdmodmerton and pdmerton. We explore

this univariate relationship further below.

Overall in these regressions, we find that our variables rarely show significance simultaneously. This is

presumptively due to multicollinearity between the regressors, making the interpretation of the coe�cients

di�cult. We note that our measures of RNPD remain significant throughout.

We recognize that these results are highly a↵ected by the varying sizes of the rating groups, thus impeding

us from drawing any strong conclusions.
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Table 5: Regression on option-adjusted credit spreads using RNPD from the two studied models.
The estimations of the corresponding coe�cients are presented in the table, with t-scores in parenthesis.

Modified Merton Model RNPD

(1) (2) (3) (4) (5) (6)
Variable logCS logCS logCS logCS logCS logCS

pdmodmertoni,t 2.659*** 2.215*** 2.400*** 2.377*** 2.722*** 2.577***
(t-score) (49.35) (35.77) (39.06) (38.27) (35.20) (33.18)
r
10
t -12.009*** -10.957*** -9.630*** -9.491***

(-16.52) (-13.08) (-11.30) (-11.25)
slopet 2.525** 3.813*** 2.931***

(2.52) (3.78) (2.92)
levi,t -1.544*** -1.581***

(-7.42) (-7.67)
ratingi,t 0.296***

(10.87)

Adjusted R
2 0.293 0.362 0.393 0.393 0.399 0.411

N 5547 5547 5547 5547 5547 5547
Time fixed e↵ects No Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes Yes

Standard Merton Model RNPD

(1) (2) (3) (4) (5) (6)
Variable logCS logCS logCS logCS logCS logCS

pdmertoni,t 2.653*** 2.145*** 2.126*** 2.110*** 2.006*** 1.896***
(t-score) (52.65) (39.99) (39.84) (39.01) (35.84) (33.59)
r
10
t -5.585*** -4.885*** -6.663*** -6.686***

(-7.84) (-6.01) (-7.85) (-7.95 )
slopet 1.786* 0.480 -0.162

(1.81) (0.47) (-0.16)
levi,t 1.186*** 1.023***

(6.89) (5.97)
ratingi,t 0.277***

(10.17)

Adjusted R
2 0.322 0.391 0.398 0.398 0.403 0.414

N 5547 5547 5547 5547 5547 5547
Time fixed e↵ects No Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes Yes

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: Credit spread regression by bond rating. None of the bonds in our sample were rated AAA. Not
enough bonds were rated CCC or below to obtain any robust results, why these observations are omitted.

Modified Merton Model RNPD

Variable AA A BBB BB B

pdmodmertoni,t 2.074*** 2.603*** 2.486*** 2.101*** 1.409**
(t-score) (5.92) (18.93) (19.49) (7.24) (2.11)
r
10
t -7.456* -8.052*** -8.253*** -15.956*** -6.022

(-1.81) (-6.29) (-6.22) (-5.41) (-0.81)
slopet 5.327 3.284** 1.842 6.770* -23.846***

(1.29) (2.26) (1.17) (1.86) (-2.84)
levi,t -3.036*** -2.002*** -0.788** 2.259* 0.136

(-3.34) (-6.68) (-2.08) (1.90) (0.03)

Adjusted R
2 0.322 0.349 0.395 0.403 0.134

N 271 2284 2125 567 167
Time fixed e↵ects Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes

Standard Merton Model RNPD

Variable AA A BBB BB B

pdmertoni,t 1.48*** 2.194*** 1.807*** 0.736*** 1.070***
(t-score) (6.81) (21.79) (17.30) (4.04) (3.91)
r
10
t -3.664 -5.469*** -5.546*** -12.259*** -4.417

(-0.92) (-4.38) (-4.13) (-4.11) (-0.62)
slopet 4.046 2.056 -1.980 2.460 -33.962***

(0.99) (1.45) (-1.24) (0.66) (-3.94)
levi,t -1.333* 0.063 2.044*** 7.710*** 2.045*

(-1.88) (0.26) (6.21) (9.21) (0.78)

Adjusted R
2 0.348 0.377 0.374 0.361 0.196

N 271 2284 2125 567 167
Time fixed e↵ects Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes

* p < 0.10, ** p < 0.05, *** p < 0.01

To further investigate how the explanatory power of the two RNPD measures varies between rating

groups, we perform a univariate regression between logged credit spreads and RNPD, with results presented

in Table 7. We note a number of things: First, the coe�cients are larger for the Merton model for AA and

A rated bonds, which is counterintuitive as we would have expected the coe�cent of the modified Merton

model to be slightly larger overall as the Merton model is believed to understate the actual probability of

default/risk of a bank/bond. Second, and perhaps most interestingly, the modified model provides a better

explanatory measure for bonds of lower ratings than A. That observation is in line with the one made by

Nagel and Purnanadam, i.e. that the Merton model understates the actual risk of a bank, compared to their

modified model. To be a tad more specific, this observation implies that when bank bonds are rated poorly,
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and are thus more risky, the Merton model understates the actual riskiness of the bond whilst the modified

model better captures this risk. We see a similar pattern in Table 6 as well, with the B-rating column as an

exeption. Consequently, we hesitate to draw any major conclusions.

Referring once again to the claim that the Merton model understates risk in ”good” times, we move to

examining the models’ explanatory power during di↵erent time periods.

Table 7: Univariate credit spread regression, subdivided by bond rating. For B rated bonds we observe
some collinearity between year groups.

Modified Merton Model RNPD

Rating AA A BBB BB B

pdmodmertoni,t 1.404*** 2.005*** 2.073*** 2.069*** 1.382***
(t-score) (5.62) (17.81) (20.11) (11.54) (4.70)

Adjusted R
2 0.274 0.313 0.375 0.334 0.102

N 271 2284 2125 567 167
Time fixed e↵ects Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes

Standard Merton Model RNPD

Rating AA A BBB BB B

pdmertoni,t 1.423*** 2.256*** 1.932*** 1.300*** 0.984***
(t-score) (7.65) (23.14) (18.83) (7.19) (4.56)

Adjusted R
2 0.337 0.368 0.362 0.236 0.095

N 271 2284 2125 567 167
Time fixed e↵ects Yes Yes Yes Yes Yes
Firm fixed e↵ects Yes Yes Yes Yes Yes

* p < 0.10, ** p < 0.05, *** p < 0.01

In Table 8 we present the results from the regressions divided into our previously defined time periods.

We remove our time fixed e↵ects and substitute them for a breakdown of the four time periods. The Merton

model yields better explanatory power for all time periods except the post-crisis years, which is the calmest

time period in terms of equity volatility (see Appendix E for a timeline of conditional equity volatility). The

period between 1994-2006 provides the longest period of relative stability in the market in our sample, and

during this period the Merton model yields a higher explanatory power, in contrast to our expectations.
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Table 8: Credit spread regression divided into four di↵erent time periods.

Modified Merton Model RNPD

Time Period 1986-1993 1994-2006 2007-2012 2013-2018

RNPDi,t 2.232*** 4.786*** 1.640*** 3.006***
(t-score) (9.09) (22.64) (10.83) (4.40)

r
10
t -0.605 -13.196*** -4.004 -7.010**

(-0.29) (-11.37) (-1.6) (-2.52)
slopet 9.558*** -2.630** 9.956*** 4.948***

(3.80) (-2.06) (3.75) (2.78)
levi,t -1.452 -3.727*** 3.859*** 0.047

(-1.07) (-13.68) (4.61) (0.04)
Ratingi,t 0.437*** 0.150*** 0.043 0.560***

(8.05) (3.03) (0.54) (11.99)

Adjusted R
2 0.206 0.169 0.578 0.357

N 1703 2588 615 641
Firm fixed e↵ects Yes Yes Yes Yes

Standard Merton Model RNPD

Time Period 1986-1993 1994-2006 2007-2012 2013-2018

RNPDi,t 1.158*** 6.486*** 1.115*** 1.650
(t-score) (9.44) (32.33) (12.20) (2.5)

r
10
t -0.0207 -2.966*** -5.689** -7.288

(-0.10) (-2.74) (-2.31) (-2.17)
slopet 6.419** 5.521*** 7.110*** 4.226

(2.49) (4.62) (2.71) (2.31)
levi,t 5.636*** -0.827*** 5.197*** 3.896

(6.77) (-4.04) (7.27) (5.28)
Ratingi,t 0.412*** 0.187*** 0.058 0.554

(7.51) (4.13) (0.74) (11.73)

Adjusted R
2 0.209 0.294 0.596 0.343

N 1703 2588 615 641
Firm fixed e↵ects Yes Yes Yes Yes

* p < 0.10, ** p < 0.05, *** p < 0.01

Limitations

There are a number of limitations which could have had an e↵ect on our results. It is worth mentioning that

the panel dataset is heavily unbalanced, and for several companies in our sample, there are only data for

a few of the four time periods. Further, only a fraction of the total number of financial institutions in our

sample have any outstanding bond data at all during the full time frame that this paper examines. As this

severely limits our sample size, we subsequently admit to the possibility of sample selection bias. Thus, we

hesitate to draw too strong conclusions about the calculated RNPD for all banks from our findings. Similarly,

while our choice of time periods captures some time varying e↵ects, defining them di↵erently would surely
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capture other time varying e↵ects.

Moreover, our limited sample size becomes somewhat more apparent when studying bonds by their

credit rating. Given that the sample size is substantially smaller for lower-rated bonds, we are led to believe

we could have constructed our rating variable di↵erently. The e↵ects of this on our results are however

ambiguous.

We recognize that, given more time, further testing could be done on the individual relationship between

regressors (as we experience some multicollinearity), to be able to draw conclusions about the economic

significance of the coe�cients. Regarding the relationship between RNPD and credit spreads, as well as

leverage and credit spreads, there is reason to believe that further analysis could have been made using

logarithmic values on the regressors as well. From an initial examination of our data (not presented), we

find it ambiguous whether to expect a linear or exponential relationship between the regressors and the

dependent variable. Given the absence of such an analysis, we hesitate to draw any firm conclusions from

the economic significance of the coe�ecients.

C Placebo Test Results

As can be seen in Table 9 the Merton model yields a higher average probability of default for non-financial

firms, as opposed to in our regression on banks. Furthermore, in 10, the two models’ implied RNPD show

stark di↵erences in explanatory power, with a di↵erence in adjusted R
2 close to eight percentage points. We

also note the large di↵erence in economic significance; the standard Merton model’s coe�cient is roughly 25

times that of the modified model. Additionally, we once again observe that firm leverage moves in di↵erent

directions under the two models. All control variables are significant at the one percent level for both models.

Conjointly, there is a clear indication that the modified Merton model is not fit to describe credit risk in

non-financials.

Although the failure of the modified Merton model to explain option-adjusted spreads is expected in the

context of non-financial firms, this could stem from a number of reasons. First, it could be for the simple

reason that the model only works on banks. As the model takes into account the capped upside of banks’

assets by simulating the movements of underlying assets, which is not a feature of other firms, it computes

a RNPD that has no bearing in fact.

Second, it could be that the MatLab model, rather than the theoretical model, cannot accomodate the

characteristics of firms other than banks. For example, deposits being a bank-specific balance sheet item, and

the characteristically high debt-to-equity ratio of banks. Likewise, as per the discussion of the replication,

higher volatility means a higher likelihood of crossing the threshold where we observe counterintuitive RNPD
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figures.

Finally, we concede the possibility of human error on the part of the authors of this paper. Having

neither the time nor the scope to capture the subtleties of the model and the data will inevitably undermine

the confidence of our conclusion. This includes missteps such as insu�cient calibration of the ValueSurface

in the MatLab model when switching from financials to non-financials. This miscalibration becomes clear

when looking at Table 9.

Table 9: Summary statistics of risk-neutral default probabilities for non-financial corporations.

Mean S.D. Min Max
Merton Model PD 0.257 0.203 0.006 0.909
Modified Model PD 0.230 0.288 -0.361 1.101

Observations 87571

Table 10: Credit spread regression on non-financial corporations.

(1) (2)
Variable logCS logCS

pdmodmertoni,t 0.090*** -
(t-score) (10.68) -
pdmerton - 2.516***

- (104.05)
r
10
t -11.813*** -9.932***

(-52.47) (-46.66)
slopet 5.775*** 3.446***

(22.87) (14.42)
levi,t 1.774*** -0.120***

(112.11) (-5.20)
ratingi,y 0.481*** 0.454***

(66.16) (66.34)

Adjusted R
2 0.311 0.388

N 87552 87552
Time fixed e↵ects Yes Yes
Firm fixed e↵ects Yes Yes

* p < 0.10, ** p < 0.05, *** p < 0.01
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V. Conclusion

We try to replicate a modification of the Merton model, and test its explanatory power on corporate credit

spreads. Both expected and unexpected results are observed. We are able to replicate the findings of Nagel

and Purnanandam (2019) after adjusting our measure of equity volatility with a constant term.

Our results do not strengthen the findings of Nagel and Purnanandam, as we cannot validate that the

modified Merton model is better at explaining bank credit risk than the standard Merton model. Nor are

we able to confirm that the standard Merton model underestimates bank risk during ”good” times. In the

context of non-financial firms, we find that the modified model cannot explain credit risk to nearly the

same degree as the Merton model. We can thus, to some degree, confirm that the model is, as expected,

bank-specific.

Given that we do not find the modified Model to be superior in explaining bank risk, we find that certain

implications from Nagel and Purnanandam do not necessarily hold. For example, we cannot confirm that the

insurance premiums banks are charged with (Du�e et al., 2003) during good times are too low. Similarly, we

find no clear incentive to use the modified Merton model when evaluating implicit government guarantees,

as in Acharya, Anginer, and Warburton (2016).

To conclude, our findings appear to highlight a need for further empirical validation of the modified

Merton model if it is to be used in future policymaking and security pricing.
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Appendices

A The Merton Model

We briefly describe the approach of calculating risk-neutral probability of default using the Merton model,

using observable debt, equity, and volatility to derive asset value and volatility.

The Merton Model makes two significantly important assumptions. The first is that the value of a firm’s

assets follow a geometric Brownian motion, i.e:

dAt = µAtdt+ �AAtdW (4)

where At is the value of the firm’s total assets at time t, µ is the expected continuously compunded return

on A, �A is the volatility of firm value, and dW is a standard Wiener process. In the model by Nagel and

Purnanandam, µ is defined as µ = r � � where r is the risk free rate and � is the cash payout rate. The

second decisive assumption of the model is that the firm issues only one bond maturing in T periods. Under

these assumptions, the model can simply be explained to model the firm’s equity as a call option on the

underlying value of the firm with strike price F, equal to the face value of the firm’s debt. Hence, the Merton

model stipulates that the equity of a firm at a given time t = 0 satisfies

E = AN (d1)� e
�rT

DN (d2) (5)

where E is the market value of the firm’s equity, D is the face value of the firm’s debt, r is the risk-free rate,

and N (�) is the cumulative standard normal distribution function. d1 is given by

d1 =
ln(A/D) + (r + 0.5�2

A)T

�A

p
T

(6)

and

d2 = d1 � �A

p
T (7)

Equity and asset volatility are related through the expression

�E =
A

E
N (d1)�A (8)

Thus, it is now possible to solve the non-linear equation system by combining equations (4) and (8) and
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obtain the risk-neutral distance to default

DD =
log(A/D) + (r � �2

A
2 )T

�A

p
T

(9)

From this expression, RNPD can be calculated through

PD = N (�DD) (10)

When calculating RNPD for the Merton model we calculate the expected risk-neutral probability of

default at time t, RNPDi,t, using the figures at time t of equity, Ei,t, debt, Di,t, conditional equity volatility,

�E,i,t, and the risk-free rate, rt.

B Data Construction

How the input variables are constructed from the raw data is shown in Table 11.

Table 11: Variable definition and construction. Input goes into the estimations of RNPD, as well as our
regression model.

Variable Description Source Construction
E Market Equity Value of Bank CRSP prc ⇥ shrout
sE Stock Return Volatility CRSP Predicted Stock Return Volatility
r (r10t ) Risk-free Rate FRB log 10-year risk free rate
r
2
t 2-year treasury yield FRB log 2-year treasury yield
D Book Value of Bank Debt Compustat current debt+long-term debt+deposits+pref. equity

(dlcq+dlttq+dptcq+pstkq)
ratingt Credit Rating ICE/BAML Dummy
oas Credit Spread Lehman/Warga Bond with closest

and ICE/BAML maturity to 5 years (T)
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C Input Parameters in the Modified Model

For the modified model, there are several parameters that are fixed exogenously. These parameters are

shown in Table 12, and are set in accordance with Nagel and Purnandam.

Table 12: Parameter definitions and values. Input goes into calculation of modified model RNPD.

Parameter Description Value
� Borrower Asset Depreciation Rate 0.005
� Bank payout rate 0.002
T Borrower Loan Maturity 10
H Bank Debt maturity 5
⇢ Borrower Asset Value Correlation 0.5
l Loan-to-Value Ratio 0.66
� Borrower Asset Volatility 0.20

D Computation of Conditional Equity Volatility

We obtain the following best-fit line from a 12 month lagged annualized volatility, to estimate the one year

forward looking equity volatility:

�i,t+1 = 0.58595�i,t + 0.17509 (11)

As expected, our coe�cients are within a similar range as, but not identical to, those of the original

authors. Additionally, we obtain the following equation when performing the regression on non-financial

corporations:

�i,t+1 = 0.47961�i,t + 0.39180 (12)

In the above results, we observe that the minimum value of conditional volatility for non-financial firms

will be significantly larger.

One could argue that fitting an AR(1) process to equity volatility with a 12-month lag, i.e. assuming

that the volatility one year ago has an e↵ect on the volatility today, is a näıve method to estimate forward

looking volatility. Nevertheless, the method is a more dynamic approach towards providing a measure for

future volatility than simply assuming constant volatility based on a mean. That said, it is likely possible

to use a di↵erent estimation method.
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E Aggregate Equity Volatility

Figure 4: Aggregate conditional equity volatility during the time period 1986-2018.

In Figure 4, we plot the average conditional volatility figures for every given quarter in our time period. The

estimations are based only on the data from banks after adding a constant term of �0.1 to all individually

estimated values of conditional volatility.
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