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1. Introduction

One of the more puzzling asset pricing anomalies is the seemingly catastrophic performance
of firms with high probability of default. The basic assumptions for asset pricing models and
investment decisions derives from the concept that bearing higher idiosyncratic risk should
deliver higher expected returns, while in the case of financial distress risk evidence has been
presented that suggests this fundamental principle is violated. When sorting firms on distress
risk, researchers have found that high probability of default forecast low returns (Dichev,
1998; Campbell et al., 2008; Garlappi et al. 2008; Gao et al., 2018). Since these firms tend to
move together, this makes diversification difficult, which seems to imply that investors pay a
premium for bearing financial distress risk. This has been coined the financial distress
anomaly. Given the counter-intuitive nature of this relationship, these findings have attracted
considerable interest from both academia and market practitioners. However, there seems to
be no consensus in the applicable literature regarding the correct interpretation of the
anomaly or even of its existence. For example, it has been proposed that lower than expected
returns on distressed stocks in the U.S. during the 1980s may explain the anomaly (Chava
and Purnandam, 2010).

Our paper contributes to this debate by examining if the results hold when considering a more
recent sample and taking into account the Fama-French five-factor (2015) asset pricing
model. While this model has remained largely untested by researchers when examining this
anomaly, we believe that this extended model may provide additional explanatory power and
shed some light on the reasons for poor performance of highly distressed stocks. Intuitively it
makes sense to include the additional factors RMW and CMA, that are based on operating
profitability and investment, as high performing firms with robust profitability and
conservative levels of investment will likely have a lower risk of default, and vice versa.

We conduct an empirical analysis on a dataset of stocks listed on the major US stock
exchanges (NYSE, AMEX and NASDAQ) between January 1990 and December 2019. We
calculate a market-based proxy for financial distress risk following Vassalou and Xing
(2004), the so-called distance-to-default measure. Each month we sort stocks into ten decile
portfolios based on their probability of default. Following this, we make use of a long-short
strategy of the safest and most distressed portfolios to characterize the financial distress risk
anomaly. In doing this, we follow an approach similar to Campbell et al. (2008) and Gao et
al. (2018). We risk-adjust our portfolio returns using the Fama-French three-factor model
(1993), the Fama-French-Carhart four-factor that includes a momentum factor proposed by
Carhart (1997), as well as the Fama-French five-factor model.

We find that our long-short strategy yields significant alphas for all included regression
models when constructed on a one-month holding period. We obtain a CAPM alpha of
25.5%, Fama-French three-factor alpha of 26.9%, a Fama-French-Carhart four-factor alpha of
19.7% and finally a Fama-French five-factor alpha of 20.8%, all significant at p<0.01.
Accordingly, we fail to find a risk-based explanation and our results thus indicate the
presence of the financial distress risk anomaly within our sample. However, we do obtain



significant negative factor loadings on RMW and CMA, which suggests that operating
profitability and level of investment play an important role in determining the performance of
distressed stocks. Thus, as a general rule, the magnitude of the alphas decreases when
adjusting for the additional factors present in the Fama-French five factor model.
Furthermore, we find evidence that the distress risk anomaly is more prevalent among smaller
stocks and for shorter holding periods, while the relationship disappears when looking at a
holding period of twelve months.

When risk-adjusting the portfolio returns we magnify the financial distress risk anomaly. The
portfolio containing stocks with the highest financial distress risk delivers a significant
negative annual average excess return of -13.2% and significant negative alphas in the range
of -13.2% to -17.0%, while the portfolio containing stocks with the lowest financial distress
risk delivers a significant positive annual average excess return of 5.4% and significant
positive alphas in the range of 6.6% to 8.6% . Overall, we find that the average excess return
over the market for the decile portfolios decline monotonically with increasing distress risk.
This is similar to the findings of Griffin and Lemon (2002) and Campbell et al. (2008).

The remainder of the paper is organized as follows: In part two, we present the closest
literature related to our topic and discuss the existing findings. We also consider the various
measures available to proxy financial distress risk and explain how our research differs from
other papers and our contribution to the literature. In part three, we discuss our data sources,
our variable construction and our statistical analysis. In part four, we present the results of
the empirical analysis performed. In part five, we conclude and discuss the implication of our
findings, which includes a critical review of the limitations of our study and brief suggestions
for directions on further research regarding this topic.

2. Literature review

Several studies have examined the returns of financially distressed stocks. Contrary to
intuition, distressed equities are typically found to have extremely poor returns, a finding
inconsistent with risk-based theory (Dichev, 1998 and Avramov et al., 2009). Furthermore,
standard risk adjustments only seem to strengthen the effect (Griffin and Lemmon, 2002).
This asset pricing irregularity has become known as the financial distress risk anomaly.

The literature is currently divided on the very existence of the anomaly as well as its correct
interpretation. Vassalou and Xing (2004) find that distressed stocks are positively priced in
the US stock market, while Campbell et al. (2008) form risk-sorted portfolios and argue that
the returns of financially distressed stocks are in fact too low to be explained within a rational
framework. Gao et al. (2018) also form risk-sorted decile portfolios but use a global dataset
of 38 countries, finding the presence of a financial distress risk anomaly in developed
markets in North America and Europe. This provide evidence against it being a US specific
phenomenon. In contrast, Chava and Purnandam (2010) argue a positive relation between
expected returns and distress risk, making the case that lower than expected returns on



distressed stocks in the US in the 1980s explain the anomaly. That is, the anomaly may be an
in-sample phenomenon that is unlikely to continue in the future.

Financial distress measures commonly used in research can be grouped into two separate
categories; (1) accounting based measures such as Altman’s (1968) Z-score and Ohlson’s
(1980) O-score and (2) market data based Distance-to-Default measure derived from the
Black and Scholes (1973) and Merton (1974) option pricing models. Building upon Merton’s
model, Vassalou and Xing (2004) developed their own version of the Distance-to-Default as
an alternative measure to predict bankruptcies. Gao et al. (2018) make use of Moody’s
proprietary KMV expected default frequencies, a market-based measure that is essentially a
fine-tuning of the Distance-to-Default measure.

Fama and French (1996) make the case that their three-factor model can be used to explain
some asset pricing anomalies relating to distressed stocks. The model has become the
standard benchmark when examining the existence of the financial distress risk anomaly by
many in the field, yet with limited explanatory power (Campbell et al., 2008 and Gao et al.,
2018). This follows even with the addition of the momentum factor developed by Carhart
(1997).

In this paper, our hope is to make progress on determining the existence of the financial
distress risk anomaly by following a similar methodology as Campbell et al. (2008) and Gao
et al. (2018). We follow the common approach of benchmarking against the Fama-French
(1993) three-factor model and Fama-French-Carhart (1997) four-factor model but
differentiate by also including the more recent Fama-French (2015) five-factor model.
Largely untested in the financial distress risk anomaly literature, this newer model may offer
some additional insights and help explain the poor stock returns. Additionally, we test the
anomaly in a new setting, as we limit ourselves to the most recent thirty-year US sample in
order to explore Chava and Purnandam’s (2010) possible explanation for the observed stock
returns. A common critique in the literature towards accounting based measures for
estimating default risk is that accounting information is updated infrequently (Hillegeist et al.,
2004). In addition, accounting models do not take into account the volatility of a firm’s asset,
which imply that firms with similar financial ratios will have similar likelihood of default
(Vassalou and Xing, 2004). Therefore, we opt for a market-based measure. Due to restricted
access to Moody’s model, we choose to follow Vassalou and Xing’s (2004) methodology and
calculate the probability of default ourselves.

3. Data, variable construction and methodology
3.1 Raw data

We collect data on stock returns in the US from the monthly stock files of the Center for
Research in Security Prices (CRSP). We limit our sample to the period January 1990 to
December 2019. Corresponding accounting, financial and classification data is obtained from



Standard & Poor’s Compustat North America — Daily. The variables are selected in order to
be able to calculate value-weighted portfolio returns and Distance-to-Default (DD). Our
initial sample contains approximately 4,000,000 monthly observations on stock returns and
2,200,000 monthly observations on accounting data. We also collect monthly data for the
Fama-French three-factor model, five-factor model and the momentum factor from Kenneth
R. French’s Data Library.

Given that leverage plays an important role in the Merton Model (1974), which is the basis
for our calculation of the Distance-to-Default measure, we exclude all financial stocks. This
is done by excluding all stocks with a Standard Industry Classification (SIC) Code between
6000-6999. Additionally, for the company each individual stock pertains to, we require that
there is available data to calculate DD, or else the observation is omitted from the sample.
This puts a lot of stress on data availability and leads to a limitation of our sample.

Following Gao et al. (2018), we apply a number of filters and conditions to minimize the
influence of noise in our estimations. First, we limit our dataset to common stocks, those that
are the primary securities of their respective company and those traded on the main US stock
exchanges: New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and
NASDARQ. Second, we require a stock to have at least 12 monthly returns in our sample
period to be included. Third, in order to minimize the effects of bid-ask bounce we drop a
particular stock-month observation if the month-end closing stock price is less than $5. We
also drop all micro stocks, defined as stocks having a market cap below the 5™ percentile for
that month.

Our final sample consist of 7,436 unique stocks and 782,316 stock-month observations. Table
| provides a summary of the number of stocks by year. To get a better overview of how large
our sample is we calculated the total market cap of the sample as a share of the total market
cap of firms listed on the NYSE, AMEX and NASDAQ. A noticeable fact is the increase in
the importance of our sample, based on market cap, over time. This is illustrated in Figure 1.

3.2 Measuring default risk

We follow Vassalou and Xing’s (2004) market-based procedure to estimate the twelve-month
distance-to-default measure, using Merton’s (1974) model. In this model the equity of a firm
is viewed as a call option on the firm’s asset. The strike price of the call option is the book
value of the firm’s liabilities. Within this model, when the value of the firm’s assets is less
than the strike price, the value of equity is zero and the firm is assumed to default on its debt
obligations.

The market value of equity, Vy is given by the (Black & Scholes, 1973) formula for call
options:

Ve = V4N(d;) — Xe""N(d;) @

where



v 1
dy; = i (YA) +0(\r/; 70“%) T, dy, =d; —oyNT (2)
A

where X; is the book value of debt at time ¢ that has maturity equal to T, r is the risk-free
rate, and N is the normal cumulative distribution function. As a proxy for book value of debt
we use the “current liabilities” plus half of “long-term debt” downloaded from the Compustat
database. If “current liabilities” is unavailable, “long-term debt due in one year” is used
instead. To calculate a4 , we follow a similar procedure as in Vassalou and Xing (2004) and
adopt an iterative process. We use monthly data from the past 12 months to obtain an
estimate of the volatility of equity oz, which is then used as an initial value for the estimation
of a, during the iterative process. Next, we make use of the Black-Scholes (1973) formula,
and for each month of the past 12 months, we compute V, using V as the market value of
equity of that month. Thus, we are able to obtain monthly values for V, . We then compute
the standard deviation of those V,, which is used as the value of a4 for the next iteration.
This procedure is repeated until the values of g, from two consecutive iterations converge.
Our tolerance level for convergence is 10~*. Most conversions require few iterations before
reaching convergence (less than four). Once the converged value of ¢, is obtained, we use it
to solve for V, using equation (1).

The above process is then repeated at the end of every month, which results in estimated
monthly values of a,. We keep the estimation window constant at 12 months for each
iteration. The risk-free rate used for this process is the 1-year T-bill observed each month,
obtained from the Federal Reserve Bank of St. Louis. Once monthly values of V, are
estimated, we can compute the mean of the change in In(V,), denoted as p. Distance-to-
default (DD) is then defined as follows:

in () + (n-g0)7 9

If the ratio of value of assets to debt is less than 1 (i.e. its log becomes negative), then default
occurs. Thus, the Distance-to-Default tells us by how many standard deviations the log of this
ratio needs to differ from its mean for default to occur.

Using the normal distribution implied by Merton’s model, the theoretical probability of
default (PD) can be calculated for each firm each month using the following equation:

)+ (b o
oaVT

Paes = N(=DD) = N

This measure is used as a proxy for financial distress risk throughout our calculations. The
aggregate probability of default (PD) is defined as the simple average of the Pges of all firms.
Summary statistics for PD can be found in Table I. For the majority of the sample period,



firms have an average 1-year probability of default around 1.5%. To give a better sense of
how the probability of default evolve over time we provide a graph of PD for all stocks in our
sample over the entire sample period. The shaded areas depict recession periods as defined by
the NBER. The graph shows that default probabilities vary noticeably with the business cycle
and surge during downturns, when credit-tightening occurs, such as during the financial crisis
of 2007-2008. A more detailed mathematical derivation of equation (4) can be found in
section one of the appendix.

3.3 Portfolio construction

We create portfolios following a similar procedure as Gao et al. (2018) and Campbell et al.
(2008). At the end of each month t we rank all stocks in the sample based on their individual
probability of default (Pdef). Based on this rank, we use percentile breakpoints to assign each
stock to a certain portfolio, where the first decile consists of stocks with the lowest 10% Pdef-
values and the tenth decile consists of the stocks with the highest 10% of Pdef-values.
Denoting t the month of portfolio formation, we then calculate value-weighted returns for
each portfolio over one month (t+2), three months (t+2 through t+4) and twelve months (t+2
through t+13). Using a holding period of one month as an example, if stock X is ranked in the
first decile at the end of January, then X is used as component of the first decile portfolio
starting at the end of February and held until the end of March at which point the portfolio is
updated again based on the probability of default rankings at the end of February.
Constructing the portfolios in this manner is done to reduce the effects of microstructure
noise and extreme return reversal historically observed in the first month (t+1) as observed by
Da and Gao (2010).

When calculating the returns of the portfolios with a holding period of three months and
twelve months we make use of the overlapping portfolio approach outlined by Jeegadeesh
and Titman (1993). Denoting K the holding period, then K overlapping portfolios are
constructed. Stocks are held for K months each time the portfolio is updated based on new
probability of default rankings, while also closing out the position initiated in month t-K.
Thus, following this strategy the weights on 1/K of the securities in the portfolio are updated
each month while the other weights are carried over from the previous month.

Following Campbell et al. (2008) we test the distress anomaly with a long-short trading
strategy, forming a hedged portfolio long in stocks with the lowest 10% Pdef-values and
short in stocks with the highest 10% Pdef-values. This strategy would effectively take
advantage of the financial distress risk anomaly if it exists. We do this for our entire stock
sample, and then report results for two additional size groups: large stocks and small stocks,
with the NYSE median market capitalization used as a cutoff value between the two.



Table I.

Number of stocks and summary statistics for the default measure
This table lists the total number of unique stocks in our final sample by year, share of total market capitalization,
average twelve-month probability of default (PD) by year, as well as the median, standard deviation, minimum
and maximum PD by year. Probability of default is estimated using Distance-to-Default, following Vassalou and
Xing (2004). Share of total market capitalization is computed as the total market capitalization of firms in our
sample divided by the total market capitalization of firms listed on the NYSE, AMEX and NASDAQ stock
exchanges (excluding financial firms with SIC codes between 6000-6999 in both cases).

Number of  Share of total

Year Average PD MedianPD  Std. dev. PD Min PD Max PD
stocks market cap
1990 1448 71% 0.031 0.027 0.006 0.025 0.042
1991 1521 72% 0.007 0.007 0.001 0.006 0.009
1992 1723 72% 0.009 0.009 0.001 0.008 0.011
1993 1932 69% 0.007 0.007 0.001 0.005 0.009
1994 2117 70% 0.010 0.010 0.002 0.007 0.013
1995 2277 70% 0.006 0.007 0.001 0.005 0.008
1996 2502 70% 0.007 0.008 0.001 0.005 0.009
1997 2587 72% 0.007 0.007 0.001 0.006 0.010
1998 2577 73% 0.022 0.019 0.008 0.014 0.032
1999 2581 73% 0.022 0.020 0.005 0.015 0.030
2000 2612 72% 0.046 0.047 0.008 0.032 0.057
2001 2339 79% 0.023 0.022 0.002 0.019 0.026
2002 2172 82% 0.030 0.029 0.003 0.026 0.035
2003 2231 81% 0.004 0.004 0.000 0.003 0.005
2004 2343 80% 0.005 0.005 0.001 0.004 0.006
2005 2369 82% 0.007 0.007 0.001 0.006 0.009
2006 2458 83% 0.003 0.004 0.000 0.003 0.004
2007 2506 84% 0.010 0.009 0.004 0.006 0.018
2008 2278 87% 0.071 0.065 0.021 0.050 0.109
2009 2054 86% 0.008 0.008 0.002 0.005 0.013
2010 2249 86% 0.005 0.004 0.001 0.004 0.006
2011 2321 88% 0.013 0.011 0.004 0.008 0.020
2012 2269 88% 0.005 0.005 0.001 0.004 0.006
2013 2376 91% 0.004 0.004 0.000 0.003 0.005
2014 2531 92% 0.007 0.007 0.002 0.005 0.011
2015 2598 93% 0.018 0.015 0.006 0.012 0.027
2016 2560 94% 0.011 0.011 0.001 0.009 0.012
2017 2601 94% 0.009 0.009 0.001 0.007 0.011
2018 2679 94% 0.020 0.017 0.005 0.014 0.031

2019 2872 96% 0.013 0.013 0.001 0.011 0.015
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Figure 1. Number of stocks per year

We plot the total number of stocks in our sample per year and by stock exchange (left). On the secondary axis
(right) the market capitalization of our final stock sample is plotted as a share of the total market capitalization of
stocks listed on the NYSE, NASDAQ and AMEX.
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3.4 Statistical Analysis

To evaluate the distress anomaly, we acknowledge that stocks differing in distress risk may
also differ in their exposure to traditional risk factors. Following the previous literature, we
believe the market risk in CAPM (Beta) and the additional factors, book-to-market and size
in the Fama-French three-factor model may explain some of the risk. To take any eventual
momentum effect into account we also include the extended four-factor model proposed by
Carhart (1997). Furthermore, we evaluate the exposure to the new factors proposed in the
Fama-French five-factor model: the operating profitability and investment factors. We use
ordinary least-squares (OLS) regressions to estimate the alpha of each individual portfolio.

Our specifications for running the linear regressions are the following:

Ry —7fe = a; + by(Rye — 7f) + €y ®)
Rit - Tft = al + bl(RMt - rft) + szMBt + b3HMLt + eit (6)
Rit - Tft = al‘ + bl(RMt - Tft) + szMBt + b3HMLt + b4UMDt + el't (7)

Rit - Tft = al + bl(RMt - rft) + szMBt + b3HMLt + b4RMWt + bSCMAt + elt (8)

where equation (5) is the CAPM-model, (6) is the Fama-French three-factor model, (7) is the
Fama-French-Carhart four-factor model and (8) is the Fama-French five-factor model. R;; —
rf; represents portfolio i’s return in excess of the 1-month US Treasury bill rate; Ry, is the
market return; SMB; is the factor mimicking portfolio for returns on small minus big stocks;
HML, the factor mimicking portfolio for returns on high minus low book-to-market equity
(BE/ME); UMD, is the factor mimicking portfolio for returns on high prior returns (Up)
minus low prior returns (Down); RMW, is the factor mimicking portfolio for returns on
robust minus weak operating profitability and CMA; is the factor mimicking returns on the
conservative minus aggressive investment portfolios.

We calculate sample-specific Fama-French factors by following the methodology outlined in
Fama and French (1993, 2015). Details on our factor construction can be found in Appendix
2. Summary statistics for the sample-specific factors and the ones obtained from Kenneth R.
French’s Data Library are presented in Table II. Interestingly, our sample seem to slightly
differ from the market as whole, as the sample-specific SMB and RMW factors average
negative returns. Following this discovery, we opt to run our regressions against the factors
directly obtained from the Kenneth R. French’s Data Library.
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Table I1.

A comparison of market and sample-specific Fama-French factors
This table presents mean, median, standard deviation, minimum and maximum (in percentage units) for the
sample-specific Fama-French factors calculated based on our final stock sample. For the purpose of comparison
we also include the factors obtained from the Kenneth R. French’s Data Library. The (S) denotes the sample-
specific factors.

Factor Mean Median Std. dev. Min Max

RMRF 0.669 1.185 4,234 -17.230 11.350
RMRF (S) 0.724 1.134 4.204 -16.716 11.006
SMB 0.133 0.085 3.017 -14.910 18.320
SMB (S) -0.172 -0.330 3.367 -21.317 15.782
HML 0.139 -0.105 2.976 -11.180 12.870
HML (S) 0.026 0.072 2.090 -9.216 6.277
RMW 0.345 0.385 2.571 -18.340 13.330
RMW (S) -0.215 0.107 3.173 -18.584 18.099
CMA 0.193 -0.020 2.056 -6.860 9.560
CMA (S) 0.156 -0.003 3.783 -18.870 21.420

4. Empirical Analysis

Our empirical analysis proceeds in two steps. First, we look at the returns of the distress risk-
sorted portfolios and their loadings on the Fama-French factors when running the regressions.
Second, we examine the returns of the long-short portfolios used to characterize the financial
distress risk anomaly, examining how size as well as longer holding periods impact the
portfolio returns.

4.1 Returns on distress risk-sorted stock portfolios

Table 111 reports the result for our ten risk-sorted decile portfolios. Each portfolio is denoted
by the percentile breakpoints of their probability of default (Pdef) ranking used to construct
it, for example portfolio 0010 is the 0" to 101 percentile percentile of stocks (lowest risk of
default) and portfolio 9000 is formed based on the 90" to 100" percentile of stocks (highest
risk of default). Panel A reports average annualized monthly simple excess returns over the
market and annualized monthly alphas with respect to the CAPM, the three- and five-factor
model of Fama and French (1993, 2015) and the Fama-French-Carhart four-factor model
(Carhart 1997). Panel B shows the coefficients of the Fama-French three-factor model
regressions and Panel C shows the coefficients of the five-factor model regressions. The t-
statistics are included below in parentheses. Panel D shows a selection of portfolio
characteristics. These include annualized standard deviation of individual and portfolio
returns, mean RSIZE (computed as the log of mean firm market capitalization divided by the
total market value of the S&P 500), average market-to-book ratio (MB), average operating
profitability (computed as the total revenue minus cost of goods sold, selling, general and
administrative expense and interest and related expense divided by book equity), average
investment ratio (computed as the change in total assets) and the average probability of
default.
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The average annual excess returns reported in the first row of Table I11 decline monotonically
with increasing financial distress risk. The most distressed portfolio delivers a significant
negative annual average excess returns of -13.2% and the safest portfolio a significant
positive annual average excess return of 5.4%, which constitutes a difference of 18.6
percentage points. Similarly, portfolio standard deviation increases monotonically with
increasing financial distress risk. This results in progressively lower Sharpe ratios for the
portfolios with higher probability of default (Pdef) for each portfolio. As a form of robustness
check, we also present results of regressions against our sample-specific factors in Appendix
3.

When correcting for risk, all portfolios up to the 30" percentile boast significant positive
alphas and all portfolios beyond the 50" percentile have significant negative alphas when
regressing against the four asset pricing models. When risk-adjusting the portfolio returns
using the CAPM and Fama-French three-factor the contrast in portfolio performance
increases, magnifying the pattern observed with the average excess return. This is a similar
finding as to what Griffin and Lemon (2002) and Campbell et al. (2008) observed. When
risk-adjusting using the Fama-French five-factor model the observed magnitude of the alphas
decrease for the three least and three most distressed portfolios. As expected, this model
contributes with greater explanatory power. Nevertheless, the alphas continue to be greater
than the average mean excess return. Similar results for alpha are found when regressing
against the Fama-French-Carhart four-factors. As an example, portfolio 9000 has an average
excess return of -13.2% with a t-statistic of 4.9; a CAPM alpha of -16.4% with a t-statistic of
6.8; a Fama-French three-factor alpha of -17.0% with a t-statistic of 7.4; a Fama-French-
Carhart four-factor alpha of -13.2% with a t-statistic of 6.6; and a Fama-French five-factor
alpha of -14.3% with a t-statistic of 6.0. The average excess return and alphas of each
portfolio are illustrated in Figure 3.

Several trends among the factor coefficients of each portfolio found in Panel C of Table I11
can be identified. For the Fama-French five-factor regressions the loadings on RMRF
increase with higher default probabilities. Similar results are obtained for SMB, which is
illustrated in Figure 4. This is expected as distressed stocks are much smaller than safe
stocks, as can be seen in Panel D of Table Ill. The value-weighted average size of the 10%
least distressed stocks is over four times larger than the value-weighted average size of the
10% most distressed stocks. The loadings on HML for each portfolio also increase when
looking at higher default probabilities. Again, this can be expected as the more distressed
stocks have a lower average market-to-book ratio, as seen in Panel D of Table Ill. Thus, they
contain a prevalence of value stocks. This is in contrast to the findings of Campbell et al.
(2008) who find that market-to-book ratios are high for decile portfolios with the safest
stocks and for the portfolios with the most distressed stocks, while still having high loadings
on HML.

14



9.00%

6.00%

3.00%

0.00%

5060 7080 9000

8090

6070

0010 1020 2030 3040

-3.00%
-6.00%
-9.00%
-12.00%
-15.00%

-18.00%

—— Mean excess return —— 3-factor alpha —— 4-factor alpha 5-factor alpha

Figure 3. Alphas of distressed stock portfolios. Risk-sorted decile portfolios are formed at the
beginning of every month using the 12-month probability of default (Pdef). The figure plots the annualized
monthly mean excess return over the market for the 10 distress risk-sorted decile portfolios from January-1990 to
December-2019, as well as the annualized monthly alphas resulting from CAPM, Fama-French three-factor,
Fama-French-Carhart four-factor, and Fama-French five-factor regressions.
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Figure 4. Factor loadings of distressed stock portfolios (five-factor regression). Risk-sorted
decile portfolios are formed at the beginning of every month using the 12-month probability of default
(Pdef).The figure plots loadings on the value factor (HML), the size factor (SMB), the profitability factor
(RMW) and the investment factor (CMA) following a Fama-French five-factor regression on the portfolio
returns over our entire sample period (January-1990 to December-2019).
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Figure 5. Factor loadings of distressed stock portfolios (three-factor regression). Risk-
sorted decile portfolios are formed at the beginning of every month using the 12-month probability of default
(Pdef).This figure plots loadings on the value factor (HML) and the size factor (SMB) following a Fama-French
three-factor regression on the portfolio returns over our entire sample period (January-1990 to December-2019).
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Figure 6. RMRF loadings of distressed stock portfolios. Risk-sorted decile portfolios are formed
at the beginning of every month using the 12-month probability of default (Pdef).This figure plots loadings on
the market return factor (RMRF) for both a Fama-French three-factor and Fama-French five-factor regression
on the portfolio returns over our entire sample period (January-1990 to December-2019).
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The coefficients of the profitability (RMW) and investment (CMA) factors show a striking
opposite behavior. The loadings for these are increasingly negative with higher distress risk,
as illustrated in Figure 4. For portfolio 0010 (safest) and portfolio 9000 (highest risk of
default) we obtain positive and negative loadings respectively at a significance level of
p<0.01. These loadings are in line with their respective portfolio characteristics, as the stocks
in portfolio 0010 have an average profitability of 33.2% and a rather conservative investment
ratio of 14.0%, compared to 26.1% and 25.2% for portfolio 9000. Rather expectedly, this
suggest that poor operating profitability and aggressive investing explains some of the poor
returns for distressed stocks.

To facilitate comparisons with prior studies we include the factor loadings for the three-factor
regression in Panel B as well as an illustration of those in Figure 5, as well as a graph of the
loadings on the market factor (RMRF) for both the three-factor and five-factor regressions, as
seen in Figure 6. The pattern of higher loadings on the RMRF, SMB and HML factors for the
distressed stocks can also be observed here. These results are pessimistic for the view that
higher distress risk is positively priced, as distressed stocks have lower average returns
despite their significant high loadings on RMRF, SMB and HML factors.

4.2 Returns on hedged long-short portfolios

Table 1V reports the results for our hedged long-short portfolios, going long in the top 10%
safest stocks and short in the 10% of stocks with highest probability of default. Portfolio
returns are calculated for all stocks in our sample and two other size groups: large stocks and
small stocks. Results are presented for one-month (t+2), three-month (t+2 through t+4) and
twelve-month (t+2 through t+13) holding periods, where t denotes the month for portfolio
formation. Similar to Table 111, Panel A reports average annualized monthly simple excess
returns over the market and annualized monthly alphas with respect to the CAPM, the three-
and five-factor model of Fama and French (1993, 2015) and the Fama-French-Carhart four-
factor model (Carhart 1997). Panel B shows the coefficients of the Fama-French three-factor
model regressions and Panel C shows the coefficients of the five-factor model regressions.
These are included for the sake of transparency in order to be comparable with prior studies.
The t-statistics are included below in parentheses.

The returns on the portfolio with a one month holding period suggests that there is indeed a
financial distress risk anomaly. We observe significant alphas for all regression models, with
a Fama-French three-factor alpha of 26.9% (t=7.8) and a slightly lower Fama-French five-
factor alpha of 20.8% (t=6.2) for the all stocks sample. Similar to what was observed when
looking at the individual decile portfolios, the alphas decrease when adding the explanatory
power of the RMW and CMA factors. The second column shows the same results but for
large firms, with a Fama-French three-factor alpha of 24.9% (t=8.2) and a Fama-French five-
factor alpha of 20.0% (t=6.6). The alphas for the small firm portfolio are the largest, with a
33.9% (t=12.6) Fama-French three-factor alpha and a 29.3% (t=12.2) Fama-French five-
factor alpha. Although this one-month holding period portfolio vastly outperforms the market
in all three size groups, the small firm portfolio average excess return of 16.4% (t=3.0) is the
only one that is significant.
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Moving across Table IV, the results weaken as the holding period increases. Over a holding
period of three months the average excess return is negative, although non-significant.
Significant Fama-French three-factor alphas can still be observed for all three size groups, at
12.2% (t=3.1), 10.5% (t=3.1) and 17.2% (t=5.2) for all firms, large firms and small firms
respectively. However, when regressing against the Fama-French-Carhart four-factor or the
Fama-French five-factor models, the alphas become insignificant for the sample of all firms
as well as the sample of large firms. This hints at the limitations of the Fama-French three-
factor model when it comes to distressed stocks, as one may incorrectly characterize some
findings as being evidence for the financial distress risk anomaly. Continuing to the right, the
small firms sample continue to boast significant alphas, with a Fama-French-Carhart four-
factor alpha of 10.1% (t=3.9) and Fama-French five-factor alpha of 13.9% (t=4.1). This
highlights the stronger presence of the financial distress risk anomaly among smaller firms, as
hinted at by the factor loadings discussed in the prior section.

At a twelve-month holding period, the general trend breaks down. Results for the sample of
all firms and the sample of large firms are insignificant, while the returns for the small firm
portfolio now produces significant negative alphas, such as a Fama-French five-factor alpha
of -5.0% (t=4.1). This suggests that the financial distress anomaly weakens at longer time
horizons until it breaks down completely.

Gao et al. (2018) find alphas of around 5-6% when examining a relatively new sample over a
shorter time period (between January 1992 and June 2013), hypothesizing that increased
awareness has alleviated mispricing by rational arbitrageurs. Our findings are discouraging
for this view, as the magnitude of our alphas are similar to other prior studies studying U.S.
firms, such as Campbell et al. (2008) whom reports significant Fama-French three-factor
alphas in the range of 20-25%.

Figure 7 illustrates the performance of the long-short portfolio over time. For the sake of
comparison, the cumulative return of the S&P500 is also plotted. The performance of the
portfolio is measured in two ways: 1) by cumulative risk-adjusted return from the Fama-
French five-factor model and by 2) cumulative excess return over the market. As can be
observed in the graph, the alphas of the portfolio are much more consistent over time, while
the raw returns experience several longer periods of decline. Furthermore, to clearly illustrate
the relationship between the monthly portfolio returns and the aggregate probability of
default (PD), these are laid out over each other in Figure 8.

19



3.50

3.00

2.50

2.00

Cumulative returns (log scale)

1.00

—— Fama-French five-factor alpha Excessreturn = DMarket return

Figure 7. Cumulative returns on the hedged long-short distressed stock portfolio. Risk-
sorted decile portfolios are formed at the beginning of every month using the 12-month probability of default
(Pdef). The figure plots cumulative excess returns over the market as well as the cumulative returns of Fama-
French five-factor alphas for the long-short portfolio going long in the safest decile and short in the riskiest
decile, with a one-month holding period before rebalancing, constructed from all firms in our sample. The
cumulative market return (S&P 500) for our sample period January-1990 to December-2019 is also included.
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Figure 8. Monthly returns of the hedged long-short distressed stock portfolio. Risk-sorted
decile portfolios are formed at the beginning of every month using the 12-month probability of default (Pdef). A
long-short portfolio is formed, going long in the safest decile and short in the riskiest decile, with a one-month
holding period before rebalancing, constructed from all firms in our sample. The figure plots the annualized
monthly portfolio return with a one-month holding period (left) and the average 12-month probability of default
(right) for all stocks in our sample.
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5. Conclusion

We characterize the financial distress risk anomaly with a long-short trading strategy and find
a negative relation between distress risk and stock returns in the U.S. stock market over our
sample period (January 1990 — December 2019). Stocks with a higher probability of default
delivers anomalously lower average return, underperforming the market at a significant level.
We obtain significant negative alphas when risk-adjusting returns for the three-, four- and
five-factor models. In fact, these standard risk-adjustment practices only magnify the
difference in performance between low and high-risk stocks. Our findings provide further
evidence to the view that the financial distress risk anomaly does likely exist in U.S. stock
markets. When examining different size groups and holding periods the distress risk anomaly
appears to be stronger among small stocks and for shorter holding periods, while becoming
insignificant over longer time-horizons. Our results are most consistent with the findings of
Campbell et al. (2008) in terms of magnitude, while the overarching conclusions are also
consistent with Gao et al. (2018).

While distressed portfolios have low average excess returns, they have puzzlingly high
market betas and loadings on SMB and HML. When regressing against the Fama-French
five-factors, we find that portfolios with more distressed stocks have negative loadings on the
RMW and CMA factors. These findings are consistent with the observed portfolio
characteristics. As such, a partial explanation for their poor performance is explained by low
operating profitability and aggressive investment. This suggests that one should make use of
the Fama-French five-factor model when evaluating the performance of distressed stocks.

We acknowledge that a limitation with our study may be the smaller sample size. Due to
constrained accounting data availability, we lose a number of observation when computing
our Distance-to-Default measure. Furthermore, our sample seem to behave slightly different
than the general market, considering our small stocks averaged lower returns than large
stocks, which will have a significant impact on our results as small stocks are highly
prevalent in the lowest decile portfolio. Another issue is the restricted access to Moody’s
KMV Expected Default Frequencies measure, which might deliver more accurate predictions
of default and thus a better proxy for financial distress risk. However, we find that our results
are similar to previous studies using larger datasets. Thus, these effects are likely to have had
low impact on the aggregated results.

It is important to note that the additional factors of the Fama-French five-factor model fail to
give a full risk-based explanation for the poor returns on distressed stocks. Therefore, further
research should investigate other plausible reasons that could explain the anomaly. We
hypothesize that market inefficiencies, such as short-selling restrictions or limited coverage
and information on small stocks, could provide some explanation. Could these factors restrict
the possibility to take advantage of the anomaly? Additionally, it would be interesting to
investigate the possibility of developing a new asset pricing model that incorporates financial
distress risk and test if such a model could more accurately predict expected stock returns in
order to be used in practice.
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Appendix
Appendix 1. Distance-to-Default calculation
For the computation of the Distance-to-default measure, Vassalou and Xing (2004) assume
that the capital structure of the firm includes both equity and debt. The market value of a
firm’s assets is assumed to follow a geometric Brownian motion (GBM):

dVA = ﬂVAdt + O'AVAdW (1)

Where 1, is the value of the firm’s assets, with an instantaneous drift p and an instantaneous
volatility a4. W is a standard Wiener process.

The market value of equity, V; is given by the Black and Scholes (1973) formula for call
options:

Vg = VuN(dy) — Xe_rTN(dz) 2

where

dy, = d; — oNT 3)

Where X, is the book value of debt at time t that has maturity equal to T and r is the risk-free
rate, and N is the normal cumulative distribution function.

The default probability is defined as the probability that the firm’s assets will be less than the
book value (X;) of the firm’s liabilities:

Pdef,t = PTOb (VA,t+T < thVA_t = PTOb (ln(VA,t+T) < ln(Xt) |VA,t) (4)

Given that the value of the assets follows the geometric Brownian motion (GBM) of equation
(1), the value of the asset at any time t is given by the following:

o5 { )
ln(VA‘HT) = ln(VA,t) + <,u — 7'4) T+ o4 |Te,,r

CraT = UAChs 7:/)7_ w© and eq.r ~N(0,1). ©)

24



Thus, the default probability can be rewritten as:

2
Paef,e = Prob (In(Va) = In(x) + (1 = 2) T+ 0, JTo ;< 0)

() - )

Pdef,t = PrOb ( —

Distance-to-default (DD) can be written as:

In (VX_) +(u - GT)T ®

DDt ==

Finally, the theoretical probability of default can be calculated using the following equation:

_ ln(VXi;t)Jr(“ - GTAZ)T ©)
oNT

Pyef = N(—DD) =N
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Appendix 2. Fama-French factors construction

The factors are constructed following the method of Fama and French (1993, 2015). Below is
a brief description of which variables were used from the CRSP and Compustat databases.

The factors for the five-factor model are constructed using 6 value-weight portfolios formed
on size (ME) and book-to-market (B/M), 6 value-weight portfolios formed on size (ME) and
operating profitability (OP) and 6 value-weight portfolios formed on size and investment
(Inv).

The factors for the three-factor model are constructed using only 6 value-weight portfolios on
size (ME) and book-to-market (B/M) where market capitalization (ME) is calculated as the
closing price times number of shares outstanding: (PRC * SHROUT).

Operating profitability is calculated as annual revenues minus cost of goods sold, interest
expense and selling, general and administrative expenses divided by book equity for
December of year t-1: (REVT — COGS — XINT — XSGA)/CEQ).

Investment is calculated as the change in total assets (AT) from year t-2 to year t-1 divided by
total assets of year t-2.

The factors are defined as the following:

SMB (small minus big) is the average return on the small stock portfolios minus the average
return on the large stock portfolios.

HML (high minus low) is the average return on the value portfolios (high B/M) minus the
average return on the growth portfolios (low B/M)

RMW (robust minus weak) is the average return on the robust operating profitability
portfolios (high OP) minus the average return on the weak operating profitability portfolios
(low OP)

CMA (conservative minus aggressive) is the average return on the conservative investment
portfolio (low Inv) minus the average return on the aggressive investment portfolio (high Inv)
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