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degradation and economic development, yet with no statistical significance. 
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1. Introduction 
According to the UN, quantities of greenhouse gases (GHGs) in the atmosphere have risen to a 

three-million-year high. Total GHG emissions increase when population sizes, economies, and 

standards of living advance. The rising concentrations of GHGs have been linked to a rising 

average temperature, with potentially disastrous effects to the climate (United Nations, n.d.). This 

means that as economic activity increases on a global scale, there is a possibility that environmental 

degradation will continue to accelerate. However, the environmental Kuznets curve (EKC) 

hypothesis—a concept that has been around since the early 1990s—disputes this assertion. In 

short, the EKC hypothesis suggests that an economy will go through two stages of development. 

In the first, environmental degradation will increase with economic development. At a certain point 

(the EKC turning point), the relationship will then become inverted and environmental degradation 

is expected to instead decrease with economic development. Graphically, this development over 

time can be represented by an inverted U-shape. A wide variety of forces, some of which will be 

detailed in this thesis, have been hypothesized to drive this relationship. 

 

Sweden is an example of a country where emissions of GHGs have generally been decreasing over 

the past 30 years. Between 1990 and 2018, GHG emissions decreased by circa 27 percent (Statistics 

Sweden, 2019e). Meanwhile, real gross domestic product (GDP) per capita in Sweden rose by about 

55 percent during the same period (World Bank, 2020). Within this time frame, the share of value 

added that is attributable to industry, a notoriously emissions-intense activity, has decreased from 

24.41 percent to 18.69 percent, while the share attributable to services has increased from 65.2 

percent to 72.99 percent (OECD, 2020). These data are consistent with what some proponents of 

the EKC hypothesis would suggest: highly developed economies will undergo structural shifts that 

cause them to decrease their emissions (Panayotou, 1993). There is reason to believe that Sweden 

is an example of such a country.  

 

However, the fact that Sweden has decreased GHG emissions does not necessarily mean that 

individual Swedish municipalities (Swedish: kommuner) have. The amount of emissions can vary 

greatly between municipalities. This means that the trends in municipalities that are large emitters 

can overwhelm trends in smaller ones, leading to results at a national level that differ significantly 

from what can be observed in several municipalities. It is possible that large municipalities have 

generally decreased their emissions, while smaller municipalities have not, which would fit in with 

the national data just as well. See figure A1 in appendix A for some examples of municipalities that 
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do not show straight downward slopes for environmental degradation, but rather inverted U-

shaped curves. 

 

The Government of Sweden and the Riksdag have a responsibility to enact policies and legislation 

regarding environmental issues. Municipalities are then responsible for adjusting locally to these 

national policies and legislation (Swedish Association of Local Authorities and Regions, 2014). 

National policies can thus lead the country toward sustainability, but local government does have 

influence on the specific level of environmental degradation that will occur in a specific 

municipality. This is, perhaps, one of the main reasons why studying the EKC at a municipal level 

can potentially yield interesting results, especially when allowing for income inequality to differ 

across municipalities. 

 

In the literature, it has been theorized and empirically investigated how inequality might influence 

the relationship suggested by the EKC hypothesis. Theoretically, equality might put the median 

agent in society in a better position, which can increase general awareness of environmental 

degradation, leading environment-enhancing regulations to be put into place (see e.g. Kaika and 

Zervas, 2013). Increased economic equality could also increase the willingness to pay for 

environmental protection (see e.g. Magnani, 2000). Economic inequality, on the other hand might 

cause increased status consumption that would increase emissions (see e.g. Jorgenson et al., 2017). 

Empirically, it is somewhat ambiguous how inequality influences the EKC-pattern. E.g. Magnani 

(2000) found empirical results, limited to OECD countries, supporting the hypothesis that income 

inequality was negatively associated with expenditure related to research and development for 

environmental protection. Oppositely, Brännlund and Ghalwash (2008) found, based on Swedish 

household consumption of non-durable goods, that inequality might have the opposite effect as 

the relationship between income and emissions from consumption was shown to be concave, 

implying that, ceteris paribus, a more equal income distribution could influence emissions positively. 

 

In this thesis, we will empirically test the EKC hypothesis on a Swedish municipal level. This will 

be done using a fixed effects approach based on a panel data set, covering 290 Swedish 

municipalities throughout the period of 2008-2017. We will test EKC models that include and do 

not include income inequality in order to see whether it has the effects on the EKC that some of 

the previous literature has found it to have. In our case, we use mean earned income for economic 

development, the Gini coefficient for economic inequality, and five different pollution metrics (per 

capita) for environmental degradation. These five environmental degradation indicators are meant 
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to capture two different types of environmental degradation—both in terms of effects on the 

climate and on local environments. Carbon dioxide, nitrous oxides, and aggregate GHGs capture 

greenhouse gases that principally have a more global effect on the environment. Sulfur dioxide and 

particulate matter, on the other hand, have consequences that are relatively more local. 

 

In short, the contribution that we seek to make to the literature is that we test a hypothesis, that 

has been widely researched with mixed results, on a set of data which has not been analyzed 

through this specific lens before. We also aim to contribute to the literature by allowing for income 

inequality in our model, which enables us to tell a more nuanced story of the relationship between 

economic development and environmental degradation in Sweden. 

 

Our estimation results ultimately leave us unable to draw unequivocal conclusions regarding the 

Swedish municipal EKC and the effects that economic inequality has on it. GHG emissions is the 

sole environmental degradation indicator for which we can find a statistically significant EKC 

shape with the methods used in this thesis. We calculate the Swedish municipal EKC turning point 

for GHGs to be situated at around 312,000 SEK in 2008 prices. The effect that the Gini coefficient 

has on the model is likewise rather uncertain. In the case of GHGs, our estimates indicate that 

higher inequality generally leads to higher emissions, but that it also leads to an EKC turning point 

that occurs earlier. However, we cannot draw definite conclusions on whether inequality impacts 

the EKC for GHGs since we obtain significant results only when we apply Driscoll-Kraay standard 

errors, which are not optimal for the dimensions of our panel data set. 

 

We will begin in section 2 by briefly reviewing the literature on the EKC hypothesis, its theoretical 

foundations, the impact of economic inequality on the EKC, and some common critiques of the 

EKC framework. In section 3, we detail our research contribution, including our research questions 

and limitation of scope. Then, in section 4, we present our methodological approach and construct 

a set of models that we will test, based on data that is presented in section 5. Section 6 will be 

dedicated to presenting the results of the models and in section 7 we will perform some robustness 

checks. In section 8, we discuss our findings, including limitations regarding their interpretability, 

and compare them to the results in the robustness checks. In section 9, we summarize our findings 

and conclusions. 
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2. Literature Review 
In this section, we start by providing a brief overview of the EKC hypothesis. We then review the 

EKC literature that focuses on municipal data. That is then followed by literature connecting the 

EKC with income inequality. We also highlight a couple of studies that, regardless of whether the 

inequality dimension is included or not, have studied the phenomenon in Sweden and found results 

that may be instrumental for our analysis. 

 

2.1 The Environmental Kuznets Curve 

The EKC is a suggested relationship between environmental degradation and economic 

development. The name of this phenomenon relates to the original Kuznets curve, which suggests 

there to be an inverted U-shaped relationship between economic inequality and economic 

development, based on research findings by Kuznets (1955). In a similar fashion, the EKC is 

suggested to show an inverted U-shaped pattern for the relationship between environmental 

degradation and economic development. As economies industrialize, emissions and other 

environmental degradation indicators can be expected to worsen. However, when economies reach 

a certain point of development, these indicators can be expected to start improving, according to 

the EKC hypothesis, see Figure 1 for potential graphical interpretation. 

 

Figure 1: Graphical interpretation of a possible EKC (made by the authors) 

 

2.2 Theoretical Foundations 

There are several economic factors suggested to affect the relationship between economic 

development and the environment. Essential factors suggested by Panayotou (1993, p. 2) are “(a) 

the level of economic activity or size of the economy; (b) the sectoral structure of the economy; 

(c) the vintage of technology; (d) the demand for environmental amenities; and (e) the conservation 

and environmental expenditures and their effectiveness.” How these factors play out is expected 

Environmental 
degradation 

Income 
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to change as an economy develops. These changes are conducive to an EKC relationship. The 

intuition behind this is raised by Panayotou (1993). For instance, the eventual downward sloping 

part of the EKC could be understood as being caused by enhanced technology, more money spent 

on environmental protection, greater awareness for the environment, and environmental 

regulations being enforced. These changes are co-occurrent with a transition toward a more 

“information-intensive” industrial composition (Panayotou, 1993, p. 1). 

 

Related to (d), Shafik and Bandyopadhyay (1992) state that the environment functions both as an 

input in production as well as a consumption good; thus, income elasticity of demand and supply 

of environmental amenities will influence how resources are used as the economy develops. 

Panayotou (1993) reasons that demand for environmental amenities is elastic to income and that it 

is first at somewhat high incomes where a meaningful budget share is allocated to it. 

 

In a review of the EKC literature, Kaika and Zervas (2013) also raise some potential driving forces 

of an EKC-pattern. Like Panayotou (1993), they discuss the aspects of size and structure of 

economic activity, as well as technological aspects. Related to this is the scale effect of production on 

the environment, which refers to a situation where environmental degradation is a consequence of 

increased production and extraction of natural resources. The scale effect potentially causes the 

initial increase in environmental degradation. However, the scale effect is suggested to be followed 

by a composition effect and a technique effect that eventually cause a decrease in degradation. The 

composition effect refers to the effect that comes from a transition of the output of the economy 

where the economy transitions from consisting of industries that intensively use energy and 

material to service industries having less environmental impact. The technique effect comes, inter 

alia, from technological advancements enabling a more efficient ratio of input to output in 

industries.  

 

Another potential driving force covered by Kaika and Zervas (2013) is equity in distribution of 

income. Essentially, the idea is that an equitable income distribution puts the median person in 

society in a better position; consequently, the general awareness for the degradation of the 

environment increases and in turn environment-enhancing regulations are put into place. Just like 

mentioned by Kaika and Zervas (2013, p. 1394-1395), a central issue here is what implications 

economic development has on distribution of income, i.e. if economic development is followed by 

income equality or not.  
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2.3 Evolution of the EKC Literature 

The idea of an EKC—while not explicitly using that terminology—was introduced by Grossman 

and Krueger (1991) in a paper that sought to assess the future environmental impacts of the North 

American Free Trade Agreement. The authors explored concentration patterns of sulfur dioxide 

(SO2), dark matter (fine smoke), and suspended particulate matter (SPM) from a dataset 

encompassing the period 1977-1988 and several cities in different countries (the number of cities 

and countries varied depending on year and pollutant) regarding national income per capita. They 

used random effects models for the three pollutants and found evidence indicating that pollution 

tends to increase with income, until a certain turning point where pollution starts to decrease with 

income. 

 

Another early influential study related to the EKC hypothesis was conducted by Shafik and 

Bandyopadhyay (1992). To assess the nature of the relationship between environmental 

degradation and income, they tested ten measurements of environmental degradation using three 

different types of models. One model was linear, one was quadratic, and one was cubic. All three 

models were expressed so that both environmental degradation and income variables had 

logarithmic forms. The data used was from the period 1960-1990 and consisted of observations 

from up to 149 countries. However, the available years and countries varied between different 

environmental degradation measures. In the basic models, the independent income variable 

consisted of the logarithm of PPP-adjusted income per capita, as well as a time trend to capture 

technological advancements and a varying constant term for different countries or cities. The time 

trend was not used while testing deforestation rates and municipal waste. Moreover, dummies 

controlling for specific effects were used when running regressions for SPM and SO2, as well as 

for dissolved oxygen and fecal coliform in rivers. 

 

The measurements of environmental degradation in Shafik and Bandyopadhyay’s (1992) study that 

significantly followed an EKC-pattern were SPM and SO2; however, income had a significant 

impact on almost all measurements but not necessarily in a way that follows an EKC-pattern. 

Indicators that were concluded to only worsen with income were dissolved oxygen in rivers, 

generated municipal waste per capita and carbon dioxide (CO2) emissions. In the case of CO2, 

Shafik and Bandyopadhyay (1992) argued that costs that come with the emissions of CO2 are not 

internalized where these occur, but rather that they are somewhat evenly distributed globally; 

consequently, the issue of CO2 emissions portrays a free rider problem. The opposite, however, was 

the case for SPM and SO2 which generate external costs geographically close to where the 
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emissions occur but are, in relative terms, costly to abate. Presumably, this will be reflected in the 

social choices about dealing with environmental degradation. The net benefit of abatement 

(weighting costs with private and social benefits) will affect whether, and at which point, 

degradation will be dealt with. SPM and SO2 are generally dealt with in medium-income countries 

since at this stage of the economic development, as a result of industrialization and greater energy 

intensity, these pollutants are assumed to become increasingly troublesome. 

 

Panayotou (1993) conducted another one of the earlier empirical studies on the EKC. As indicators 

for environmental degradation, Panayotou used deforestation rates as well as per capita emissions 

of SO2, nitrogen oxides (NOX), and SPM in a sample of developed and developing countries. 

Income data from 1988, SPM data from 1987, and SO2 and NOX data from the late 1980s were 

collected. The dependent variables were in logarithmic form. This also applied to the independent 

variables—the natural logarithm of per capita income and the squared natural logarithm of per 

capita income. In the case of deforestation, the dependent variable was also expressed as a function 

of population density. An ordinary least squares-based approach was used to conduct the analysis 

and Panayotou found support for the EKC hypothesis for all the environmental degradation 

indicators that were used. 

 

The EKC hypothesis has received a significant amount of criticism over the years. Especially the 

earliest studies were subject to criticism for a lack of econometric sophistication. Stern (2004, p. 

1420) points out that few studies have considered some of “the statistical properties of the data 

used—such as serial dependence or stochastic trends in time series—and little consideration has 

been paid to issues of model adequacy such as the possibility of omitted variable bias.” Issues with 

the way that certain studies have utilized cointegration techniques have also been raised, for 

example by Wagner (2015). These points of criticism have been partially responsible for how 

research on the EKC hypothesis has developed over time. While the typical basic version of the 

EKC model is still predominantly used, Stern (2017) finds that alternative approaches such as non-

parametric approaches, decomposition analysis, and convergence analysis have increasingly been 

applied to the problem as well. The criticism brought forth by Stern (2004) has influenced other 

work, such as that by Narayan and Narayan (2010) which applied a panel cointegration approach 

to the EKC hypothesis in order to mitigate purported multicollinearity problems and found 

conflicting results with regard to EKC evidence. Carbon leakage, meaning that environmentally 

destructive production is moved to other jurisdictions (sometimes labeled pollution havens) by means 

of international trade, has also been suggested as a possibly significant cause of a reported EKC 
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shape by e.g. Steinkraus (2016). However, the empirical evidence in favor of such phenomena is 

still sparse and somewhat controversial (Franzen and Mader, 2018). 

 

2.4 EKC and Subnational Geographical Units 

The EKC hypothesis has been tested a number of times on diverse types of subnational regional 

units around the globe. Keene and Deller (2013) found evidence in favor of an EKC pattern for 

PM2.5 in U.S. counties. They also found that high degrees of social capital, ruralness, and education 

rates pulled down the EKC, while inequality and racial fragmentation pushed it upward. 

Furthermore, a wide array of studies has been made on municipal solid waste growth and PM2.5 

concentrations in prefecture-level cities and municipalities within an EKC framework, especially in 

China. See e.g. the work by Cheng et al. (2020) for the former case and Wang and Komonpipat 

(2020) for the latter. Both studies found evidence in favor of a modified EKC, with an N-shaped 

pattern rather than an inverted U-shaped one, as a cubic income variable was found to have a 

significant positive impact on environmental degradation. 

 

Among the previous studies done on a potential Swedish EKC is an article by Marbuah and 

Amuakwa-Mensah (2017), which examined Swedish municipalities, while also considering spatial 

dependence, for the years 2005 to 2013. The authors tested for the relationship that emissions of 

CO2, SO2, NOX, and carbon monoxide, along with particulate matter PM10 and PM2.5 and total 

suspended particulates, might have with real income per capita. They also tested for spatial effects, 

seeking to capture any spillover that might exist between different municipalities. Such spillover 

effects were hypothesized to arise from assumptions such as that neighboring municipalities might, 

for instance, have similar economic activities, similar meteorological conditions, and co-operation 

surrounding environmental issues. The results of the article indicate that there is evidence for an 

EKC in Swedish municipalities for all the tested environmental indicators, apart from carbon 

monoxide which was not significantly displaying an EKC pattern. They also found significant 

spatial dependence for all emission types, suggesting that there are spillover effects. 

 

2.5 Income Inequality Within the EKC Context 

One early step towards establishing a link between allocation of power, income distribution and 

environmental degradation was made by Torras and Boyce (1998), who hypothesized that as the 

distribution of power equalizes among a population, the quality of air and water should improve 

in the geographical area that is inhabited by that population, holding all else equal. The authors 

arrive at this hypothesis through a set of assumptions. Perhaps the chief assumption is that income 
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is associated with the benefit gained from activities that generate pollution, meaning that high-

income people enjoy a greater benefit from it. This is because higher-income people tend to own 

more assets and consume more, so they achieve higher surplus on both the producer and consumer 

side of transactions, including those causing pollution. Since they also assume that power inequality 

is a function of economic inequality, this will lead to less pressure on governments in highly unequal 

jurisdictions to adopt stringent environmental regulations than in ones that are more economically 

equal. 

 

Using OLS, Torras and Boyce (1998) tested five different pollution variables, as well as water 

potability and sanitation rates, in two different regression models. The independent variables in 

both models included GDP per capita and geographical characteristics. In one of the models, 

literacy rates, political rights, Gini coefficients, dummy variables for low- and high-income 

countries (with 5,000 USD GDP per capita, PPP-adjusted), and interaction terms were added as 

independent variables. The results from the regressions appear to support the EKC hypothesis for 

several indicators. Upon comparing the results of both models, they found that the effects that 

income has on pollution become, in general, less statistically significant when inequality variables 

are introduced into the model. The significance of the effects that the different inequality measures 

had on the different pollution variables varied. The authors of the paper interpreted their results 

as largely backing their hypothesis. 

 
Magnani (2000) approached the EKC by investigating the role of inequality for policy decisions 

regarding the environment within rich countries. More precisely Magnani looked at public 

expenditures for research and development related to the protection of the environment. First, 

Magnani discussed the expression of abatement of pollution as a function of some measure of 

economic well-being. The change of abatement happens with respect to the demand for 

environmental quality which in turn change with respect to income per capita. With respect to 

income per capita, the change of abatement is greater than zero, based on the environmental 

literature according to Magnani (2000). This can be understood by increased demand for 

environmental quality when per capita income rises. Second, Magnani discussed a relative-income effect 

upon which the degree of environmental protection depends. The relative-income effect is 

understood by inequality of income. If the inequality is large, the median voter will have lower 

income, relatively speaking, and will be more inclined to spend money on consumptive private 

goods rather than contributing to public expenditures for the environmental quality; hence, the 

relative income effect explains the willingness to pay for environmental policies. 
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Magnani’s (2000) empirical examination was completed using data from OECD countries in the 

period 1980-1991. The dependent variable used was the logarithm of public research and 

development expenditures for environmental protection. Independent variables were GDP per 

capita (PPP-adjusted) (a linear and a quadratic term), one of two indicators of income 

equality/inequality, i.e., either a ratio between the percentage of income of the first and the fourth 

quintile of the population or a Gini coefficient, and for some regressions also a time trend. An 

interaction term was also added. The regressions supported the hypothesis that inequality affects 

public choices made about the environment. One conclusion drawn is that the latter part of the 

EKC-pattern is displayed in rich countries given that economic growth does not cause substantial 

incremental inequality.  

 

One study looking at the relationship between emissions and income in Sweden, while considering 

income distribution, was conducted by Brännlund and Ghalwash (2008). In their micro approach, 

they looked at consumption on a household level. They modeled an equation where a household’s 

emissions are a function of a basket of goods that the household consumes. In turn, each good is 

a function of price and household income. If household income changes, the content of the basket 

of goods changes and consequently the household emissions change since some goods cause more 

emissions than others. From the equation on individual household emissions, an equation for 

average household emissions was derived. Data on household consumption, income, and 

characteristics came from surveys in 1984, 1988 and 1996. The authors concatenated emissions 

data from Statistics Sweden to derive the share and intensity of emissions from different non-

durable goods in terms of CO2, SO2 and NOX. Conclusions drawn from the regressions were that, 

in the area around the observed data, household emissions increased with income. However, the 

pace of the incremental emissions seemed to slow down with income. Given this concluded shape 

of the emissions-income relationship, holding everything else equal, a hypothetical redistribution 

of income from a high-income to a low-income household would increase emissions. 

 
Jorgenson et al. (2017) studied whether CO2 emissions at the state level in the United States 

depended on economic inequality within the states. The authors mention three ways that the 

literature has suggested how inequality possibly could influence emissions. First, they discuss the 

view that the wealthy benefit more from pollution-generating activities due to ownership of 

companies (a similar argument to the one presented by Torras and Boyce, 1998) and due to it being 

relatively easier to protect themselves from the negative consequences that comes with pollution. 

Second, they discuss an aspect reminiscent of e.g. the study by Brännlund and Ghalwash (2008), 

namely the aspect of how the “propensity to emit”, through consumption, could change with 
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income. Third, Jorgenson et al. discuss the possibility that competition in consumption may 

increase in unequal societies. This is partly caused by Veblen effects, i.e., that inequality leads to 

status consumption, which in turn leads to higher levels of emissions. Two different inequality 

metrics, namely the Gini coefficient and the income share of the top ten percent of earners, were 

used. The results of the study while controlling for, inter alia, GDP per capita, implicated that a 

higher income share of the highest earners was related to more emissions. The Gini coefficient on 

the other hand did not seem to have a significant impact. 

 

A recent study, conducted by Ridzuan (2019), empirically tested the effect that the Gini coefficient 

has on emissions of SO2 within the EKC context. Ridzuan examined 174 countries, using data 

from 1991 up to and including 2010 on GDP and SO2, both per capita, and found evidence in 

favor of an EKC. An interaction term, defined as the product of GDP per capita and the Gini 

coefficient, was also introduced. This variable had a positive coefficient, indicating that increased 

economic inequality contributes to a higher (in terms of income) EKC turning point. Therefore, 

higher levels of economic inequality were inferred to yield higher levels of SO2 emissions at any 

given level of income. 

3. Research Contribution 
Many studies have aimed at testing the EKC using different methods, data sets and indicators of 

environmental degradation. Some has also investigated the relevance of inequality to EKC- 

relationship (see e.g. Torras and Boyce, 1998; Magnani, 2000; Jorgenson et al., 2017). The 

environmental degradation-income relationship and the EKC have also been looked at in a Swedish 

context. Marbuah and Amuakwa-Mensah (2017), while considering spatial dependence, found 

evidence in favor of a Swedish EKC for several emissions using municipal data. We look at similar 

types of emissions using equivalent income data, yet, we look at a more recent time period and 

instead of investigating spatial dependence we weigh in potential effects of inequality. Furthermore, 

Brännlund and Ghalwash (2008) looked at the degradation-income relationship while considering 

income allocation. This study focused on households, whereas our area of focus are municipality-

wide emissions and income.  

 

Using updated data, we aim to see whether a Swedish EKC exists on a municipal level. We also 

aim at building upon the literature that has examined the role that income inequality plays in the 

EKC context, such as the works by Torras and Boyce (1998), Magnani (2000), and Jorgenson et al. 

(2017). Thereby, this thesis will aim at answering the following questions: 
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3.1 Research Questions 
1) Is there a discernible EKC-type relationship between income and environmental 

degradation in Swedish municipalities? 

2) If so, does inequality in the distribution of income affect the nature of that 

relationship? 

 

3.2 Limitation of Scope 

It is important to note that we do not heavily consider much of the criticism that has been put 

forth by e.g. Stern (2004; 2017) and Wagner (2015). Rather than focusing on novelty of the 

econometric approach to the EKC hypothesis, we use an approach that is consistent with the 

general modus operandi of the field, but apply it to a more nuanced, and richer, EKC relationship. 

In doing so, we hope to yield results that are easily interpretable through an already existing lens. 

Another limitation is that the only inequality that we consider concerns that of income. Potentially 

other types of inequality, such as political inequality, could be impactful in the EKC context. Torras 

and Boyce (1998) suggested that power inequality is a function of not only income inequality and 

per capita income, but also non-income determinants of power such as political rights and civil 

liberties. However, this paper only investigates the aspect of economic inequality. With that said, it 

is possible that different types of inequalities have different effects on the EKC, which may be 

warranted to also conduct research on. However, in a Swedish context, literacy and political 

enfranchisement are effectively universal, making it difficult to meaningfully apply such metrics to 

a Swedish context in the 21st century. Furthermore, we will not seek to analyze any other potential 

forms of the EKC, such as the cubic (N-shaped) form, that certain others have found evidence 

for. 

4. Method 

4.1 Methodological Approach 

In order to test whether the municipal EKC exists and whether income inequality plays a key role 

in its dynamics, we will apply a panel data-based regression analysis using fixed effects (FE) models. 

The FE approach enables us to regress our dependent variables against our independent variables, 

while controlling for potential individual factors of the municipalities that are constant over time, 

i.e. the municipal effects. Potentially, we believe such factors could be where the municipality is 

located, whether there are natural resources in the area or whether a municipality is urbanized. 

While using this approach it is essential that there is some variation of the independent variables 

over time, i.e. for the use of the FE approach to make sense in our case we must assume that 
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income and the Gini coefficients will vary within our ten-year period. As part of a robustness check, 

we will evaluate whether a random effects (RE) approach would have been more suitable than a 

FE approach by using correlated random effects (CRE). 

 

4.2 Specification of Models 

Table 1: Descriptions of non-logarithmic variables 

 Variable description Unit 

GHG Greenhouse gases (CO2 equivalents) Tons per capita 

CO2 Carbon dioxide Tons per capita 

SO2 Sulfur dioxide Tons per capita 

NOX Nitrous oxides Tons per capita 

PM10 Particulate matter (<10 µm) Tons per capita 

Inc Real mean income of persons aged 20+, 2008 prices SEK, thousands 

Gini Gini coefficient Continuous, 0-1 

Table 1: Descriptions of non-logarithmic dependent and independent variables.  
 

We begin by testing whether there is an EKC for our five environmental degradation metrics. See 

appendix B for short explanations of the five types of emissions that we test for, including some 

of their main sources and impacts on health and on the environment. We include income and 

income squared as independent variables in our fixed-effects regressions.  

 

Based on an overview of the EKC made by Stern (2017), the typical way of specifying the 

regression model of the EKC in the literature is to model the natural logarithm of the dependent 

variable, i.e. the natural logarithm of some environmental quality indicator or per capita emissions, 

against the natural logarithm of GDP per capita and the squared natural logarithm of GDP per 

capita—including country effects, time effects, and an error term. The consequence of including 

the country effects is that the income elasticity of emissions is identical across countries at a certain 

income. In our case, “country effects” should rather be described as “municipal effects.” 

Furthermore, when logarithms are used, estimations of the dependent variable will be greater than 

0 and is in most cases a relevant trait. The direct reading of elasticities motivated the logarithmic 

transformation made by Panayotou (1993). Following these examples, we transform the variables 

to natural logarithms.  

 

Model 1: Basic EKC model 

𝑙 𝑛(𝐷𝐸𝐺!") = 𝛽#𝑙𝑛(𝐼𝑛𝑐!") + 𝛽$(𝑙𝑛(𝐼𝑛𝑐!"))$ + 𝛿#𝐷$%%& +⋯+ 𝛿&𝐷$%#' + 𝑎! + 𝑢!"  
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where 𝐷𝐸𝐺!" signifies the tons per capita emissions of GHGs, CO2, SO2, NOX, and PM10, 

respectively, for municipality 𝑖 in year 𝑡. 𝐼𝑛𝑐!" is the real mean income; 𝐷#$$% +⋯+ 𝐷#$&' are 

time intercept dummies for all years in the period, except for 2008; 𝑎! are the individual municipal 

effects that are constant over time for each municipality; and 𝑢!" is the error term. The fixed effects 

approach deals with how the values of the variables deviate across the years within each 

municipality 𝑖 from the mean of each variable therein and how those variations may or may not 

explain variations in the dependent variable. 

 

Five models will be tested: one for each of the five environmental degradation measures. In 

accordance with the EKC hypothesis, we expect that 𝛽& > 0 and 𝛽# < 0. This would satisfy the 

criteria for an EKC. We will then calculate the turning point of the EKC, i.e. at which mean income 

level environmentally detrimental emissions are expected to begin to decrease. This turning point 

will only be calculated if we for any emissions find statistically significant parameter estimates that 

are consistent with the EKC hypothesis. 

 

EKC turning point 

= exp[−𝛽#/(2𝛽$)] 

 

We then continue by extending our basic EKC model to include the natural logarithm of the Gini 

coefficient. This is done to test whether the level of income inequality affects the environmental 

degradation-income relationship, regardless of whether it e.g. stems from equality putting the 

median agent in society in a better position (see e.g. Kaika and Zervas, 2013), increasing the 

willingness to pay for environmental protection (see e.g. Magnani, 2000) or inequality causing 

increased status consumption (see e.g. Jorgenson et al., 2017). We also create an interaction term 

of Gini and the natural logarithm of income. This variable allows the EKC turning point to move 

to the left or to the right, depending on the degree of income inequality in a municipality, meaning 

that we no longer need to worry about the implicit assumption that the EKC is identical across all 

municipalities (Ridzuan, 2019). Since we are only concerned with how income inequality affects a 

potential EKC, we will test model 2 for dependent variables producing parameter estimates of an 

EKC in model 1. 
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Model 2: Extended EKC model with Gini coefficient included 

ln	(𝐷𝐸𝐺!") = 𝛽#𝑙𝑛(𝐼𝑛𝑐!") + 𝛽$(𝑙𝑛(𝐼𝑛𝑐!"))$ + 𝛽(𝑙𝑛(𝐺𝑖𝑛𝑖!") + 𝛽)𝐺𝑖𝑛𝑖!" × 𝑙𝑛(𝐼𝑛𝑐!") + 𝛿#𝐷$%%& +⋯

+ 𝛿&𝐷$%#' + 𝑎! + 𝑢!"  

 

Our hypotheses for the parameter estimates remain the same for this model as for the one before 

it, insofar that the variables are included in both. We also hypothesize that 𝛽( > 0, which we base 

on, inter alia, what was theorized by Torras and Boyce (1998), meaning that higher income inequality 

is associated with higher per capita emissions. Moreover, our hypothesis is also that 𝛽) > 0, 

meaning that income inequality corresponds with EKC turning points that occur at relatively higher 

levels of income. The hypothesis for the latter is largely based on the results retrieved by Ridzuan 

(2019). 

5. Data 
To test our models and hypotheses, we have collected data for all 290 Swedish municipalities, 

covering a ten-year period (2008-2017). All data has been accessed from Statistics Sweden. The 

data has then been compiled into a panel format of 2,900 individual observations. Since we have 

observations for all 290 municipalities and all ten years, the panel is initially perfectly balanced. The 

time span applied in this study is mandated by the years for which this specific type of emissions 

data is available and comparable across the years. 

 
A strength with using municipal data, as we see it, is that we can be confident that the data is 

consistent regarding definitions and methods of collection. When using cross sections of different 

countries, differences in such matters may lead to difficulty when comparing the data. In our case, 

it can safely be assumed that data on population, income, and emissions have been collected in the 

same way in all 290 municipalities. A downside, however, is that some municipalities may have 

economies that are dominated by a single, large firm that has located a factory there. In such cases, 

the effects of the actions of one single factory may produce results, and possibly patterns, that on 

the surface appear to be endemic to the municipality but in fact could as well be due to the, perhaps 

capricious, actions of a single firm. 

 
5.1 Dependent Variables 

As dependent variables, we use annual air emissions of greenhouse gases (GHGs) in carbon dioxide 

(CO2) equivalents, CO2, sulfur dioxide (SO2), nitrous oxides (NOX), and particle matter with a 

diameter of less than 10 µm (PM10). These variables are largely the same as the ones tested by 

Marbuah and Amuakwa-Mensah (2017), apart from that we have elected to omit particulate matter 
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with a diameter less than 2.5 µm (PM2.5), total suspended particles, and carbon monoxide from 

our analysis and added GHGs to it. We also use a different time frame, 2018-2017 rather than 

2005-2013. The GHGs used are CO2, nitrous oxide (N2O), methane (CH4), hydrofluorocarbons 

(HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF6). Each gas has been converted into 

CO2 equivalents using a Greenhouse Warming Potential factor (Statistics Sweden, 2019c). The 

emissions data is based on a residential principle, i.e. “emissions arising from activities of Swedish 

companies and households (resident units), are accounted for regardless of where these emissions 

actually occur.” (Statistics Sweden, 2019b) Furthermore, national emissions are distributed between 

different subnational geographical units using different distribution keys (for further details, see 

Statistics Sweden, 2019c).  

 

All emissions data in this thesis have been converted to tons per capita measurements. These per 

capita measurements are based on population data for each municipality as of November 1 each 

year. Descriptive statistics of these five per capita variables are found in table 2. As previously 

mentioned, we are using the natural logarithm of each of these emissions metrics. There were 17 

instances where zero tons of SO2 was observed to be emitted in a municipality in a year. Since it is 

not possible to logarithmically transform zeroes, we thus have 17 missing values in our dataset. 

Descriptive statistics of the logarithmic emissions variables are found in table 3. 

 

5.2 Independent Variables 

The first independent variable that we use is mean earned income. Income data has been retrieved 

from Statistics Sweden (2020d) and concerns the mean income of all citizens aged 20 years or 

above in each municipality, each calendar year. This is the same income variable as the one used 

by Marbuah and Amuakwa-Mensah (2017). Earned income in this context should be interpreted 

as “taxable income from employment, business income, pensions, sickness benefit and other 

taxable transfers.” (Statistics Sweden, 2020d) We converted the income data from nominal income 

to real income in 2008 SEK (expressed in thousands SEK). The conversion was based on consumer 

price index (CPI) data retrieved from Statistics Sweden (2020a) for which the CPI was indexed so 

that 1980=100. The natural logarithm of mean income is used. This variable is also used in its 

squared form. Note that the logarithmic transformation of the income variable occurs before the 

squaring of it does.  

 

We also include the natural logarithm of the Gini coefficient in each municipality for each year. 

The Gini coefficient is a measure of the inequality of an income distribution within a given 
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population. It ranges from 0 to 1 where 0 means perfect equality and 1 means perfect inequality. 

The Gini coefficient is derived from the Lorenz curve, which is a curve that plots the cumulative 

income share against the cumulative population share, and the line of equality, meaning the Lorenz 

curve that would have existed if every person in the population had the same income. The Gini is 

the quotient given by the area between the Lorenz curve and the line of equality divided by the 

area under the line of equality (see Figure 2 for illustration).  

 

Figure 2: Line of equality and the Lorenz curve  

 
Figure 2: The line equality and the Lorenz curve for the municipality Upplands Väsby in 2008. Graph made by the 
authors in Excel using income data accessed from Statistics Sweden (2020d).  
 

To generate a Gini coefficient for a given municipality in a given year we have used data from 

Statistics Sweden on the total sum of earned nominal income and the number of people in different 

income classes for residents aged 20 years or above. The first income class has an earned income 

of zero, the following income classes each have a width of 20,000 SEK up to an earned income of 

400,000 SEK. Beyond 400,000 SEK the income classes have a span of 100,000 SEK up until an 

earned income of 600,000 SEK where the spans are 200,000 SEK. Finally, there is an income class 

that includes all those with an earned income of more than 1,000,000 SEK. One implication of this 

is that the accuracy is not as high for incomes of 400,000 SEK or more, since people with widely 

different levels of income are assigned to the same income class. For income classes with 

observations of fewer than four people, the data has been anonymized by Statistics Sweden. This 

means that the exact number of people and total sum of income in that specific income class is not 

known to us, which we elected to solve by replacing that unknown number with a zero. We believe 
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there is a risk that this might cause an underestimation of the Gini coefficients since the missing 

values generally occur in the two very upper income classes. However, as this only occurs in the 

cases of fewer than 4 observations, we expect this potential underestimation to be rather limited. 

 

With this data, the first step to generate the Gini for any municipality in any year was to calculate 

the share of the population and the share of total income that corresponded to respective income 

class. The second step was to calculate the cumulative income – increasing as one moves to higher 

income classes. Thirdly, the integral of the Lorenz curve was derived step-by-step by taking the 

average of two adjacent points of cumulative income along the curve and multiplying their average 

with the population share of the associated income class. One can imagine a continuous curve, 

with cumulative income share on the Y-axis and cumulative population share on the X-axis, which 

is divided up into bar charts where the area of each bar in the bar chart is calculated separately. As 

described in the previous paragraph, with the integral of the Lorenz curve we derived the Gini 

coefficient. These calculations were repeated for all 2,900 observations. 

 

5.3 Descriptive Statistics 

Table 2: Descriptive statistics of non-logarithmic variables 

Variable Mean SD Min Max N 

GHG 7.372796 10.93427 1.07932 207.7515 2900 
CO2 5.618703 10.86873 .9774972 207.3935 2900 
SO2 .0038316 .0102928 0 .1672698 2900 
NOX .0225141 .0260283 .0033603 .4939016 2900 
PM10 .0067776 .0055729 .0012626 .0818186 2900 
Inc 247.72 34.92618 183.5919 510.6758 2900 
Gini .3306008 .0326549 .2621668 .5179158 2900 

Table 2: Descriptive statistics of non-logarithmic dependent and independent variables. Means in table 2 are 
means for which each observation for respective municipality and year have been equally weighted. Observations 
are from the 290 Swedish municipalities in the years 2008-2017. Original data retrieved from Statistics Sweden 
(2019b; 2020d). Emissions metrics have been transformed to per capita measures by the authors based on 
population data, also retrieved from Statistics Sweden (2019d). Real mean income (2008 prices) has been 
calculated by the authors based on consumer price index data from Statistics Sweden (2020a). The Gini 
coefficients have been calculated by the authors, using mean income data from Statistics Sweden (2020d). 
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Table 3: Descriptive statistics of logarithmic variables 

Variable Mean SD Min Max N 

ln GHG 1.748803 .577437 .0763311 5.336343 2900 
ln CO2 1.403915 .6015381 -.0227598 5.334618 2900 
ln SO2 -6.901542 1.443133 -10.65827 -1.788147 2883 

ln NOX -4.045947 .6294384 -5.695714 -.7054189 2900 
ln PM10 -5.181368 .5856488 -6.674582 -2.503251 2900 
ln Inc 5.503719 .1268816 5.212715 6.235735 2900 

(ln Inc)2 30.30702 1.420196 27.1724 38.88439 2900 
ln Gini -1.11131 .0926547 -1.338775 -.6579426 2900 

Table 3: Descriptive statistics of logarithmic dependent and independent variables. Means in table 3 are means 
for which each observation for respective municipality and year have been equally weighted. Observations are 
from the 290 Swedish municipalities in the years 2008-2017. 17 observations of the natural logarithm of sulfur 
dioxide have been categorized as missing values, due to the impossibility of taking the natural logarithm of zero. 

 

5.4 Model and Data Validity Concerns 

A concern central to the FE approach is to ascertain that there is enough within variation in the 

independent variables. If there is no variation across the years within each municipality, an FE 

model will not be able to produce parameter estimates for the concerned independent variable. 

This is due to FE models looking at deviations from the mean of, in our case, the municipalities. 

Therefore, we have assessed the within variations of each variable using two methods. First, we 

generated a series of two-way scatter plots. (see figures A2 and A3 in appendix A) Second, we 

generated tables showing the standard deviations for each variable within the municipalities (see 

table A1 in appendix A). We found that the Gini coefficient, although exhibiting within variation, 

did so at a small rate. Nonetheless, we do include the Gini coefficients in model 2, but the 

estimations should be viewed with some caution. 

 

To see whether there was any heteroskedasticity present in our data we plotted the prediction of 

the error component against the linear prediction given from models 1 and 2 (see figures A4 and 

A5 in appendix A). Based on the graphical analysis we could not rule out eventual 

heteroskedasticity.  

 

Following Drukker (2003), serial correlation leads to standard errors that are biased in models 

based on panel data and consequently the results are not as efficient. Any potential serial correlation 

was examined by conducting a series of Wooldridge tests. As the Wooldridge test uses residuals 

from first-differenced regression (Drukker, 2003), we did not include year dummies while running 
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the tests. The null hypothesis of no first-order autocorrelation was rejected (p<0.01) for both 

models and all degradation indicators. Following the reasoning of Drukker (2003), in the presence 

of serial correlation consistent estimates of the standard error is generated through clustering at a 

panel level. 

 

Marbuah and Amuakwa-Mensah (2017) found in their study that there existed spatial dependence 

in the case of Swedish municipalities. Since we also perform our analysis on municipal data, we 

therefore found reason to suspect potential cross-sectional dependence in our case. For instance, 

since the municipalities all exist inside Sweden, they are subject to a considerable extent to shared 

factors such as similar environmental regulations or economic shocks. Thus, a Pesaran CD test 

was conducted for both models and the test results indicated that there for GHGs, CO2, and PM10 

might be issues with cross-sectional dependence but not for NOX. However, as mentioned by De 

Hoyos and Sarafidis (2006), a failure to reject that there is no cross-sectional dependence of the 

errors can come from that the test sums positive and negative correlations. Thus, in the case of 

NOX we decided also to look at the average absolute value of the correlations which was 0.428 for 

model 1 and 0.429 for model 2. For SO2 we were not able to run the test. Therefore, we could not 

rule out the possibility of cross-sectional dependence. 

 

According to Hoechle (2007, p.281), while using panel data biased statistical inference can be 

caused from wrongly overlooking potential correlation between errors of different individuals and 

over time. De Hoyos and Sarafidis (2006, p. 482) highlight, based on literature on panel data, that 

models using panel data are “likely to exhibit substantial cross-sectional dependence in the errors”. 

This could, inter alia, come from common shocks and unobserved components, or spatial 

dependence. Hoechle (2007, p.282) also argues that for many instances it might not be appropriate 

to assume that there is no cross-sectional dependence of the errors. However, any unobserved 

shared factors, given that they do not correlate with the independent variables, will not make the 

estimates inconsistent for models such as an FE model. Yet, various techniques for estimating 

robust standard errors will cause biased standard errors. Thus, Hoechle (2007, p.282) highlights 

the Driscoll-Kraay standard errors that are consistent in case of heteroskedasticity and 

autocorrelation, but also robust in the case of general forms of dependence—spatial or temporal. 

It should be kept in mind, though, that this is the case when the time dimension becomes large 

(Hoechle, 2007).  
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Given the probable presence of heteroskedasticity, serial correlation and cross-sectional 

dependence, the regressions will be done using various standard errors taking these issues into 

account. All FE regressions will be completed with clustered (Rogers) standard errors, clustered at 

the municipality level. This is done in order to mitigate the effects of heteroskedasticity and serial 

correlation. In order to make a comparison and take potential cross-sectional dependence into 

account, Driscoll-Kraay standard errors will be used in addition to the Rogers standard errors. As 

touched upon previously, we have a panel with a relatively large N compared to T; thus, we need 

to be cautious when interpreting results from any regression that employs Driscoll-Kraay standard 

errors. Therefore, we have elected to also use clustered standard errors in order to see whether the 

results differ drastically. 

6. Results 
We start by testing the EKC hypothesis in its most basic form, where our five dependent 

environmental degradation variables are regressed against the income variables. Results are 

reported in table 4 and table 5.  

 

Table 4: Model 1 results, Rogers SEs (Municipality and time FE, dummies omitted) 

Variables ln GHG ln CO2 ln SO2 ln NOX ln PM10 
      

ln Inc 8.160** 3.588 -1.286 -4.306 -1.827 
 (3.819) (4.021) (18.90) (7.152) (4.706) 

(ln Inc)2 -0.710** -0.305 0.324 0.425 0.144 
 (0.351) (0.369) (1.692) (0.647) (0.430) 

Constant -21.50** -8.947 -9.326 6.963 0.573 
 (10.46) (11.03) (52.99) (19.81) (12.93) 
      

Observations 2,900 2,900 2,883 2,900 2,900 
R-squared 0.477 0.492 0.146 0.425 0.290 

No. of 
municipalities 290 290 290 290 290 

S.E. Rogers Rogers Rogers Rogers Rogers 
Table 4: Regression output for model 1 and all degradation indicators. Parameter estimates reported for the 
independent variables. Rogers standard errors in parentheses. ** p<0.05. R-squared refers to within R2.  
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Table 5: Model 1 results, Driscoll-Kraay SEs (Municipality and time FE, dummies omitted) 

Variables ln GHG ln CO2 ln SO2 ln NOX ln PM10 
      

ln Inc 8.160** 3.588 -1.286 -4.306 -1.827 
 (2.521) (2.557) (7.302) (2.921) (1.666) 

(ln Inc)2 -0.710*** -0.305 0.324 0.425 0.144 
 (0.215) (0.214) (0.651) (0.250) (0.152) 

Constant -21.50** -8.947 -9.326 6.963 0.573 
 (7.353) (7.603) (20.52) (8.521) (4.649) 
      

Observations 2,900 2,900 2,883 2,900 2,900 
No. of groups 290 290 290 290 290 

S.E. Driscoll-Kraay Driscoll-Kraay Driscoll-Kraay Driscoll-Kraay Driscoll-Kraay 
Table 5: Regression output for model 1 and all degradation indicators. Parameter estimates reported for the 
independent variables. Driscoll-Kraay standard errors in parentheses. *** p<0.01, ** p<0.05. 

In tables 4 and 5 we can see the, in the most basic form of the EKC, the signs on the parameter 

estimates are only statistically significant at the 5% level in the case of GHGs. This is the case 

regardless of whether Rogers or Driscoll-Kraay standard errors are employed. Furthermore, the 

parameter estimates for GHGs are consistent with the EKC hypothesis. For the remainder of the 

emissions metrics, we do not see any statistical significance for neither the parameter estimates of 

the income variables nor the intercept estimates. We do see that the year dummies in general have 

a statistically significant impact on the models. See tables A2 and A3 in appendix A for more 

detailed information about the output of the GHG models, including more exact p-values. F tests 

were performed to determine whether the inclusion of year dummies was the correct course of 

action, and they yielded affirmative results. However, these are omitted in tables 4 and 5. 

 

These results enable us to calculate an EKC turning point at circa 312,000 SEK1 (2008 prices) for 

GHGs. In other words, a generic Swedish municipality would in the presence of an EKC be 

expected to decrease its emissions of GHGs once the mean real income in said municipality reaches 

312,000 SEK in 2008 prices. Since the parameter estimates for the remaining four emissions 

variables are statistically insignificant, we elect not to calculate any more EKC turning points. 

 

We continue by testing our second model, which includes the natural logarithm of the Gini 

coefficient as well as an interaction term that is defined as the product of the Gini coefficient and 

the natural logarithm of real mean income. Just like for the basic EKC model, year dummies are 

included in this extended model. F-tests have been conducted for this model as well, which have 

shown that we can reject the null hypothesis that the parameter estimates for the year dummies are 

 
1 This number is based on the parameter estimates in table A2. Using the parameter estimates in tables 4 and 5 
produces another number due to rounding error. 
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mutually equal to 0. Only the GHG model is tested, since this was the only environmental 

degradation indicator that showed an EKC pattern in model 1 and we are only interested in how 

economic inequality affects the EKC, not how economic inequality affects emissions in general. 

 

Table 6: Model 2 results (Municipalities and time fixed effects (dummies omitted in table)) 

Variables ln GHG ln GHG 
   

ln Inc 6.738* 6.738*** 
 (4.015) (1.682) 

(ln Inc)2 -0.531 -0.531*** 
 (0.376) (0.132) 

ln Gini 3.013* 3.013*** 
 (1.586) (0.913) 

Gini * (ln Inc) -1.669* -1.669** 
 (0.917) (0.557) 

Constant -12.71 -12.71*** 
 (11.76) (3.637) 
   

Observations 2,900 2,900 
R-squared 0.480  

No. of municipalities 290  

S.E. Rogers D-K 
Number of groups  290 

Table 6: Regression output for model 2 and GHGs. 
Parameter estimates reported for the independent 
variables. Robust standard errors in parentheses— 
Rogers standard errors in the left column and 
Driscoll-Kraay standard errors in the right column. 
*** p<0.01, ** p<0.05, * p<0.1. R-squared refers to 
within R2. 

In the case of GHGs we still see significant parameter estimates in favor of an EKC shape, i.e. the 

signs of the parameter estimates for the income terms are consistent with the EKC hypothesis. 

Yet, it is only when Driscoll-Kraay standard errors are used that the regression exhibits significance 

(p<0.05) for all the independent variables of interest.  The logarithmic Gini has a positive parameter 

estimate, implying that economic inequality is associated with increased emissions. Meanwhile, the 

parameter estimate for the interaction term is negative, implying that the EKC turning point occurs 

earlier when the Gini coefficient is considered. 

7. Robustness Checks 

7.1 Multicollinearity 
To evaluate any potential multicollinearity, we generated a correlation matrix (see table A4 in 

appendix A). The correlation between the Gini coefficient and income, in some but not all cases, 
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was higher than the correlation of these independent variables with the dependent variables. This 

appeared to be the case for, inter alia, GHGs. We are not concerned about the apparently high 

correlation between the two income terms, as that is a consequence of the model specification. 

Nor are we concerned about the correlation that the interaction term has with the income and Gini 

variables, for the same reason. Additionally, the variance inflation factors (VIF) were checked. This 

was based on OLS regressions on GHGs against the linear term of logarithmic income and the 

logarithmic Gini coefficient, with year and municipal dummies included. The VIFs were high for 

the two independent variables (~228 for income and ~53 for Gini).  

 

7.2 Evaluation of Applying a FE Approach 

To assess whether a FE approach is suitable in comparison to a RE approach, we decided to follow 

a correlated random effects (CRE) approach explained by Wooldridge (2018). First, we generated 

time averages of our independent variables (𝑙𝑛(𝐼𝑛𝑐!"), (𝑙𝑛(𝐼𝑛𝑐!"))#,	𝑙𝑛(𝐺𝑖𝑛𝑖!") and 𝐺𝑖𝑛𝑖!" ×

𝑙𝑛(𝐼𝑛𝑐!")) for each municipality, 𝑖. Second, we regressed our two models once more, but using 

random effects while also including the generated means of the variables for each municipality. 

The regressions were completed using clustered standard errors to take any potential 

heteroskedasticity and serial correlation into account. CRE for model 2: 

 

ln(𝐷𝐸𝐺!") = 𝛽#𝑙𝑛(𝐼𝑛𝑐!") + 𝛽$(ln(𝐼𝑛𝑐!"))$ + 𝛽(𝑙𝑛(𝐺𝑖𝑛𝑖!") + 𝛽)𝐺𝑖𝑛𝑖!" × 𝑙𝑛(𝐼𝑛𝑐!") + 𝛾# 𝑙𝑛(𝐼𝑛𝑐)??????????!

+ 𝛾$(ln(𝐼𝑛𝑐))$?????????????
! + 𝛾( 𝑙𝑛(𝐺𝚤𝑛𝚤)???????????! + 𝛾)𝐺𝚤𝑛𝚤 × 𝑙𝑛(𝐼𝑛𝑐)???????????????????! + 𝛿#𝐷$%%& +⋯+ 𝛿&𝐷$%#' + 𝑎!

+ 𝑢!"  

 

Third, we conducted a test for whether the parameter estimates of these means were mutually equal 

to zero. A rejection of the null hypothesis that they are mutually equal to zero should be interpreted 

as RE not being sufficient. Test for model 2: 

 

𝐻%: 𝛾# = 𝛾$ = 𝛾( = 𝛾) = 0 

 

For all indicators in both models we rejected the null hypothesis of the parameter estimates for the 

means being equal to zero. Thus, we concluded that the FE approach was suitable.  

 

7.3 County EKC 

For further robustness, we have tested an alternative hypothesis to a municipal EKC, namely a 

county (Swedish: län) EKC. This is in order to see whether our findings hold at a larger, but still 
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subnational, scale and whether the county level would have been a better fit with the EKC 

hypothesis. Several recent studies on the EKC have been conducted either on cross-sections of 

countries or at a subnational level in countries that are larger than Sweden, e.g. the United States 

and China. Since a substantial portion of Swedish municipalities have very low levels of emissions 

for certain gases and particles, it is possible that commercial and political leaders, as well as the 

citizenry of those municipalities, do not pay attention to the small-scale environmental degradation 

that the emissions cause. On a county level, however, each unit in the cross-section has a 

considerable amount of emissions. There are 21 counties in Sweden, meaning that the average 

county houses circa 13.8 municipalities. Additionally, in larger subnational units the levels of certain 

types of emissions per capita might not be as heavily influenced by the occurrence of single entities 

generating large amounts of emissions. For instance, the per capita emissions for a sparsely 

populated municipality could potentially be high if one large factory is located within that 

municipality. It is possible that in the aggregate, we can see patterns that are not visible at a small 

scale. 

 

The county data covers the same time period (2008-2017) as the municipal data. The county data 

we used have been retrieved from Statistics Sweden. The emissions data on the counties is based 

on the sum of emissions from all available industrial classifications, i.e. A01-F43 producer of goods, 

G45-T98 producer of services, unallocated, government and non-profit institutions serving 

households (NPISH), and private consumption. To calculate the per capita emissions, we used the 

equivalent county population data to the data used for the municipalities. Just like for the 

municipalities, the income data was based on mean earned income for which we converted so that 

it was expressed in real terms in 2008 SEK (thousands). Similarly, the Gini coefficients for the 

counties were calculated using the same method and the equivalent data as for the municipalities. 

The same tests for heteroskedasticity, serial correlation, and cross-sectional dependence as earlier 

have been conducted. These have indicated that heteroskedasticity and serial correlation are 

present, but not cross-sectional dependence. Therefore, we have elected to report the results using 

clustered/Rogers standard errors. The number of observations is 210 and there are no missing 

observations. Furthermore, following the same procedure as for the municipality regressions, it 

appeared like multicollinearity was present in the county models. 
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Table 7: Descriptive statistics of variables used in county regressions 

Variable Mean SD Min Max N 
GHG 8.86844 9.588189 3.884482 50.8764 210 
CO2 7.295639 8.812378 2.692153 45.45771 210 
SO2 .0064164 .0084415 .0004174 .051101 210 
NOX .0277587 .0279345 .0107531 .1723119 210 
PM10 .0065441 .0033368 .0027084 .01954 210 
Inc 249.2923 19.72845 212.8 330.9314 210 
Gini .3304448 .0237627 .2904957 .3953163 210 

ln GHG 1.939006 .5678471 1.35699 3.929399 210 
ln CO2 1.683008 .6350379 .9903413 3.816782 210 
ln SO2 -5.635355 1.067506 -7.78157 -2.973951 210 
ln NOX -3.81706 .5785462 -4.532557 -1.758449 210 
ln PM10 -5.122617 .4063875 -5.911397 -3.935292 210 
ln Inc 5.515671 .0761133 5.360353 5.801911 210 
ln Gini -1.109776 .0695523 -1.236167 -.9280691 210 

Table 7: Descriptive statistics of dependent and independent variables on county level. Observations are from 
the 21 Swedish counties in the years 2008-2017. Original data retrieved from Statistics Sweden (2019a; 2020d). 
Emissions metrics have been transformed to per capita measures by the authors based on population data, also 
retrieved from Statistics Sweden (2019d). Real mean income (2008 prices) has been calculated by the authors 
based on consumer price index data from Statistics Sweden (2020a). The Gini coefficients have been calculated by 
the authors, using mean income data from Statistics Sweden (2020d). 

 

Table 8: Model 1 using county data (County and time fixed effects (year dummies omitted)) 

Variables ln GHG ln CO2 ln SO2 ln NOX ln PM10 
      

ln Inc 12.10 6.154 -21.21 -13.42 -15.67** 
 (18.76) (21.44) (70.21) (25.41) (7.350) 

(ln Inc)2 -0.823 -0.340 2.596 1.375 1.338* 
 (1.645) (1.898) (6.188) (2.156) (0.655) 

Constant -39.45 -21.63 33.12 28.68 40.68* 
 (53.73) (60.89) (200.2) (74.96) (22.07) 
      

Obs. 210 210 210 210 210 
R-sq. 0.695 0.674 0.458 0.668 0.734 

No. of counties 21 21 21 21 21 

Table 8: Regression output for model 1 and all degradation indicators on county level. Parameter estimates 
reported for the independent variables. Rogers standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. R-
squared refers to within R2. 

 

When testing model 1, the signs of the parameter estimates for all five degradation indicators are 

consistent with the results from the regression on the municipalities, with the exception of the 

intercept for SO2 (for comparison: see table 4). Thus, GHGs and CO2 exhibit an EKC shape, yet 

without any statistical significance. Thus, we cannot conclude an EKC pattern at the county level. 

However, the overall F-statistics for all indicators (including year dummies) are significant. Also, 

we find that PM10 appears to have slightly statistically significant parameter estimates (at the 10% 
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level) that would be consistent with an inverted EKC, meaning a U-shaped relationship between 

environmental degradation and income. 

 

Table 9: Model 2 using county data (County and time fixed effects (year dummies omitted)) 

Variables ln GHG ln CO2 
   

ln Inc 13.12 6.844 
 (20.60) (23.15) 

(ln Inc)2 -1.038 -0.587 
 (1.927) (2.193) 

ln Gini -1.651 -4.251 
 (9.103) (10.67) 

Gini * (ln Inc) 0.182 1.459 
 (5.408) (6.316) 

Constant -40.77 -25.41 
 (54.81) (62.76) 
   

Obs. 210 210 
R-sq. 0.698 0.678 

Number of counties 21 21 
Table 9: Regression output for model 2 on county level for GHGs and CO2. 
Parameter estimates reported for the independent variables. Rogers standard errors 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. R-squared refers to within R2. 
 

As the inequality variables are added the EKC pattern, in terms of parameter estimate signs, prevails 

for GHGs and CO2. For these indicators, the sign of the parameter estimates for the logarithmic 

Gini coefficient is negative while the interaction term is positive (in direct contrast to the 

municipality regressions). However, no significance is depicted for the inequality variables 

individually. Meanwhile, the overall F-test for the model (including year dummies) is significant for 

both indicators.  

8. Discussion 

8.1 Regression Results 

The only indicators that, in our original regressions, to some extent depicted a municipal Swedish 

EKC was GHGs and CO2. In the basic form the EKC pattern showed significance, i.e. the income 

variables individually were significant (p<0.05), for GHGs using both clustered standard errors 

and Driscoll-Kraay standard errors. Regarding CO2, it showed an EKC pattern, yet with no 

significance for the income parameter estimates individually.  
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As the model was extended with income inequality variables, the EKC prevailed for GHGs but 

stayed significant only when Driscoll-Kraay standard errors were employed. When it comes to any 

potential impact of income inequality on the EKC-type relationship at a municipal level, it appears 

from our original regressions on GHGs that higher income inequality would increase the 

degradation level at which a potential turning point occurs. This interpretation is based on the 

positive parameter estimate for the Gini coefficient. Meanwhile, as the interaction term has a 

negative parameter estimate, higher income inequality, ceteris paribus, would generate an “earlier” 

turning point in terms of real mean earned income. However, as the Driscoll-Kraay standard errors 

are not optimal for the dimensions of our panel data set with a small time dimension, we are careful 

with drawing any determined conclusions here of whether these findings hold. 

 

Upon comparing the results from our municipal models with those from our county models, we 

can see that, in the cases of GHGs and CO2, the parameter estimates for the income variables are 

quite similar, at least in terms of their respective signs. However, we obtain no significant results 

when we look at the counties. An interesting finding is that PM10 appears to have a slightly 

statistically significant (p<0.10) inverse EKC at the county level. 

 

A potential problem with using the Gini coefficient for county EKCs is that county governments 

do not have an explicit responsibility for environmental issues, which municipal governments do, 

apart from within the domains of sustainable health care and local transportation (Swedish 

Association of Local Authorities and Regions, 2019). The Gini coefficient is supposed to capture 

not only income inequality, but also the political inequality that could arise from income inequality. 

If that assumption holds true, then the effects of that inequality on a certain issue could reasonably 

be suspected to manifest themselves to a greater extent at those administrative levels where the 

influence on that issue is the greatest. A limitation with the county data is that it only encompasses 

210 observations, which is a substantially smaller number than the 2,900 (2,883 for SO2) 

observations in the municipal data. Another potential issue could be that the aggregation of 

municipalities into counties diminishes some of the variation that exists between municipalities. 

These aspects should all be considered when interpreting these results. Also, there may exist 

multicollinearity issues that affect the significance of the parameter estimates. We have found 

evidence suggesting the Gini coefficient to be somewhat correlated to mean earned income. 

 

A somewhat surprising aspect of the results was that we did not find any evidence in favor of an 

EKC for SO2 or PM10. Among the dependent variables tested, these two are the ones that 
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primarily have a negative impact on the immediate surroundings of where they are emitted. GHGs, 

CO2, and NOX are connected to climate change, whereas SO2 and PM10 have more local effects. 

This difference in their impacts has implications for how the social costs are internalized. It could 

therefore be expected that people act more vigilantly on a local scale to reduce emissions of SO2 

and PM10, and that government intervention is needed more for the three other pollutants. The 

fact that this is not clearly visible in the regression results we therefore find rather surprising.  

 

8.2 Limitations 

A concern regarding the validity and reliability of model 2 is the presence of suspected 

multicollinearity. Our results indicate that we may need ignore potential multicollinearity, to some 

extent, in order to be able to interpret and draw conclusions from model 2. The presence of 

imperfect multicollinearity causes variance inflation of estimates making the interpretation of the 

significance for individual variables difficult. We suspect this to be the case since, as model 1 was 

extended to model 2 and clustered standard errors were employed, the significance for the 

individual parameter estimates dropped. Potential remedies could e.g. be to add more observations 

or to drop independent variables. When it comes to adding more observations, we were limited to 

the period for which we were able to obtain consistent emissions data, i.e. 2008-2017. Furthermore, 

we did not consider dropping variables as a viable option as we would not be able to determine the 

effect of income inequality on a potential EKC pattern. Instead, we could perhaps have used some 

other measure of income inequality (for other types of income inequality measures used see e.g. 

Magnani, 2000; Jorgenson et al. 2017); however, we do not know for certain that this would have 

been a remedy for the multicollinearity. 

 

Furthermore, as discussed in section 5.4, we have potential issues with heteroskedasticity, 

autocorrelation and in some cases also cross-sectional dependence. This damages the confidence 

we have in drawing any determined conclusions on whether an EKC is present or not, and if 

income inequality has an impact on that relationship. Another weakness is the short period of time 

that data was available for. We know that emissions of GHGs have decreased since, at least, the 

early 1990s in Sweden. However, methods of collecting emissions data have changed over time, 

which would have made it too difficult to compare the statistics across years. In the future, once 

the emissions database that we have gathered our data from has been filled with more observations, 

researchers may be able to draw better conclusions from any potential patterns that can be 

discerned. 
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We look at aggregate air emissions, meaning that we only consider the sum of emissions from all 

sources. A downside with this is that we are unable to see exactly where in society the trends occur. 

If we had specifically looked at industrial manufacturing or household consumption, we could 

possibly have seen different patterns. The upside however is that this approach enables us to see 

larger-scale patterns. The same logic applies for the positive and negative aspects of using GHGs 

as an independent variable. Including it in our analysis allows us to see an aggregate EKC pattern, 

which is relevant in order to make society-wide conclusions. However, the variable includes several 

different types of emissions with different Global Warming Potential factors. Since we have 

determined that we are unable to produce a statistically significant EKC for CO2, the EKC pattern 

that we did find for GHGs might in part come from other pollutants, the identities of which remain 

unclear. Future studies may want to look solely at different types of GHGs, in order to determine 

which ones exhibit EKC characteristics, and which ones do not. 

 

Further limitations include the lack of investigation in terms of other potential shapes of the 

relationship between environmental degradation and income. Even though this eventuality was not 

within the scope of this thesis, it is important to highlight that the relationship might portray other 

shapes. Or perhaps, that there is no simple predictable relationship between environmental 

degradation and income.  

 

Additionally, we originally considered including multiple indicators of inequality, like e.g. those 

suggested by e.g. Torras and Boyce (1998) while investigating the effects of inequality on the 

environmental degradation-income relationship and the EKC. However, we decided to solely 

include one commonly used type of inequality indicator, namely some measure of distribution of 

income. Based on Torras and Boyce’s use of literacy rate (as one of the parameters for capturing 

power inequalities) we considered including a parameter capturing the share of the population with 

any post-secondary school education. Yet, it appeared like we had high levels of multicollinearity 

(partly due to our choice of income variable) and the implications of e.g. a low or a high share of 

people with post-secondary education on equality were not as clear-cut in comparison to e.g. 

literacy rate. Hence, we decided to go with a narrower approach for regressing any effects of 

equality on the environmental degradation-income relationship and the EKC. 

 

Another control variable that we had planned to include was population density. This variable 

would have been used as a proxy for urbanization, which is commonly used as a control variable 

in the EKC literature. However, the population density did not change much across the years, 
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which would not have made it an appropriate addition to the models due to our fixed effects 

approach to answering the research questions; however, it would in random effects approach. 

9. Conclusion 
This thesis has, using a fixed effects approach, tested the environmental Kuznets curve hypothesis 

through a lens of economic inequality. This has been done on a dataset consisting of observations 

from the 290 municipalities of Sweden over a ten-year period (2008-2017). Per capita emissions of 

greenhouse gases, carbon dioxide, sulfur dioxide, nitrous oxides, and particulate matter have been 

used as dependent variables. Mean income and the Gini coefficient have been used as independent 

variables. The main contribution to the literature is that we have tested a hypothesis that has been 

tested before a great number of times, with mixed results, on a new dataset. The nuance that comes 

with adding economic inequality enriches the story that can be told about how environmental 

degradation develops as a function of economic development. 

 

With the methods used, we find to some extent evidence in favor of a Swedish municipal EKC 

existing for GHGs. The turning point is estimated to be at around 312,000 SEK in 2008 prices. 

We also find evidence suggesting that a higher Gini coefficient in a municipality is associated with 

higher levels of emissions of GHGs. However, by using an interaction term, defined as the product 

of the Gini coefficient and the natural logarithm of mean income, we also find evidence indicating 

that a higher Gini coefficient shifts the EKC turning point to a lower level of income. When 

including income inequality, however, statistical significance varies with the standard errors 

employed. Furthermore, the short time span of data makes the use of Driscoll-Kraay standard 

errors slightly problematic, inhibiting our ability to draw decisive conclusions from the results of 

our second model. For the remaining four indicators of environmental degradation, we do not find 

any evidence in favor of the Swedish municipal EKC. Another interesting finding comes from the 

robustness checks, where we find evidence with 10% significance in favor of an inverted EKC for 

PM10 at the county level, indicating a U-shaped relationship between economic development and 

environmental degradation for that specific indicator. 
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11. Appendices 
Appendix A – Supplementary Figures and Tables 

Figure A1: Logarithmic GHG against Logarithmic mean income for four municipalities 

 
Notes: Logarithmic GHGs per capita on the Y-axis against logarithmic real earned mean income on the X-axis for 
four different municipalities that potentially depicts a pattern reminding of an inverted U-shaped within the period 
2008-2017. 
 

Figure A2: Logarithmic mean income by municipality 

 
Notes: Logarithmic real mean income (2008 prices) for the 290 Swedish municipalities in the years 2008-2017, 
sorted by municipality, each of which has been assigned a number between 1 and 290. 
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Figure A3: Logarithmic Gini by municipality 

 
Notes: Logarithmic Gini coefficients for the 290 Swedish municipalities in the years 2008-2017, sorted by 
municipality, each of which has been assigned a number between 1 and 290. 
 

Table A1: Detailed descriptive statistics 
Variable         |      Mean   Std. Dev.       Min        Max |    Observations 
-----------------+--------------------------------------------+---------------- 
mun_no   overall |     145.5   83.72973          1        290 |     N =    2900 
         between |                83.86          1        290 |     n =     290 
         within  |                    0      145.5      145.5 |     T =      10 
                 |                                            | 
year     overall |    2012.5   2.872777       2008       2017 |     N =    2900 
         between |                    0     2012.5     2012.5 |     n =     290 
         within  |             2.872777       2008       2017 |     T =      10 
                 |                                            | 
ln_ghg~p overall |  1.748803    .577437   .0763311   5.336343 |     N =    2900 
         between |             .5660649   .4236397   4.971154 |     n =     290 
         within  |             .1183167   1.145451   2.904429 |     T =      10 
                 |                                            | 
ln_co2~p overall |  1.403915   .6015381  -.0227598   5.334618 |     N =    2900 
         between |             .5860647   .3237252   4.969384 |     n =     290 
         within  |             .1394365   .7700859   2.624364 |     T =      10 
                 |                                            | 
ln_so2~p overall | -6.901542   1.443133  -10.65827  -1.788147 |     N =    2883 
         between |             1.411003  -10.41831  -2.881269 |     n =     290 
         within  |             .3588226  -9.878359  -4.616795 | T-bar = 9.94138 
                 |                                            | 
ln_nox~p overall | -4.045947   .6294384  -5.695714  -.7054189 |     N =    2900 
         between |             .6124157  -5.487401  -1.822188 |     n =     290 
         within  |             .1493454  -5.026944  -2.878321 |     T =      10 
                 |                                            | 
ln_pm1~p overall | -5.181368   .5856488  -6.674582  -2.503251 |     N =    2900 
         between |             .5755682  -6.541531  -3.011862 |     n =     290 
         within  |             .1128462  -5.982809  -4.177341 |     T =      10 
                 |                                            | 
ln_mea~c overall |  5.503719   .1268816   5.212715   6.235735 |     N =    2900 
         between |             .1170136   5.270995   6.166811 |     n =     290 
         within  |             .0494902    5.39955   5.619946 |     T =      10 
                 |                                            | 
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Table A1: continued 
ln_mea~2 overall |  30.30702   1.420196    27.1724   38.88439 |     N =    2900 
         between |             1.312876   27.78578   38.03166 |     n =     290 
         within  |             .5465014   29.15819   31.62654 |     T =      10 
                 |                                            | 
ln_gini  overall |  -1.11131   .0926547  -1.338775  -.6579426 |     N =    2900 
         between |             .0901543  -1.273257  -.6694163 |     n =     290 
         within  |             .0219619  -1.210092  -1.027475 |     T =      10 
                 |                                            | 
edu_sh~e overall |    .19836   .0641832   .1037768   .4978873 |     N =    2900 
         between |             .0629876   .1205221   .4864317 |     n =     290 
         within  |             .0128202   .1636299    .234759 |     T =      10 
                 |                                            | 
ln_edu~e overall | -1.662119   .2888412  -2.265513  -.6973814 |     N =    2900 
         between |             .2811417  -2.119386  -.7209289 |     n =     290 
         within  |             .0680732  -1.835966  -1.508592 |     T =      10 
                 |                                            | 
ln_pop~s overall |  3.349938   1.671152  -1.609438   8.646307 |     N =    2900 
         between |             1.673503  -1.609438   8.484869 |     n =     290 
         within  |             .0288255   2.985019   3.511376 |     T =      10 

Notes: This table shows the means, standard deviations, minimum values, and maximum values overall, between 
groups, and within groups. The variables that descriptive statistics are reported for are the municipal numbers (of 
which the authors have assigned a unique one to each municipality) and the years in the period (2008-2017); the 
natural logarithm of the five emissions metrics used in the thesis (GHGs, CO2, SO2, NOX, and PM10); the 
independent variables used in this thesis (the natural logarithm of mean real income (2008 prices) and its square, as 
well as the municipal Gini coefficients); and lastly, the share of the population that has any post-secondary school 
education, as well as the natural logarithm of the same, plus the natural logarithm of population density.  
 
Figure A4: Error component against linear prediction (model 1) 

 
Notes: Error component against the linear prediction of model 1 for all degradation indicators separately. 
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Figure A5: Error component against linear prediction (model 2) 

 
Notes: Error component against the linear prediction of model 2 for all degradation indicators separately. 
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Table A2: Regression output of model 1 for GHGs (clustered standard errors) 
. xtreg ln_ghg_pcap ln_mean_inc ln_mean_inc2 i.year, fe cluster(mun_no) 
  
Fixed-effects (within) regression               Number of obs     =      2,900 
Group variable: mun_no                          Number of groups  =        290 
  
R-sq:                                           Obs per group: 
     within  = 0.4772                                         min =         10 
     between = 0.0493                                         avg =       10.0 
     overall = 0.0036                                         max =         10 
  
                                                F(11,289)         =      65.60 
corr(u_i, Xb)  = -0.0912                        Prob > F          =     0.0000 
  
                               (Std. Err. adjusted for 290 clusters in mun_no) 
------------------------------------------------------------------------------ 
             |               Robust 
 ln_ghg_pcap |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 ln_mean_inc |   8.159569   3.819432     2.14   0.033     .6421373      15.677 
ln_mean_inc2 |  -.7104114   .3506181    -2.03   0.044      -1.4005   -.0203225 
             | 
        year | 
       2009  |  -.0490522   .0075929    -6.46   0.000    -.0639965   -.0341078 
       2010  |  -.0100217   .0075171    -1.33   0.184    -.0248169    .0047734 
       2011  |  -.0490773   .0085257    -5.76   0.000    -.0658576   -.0322969 
       2012  |  -.1180025    .011786   -10.01   0.000    -.1411998   -.0948053 
       2013  |  -.1591029   .0175844    -9.05   0.000    -.1937127   -.1244932 
       2014  |  -.1920484   .0236366    -8.13   0.000    -.2385701   -.1455267 
       2015  |  -.2194257   .0323752    -6.78   0.000    -.2831467   -.1557046 
       2016  |  -.2582573   .0389164    -6.64   0.000    -.3348528   -.1816618 
       2017  |  -.2701012    .043587    -6.20   0.000    -.3558894    -.184313 
             | 
       _cons |  -21.49621   10.46384    -2.05   0.041     -42.0912   -.9012178 
-------------+---------------------------------------------------------------- 
     sigma_u |  .57329018 
     sigma_e |  .09035251 
         rho |  .97576316   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 

Notes: Detailed description of regression output for fixed effects model where the natural logarithm of yearly 
Swedish municipal per capita GHG emissions is regressed on the natural logarithm of municipal mean real income 
(2008 prices), the square of the same, and year dummy variables.  
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Table A3: Regression output of model 2 for GHGs (clustered standard errors) 
. xtreg ln_ghg_pcap ln_mean_inc ln_mean_inc2 ln_gini interact i.year, fe 
cluster(mun_no) 
  
Fixed-effects (within) regression               Number of obs     =      2,900 
Group variable: mun_no                          Number of groups  =        290 
  
R-sq:                                           Obs per group: 
     within  = 0.4796                                         min =         10 
     between = 0.0040                                         avg =       10.0 
     overall = 0.0236                                         max =         10 
  
                                                F(13,289)         =      63.94 
corr(u_i, Xb)  = -0.0122                        Prob > F          =     0.0000 
  
                               (Std. Err. adjusted for 290 clusters in mun_no) 
------------------------------------------------------------------------------ 
             |               Robust 
 ln_ghg_pcap |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 ln_mean_inc |   6.737815   4.015071     1.68   0.094    -1.164674     14.6403 
ln_mean_inc2 |    -.53113   .3760632    -1.41   0.159      -1.2713    .2090399 
     ln_gini |   3.012834   1.585547     1.90   0.058    -.1078495    6.133518 
    interact |  -1.668854   .9171469    -1.82   0.070    -3.473989      .13628 
             | 
        year | 
       2009  |  -.0512815   .0080503    -6.37   0.000    -.0671262   -.0354369 
       2010  |   -.014122   .0104925    -1.35   0.179    -.0347735    .0065295 
       2011  |  -.0536165   .0123764    -4.33   0.000    -.0779758   -.0292571 
       2012  |  -.1232807   .0180539    -6.83   0.000    -.1588145    -.087747 
       2013  |   -.164351   .0251138    -6.54   0.000    -.2137802   -.1149219 
       2014  |  -.1973475   .0339849    -5.81   0.000    -.2642368   -.1304582 
       2015  |  -.2253973   .0429067    -5.25   0.000    -.3098465   -.1409482 
       2016  |  -.2652879   .0500314    -5.30   0.000    -.3637601   -.1668157 
       2017  |  -.2779346   .0536639    -5.18   0.000    -.3835561    -.172313 
             | 
       _cons |  -12.71203    11.7596    -1.08   0.281    -35.85734    10.43329 
-------------+---------------------------------------------------------------- 
     sigma_u |  .56507733 
     sigma_e |   .0901805 
         rho |  .97516369   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 

Notes: Detailed description of regression output for fixed effects model where the natural logarithm of yearly 
Swedish municipal per capita GHG emissions is regressed on the natural logarithm of municipal mean real income 
(2008 prices), the square of the same, the natural logarithm of the municipal Gini coefficient, an interaction term 
between the natural logarithm of municipal mean real income (2008 prices) and the Gini coefficient (non-
logarithmic), and year dummy variables. 
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Table A4: Correlation matrix 

 ln 
GHG ln CO2 ln SO2 ln NOX 

ln 
PM10 ln Inc (ln 

Inc)2 ln Gini interact ln edu 
share 

ln GHG 1.0000          
ln CO2 0.9334 1.0000         
ln SO2 0.5456 0.6340 1.0000        
ln NOX 0.7360 0.7091 0.7515 1.0000       
ln PM10 0.6464 0.5485 0.5159 0.7653 1.0000      

ln Inc -0.3832 -0.2603 -0.1096 -0.3274 -0.5115 1.0000     
(ln Inc)2 -0.3852 -0.2621 -0.1118 -0.3290 -0.5113 0.9998 1.0000    
ln Gini -0.3284 -0.2319 -0.0573 -0.2820 -0.5558 0.4612 0.4670 1.0000   
interact -0.3742 -0.2600 -0.0744 -0.3182 -0.5867 0.6349 0.6414 0.9724 1.0000  
ln edu 
share -0.3345 -0.2254 -0.0395 -0.2843 -0.5449 0.7514 0.7492 0.6525 0.7320 1.0000 

Notes: Correlation matrix for all dependent and independent variables used in this thesis, plus the natural logarithm of the 
rate of higher education attainment. Observations = 2,883. 
 

Appendix B – Environmental degradation indicators 

Greenhouse gases, GHG, and Carbon dioxide, CO2 
According to the Swedish EPA (2019a), CO2 emissions are the single main cause of climate change. 

Other examples of emitted greenhouse gases, besides CO2, are methane and chlorofluorocarbons. 

Human-induced GHG emissions contribute to an augmented greenhouse effect, consequently 

contributing to a rising temperature (Swedish EPA, 2020). 

 
Sulfur dioxide, SO2 
Sulfur dioxide, SO2, is a gas emitted through combustion of fossil fuels as well as other substances 

containing sulfur. Sulfuric acid is created as the gas oxidizes in the atmosphere. Sulfuric acid, in 

turn, contributes to acidification of soil and water. Inhalation of sulfur dioxide can also cause 

respiratory problems (Swedish EPA, 2019c). Based on data from the Swedish EPA (2019g), a major 

source of sulfur dioxide emissions in Sweden, contributing to 13.12 out of the total 17.31 thousand 

tons emitted in 2018, is industrial combustion and processes.  

 

Nitrous oxides, NOX 

Nitrous oxides, NOX, are mostly emitted through combustion. Nitrous oxides contribute to 

acidification of soil and water, and ground-level ozone which in turn contribute to the greenhouse 

effect. Nitrous oxides are also harmful seen from a perspective of human health (Swedish EPA, 

2019b; Swedish EPA, 2019e). The largest sources of nitrous oxides in Sweden are, in falling order 

based on data for 2018, domestic transportation, industrial combustion and processes, as well as 

machines used in e.g. forestry and agriculture (Swedish EPA, 2019f).  
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Particles, PM2.5 and PM10 
Sources of human-induced emissions of particles are e.g. combustion and industrial process as well 

as from the use of studded tires. The mass of particles with a diameter of less than 10 micrometer 

are measured by PM10. The negative effects of emission of particles relate to health issues—short 

and long term. Heart diseases and lung cancer are diseases that can, in the longer run, be caused 

by exposure to particles (Swedish EPA, 2019d). 

 


