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1 Introduction

Climate change, fuelled by greenhouse gas (GHG) emissions from human activities and
in particular carbon dioxide (CO2), is one of the most pressing challenges facing the
world today. There is widespread consensus, not least since the adoption of the Paris
agreement in 2015, that ambitious climate policies are critical to limiting emissions
and accelerating the transition to low-carbon societies. Economic research increasingly
recognizes technological innovation as one of the most important determinants of
abatement costs of fossil fuels in the long run, and a key factor in the efforts to limit
climate change1. Consequently, it is critical to understand how climate policy impacts
not only emissions but also the direction and speed of technological change (Popp et
al. 2010; Acemoglu et al., 2016; Calel & Dechezlepretre, 2016). To this end, this thesis
sets out to address the question of whether or not climate policy can stimulate "clean"
technological innovation2 by empirically estimating the effect of national carbon taxes
on innovation in climate change mitigation technologies, measured by patent counts.

In this study we focus on the Swedish experience, evaluating the Swedish carbon
tax introduced in 1991, using the rather novel synthetic control method developed in a
series of papers by Abadie et al. (2003, 2010, 2015). Furthermore, we complement our
case study analysis by also estimating the impact of carbon taxes on clean innovation
using a classic regression model with fixed effects and cross-country panel data from
17 countries that implemented a national carbon tax over the years 1990-2016.

First off, we should provide some brief motivation to why we focus on national
carbon taxes, as opposed to other potentially relevant climate policies. Firstly, a
carbon tax is a carbon pricing3 type of climate policy tool, which is increasingly
adopted in jurisdictions across the world4. Secondly, apart from being the most
favored type of climate policy of leading climate economists such as Nordhaus

1It is straightforward by classic economic theory that carbon pricing should reduce consumption
of carbon fuelled activities and production and thereby effectively lower emissions of GHG.
However, we should also expect that the increased relative cost of emissions would spur fuel-shifting
and technological innovation to economize production. Concretely, apart from directly lowering
carbon consumption, carbon pricing could potentially also spur technological direction change in
favor of climate change mitigating technologies, as producers seek technologies that require less (or
no) CO2 emissions per unit of output.

2We will use the terms “climate change mitigating”, “emissions-reducing” and “clean”
innovation/technologies interchangeably throughout this thesis as we refer to technologies developed
to lower GHG emissions and mitigate the carbon footprint of the product in question.

3This essentially means "putting a price on carbon", forcing emitters to internalize the
externality cost of polluting.

4In 2019 alone 29 jurisdictions adopted or pledged to adopt a carbon tax (World Bank Group,
2019). This increased popularity of carbon taxes in itself calls for an assessment of its effectiveness.
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(2008, 2013), there has recently been substantial steps forward in the theoretical
literature, with the development of new models showing how carbon taxes can
stimulate directed technological change and spur clean innovation (see Acemoglu et
al., 2012). Furthermore, empirical studies comparing the efficiency of different climate
policies have also suggested that tax measures is the most widely influential policy
instrument for stimulating innovation (Johnstone et al., 2010). Altogether, there is
ample motivation for looking deeper into the impact of carbon taxes on innovative
activity.

The Swedish carbon tax ought to be a particularly appropriate subject of study
using the synthetic control method, for a number of reasons. Firstly, since Sweden
was an early adopter of a carbon tax (in 1991) it provides a long time-series of post-
treatment observations. Moreover, the Swedish carbon tax has, since introduction,
been relatively high (currently the highest in the world). In fact, the Swedish carbon
tax is one of very few carbon pricing initiatives in the world that is consistent with the
target carbon pricing level of the 2015 Paris Agreement5 to keep emission “well below
2C”, which implies carbon pricing at 40-80 USD/ton CO2 by 2020 and 50-100 USD/ton
CO2 by 2030 (Stern and Stieglitz, 2017; World Bank Group, 2019). Lastly, the fact
that carbon taxes were for many years implemented only by a few early adopters gives
us a relatively large donor pool for our synthetic Sweden. Altogether, these contextual
conditions and subject properties should make the Swedish carbon tax a subject highly
relevant and appropriate for case study evaluation.

Notably, in a recent paper by Andersson (2019), the synthetic control method
is in fact used to evaluate the impact of the Swedish carbon tax on carbon dioxide
emissions. The author found, in contrast to earlier studies, that the carbon tax had
been successful in significantly reducing Sweden’s CO2 emissions.6 To our knowledge,
however, there has been no previous study evaluating the impact of the Swedish carbon
tax on technological innovation.

Furthermore, we should also make a few comments on the level of the data. While
we recognize that there are some limitations with country level data compared to firm
level data, as it provides less granular basis for analysis, it captures impact on a macro-
level which is important for policy-makers when assessing carbon taxation on a grand

5Actually, as of 2019 still only 5% of the world’s GHG emissions are priced at a level consistent
with achieving the target of the 2015 Paris Agreement (World Bank, 2019).

6Andersson found that the introduction of the carbon tax (coupled with the VAT) contributed
to a decline of almost 11 percent in an average year in CO2 emissions from transport, and 6 percent
from the carbon tax alone.
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scale.7 Furthermore, while there is a growing theoretical literature investigating the
impact of carbon taxes on a macro-level, providing insightful simulations and ex-ante
estimations of effects, there is a gap in literature on ex-post, empirical studies on the
macro-level8. We hope that our research, using country-level data and an empirical
strategy, can contribute to filling this gap and provide economy-wide insight on the
impact of carbon taxes on innovation.

Our key finding in this thesis is that the Swedish carbon tax had a positive impact on
clean innovation. By employing the synthetic control method, we estimate an increase
in climate change mitigating patents per capita million by 1.88 yearly compared to the
counterfactual, synthetic Sweden. In relative terms, this corresponds to an increase
of 14.1% in an average year between 1991-2005, and 18.5% on average in the first
10 years of the carbon tax being in effect. We calculate that the cumulative effect
amounts to an increase of 28.25 clean patents per capita million in total over the
post-treatment period, 1991-2005. Aggregating over the population, this suggests that
Sweden produced 249.88 more patents in this period that it would have done in absence
of the carbon tax. Considering that the total Swedish production of clean patents
in an average year between 1991-2005 was 114.95, this is arguably an economically
substantial result. We run several types of placebo tests that indicate a robustness of
our results. For example, when reassigning the treatment at random to our donor pool
countries, we find that the probability of obtaining a post-treatment gap as large as
that for Sweden is only 0.0625.

However, the second part of our empirical investigation, in which we use cross-
country panel data to estimate the impact of carbon taxes on innovation, does not
produce any statistically or economically significant results. Yet, given the limitations
of carbon tax data, both in terms of availability9 and comparability, this is not
completely unexpected. On the other hand, previous research has shown that due to
path-dependency effects it is likely that only relatively high carbon taxes would have
an effect on shifting incentives toward clean innovation at any substantial scale. As
we discuss more in depth in section 6, this might also be a potential explanation to

7Firm-level data has a number of benefits, but might fail to capture spillover, dynamic and
general equilibrium effects by carbon pricing policies on the market, hence only providing a partial
picture.

8Likely due to limited data on real carbon taxes.
9Because of the small sample of countries that implemented a national carbon tax before 2016

we only have 226 observations. When using the data-richer fuel-tax as a proxy for a carbon tax
(fuel taxes are far more common across the world and this variable provides 1 135 observations from
37 countries), however, we find some indications of a positive direction of the effect on innovation,
which is in line with our case study results.

3



why we find relatively strong effect in the case study of Sweden but no detectable
effect from our cross-country sample, which generally consists of carbon taxes at levels
substantially lower than consistent with the target of the Paris 2015 agreement.10

In sum, while our cross-country estimates provide little ground for analysis, our
results from the Swedish experience suggest that carbon taxes of a magnitude in line
with the 2015 Paris agreement indeed contributes to stimulate clean innovation at scale.
The policy-implication of our findings is thus that carbon taxes of a sufficiently high
level contribute to not only decrease emissions but also to accelerate a transition to low-
carbon, sustainable societies by fostering technological advancements. Nevertheless,
there is ample opportunity and need for more empirical research in this field. For
example, future studies could focus on investigating and quantifying the economic
value of clean technologies developments linked to carbon taxes, the overall net-impact
on the economy, as well as on different sectors.

The rest of this thesis is organized as follows. In section 2 we give an overview
on the existing theoretical and empirical literature related to our research question.
In section 3 we describe the key data employed and discuss some of its benefits and
limitations. Section 4 continues with a detailed description of our empirical strategy,
in particular the synthetic control method and how we adapt it to the Swedish context,
and in section 5 we present our results. In section 6 we thoroughly discuss our findings,
including the validity of our results, the limitations of this study as well as potential
policy implications. In section 7 we present our main conclusions and takeaways from
our research.

10The Swedish carbon tax is on average more than 5 times higher than the average carbon tax
on the rest of our sample.
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2 Literature Review

Traditionally, economists and climate scientists alike have focused largely on the
direct impact of various policies on GHG emissions and on general equilibrium models
with exogenous technology11, more or less neglecting the fact that changes in the
relative price of energy inputs should have a meaningful impact on the direction of
technologies developed (Acemoglu et al., 2012). In recent decades, however, there has
been a substantive increase in the literature linking environmental policy and directed
technological change, particularly in the context of climate change (see Goulder and
Schneider, 1999; Newell et al., 1999; van der Zwaan et al., 2002; Popp, 2004; Lanoie
et al., 2007 and Acemoglu et al., 2012).

On the theoretical side, the induced innovation hypothesis12 (Hicks, 1932) has been
a central building block for this strand of literature, and fundamental for influential
later works by e.g. Porter (1991), Popp (2004), Gerlagh (2008) and notably Acemoglu
et al. (2012). While specific features and assumptions vary somewhat across models in
this strand of literature, naturally, the fundamental theoretical prediction remains the
same. Essentially, theory suggests that as regulated (taxed) firms face a higher price on
emissions in relation to production costs, they will be incentivised to make operational
or technological changes to make production more efficient, i.e. less intense in emissions.
In a context of climate policy, this implies that carbon pricing should, theoretically,
increase firms incentives to invest in emissions-reducing technological change.

In this thesis, however, we mainly draw on the environmentally constrained growth
model with endogenous and directed technological change introduced by Acemoglu
et al. (2012). This comprehensive model provides a theoretical framework in which
the economy has two sectors, relying on “dirty” and “clean” (fossil and non-fossil)
inputs respectively, which are highly substitutable. In the model the sector using
dirty inputs has an initial productivity advantage that, in absence of intervention
and together with a market size effect13, directs innovation to that sector, continuing
to contribute to pollution and environmental degradation. Policy measures, in the
form of (temporary) carbon taxes and/or research subsidies can redirect technological
innovation from “dirty” to “clean” production. While the authors argue that the optimal
policy consists of both a carbon tax and research subsidies, even a sufficiently large
carbon tax would by itself encourage a change of direction of innovation towards clean

11I.e. the exogenous development of new and more "environmentally friendly" energy sources.
12The theory states that a change in the relative factor prices of production would induce

technological innovation directed to economise the use of the relatively expensive factor.
13The and advantage of having a bigger share of the market.
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technologies.
In the field of empirics, a growing body of research indicates that changes in the

relative price of energy inputs have a quantifiable impact on the direction of technology
development (Newell et al., 1999; Popp, 2002). One strand of empirical literature
has used aggregate data on sectoral or national levels to investigate this relationship.
Popp (2002) used US patent data from 1970–94 to estimate how energy price changes
impacted energy-efficient innovations in the USA, and found that both energy prices
as well as the prior knowledge stock had a significant impact on the direction of
innovation. Brunnermeier and Cohen (2003) investigated the effects of changes in
pollution abatement costs and regulatory enforcement of environmental innovation
(measured by successful environmental patents applications) in US manufacturing
industries between 1983-1992. Results indicated that increases in pollution abatement
expenditures had a positive impact on environmental innovation, while stronger
monitoring and enforcement mechanisms had no additional effects.14 A more recent
study by Dechezleprêtre et al. (2011), using patent data from 1978 to analyze the
geographic distribution and diffusion of climate-mitigation patents, shows that climate
policy has contributed to accelerating the pace of clean innovation15.

Many recent empirical studies have used a microeconomic approach, employing
firm-level data, to estimate environmental or climate policy on innovation. Notably,
Aghion et al. (2016) use firm-level patent data from the international auto industry,
exploiting variation in firms’ exposure to different markets and fuel prices, to explore
whether firms innovate more in clean technologies when facing higher tax-inclusive
fuel prices. Results show that firms tend to respond to higher tax-inclusive fuel prices
by innovating more in clean technologies. The authors also find strong evidence for
path dependency in type of innovation ("clean" vs. "dirty"), which has important
implications. Given that the stock of dirty innovation16 is greater than the stock of
clean innovation, this implies that the path dependency effect will lock economies into
high carbon emissions even in a scenario of a modest carbon tax or Research and
Development (R&D) investments in clean technologies. This implies that it is highly
motivated to implement relatively high carbon taxes at an early stage, in order to
change incentives for climate change migitating innovation in an efficient manner and

14Furthermore, empirical evidence suggested that internationally competitive industries are more
likely to engage in clean innovation.

15This study measure innovation on a global level, and while the authors estimate that pre-
1990 energy prices were the driving force of innovation, increasing enactment of environmental and
climate policies also made such policies relatively more important in driving innovation in more
recent decades.

16Innovation in technologies that rely on fossil fuels.
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counter the force of path dependency (in dirty technologies).
Calel and Dechezleprêtre (2016) use firm-level data from the EU to investigate the

impact of the European Emissions Trading System (EU ETS) on directed technological
change. Similarly to Aghion et al. (2016) the authors use patents as a proxy for
innovation, specifically patents registered at the European Patent Office (EPO) that
fall under the low-carbon patent classification. Employing a matched difference-in-
differences method, distinguishing between EU ETS-regulated and non-regulated firms,
the authors find that the emission trading scheme can explain approximately a 1%
increase in low-carbon innovation in the EU compared to a counterfactual scenario.

As evident from the literature review presented here, much of the empirical work in
this field have used changes in (tax-inclusive) fuel prices or energy prices as proxies of
carbon taxes, rather than investigated the impact of real carbon taxes (e.g. Aghion et
al., 2016). Typically, this is a strategy used because of the relatively limited data
on carbon taxes, compared to fuel price data. Furthermore, various studies have
investigated the effects of other types of direct of indirect climate policies, such as
investment incentives, R&D subsidies, emissions trading systems etc.17 Moreover, as
previously noted, the empirical literature is relatively dominated by micro-level studies
on firms and industries while most macro-level studies are theoretical and estimate
effects ex-ante.

Hence, there is a surprisingly big gap in literature estimating effects of carbon taxes
on a macro-level using real carbon tax data, particularly on the subject of impact on
innovation. Filling this gap in literature should be highly relevant for both researchers
and policy-makers given the urgency of cost-effectively accelerating our economies
transition to low-carbon societies. To this end, we hope that this study can contribute
to this literature and we believe that the particular properties of the Swedish tax should
make it particularly relevant to this objective.

17Notably, a large number of previous studies have also used R&D expenditure, rather than
patents count, as a proxy measure for technological innovation (see Popp et al. 2010 for overview).
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3 Data

In this section we present our data before we turn to the empirical strategy. The
section is divided into two parts. First we describe our key variables of interest in depth
and provide some context and motivation on the selection criteria of these variables.
Secondly, we provide a technical overview of the details of the data and summary
statistics.

3.1 Description of main variables

3.1.1 Carbon taxes

A carbon tax is a type of carbon pricing18, a policy instrument with the purpose of
shifting the externality costs, i.e. the societal costs paid for by the public, of GHG
emissions back to the emitters. The first carbon taxes were implemented by Finland
and Poland19 respectively in 1990, followed by Sweden and Norway in 1991. Since
then there has been a steady increase in carbon pricing initiatives. In 2019 total
implemented and scheduled carbon pricing initiatives reached 57, comprising 28 ETSs
and 29 carbon taxes20. These initiatives together cover about 20% of the world’s total
GHG emissions (World Bank Group, 2019). Nevertheless, still less than five percent of
global emissions are currently priced at a level consistent with the targets of the Paris
Agreement and public support is often lacking (World Bank Group, 2019)21. In this
context, empirically evaluating the effectiveness of carbon pricing initiatives is highly
motivated not only to inform the public but also to ensure that future mitigation
policies are efficient, economically and environmentally, and based on lessons learnt
from existing national climate policies.

There are two key limitations of the data on carbon taxes that we need to recognize.
Firstly, the data is limited in terms of comparability. Carbon tax policies differ across
countries in terms of the number of sectors covered, allocation and compensation
methods applied and specific exemptions. For example, some of the EU countries

18Carbon pricing initiatives include not only carbon taxes, but also fuel taxes, coal taxes or
directed energy taxes (indirectly taxing carbon), as well as cap-and-trade programs, such as the
European Emissions Trading Program (ETS).

19Contrary to other early adopters, however, the Polish carbon tax has been kept stably at a
very low rate over time, at a price around 0.1-0.05 real USD/ ton CO2 emissions.

20Most of these are implemented on a national level, but examples of regional carbon taxes exist,
e.g. in various provinces of Canada.

21In fact 96 out of the 185 countries that have submitted their Nationally Determined
Contributions to the 2015 Paris Agreement have proclaimed to plan or consider adopting carbon
pricing initiatives.
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in our sample exempt operators covered by the EU ETS from the national carbon tax,
while other countries do so only partially or not at all. Nevertheless, in all fundamental
aspects carbon tax systems are mostly very similar. Typically, and with few exceptions,
the carbon taxes cover all fossil fuels, and apply either universally to all sectors or
are targeting important ones such as transports, power, industry and construction.
Sectorial or process related exemptions vary from country to country, but generally all
countries exempt commercial aviation, certain energy-intensive production and power
production (the World Bank, 2020, see country profiles).

Secondly, due to the fact that few countries adopted carbon taxes pre-2005, data
is limited in terms of availability. Furthermore, several of the national carbon taxes
that have been enacted since 1990 have been kept at relatively low levels (below 5
USD/tons CO2 emissions) throughout the time period. Hence, data is limited and
quite unbalanced, the Nordic countries account for almost half of the observations
(117/226) and almost all the longer time series.

We should note, however, that the concerns about comparability of national carbon
taxes across countries is a potential problem only for our panel data regressions, and
not for our Swedish case study in which we evaluate the carbon tax via the synthetic
control method.

3.1.2 The Swedish carbon tax

In 1991, Sweden, one of the first countries in the world to do so, introduced a carbon
tax that is still considered one of the keystones of Sweden’s climate policy. At the
inception the rate was set to SEK 250 (USD 40) per ton of CO2 and has since then
been gradually increased, with a steep incline in the early 2000s. Today at a rate of
SEK 1 190 (USD 130), it is the highest carbon tax in the world. All fossil fuels are
covered by the tax, but the final tax rate is applied based on the proportion of carbon
content in different types of fuels (Swedish Government, 2020).

While the full carbon tax is levied on heating fuels (for households) and transport
fuels22, industry and agriculture has historically been granted exemptions to various
degrees due to concerns over carbon leakages and international competitiveness
(Johansson, 2000; Hammar and Åkerfeldt 2011). Between 1991-2005 industry paid
from 21-50 percent of the tax rate23 (in the last few years, however, there has been
a steep increase and currently industries pay 80% of the general rate). Furthermore,

22It should be noted that the introduction of the carbon tax coincided with the addition of a
VAT of 25% on the retail price of gasoline and diesel.

23Furthermore, at the introduction of the carbon tax the existing energy tax was simultaneously
lowered.
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due to Sweden’s particular composition of energy sources24 Swedish industry relies on
fossil fuels only to a limited extent25 (Johansson, 2000; Andersson, 2019).

Given these energy conditions, industry exemptions and the fact that technological
innovation typically takes place within firms and industries, it is not clear from the
outlook if the carbon tax would have an effect on innovation (Johansson, 2000). On the
other hand, the Swedish carbon tax has been relatively high and even after exemptions,
it is a non-negligible cost that should impact firms and their behavior. Furthermore,
as households face the full tax rate this should theoretically give rise to an increase in
consumer demand for cleaner technologies (e.g. an increase in the carbon tax would
impact the costs of driving for households, which would likely spur an increase in
demand for cars and engines that require less or no fossil fuels per mile), by which the
carbon tax indirectly would give incentives to firms to shift towards clean innovation.

In addition, the Swedish Government states that the carbon tax, which is an
application of the “polluter pays” principle26, will ensure not only a cost-effective
reduction of emissions but also the stimulation of new, clean technologies (Swedish
Government, 2020). To this end, with our following empirical investigation of the
Swedish carbon tax we hope to give some insight to whether or not the carbon tax has
in fact had an impact on clean innovation.

3.1.3 Patent data

In this paper we use patent data as our measure of innovation, which is a commonly
used practice in the literature.27 Patent data has a number of benefits compared
to alternative measures, which we will cover briefly. Firstly, patent data are

24The energy sources are dominated by nuclear, hydro power and biofuels,
25Less than 30% at the introduction of the tax in 1991.
26The cost of emissions should be borne by the polluter.
27Notably, a large number of previous studies have also used R&D expenditure as a proxy

measure for technological change when investigating the impact of environmental or climate policies
(e.g. Goulder and Schneider (1999), Gerlagh (2008), or see Popp et al. 2010 for literature overview).
However, there are several drawbacks with using R&D as a measure for innovation, notably that
data is typically only available on aggregate level without possibility to break it down by technology
group. Data is also incomplete in terms of private sector R&D spending. The most notable issue
with R&D expenditure as a proxy, however, is that it measures input in a context where we are
interested in technological development in an outcome, environmental efficiency. R&D expenditure
is typically allocated not by outcome but by sectoral allocation. More concretely, it has been
found that environmental technologies draw on a broad range of scientific knowledge, so even if
research that is not a priori “environmental”, for example in chemistry and material sciences, it
might contribute to building knowledge valuable for environmental innovation. Hence, R&D as a
measure of environmental innovation is likely to fail to include transformative innovation results and
spill-over effects from sectors that are not a priori classified as “environmental” (Haščič & Migotto,
2015).
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commensurable, as patentable inventions generally need to fulfill some concrete
well-defined criteria and objective standard. Secondly, patents measure innovation in
terms of intermediate outputs, contrary to for example data on R&D expenditures,
which focus on inputs. Furthermore, patent data is quantitative by nature and as
such highly appropriate for statistical analysis. Patent data is widely available, it can
be easily disaggregated into distinct technological fields, which is highly advantageous
for the purposes of this study as it allows us to narrow down our analysis to a specific
type of innovation, such as climate change mitigation technologies (Haščič & Migotto,
2015).

Patents can also be distinguished by size of the international patent family (i.e
the number of patent authorities to which patent applications, protecting the same
invention, have been filed). The most liberal measure is to count all inventions (family
size equal to or larger than one), which includes patents applied to a single patent
office28. These statistics do not exclude any data, but includes the entire world-wide
stock of patents.29 Yet, it is oftentimes argued that it is more adequate to use patent
statistics on “claimed priorities” (i.e. patents with a family size of two or greater)
for the purpose of international comparisons, mainly because this typically restricts
the sample to ”high-value” (HV) patents30 (Haščič & Migotto, 2015). In this paper,
we use HV patent statistics to investigate the impact of carbon pricing for to two
reasons. Firstly, HV patent data is available for a longer time period (from the 1960’s
in the OECD Patent indicators data set) and secondly, these patents are much more
likely to be of economic value than the more liberal count, which is a desirable feature
since measuring the impact of low-value patents would be rather meaningless from an
economic efficiency point of view.

Nevertheless, we should note that patents are not an exhaustive measure of
innovation. The most important drawbacks are quite obvious. Firstly, not all
innovations are patentable. Since patent criteria are developed only to protect
technological innovations, non-technological or organizational innovations will not be
included. This should not be a worrying concern in this case, since we are interested
in the concrete technological features, in regard to CO2 emissions, of inventions.
Secondly, as there are other intellectual property rights regimes to protect various
kinds of innovations, including trademarks and industrial designs, not all innovations

28Typically in the “home” office of the inventor or applicant.
29Notably the majority of inventions in the world are 1 family patents.
30Typically assumed as patenting is costly and a firm would rationally only seek to protect an

invention in more than one jurisdiction if the prospect commercial value justifies the patenting
costs.
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that are patentable will be patented. Lastly, there is great variation on the quality of
patented inventions. The economic value of patents vary greatly and not all patented
inventions end up being commercialized and adopted (Haščič & Migotto, 2015)31,
however, we are not particularly concerned about this, although it is something to
keep in mind for the analysis.

3.2 Technical details of data and summary statistics

Data on carbon taxes is retrieved from the World Bank (2020), and we need to make a
few points on the methodology and comparability before analyzing this data. Carbon
taxes are measured in USD nominal prices per tonnes of CO2 emissions by year, and
we use the US CPI index (U.S. Bureau of Labor Statistics, 2019) to adjust the data
for inflation. However, given that purchasing power varies across countries, we should
still be a little cautious in comparing these prices strictly at face value.

We use patent statistics from a dataset on selected environmental technologies
(ENVTECH) and patent based-indicators, constructed jointly by The OECD
Environment Directorate and Directorate for Science, Technology and Innovation
(2020). The dataset pools original patents data from multiple national and
international patents offices.32 The data covers a wide-range of environment-related
technologies, categorized into different sub-categories covering about 80 technological
fields, from waste-management and water-related adaptation to climate change
mitigation. In this paper, we further limit our sample to data on patents in the
“climate change-mitigation”-technologies category, which aggregates all subcategories
of patents in different usage fields with the common feature of mitigating GHG
emissions.33 In particular, we use patents indicator data on climate change
mitigation inventions expressed in per capita million34 (i.e. per million residents),
which is particularly appropriate as a comparable measure on countries’ innovative

31Another particular feature of patent data is that patent applications are usually disclosed 18
months after filing date, which leads to a “publication lag” in the raw data. This is adjusted for in
the employed dataset, however, since patents are classified by “priority date” (the filing date of the
first application), which is commonly considered a fairly good proxy of the invention date.

32The dataset on ENV-TECH patents is developed by the OECD by using algorithms applied
to data extracted from the Worldwide Patent Statistical Database (PATSTAT), managed by the
European Patent Office (EPO).

33This is an encompassing measure that includes climate change mitigation technologies related
to production, transport, wastewater management, information and communication technologies
(ICT), GHG capturing technologies and technologies related to construction and buildings.

34We construct the variable on climate change mitigation technology patents per million capita,
by the simple method of summing together the contributions (percentages) of each of the climate
change mitigation technologies to the selected environmental technologies per capita million
indicator.
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performance. Indicator data from ENVTECH is available in a balanced panel of 2 175
observations on 37 OECD countries from 1960 to 2016.

Finally, throughout our empirical investigation we also employ data on the following
variables: GDP per capita (Feenstra et al., 2015), GDP growth per capita (World Bank,
2015), real fuel prices (IEA, 2020), real fuel taxes (IEA, 2020), patents per capita million
(by residents) (World Bank, 2015), urban population share (World Bank, 2015) and
government spending on environmental-related R&D (OECD, 2020). We present and
motivate the use of each of these variables as we employ them in the next section:
Empirical strategy (4). Below, we give an overview with a table of summary statistics
of all variables that we use, including for which years we have data available.

Table 1: Summary statistics: Data from 37 OECD countries

Variable min mean max std n years
CC patents per capita mil 0.00 5.21 85.00 9.19 2052 1960-2016
Real carbon tax 0.01 18.27 105.63 22.05 226 1990-2016
GDP per capita 1983.95 26483.32 97717.02 13546.94 1512 1970-2016
GDP per capita growth -14.27 2.21 23.99 3.18 1278 1978-2016
Government R&D 0.00 154.64 1505.30 230.99 1023 1981-2016
Patents app. per capita mil 2.56 249.06 3028.95 439.00 1161 1980-2016
Real fuel price 0.24 0.91 2.47 0.36 1255 1978-2016
Real fuel tax 0.00 0.48 1.40 0.23 1203 1978-2016
Urban population share 37.00 73.46 98.00 12.26 1666 1970-2016
Note: For real carbon tax data we only have data from the 17 countries that implemented a carbon tax between 1990-2016.
See figure 14 in Appendix for overview.
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4 Empirical Strategy

Our empirical strategy consists of two parts. In the first and main part of our empirical
investigation, we do a case study of the Swedish carbon tax, estimating the effects of
the tax on clean technological innovation in Sweden by a synthetic control method
(Abadie and Gardeazabal 2003; Abadie et al. 2010, 2015). In the second part of the
empirical strategy we conduct a panel data regression analysis using cross-country data
on carbon taxes from 17 OECD countries.

The synthetic control method has a number of merits. Firstly, it allows us to
evaluate the effects of carbon taxation on technological innovation using ex post
empirical data as opposed to commonly used ex ante simulations. Secondly, the
synthetic control method is specifically developed for cases when treatment is enacted
at an aggregate level on one unit, with data available at its level for a large number
of periods and there are multiple units that are untreated (Abadie and Gardeazabal
2003; Abadie et al. 2010, 2015). This should make it a suitable method in the
particular context of the Swedish carbon tax.

In addition, compared to the differences-in-differences (DiD) estimator, commonly
employed for policy evaluations, the synthetic control method has several advantages.
Firstly, it relaxes the parallel trends assumption, central to the DiD, by allowing for
variation over time in the impact of unobserved confounders (Abadie et al. 2010).
Secondly, the synthetic controls method allows us to include covariates as predictors
of low-carbon technological innovation in our model. In contrast, in a DiD empirical
estimation we would have to leave such covariates out of the model as they, by their
likelihood to also be affected by the carbon tax, would be considered “bad controls”
(Angrist & Pischke, 2009). Thirdly, the synthetic control method allows us to choose
comparison units by a data-driven approach, avoiding the risk of ambiguity often
associated with the DiD method. Lastly, the transparency of the relative weights of
each unit in the donor group to the synthetic control provides additional interpretability
to the comparison between synthetic control and treated unit.

By this method, we construct a counterfactual “synthetic Sweden” from a weighted
combination of carefully selected OECD countries that did not implement a carbon
tax during nor prior to the treatment period. The details of this strategy will follow
in the remaining part of this section. In the second and complementary part of the
empirical investigation we use panel data on 17 countries over the years 1990-2016 to
broadly estimate the effects of carbon pricing on technological innovation in our cross-
country sample. This is interesting for investigating whether or not the potential effect
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in the Swedish case is also detectable in a classic panel data regression analysis with
an international sample. Apart from our main explanatory variable, the carbon tax,
we also use data on fuel taxes and fuel prices for robustness checks. While fuel taxes
are different in nature to a carbon tax, and less comprehensive in its coverage, these
can function as a proxy for a carbon tax, see e.g. Aghion et al., (2016) 35.

4.1 The synthetic control method

4.1.1 The donor pool

In order to empirically estimate the impact of the 1991 Swedish carbon tax on clean
innovation we use annual panel data on climate change-mitigation technologies per
million population for the years 1960-2005 for 37 OECD countries.

Although data is available up to 2016 and for several variables tends to be richer
in later periods, we choose to use 2005 as our end date for several reasons. Firstly,
2005 marks the start of the European Emissions Trading System (EU ETS), which
affects the majority of the countries in our sample. Secondly, part of our sample also
enacted climate change policies such as national carbon taxes or substantial changes to
fuel taxation rates in the years post-2005 to 2016. Furthermore, technically we would
also be hesitant to use a longer treatment period in the synthetic control method
(particularly given our limited pre-treatment period), as projecting longer periods of
time in the post-treatment period is difficult since there is greater risk for encountering
a structural break in the underlying model.

We use the year 1978 as our start date for the pre-treatment period. The reason
for this is that for several of the key predictor variables that we use to construct
our synthetic Sweden, there is no data available prior to this point. Hence, our pre-
treatment period is slightly shorter than we would have preferred, but it still gives us
13 years of pre-treatment observations which is sufficient to carry out our analysis.

From the initial sample of 37 countries we exclude those that also implemented
carbon taxes during the sample period, in this case Finland, Norway and Denmark.
Furthermore, we exclude a number of countries36 due to lack of data on our predictor
variables during the pre-treatment period. This leaves us with a donor pool consisting

35Furthermore, it provides a much lengthier panel dataset compared to carbon taxes data
(as there is simply much more data given that almost all countries have some sort of fuel tax on
transport fuels, however, the variation in this data is generally smaller compared to the carbon tax.

36Chile, Czech Republic. Estonia, Hungary, Iceland, Israel, Korea, Latvia, Liechtenstein,
Lithuania, Luxembourg, Mexico, New Zealand, Poland (actually Poland has a carbon tax but it
is very small), Portugal, Slovak Republic, Slovenia, Turkey.
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of the 15 following countries: Australia, Austria, Belgium, Canada, France, Germany,
Greece, Ireland, Italy, Japan, Netherlands, Spain, Switzerland, United Kingdom,
United States.

Hence, the sample period gives us 13 years of pre-intervention observations and 15
years of post-intervention observations. Although a longer pre-treatment period would
have been preferred, had data been available, our sample arguably still provides us
sufficient data to both construct a viable counterfactual and to evaluate the effects
of the policy change. In figure 1, see below, we present graphs on our dependent
variable, climate change mitigation technology patents (CC technology patents) per
capita million for each donor country and Sweden, between 1978-2005.

Figure 1: CC technology patents per capita million: Donor
pool countries (15) and Sweden: 1978-2005
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4.1.2 Predictor variables

We use the following predictor variables of clean innovation to construct our synthetic
Sweden. Firstly, GDP per capita, adjusted for purchasing power parity (PPP)
and measured in constant US dollars (Feenstra et al., 2015). GDP per capita is a
standard measure for the wealth of a country and is typically positively associated
with innovation (Ulku, 2004). Secondly, we use the tax-exclusive-fuel-price (IEA,
2020), also PPP-adjusted and in constant US dollars, which we obtain by removing
the fuel price tax share from the tax-inclusive average fuel price. We use this variable
as a predictor as it is quite straightforward to assume that a rise in tax-exclusive
fuel prices, making fossil fuel consumption relatively more expensive, should give
incentive to increase investment in clean innovation to economize production. The
impact, however, will of course depend on how reliant households and industries are
on fossil fuels. Furthermore, we use patent applications per capita million as an overall
measure of innovation in a country. This data is obtained from the World Bank
Indicators (2015) measure of total patent applications by residents. Moreover, we use
the percentage of the urban population as a proxy for urbanization, as urbanization
and innovation are typically positively associated. Finally, we add three lagged years
of the outcome variable37, climate change mitigation technologies patents per capita
million, to our list of key predictors.

4.1.3 Methodology

As touched upon in the introduction of this chapter, the synthetic control method
has a number of advantages compared to the DiD estimator, commonly employed in
policy evaluation and comparative studies. The most important is that the synthetic
control method relaxes the parallel trends assumption38 that is fundamental for the
DiD estimator, and which, apart from being difficult to verify, is violated as soon as
the treated unit and the control unit do not follow a common trend. The synthetic
control method, on the other hand, constructs the counterfactual through a data-driven
process that forms a synthetic control unit from a weighted average of the available
control units. The idea is that the weighted combination of available control units
typically provides a more appropriate comparison to the treatment unit, than would
a single control unit alone. Furthermore, the synthetic control methods make explicit

37As it is important that the countries also match on the outcome variable to some extent.
38The “parallel trends assumption” really consists of two assumptions i) conditional on common

trends in pre-treatment unobserved covariates, effects on the outcome variable are constant over
time, and ii) any shocks or other time effects are common to the treated unit and the control unit.
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the contribution of each available control unit and the degree of similarity in the pre-
treatment period between treated and control units, which grants an attractive feature
of transparency compared to traditional regression methods. Restricting weights to be
positive and sum to one, the method also provides a safeguard against extrapolation
(Abadie et al., 2010).

In this thesis, we follow the method outlined in Abadie, Diamond and Hainmueller
(2015) where the synthetic control is picked utilizing a cross-validation approach on
part of the pre-treatment sample. The main advantage of this approach is that we use
the validation set as a way to avoid bias due to overfitting by optimizing our weights
on unseen data.39 Essentially, this simply means that we divide the pre-treatment
timespan into two periods, a training period followed by a validation period. In the
training period donor weights W ∗(V ) are optimized given predictor weights V. In the
validation period, we use the estimated W ∗(V ) from the training period to find the
optimal predictor weights V ∗ ∈ V , and finally the weights W are re-optimized on V ∗

to obtain the final weights W ∗(V ∗).
Formally, we denote the variable of interest as Y , climate change invention per

million population, and the predictor variables as matrix X. Let the countries or units
in our sample be denoted by j = 1, ...., J + 1 for time periods t = 1, ..., T with j = 1

being Sweden, the only unit that is exposed to the treatment, in our case the carbon
tax. The carbon tax is introduced at time T0 + 1 such that periods 1, 2, 3, ..., T0 are
pre-intervention and periods T0 + 1, T0 + 2, ..., T are post carbon tax.

We define two potential outcomes: Y N
it refers to the outcome for country i at time

t if country i is not exposed to the introduction of a carbon tax, and Y I
it refers to the

outcome for country i at time t if country i is exposed to the treatment or intervention.
Our goal is to estimate the effect of the carbon tax on the treated unit (Sweden) in
the post-treatment period. More formally we are interest in measuring the quantity:

α1t = Y I
1t − Y N

1t ∀ t ∈ T0 + 1, ..., T (1)

To construct our synthetic Sweden, we define a (J × 1) vector of weights W =

(w2, ..., wj+1)
′ such that wj ≥ 0 ∀j = 2, ..., J + 1 and

∑J+1
j=2 wj = 1. Each W represents

a weighted average of our control units and is a potential candidate as a synthetic
control. We then choose the weights W ∗ in such a way, that the synthetic control

39Note that we also test the synthetic control method without cross-validation, i.e. without
dividing the pre-treatment period in a training and validation set but simply just minimizing the
mean squared prediction error (MSPE) over the whole pre-treatment period instead. These results
can be found in the Appendix.
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approximates Sweden in both the outcome predictors, and linear combinations of pre-
treatment outcomes. As mentioned previously, our estimation procedure follows two
main steps in order to offer a robust counterfactual. A first phase where country weights
W ∗ are determined minimizing the error on a training set, and a second phase where
each predictor variable is assigned a weight that indicates the relative importance of
it. We denote weights for the predictor variables as V , and the ideal components of
this vector are such that the synthetic control will more or less follow the path of the
original country as close as possible, minimizing the mean squared percentage error
(MSPE) on unseen data in the validation set. In our case the training set contains
years 1978 to 1985, and the validation set contains years 1986-1990.40 On the training
set we estimate country weights such that the total distance between synthetic Sweden
and Sweden are similar41.

Denote with X(train)
1 the k×1 matrix of predictors for Sweden in the training period

and with X(train)
0 the k×J matrix of predictors for the donor pool, and the components

of V = (v1, v2, ..., vk). We choose optimal country weights such that the squared sum
of distances between predictors in Sweden and synthetic Sweden is minimized, more
formally the optimal vector of weights W ∗(V ) is chosen to minimize the following
expression for each V :

min
W
||V

1
2 (X

(train)
1 −X(train)

0 W )||2 = min
W

k∑
m=1

vm(X
(train)
1m −X(train)

0m W )2

s.t. W ≥ 0, 1′W = 1 (2)

where V is a (k × k) symmetric and semi-definite matrix so that the matrix
multiplication inside the square root operator above is positive or zero; X(train)

1m and
X

(train)
0m denote the m-th component and row of matrices X(train)

1 and X(train)
0 . The V

matrix is introduced to assign weights to the variables in X0 and X1 depending on
their predictive power on the outcome.

40There is no exact rule for how to divide the training and validation periods. Nevertheless,
typically the periods are divided either into equal lenghts (e.g. Abadie et al., 2015) or the training
period is relatively longer, up to 70% of the pre-treatment period. In our case, in which we have
an odd number of pre-treatment periods and a relatively short pre-treatment period overall, we set
the cutoff to 1985, which gives a training set containing 2/3 of the total pre-treatment observations,
since we judge, given our limited pre-treatment period, it is more important to have a sufficient
training period, especially given the volatile nature of our outcome variable and the fact the the
early 1980’s might be a particular time period in some ways related to clean innovation (see results
section 5), whilst still have enough observations for validation.

41The solution to this problem is a the set of W that minimize some distance across predictors
for each V .
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An optimal choice of V ∗ in our model assigns weights that minimize the mean
squared prediction error (MSPE) of the synthetic control estimator on the validation
set. Hence, V ∗ is the solution to the following minimization problem where the weights
have been normalized to sum to 1:

min
V
||Y (valid)

1 − Y (valid)
0 W ∗(V )(train)||2 s.t. V ≥ 0, 1′V = 1 (3)

Once we have calculated the optimal predictor weights, we can find the main country
weights that are going to be used to construct the synthetic control by finding the
optimal weights W ∗ that minimize the following problem on the validation set:

min
W

k∑
m=1

v∗m(X
(valid)
1m −X(valid)

0m W )2 s.t. W ≥ 0, 1′W = 1 (4)

Where X(valid)
1 and X(valid)

0 are similar to equation 2, but applied to the validation set
and v∗m are the components of the optimal vector V ∗ we found in equation 3 . It follows
that X(valid)

1m and X(valid)
0m denote the m-th component and row of matrices X(valid)

1 and
X

(valid)
0 .
Computations and routines for finding the optimal weight vectors W ∗ and V ∗ can

be carried out by utilizing the R package Synth written by the authors of the method
themselves, Abadie, Diamond and Hainmueller (2011).

4.2 Panel data regression

In this part of the empirical strategy, we employ a classic panel data regression
approach to test our research question more broadly by using all data available on real
national carbon taxes. For the panel data regression analysis we exploit data from 17
countries that implemented a carbon tax during the years 1990-2016, which gives us
an unbalanced panel of 226 observations. Our main dependent variable is high value
climate change mitigation technology patents per capita million42. We also test an
alternative specification of the model using fuel taxes as a proxy of carbon taxes, since
this offers us a substantially larger data material, 1 135 observations over the years
1978-2016.

Furthermore, we add several control variables to account for potential omitted
variable bias (OVB), which we cover briefly below. We control for GDP growth per

42We use this measure for higher comparability across countries and to the synthetic control
method.
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capita (the World Bank, 2015) in most of our specifications. The motivation behind
this is that it might be positively associated with both innovation and carbon taxes.
For example in times of higher growth, economies tend to innovate more, and it might
also be easier in such an environment for policy-makers to introduce or increase a
carbon tax, and vice versa in times of lower/negative growth.43 Furthermore, we
include governmental research and development budget with an environment-related
socio-economic objective (OECD, 2020) as a control variable. The motivation behind
this is quite straight-forward, a government that introduces or increases a carbon tax is
arguably also more likely to increase the government spending on environment-related
R&D, which should also impact clean innovation. Lastly, we also control for the average
tax-exclusive fuel price, which we simply calculate by taking the average tax-inclusive
fuel price minus the average fuel tax in each period (IEA, 2020).44 By including this
variable, we control for the effect on clean innovation that is explained by the change
in relative cost of consuming fossil fuels.

Table 2 below, shows summary statistics for the variables used in the panel
regression from years 1990 to 2016.

Table 2: Variables summary statistics (over sample years:
1990-2016)

Variable n min mean max sd
CC pat. per capita million 972 0.00 8.99 85.00 11.80
Real carbon tax 226 0.01 18.27 105.63 22.05
GDP per capita growth 942 -14.27 2.11 23.99 3.30
Real fuel price 869 0.24 0.92 2.47 0.37
Real fuel tax 847 0.06 0.52 1.40 0.23
Government R&D 792 0.00 160.23 1422.33 231.88

Finally, we could imagine some other potential sources of omitted variable

43On the other hand, there is a risk that GDP growth per capita may also be considered a "bad
control", if we suspect that it is rather a channel of how carbon taxes affect innovation, e.g. if a
higher carbon tax leads to lower growth which in turn lowers innovative activity. There is little
support in the literature for this suspicion however, on the contrary, findings in recent research
suggests that the economic impact would be minimal or even positive (see e.g. overview by Fawcett
et al., 2018).

44From the IEA (2020) we have data on tax-inclusive fuel prices and fuel taxes, in 2005 constant
USD and PPP-adjusted, from 37 countries from 1978-2016. We construct the country-specific
variable on average tax-inclusive fuel price and average fuel taxes by simply averaging the prices
and taxes on gasoline and diesel for each year, following the same method employed by Aghion et
al. (2016).
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bias, including e.g. exposure to media coverage of the climate crisis45, however,
comprehensive data on such variables have proved very difficult to find for the
particular time period at hand. Since we do suspect that our controls might not
fully capture all sources of potential OVB we also run several specifications that
include a country-specific linear trend term as a way to partially control for such factors.

Baseline model: We build a linear model using country and time fixed effects.
Below is the specification of the model:

CC_patentsc,t = β×Carbon_Taxc,t−1 + δtt + ΓCc +Kc,t−1 +λgrowthc,t +α+ εt (5)

CC_patentsc,t is the the number of "climate change mitigation technologies" patented
in a specific country c in a given time period tt. We also introduce t, a dummy for
the time period, in this case a given year, and Cc, a dummy for countries, and δ and
Γ are the relative vectors of coefficients. Carbon_Taxc,t−1 is the country and time
specific carbon tax at time t− 1, β is the coefficient regarding the carbon tax that we
are interested in. We follow the example of Aghion et al. (2016) and lag the value
(with one year) of the real CO2 tax, as well as Government spending on environmental-
related R&D and the tax-exclusive fuel price (FP), contained in the matrix of controls
K. Further, we control for GDP growth. The motivation behind using lagged values is
that we might expect that innovation responds to changes in carbon taxes (and fuel
prices), as well as R&D investments, not immediately but with some reaction time.46

Alternative specification: Apart from the carbon tax we also estimate the effects of
fuel taxes on clean innovation, using a model analogous to the one above. While fuel
taxes are not exactly substitutes to carbon taxes47, they are comparable in nature and
hence a change in fuel taxes should impact innovation by similar logic. Data on fuel
taxes is far more extensive than data available on national carbon taxes48, which is the

45By the logic: increased media coverage would likely both increase opportunity room for policy-
makers to introduce or increase a carbon tax, as well as spur climate change mitigating innovation
directly.

46Also, it should mitigate any contemporaneous feedback effects (Aghion et al., 2016).
47Notably, carbon taxes levied on (theoretically) all activities that emits GHGs are more

encompassing than fuel taxes, which are more or less a sales tax on gasoline and diesel and could
be seen as a more narrow “sectoral carbon tax” (Sterner, 2015). Furthermore, in contrast to fuel
taxes that are commonly considered regressive, a carbon tax, often designed with a “polluters pay”
objective, should be simpler to levy “upstream” on producers that pollute.

48Fuel tax data provides a balanced panel of 1 135 observations from 37 OECD countries
between 1978-2016, compared to 226 observation from 17 countries, 1990-2016 for carbon taxes.
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main benefit of testing our model on this variable as a robustness check.49 We retrieve
data on fuel taxes, in constant 2005 USD and PPP-adjusted over, between 1978-2016,
from the International Energy Agency (IEA, 2020). In line with Aghion et al. (2016),
we use the average of diesel and gasoline taxes to construct a time-varying fuel tax for
each country in our sample.50

49Furthermore, fuel taxes are also PPP-adjusted, whilst our data on carbon taxes are not, which
is another drawback of the carbon tax data in terms of comparability.

50We construct a country-level average tax-inclusive fuel price by the same method. By
subtracting the fuel tax from the fuel price, we get the tax-exclusive fuel price that we use both
as a control in the panel data regression and as a predictor in our synthetic control method.
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5 Results

5.1 Synthetic control results

In this section we analyze the results from our synthetic control strategy. First, we
start out by comparing the pre-treatment fit between Sweden and the simple average
of our donor countries, in terms of the outcome variable, for descriptive purposes.
Next, we compare the fit between our synthetic Sweden and Sweden in the pre-
treatment period to get a sense of how well our counterfactual resembles real Sweden.
A similar pre-treatment path between Sweden and the counterfactual is central to
the identifying assumption of the synthetic control method. Secondly, we turn to
analyzing the divergence in trajectory between Sweden and our synthetic control in
the post-treatment period and estimate the effects. Lastly, we conduct several placebo
tests to check the robustness of our results.

5.1.1 Sweden versus synthetic Sweden

The synthetic control method relies on the identifying assumption that the synthetic
control unit provides the path of climate change mitigating patents in Sweden in the
post-treatment years 1991-2005, in absence of treatment i.e. had the carbon tax not
been introduced. For this assumption to be credible, the synthetic Sweden should be
able to satisfyingly track both the trajectory of climate change mitigating innovation,
measured in patents per million capita, as well as values on key predictors in the
pre-treatment period, 1978-1990.
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Figure 2: Path of CC technology patents per capita million
between Sweden and 15 donor countries mean

To start off, we turn to figure 2, which shows the trajectory of clean innovation, as
measured by climate change mitigation patents per capita million, in Sweden versus
the simple averge of the 15 OECD-countries in our donor pool between the years 1978-
2005. As can be depicted from the graph, the donor pool simple average gives a poor
fit to the path of Sweden, both in terms of the pre-treatment trends but also (notably)
in terms of levels. The donor pool average path of clean innovation is substantially
lower compared to Sweden’s levels, throughout the whole sample period. This result
basically shows that the parallel trends assumption, underlying the DiD method, would
clearly have been violated and our results would have been biased, had we used such
a framework using the averaged donor pool as the control unit. We move on to our
synthetic Sweden, composed of a weighted average of the donor countries, instead to
compare how well it tracks Sweden in the pre-treatment years.
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Figure 3: Path of CC technology patents per capita million
between Sweden and synthetic Sweden

Figure 2 shows that prior to the treatment year, 1991, the climate change mitigation
innovation paths of synthetic Sweden and Sweden follows similar trends. We note that
the paths do not match perfectly, but given the volatility of our measurement unit
as well as some particular economic and political circumstances marking the early
1980’s51, this is something not completely unexpected. We do, however, observe that
Sweden and its synthetic counterpart track each other very closely after 1985, which
is reassuring. Although, we should also note that the fact that the paths of Sweden
and synthetic Sweden are better aligned post-1985 might also have to do with the
cross-validation method, since this optimizes predictor weights between 1985-1990 in
the validation period, given the optimized country weights obtained in the training

51Notably, there is a slight divergence also in the early 1980’s in which the path of climate
change innovation patents in Sweden lie strikingly above the synthetic Sweden, possibly, this could
be related to a strong environmental movement in Sweden during these years, with some notable
events such as the founding of the Swedish Green party in 1981 and a referendum about the future
of nuclear power in 1980. Furthermore, we should also note that the 1979 oil crisis, prompted by
the Iranian Revolution, shocked the global economy by causing a surge in oil prices (which did not
return to pre-1979 levels until the mid 1980’s) and an international recession. It is plausible that
the oil shock would have caused heterogeneous effects in terms of innovative activity depending on
underlying structures of the economy (here we note that Sweden has no own production of crude
oil but is completely dependent on international imports), which might also possibly contribute to
explaining some of the gap between Sweden and synthetic Sweden in the early 1980’s.
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period (see methodology section for more details). For comparison, see figure 15 in
Appendix, where we show the results of the synthetic control method without cross-
validation, in which we minimize the mean squared prediction error (MSPE) over the
whole pre-treatment period. By this method, as expected, the trajectory of Sweden
and synthetic Sweden are somewhat better aligned over the full period, but relatively
worse matched in the years 1985-1990 compared to cross-validation. As we will come
back to later, however, this does not affect our results. The cross-validation procedure,
on the other hand, tends to produce less biased estimates (Abadie et al., 2015).

In table 3 we compare the average values of key predictors over the pre-intervention
year 1978-1990, where the synthetic control unit represents a weighted average of the
donor pool countries characteristics, and the sample mean just gives the mean over
the whole sample. It is encouraging that the average predictor values of the synthetic
control more closely resembles the values of Sweden for all variables compared to the
sample means.

Table 3: Key predictor means pre-intervention

Treated synthetic sample mean

GDP per capita 21722.486 22541.623 20759.293

Patents app. per capita million 463.422 410.492 323.454

Urban population share 83.068 75.241 73.462

Tax exclusive real fuel price 0.364 0.401 0.481

CC patents per capita million 1978 6.391 5.443 3.158

CC patents per capita million 1984 7.911 6.589 4.388

CC patents per capita million 1990 6.472 6.516 4.597
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Table 4: Predictor weights V ∗.

Variable V ∗

GDP per capita 0.336

Patent app. per capita million 0.034

Urban population share 0.016

Tax-exclusive real fuel price 0.275

CC patents per capita million (1978) 0.131

CC patents per capita million (1984) 0.023

CC patents per capita million (1990) 0.185

Table 4 shows the optimal predictor weights V ∗ that we found: 0.336 for GDP
per capita, 0.034 for patent applications per million, 0.016 for urban population share,
0.275 for real fuel price exclusive of tax, and 0.131, 0.023 and 0.185, for climate change
mitigation technology patents per million population respectively for the years 1978,
1984 and 199052.

GDP per capita and the tax-exclusive real fuel price are the most important
predictors for our synthetic Sweden in this model and this is consistent with the
relatively better match of these variables compared to the predictors with less weight
assigned to them, such as urban population share. Furthermore, we note that our
general measure of innovation, patent applications per million residents53, takes a
relatively small weight as a predictor in our synthetic Sweden. On the other hand,
the combined weight of the three lagged values on climate change technology patents,
with the final year before treatment (1990) being most dominant, amounts to 0.339,
i.e. about a third of the total weights. This might suggest that a pre-treatment trend
of innovation in clean technologies might be relatively more important to predict the

52We tried different combinations of the lagged values of climate change mitigation patents, such
as e.g. 1980,1985,1990, and 1982,1986,1990, but none gave a better pre-treatment fit or had any
substantial impact on the estimated effect.

53We should also note here that this measures only patent applications by residents in the
country in question, and not total patent applications, i.e. it excludes patent applications in a
country by non-residents. This is important to keep in mind since in some countries non-residents
may account for a large part of innovations. However, for the purposes of this study, we think
that patent applications by residents might better capture innovative activity in a country that is
more stable in that country, even as policies change. Patent-applications by non-residents, on the
other hand, is likely a measure more skewed to some countries with big high-technology sectors of
industry or research, or home to some of the large patent application offices. Also, non-residential
patent-applications as a measure of innovation might reflect more strategic geographic location
decisions by major multinational companies and less actual domestic innovation.
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future of innovation in clean technologies, than the pre-treatment trend of innovation
in general.

Table 5: Country Weights W ∗

Weight Country Country Number

0.350 Germany 6

0.344 France 5

0.161 Australia 1

0.145 Switzerland 14

0.000 Austria 2

0.000 Belgium 3

0.000 Canada 4

0.000 Greece 7

0.000 Ireland 8

0.000 Italy 9

0.000 Japan 10

0.000 Netherlands 11

0.000 Spain 12

0.000 United Kingdom 15

0.000 United States 16

Table 5 shows that the synthetic Sweden, in our model, is best reproduced by
a combination of Germany, France, Australia and Switzerland.54 The remaining
countries in the donor pool gets either a weight of zero or a weight so close to
zero that it is negligible.55 We note without surprise, that the donor countries to
synthetic Sweden are composed by other west-European countries, with the exception
of Australia, as the combination of these countries most closely resemble Sweden in
our key predictors such as GDP per capita, GDP growth rate and number of patent
applications per year.

54Given the small sample size the country weights are not completely stable. While changing
specifications leads to slightly different country weights, we still estimate the same gap in climate
change mitigation patents per million population in the post-treatment period with a having a
worse fit in the pre-treatment period.

55We report the weights up to the third decimal place in Table 5.
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Figure 4: Gap in CC technology patents per capita million
between Sweden and synthetic Sweden

5.1.2 Estimated effects

The divergence in trajectory of the post-treatment gap in climate change mitigating
innovation, depicted in figure 3 is better visualized in the above gap plot, figure 4. From
this plot we can clearly see the divergence of Sweden from the pre-treatment trend.
Shortly after the introduction of the carbon tax in 1991 there is seemingly a strong
positive effect on clean innovation. We estimate an increase, relative to the synthetic
Sweden, of on average 1.88 climate change mitigating technology patents per capita
million yearly, or 14.1%, in an average year in the post-treatment period 1991-2005.
In the first 10 years of the carbon tax being in effect, we estimate a positive effect of
18.5% in an average year.56 We also estimate the cumulative effect of the carbon tax
on clean innovation in the post-treatment period (1991-2005) to 28.25 climate change
mitigation technology patents per million in total. Aggregating over the total Swedish
population, this suggests that Sweden produced in total 249.88 more patents in the
post-treatment period than it would have done in absence of the carbon tax. To put

56We also note that Sweden suffered a financial crisis in the early 1990’s, which might explain
why in the first couple of years after the introduction of the carbon tax, 1991-1992, we observe a
very small effect on clean innovation, whereas for the year 1993-2000, when Sweden’s economy has
largely recovered, we estimate a postive effect of wholly 24.35% in an average year.
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this into context, consider that Sweden produced on average a total of 114.95 clean
patents yearly between 1991-2005.57

Interestingly, we observe that although the carbon tax had a positive effect on
innovation over the whole post-treatment period, there is a notable drop back in
magnitude in the early 2000’s. As can be depicted in figure 3, climate change innovation
in Sweden, after seeing a substantial increase in the 1990’s, returns to levels relatively
much closer to the values predicted by synthetic Sweden after about 10 years in effect.
In fact, in the year 1999 we estimate that the carbon tax had an average positive
effect of 26.2% compared to the synthetic Sweden, which falls to 10.8% in the year
2000 and 3.1% in the subsequent year 2001. We estimate the average yearly effect
between 2000-2005 to 6.2%, which is substantially lower than the average yearly effect
of 18.5% throughout the 1990’s. There could be several explanations to this, one being
that the energy tax rate was reduced in the years 2001-2005, almost cancelling out the
concurring increase in the carbon tax. The net effect on the combined real tax rate
(change in carbon and energy tax) during these years was almost zero.58 Unfortunately,
an empirical investigation of this drop back is outside the scope of this thesis, but we
present some potential causes in the discussion section. Even with this drop-back,
however, the estimated total effect of 249.88 more clean patents over the first 15 years
of the carbon tax being implemented, is arguably economically substantial.59

5.1.3 Placebo tests

To test the validity of our results and to obtain more insights regarding the uncertainty
of our estimates we perform a number of placebo tests, including in-time and in-space
tests, as well as a leave-one-out test, in line with Abadie et al. (2010, 2015).

The in-time test exploits the longitudinal dimension to test robustness. This means
that we run the synthetic control model on our subject of treatment, i.e. Sweden, but
let the dates of the intervention be set at random (Bertrand et al., 2004, Abadie et al.,
2015). If the placebo interventions produce a divergence in trajectory between Sweden
synthetic Sweden, it would cast doubts both over the existence of causal relationship
between the predictors and the dependent variable as well as about the existence of

57The average total production of clean patents yearly between 1991-2016 is 172.53, which
reflects the continued increase post 2005, which is the end date for our synthetic control evalution.

58It should also be noted that on the retail price of gasoline a VAT of 25% is applied to the
combined value of the tax-exclusive price, the carbon tax and the energy tax, hence acting like a
multiplier to any changes in the price components.

59As preciously noted, we also test the synthetic control method without cross-validation. A
gap plot of the estimated results using that method can be found in the Appendix, see figure 16.
Reassuringly, this does not change our result.
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any true effect of the Swedish carbon tax on clean innovation. We carry out this test
by assigning treatment to years 1988 and 1986 as is shown in the figure below60.

Figure 5: Path of Sweden vs. synthetic
Sweden: placebo treatment year 1988

Figure 6: Path of Sweden vs. synthetic
Sweden: placebo treatment year 1986

We see from figure 5 and 6 respectively that the gap between Sweden and the
synthetic control persists even when we assign the treatment date at random. This
is reassuring as it suggests that our result is robust to such manipulations, and that
indeed our estimated effect of the introduction of the real carbon tax in 1991 could not
be reproduced by an in-time arbitrary treatment.

A placebo test in space, on the other hand, means iteratively applying our synthetic
control model to estimate the effect of the Swedish 1991 carbon tax, to each country in
our donor pool. In other words, we reassign treatment to every country in our donor
pool (as if they had implemented a carbon tax in 1991 instead of Sweden) and compute
the estimated effect of each of these placebo runs. Here the premise is that this provides
us with a distribution of the estimated placebo effects in all countries that were never
directly exposed to the treatment. It is a way of quantifying the uncertainty around the
estimated gap for Sweden. If the placebo tests register gaps of a magnitude similar to
the one for Sweden, then we would have a hard time interpreting our results as evidence
of any significant effect on the direction of technological innovation for Sweden. On the
other hand, if the placebo test shows that the gap estimated for Sweden is abnormally
large relative to the gaps in the placebo runs, this can be interpreted as evidence of a
significant effect (Abadie et al., 2010).

60We split the training and validation sets keeping the same ratio as in the original specification.
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Figure 7: Permutation test: CC patents
gap of Sweden vs. synthetic Sweden
and placebo gaps in all 17 donor

countries

Figure 8: Permutation test: CC patents
gap of Sweden vs. synthetic Sweden
and placebo gaps in countries with a

good pre-treatment fit

In the above figures, the grey lines represent the gap between each country in our
donor pool and its respective synthetic counterfactual. The black line represents the
gap between Sweden and synthetic Sweden.

Figure 7 shows the result of the in-space placebo test when we include all countries
in the donor pool, even the cases where the synthetic control algorithm fails to find
a convex combination of countries that can replicate the trajectory of climate change
patents per million in the pre-treatment period. The figure indicates that the estimated
gap for Sweden post-treatment is unusually large compared to the distribution of
placebo gaps of the donor pool countries in the years 1991-2000, which is further
evidence that the estimated gap is not due to variance in the data. However, as
including donor countries with poor fit prior to treatment will plausibly not provide
any interpretative post-treatment information about probabilities of finding a large
estimated gap61, Abadie et al. (2010) also suggests to run the same placebo test
excluding units with a poor pre-treatment fit.

In figure 8, we exclude countries with a poor fit on the pre-treatment period,
i.e. countries whose mean squared prediction error (MSPE) is 20 times larger, on
the validation set, than Sweden’s MSPE. This excludes 4 countries, namely: Austria,
Belgium, Japan and United Kingdom. This give us a more adequate group of placebo
gaps against which to measure whether our estimated gap for Sweden is indeed real
and unusually large. Our results suggest that if we had assigned treatment at random
we would have had roughly a 1/12 chance of Sweden being the one with the largest

61Including countries with a poor pre-treatment fit in the placebo test may lead to over-rejection
of an effect.
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post-treatment gap between years 1990-2000. In this case the p-value would be 1/12
= 0.083. Figure 8 shows that Sweden still had the highest post-treatment gap after
intervention after after excluding the countries with a poor fit.

In addition, similarly to Abadie et al. (2010) and Andersson (2019), to avoid relying
only on the MSPE cut-off threshold that is somewhat arbitrary (referring to the MSPE
of 20 times higher than to that of Sweden), we also show the ratio of post-treatment
MSPE to pre-treatment MSPE as an indication of a true causal effect. By looking at
the ratio we do not need to arbitrarily exclude countries on our cut-off rule, this is
useful in our case where the donor pool is not big.

Figure 9: Ratio test: Ratios of post-treatment MSPE to
pre-treatment MSPE: Sweden and 15 donor countries

Figure 9 shows that Sweden has by far the largest post-treatment to pre-treatment
MSPE ratio of our 16 countries. If we have to assign the treatment at random, the
probability of finding a ratio as large as Sweden’s is 1/16 or 0.0625, the smallest
possible p-value with our sample size.
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5.1.4 Leave-one-out test

Lastly, we perform a leave-one-out test in which we try to estimate the uncertainty
regarding our synthetic control results, by repeating the same procedure but iteratively
removing one country from the donor pool.

Figure 10: Leave-one-out: Distribution of synthetic controls for
Sweden

In figure 10 the black line is the optimal synthetic control estimated using cross-
validation and the entire pool of donor countries, the grey lines are the synthetic control
estimated by each of the leave one out iterations. We also add real Sweden (the red
line) as a comparison. From the plot we see that in all specification the grey lines are
below the red one from 1991 to 2000. There is only one line that is above real Sweden,
but only for a limited period of time at the end62. Overall the majority of the results
tend to be largely unchanged in terms of estimated gaps.

5.2 Panel data regression results

In table 6 we present our results from the cross-country panel data regressions with the
fixed effects estimator. In specification 1-4 we add our control variables one by one, but
neither seems to have much impact on our the estimate of the independent variable,

62This only happens after year 2000.
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the real CO2 tax. In specification 5-7 we add a country-specific linear time-trend in
order to capture any trend effects in various characteristics that might be a source of
potential OVB in our baseline specifications63.

Table 6: CC technology patents per capita million, real CO2

tax as independent variable.

(1) (2) (3) (4) (5) (6) (7)

FE FE FE FE FE FE FE

Real CO2 tax (lag) -0.0124 -0.0157 -0.139 -0.232 0.0644 0.0440 0.0136

(0.141) (0.145) (0.158) (0.185) (0.089) (0.106) (0.124)

GDP growth per capita 0.324 0.388 0.199 0.0809 0.0964 0.0166

(0.311) (0.283) (0.170) (0.166) (0.151) (0.123)

GOV R&D (lag) -0.000830 -0.0115 0.0217 0.0236

(0.013) (0.021) (0.020) (0.021)

Tax exclusive FP (lag) 34.34 25.42

(41.105) (24.790)

Trend YES YES YES

Constant 4.657 6.999 1.156 -11.35 -986.1∗∗∗ -1188.8∗∗∗ -1383.7∗∗∗

(4.532) (4.855) (1.173) (14.429) (267.917) (364.819) (440.529)

Observations 203 203 179 161 203 179 161

R2 0.428 0.434 0.530 0.626 0.797 0.810 0.832

Note: Standard errors in parentheses, clustered at country level.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As evident from the table 6, we find no detectable effect of a carbon tax on clean
innovation as measured by climate change technology patents per capita million in
our cross-country sample. In fact, the estimate of the carbon tax on innovation is
negative in all specifications, apart from specifications 5-7 when adding the country-
specific trends. However, as the estimate in every specification is very close to zero and
insignificant, we cannot draw any conclusions about these results, not even in terms of
direction of a potential effect.

As discussed in the methodology section, one of the main drawbacks with the panel

63For example factors such as medial coverage of the climate crisis which is likely to have
increased over time but to various extent in different countries, and which we would have liked to
control for specifically had data been available.
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data regression model is the limited number of observations in cross-country data. In
our sample we have 17 countries that implemented a carbon tax sometime during the
time period 1990-2016. However, due to the fact that few countries adopted carbon
taxes pre-2005, only eight of these countries provides more than eight observations.
Furthermore, five of the national carbon taxes that were enacted during this period
have been kept at a very low level throughout (below 5 USD/tons CO2 emissions in
2016 nominal prices) and with relatively small changes to the rate (World Bank, 2020).
Due to the limited data, we also conduct fixed effects panel data regressions on clean
innovation using changes in fuel tax, as a proxy for carbon tax. These results can be
found in table 7.

Table 7: CC technology patents per capita million, log of real
fuel tax as independent variable.

(1) (2) (3) (4) (5) (6) (7)

FE FE FE FE FE FE FE

Ln real fuel tax (lag) -0.205 0.645 3.261∗ 3.584∗ 2.942∗ 2.715 2.867

(1.577) (1.589) (1.789) (1.776) (1.567) (2.014) (1.992)

GDP growth per capita -0.0538 0.124 0.0836 0.0777 0.166∗∗ 0.148∗

(0.090) (0.110) (0.115) (0.067) (0.074) (0.076)

GOV R&D (lag) 0.00153 0.00105 -0.00701∗∗∗ -0.00687∗∗∗

(0.009) (0.010) (0.002) (0.002)

Ln tax exclusive FP (lag) 5.693∗∗ 2.483∗

(2.371) (1.319)

Trend YES YES YES

Constant 1.650 2.846 5.607∗∗ 9.098∗∗∗ -553.7∗∗∗ -846.5∗∗∗ -887.7∗∗∗

(2.593) (2.481) (2.503) (2.359) (85.724) (106.037) (137.302)

Observations 1099 1047 845 845 1047 845 845

R2 0.441 0.448 0.501 0.507 0.827 0.851 0.852

Note: Standard errors in parentheses, clustered at country level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In these specifications, we use the log of the fuel tax to estimate the effect on
innovation. The reason for this is that it simplifies interpretation, the data on fuel tax
is measured in USD per litre (compared to the carbon tax which is measured in USD
per ton) and generally ranges between 0-1. Hence, in this case it makes sense to log
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the variable to be able to make meaningful interpretations of any changes in the tax.
Interestingly, the effect of the fuel tax is positive in all specifications, apart from

the first one, which we should not worry too much about since it likely suffers from
bias given the exclusion of controls. In specification 1-2, as in the regressions using the
carbon tax, estimated effects are both statistically and economically insignificant (close
to zero). When we add controls for government spending on environment-related R&D
and the tax-exclusive fuel price, however, in specifications 3-4, the estimated effects of
the fuel tax on climate change mitigation technologies jumps to a substantially higher
value of 3.261 and 3.584 respectively. Furthermore, these results are significant at the
10% level. In specification 5-7 we add a country-specific linear time-trend to to our
model to account for other trend effects that might potentially bias our estimates.
In specification 5, the estimate is significant on the 10% level but as we add more
controls in specification 6-7 estimates turn insignificant again. Interestingly, however,
the estimated effect of the fuel tax on climate change inventions seems more stable
generally in the specifications with a linear time-trend included64, and varies between
2.715 and 2.942.

Altogether, regressions in table 7 provide some tentative indications on a positive
direction of the effect of fuel taxes on technological innovation, which is theoretically
and economically interesting. Nevertheless, the estimates are too statistically uncertain
to draw any conclusions about the magnitude of the effect at all.

64This could also have to do with the time-trend partialling out much of the variation however.
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6 Discussion

In this section we will discuss the internal and external validity of our results, as well
as the merits and limitations of our empirical strategy. We will analyse our findings in
relation to previous literature as well as the policy-implications of our results. Finally,
we will suggest some potential opportunities for future research in the light of our
findings.

To start off, we focus the discussion on the main results of this thesis, the
evaluation of the Swedish carbon tax on clean innovation using the synthetic control
method, which we subsequently connect to the results of our cross-country panel
data regressions. Briefly summarizing the results we find, in line with theory and
previous literature, that the Swedish carbon tax had a positive impact fostering
clean innovation. We estimate that the Swedish carbon tax lead to an increase of
average 1.88 clean patents per capita million on average yearly in the post-treatment
years 1991-2005, than in the counterfactual case in absence of the carbon tax. This
corresponds to an estimated increase of 14.1% in an average year. In cumulative
terms, this suggests that Sweden produced 24.35 more clean patents per capita million,
or 249.88 in aggregated total (population-adjusted), over the 15 years following the
introduction of carbon the tax than it would have done without the tax. To put this
in perspective, in an average year between 1991-2005, the total production of clean
patents in Sweden amounted to 114.95. Hence, our results suggest that the Swedish
carbon tax contributed to stimulate clean innovation over the full post-treatment
period, of a magnitude corresponding to more than two years of average total yearly
clean innovation. Arguably, this implies that the effect is economically meaningful,
and quite substantial.

6.1 Internal validity

In order to be able to draw any conclusions from our results, however, we first need
to have a thorough discussion about the internal validity of our study. Starting with
the identifying assumption, one critique that could emerge to our strategy, is that the
relatively short pre-intervention period might not provide sufficient pre-intervention
observations for our identifying assumption to be fully credible. We do not believe this
is a fundamental issue, however, for several reasons. First of all, as there is no technical
rule defining how many periods are sufficient for a "long enough" pre-treatment time
span, this is essentially a matter of judgement in each unique case. In our case, we
use predictors that should, by economic theory and previous literature, be well-suited
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for creating our synthetic Sweden. Although for some predictors, longer pre-treatment
time-spans of the data is available, it is from 1978 that we have a fully balanced data
set on all predictors. In our judgement, a better balanced data set that still provides
13 years of observations formed a sounder basis to our counterfactual than would
a longer but asymmetric and unbalanced pre-intervention data set.65 Secondly, even
from a relatively limited pre-treatment time-span, our predictors produce a satisfactory
counterfactual in terms of matching the trajectory of Sweden.66. Taken together, these
factors should lend credibility to the identifying assumption.

Furthermore, turning to our counterfactual we find that our synthetic Sweden is
constructed primarily by weights from other west-European countries, which is not
surprising given that these countries are similar to Sweden in many fundamental
economic and social dimensions. That the weights are theoretically sensible adds
another level of confidence that our method provides a credible counterfactual Sweden.
Lastly, we perform multiple placebo tests of our results, as well as present (in the
Appendix) an additional specification without cross-validation where we optimize over
all available pre-treatment data. Our results prove robust to tests and changes in
specification, which suggests that our estimated effect of the Swedish carbon tax is
unlikely to be due to randomness. Hence, altogether, we are quite confident regarding
the internal validity of our study.

6.2 External validity

Next, we turn to discuss the external validity, i.e. the generalization, of our results.
External validity, however, is difficult to judge since results might be contingent on
the particular context and features that apply to the Swedish carbon tax. As noted
in the data section (3) the design of national carbon taxes vary across jurisdictions,
which is a limitation when it comes to comparability. On the other hand, typically
all fundamental aspects of carbon tax systems are mostly very similar, and the source
of greater variation is instead the tax level, i.e. the price put on carbon. Hence,
we expect that for countries with comparable economic and political structures to
Sweden, perhaps most importantly with similarities in educational attainment levels

65Furthermore, if we compare to for example Abadie et al. 2015, in which the authors use data
on some predictors - schooling - reported in five-year increments, this means that they have in total
only 6 observations on this variable over the whole pre-treatment period (in their case 30 years), in
a sense, our pre-treatment data with 13 observations on each variable gives, in absolute terms, more
data to draw from.

66Additionally, the methodology applied is crafted in order to address most potential issues of
the properties of our data: Low number of treated units, limited pre-treatment period, impossibility
to verify the parallel trend assumption
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and policies pertaining to innovation, a carbon tax with similar design and level should
yield comparable results in terms of innovation in terms of clean technologies patented.
However, for countries with fundamentally different economic and political structures
to Sweden and/or with a carbon tax design relatively dissimilar to Sweden, the findings
of this study may not apply.

6.3 Limitations

Having discussed the validity of our results, there are some limitations of the method
and ambiguity of results that we still need to address. Firstly, as noted in the results
section, the effect of the Swedish carbon tax on clean innovation, as estimated through
the synthetic control method, does not seem completely stable over time. While our
model estimates a substantial and increasing gap in clean innovation between Sweden
and synthetic Sweden post-treatment (1991) throughout the 1990’s, this falls back
down again quite noticeably in the early 2000’s. One explanatory factor for this could
be the fact that climate change mitigating technologies in patents per million capita
is a relatively volatile measure, as previously noted. This volatility around a trend is
evident throughout the whole time series of data, which can be observed figure 11 in
the Appendix.

Nevertheless, the drop back eliminates a substantial part of the gap between Sweden
and synthetic Sweden, suggesting it cannot be explained only by the volatility in the
measure. Hence, we need to consider what real factor could explain this. There are
several potential explanations: that the effect of the carbon tax on clean innovation
in Sweden is only temporary by nature; that other factors contributed to a pick-up in
climate change mitigation innovation among donor countries around this time period
or that Sweden experienced some kind of shock, that affected the key predictor values
of Sweden comparatively more than the donor countries.

As mentioned in the results section, we note that the drop back in the early
2000’s coincide with a reduction in the energy tax rate in the years 2001-2005, almost
cancelling out the concurring increase in the carbon tax. In effect, the net impact on the
combined real tax rate on fossil fuels during these years was almost zero. Furthermore,
looking at the real carbon tax, see figures 12 and 13 in Appendix, we notice that the
carbon tax actually declines in value in the years 1999 and 2000, from a rather stable
level of fluctuating around real (1990) USD 40 to real (1990) USD 33.5 in 2000.67 These
real price factors are some likely explanations to the observed fallback, especially in

67The real carbon tax rates increases again 2002 to real USD 45 and the continues a steep
increase in the following years.
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the light of Sweden returning to a positive trend in clean innovation again in the years
following the drop-back.

This seems especially plausible given the nature of patents as a measure of
innovation, since additional patents are something that can only increase the current
technological level to some extent. This goes by the following logic: if a carbon tax
is implemented at a certain technological level, then this will spur clean innovation
that economizes production, such that it offsets the increase in relative costs for
using a dirty technology (affected by the rise in carbon tax), up the level of the tax.
Theoretically, this would just give rise to one new patent68 in one time period in which
(or technically the period after) the tax was implemented, and not necessarily result in
a stably higher level over all in clean innovation (because you really only need one new
patent to get to the new equilibrium.) Hence, we would not necessarily expect that a
real carbon tax that remains at a stable level, or even falls, would actually continue
to stimulate innovation at a new equilibrium level (again, since patents are additive
to the technology level). At least not until the knowledge stock and market size has
become large enough in clean innovation to counter the path dependency effect in dirty
technologies and shift incentives towards clean innovation (as suggested by Acemoglu
et al., 2012). The fact that we cannot empirically investigate the explanations to or
impact of this drop back however, is arguably a key limitation of this study.

Another limitation, highly related to the aforementioned, is the fact that although
the synthetic control results are arguably robust enough that we can confidently state
that the Swedish carbon tax indeed have had a positive impact on clean innovation
in Sweden, which we estimate to an increase of 1.88 patents in the average year given
the volatility of the measure, the exact magnitude of the effect is a bit uncertain and
we would be hesitant to accept these estimates at face value. To this end, another
important limitation is that estimating innovation through patent count does not
capture all clean technology innovation. We focus only on high value patents in this
study, which should suggest that our estimates are economically meaningful, but it is
still important to keep in mind that this measure does not necessarily reflect the actual
economic value of these innovations.

6.4 Case study evaluation vs. cross-country estimations

In this subsection we discuss the results of our complementary panel data regressions,
in relation to the findings in our Swedish case study.

68Since typically you only apply to a patent once, which then gives you the right to the
technology for the next 30 years or so.
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First off, we employed a traditional panel data regressions method with a fixed
effects estimator on the existing data available on national carbon taxes, in an attempt
to see whether we could broadly estimate an effect on clean innovation from a cross-
country sample. As described in the results section, the regressions using national
carbon taxes as the independent variables results are statistically and economically
insignificant throughout. The alternative specifications in which we use fuel taxes
as a proxy of carbon taxes provide some indications of the direction of an effect of
carbon taxation on climate change mitigating innovation. Nevertheless, the results are
not conclusive and statistically weak throughout the majority of tested specifications.
Hence, the panel data regressions conducted do not provide many interpretative results
at all.

Yet, in the light of our relatively strong evidence of an effect in our case study
of Sweden, these results might still provide an interesting ground for analysis. How
come that the results of our panel-data regression produce practically no support to our
findings by the synthetic control method?

There are two potential explanations to this question. Firstly, there might exist a
true effect on clean innovation, which we fail to detect due to limitations of the data
and empirical method. Secondly, there might not exist any true effect of carbon taxes
on innovation in our sample, which is the simple explanation to why we find no effect.

If we start by focusing on the first case. As previously noticed, panel data on
national carbon taxes is highly limited both in terms of availability and variation,
which makes it empirically challenging to detect an effect even if there is one using a
traditional panel regression method - simply because the sample size and variation is
too small. Given this limitation, the synthetic control method is a more appropriate
method just given the fact that there is relatively much more data available on countries
that did in fact not implement a carbon tax (i.e. that can function as donor pool
countries), and the fact that national policies, with unique national features, are
typically better evaluated through a case study. Practical and technical limitations
may well explain the lack of detectable effects by this method.

On the other hand, if we assume the latter case to be true, that our panel data
regression model is adequate and our sample sufficient, what might then explain the
fact that we find a strong and significant effect in our case study of Sweden but no
effect in the panel data regressions? There is one potential explanation to this that
seems quite plausible: that this result is due to the differences in the level of carbon
taxes. The real Swedish carbon tax is on average more than 5 times higher than the
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combined average of all other countries in our sample69, and as previously mentioned,
the only carbon tax on par with the carbon pricing recommendations in line with the
2015 Paris Agreement. See figure 14 in Appendix for overview of cross-country real
carbon taxes.

From previous literature, see literature review section (2) and specifically Acemoglu
et al. (2012) and Aghion et al. (2016), the prevalence of path-dependency effects
suggests that the level of a carbon tax is highly important in order to create a change
in direction of innovation, since a moderate carbon tax may not be sufficient to shift
innovation from "dirty" to "clean". If this is effect is substantial, as predicted by
theory, it might plausibly both explain and support our results (and vice versa, our
results would support this theory), which suggests that a relatively high carbon tax,
such as in the case of Sweden, indeed contributes to foster clean innovation, while
more moderate carbon taxes, as are dominant in our panel data sample (see figure
14, Appendix), produce no substantial effect at all, since a small carbon tax cannot
counter the path-dependency effect that locks en economy with a relatively higher
knowledge stock and market size in "dirty technologies". By this theory, our results
in this thesis would imply that only carbon taxes of sufficiently high level of pricing
actually contributes to spurring clean innovation, whilst moderate carbon taxation
does not have a detectable effect on innovation.

6.5 Policy implications

We also want to spend a few sentences discussing the potential policy implications of
this thesis. As noted in the introduction, the question of whether carbon taxes have
an impact on clean technology innovation should be particularly relevant to policy-
makers and especially in light of the carbon pricing targets set out in the 2015 Paris
Agreement. To this end, the Swedish carbon tax is one of few climate policy initiatives
that provides a real world example of a carbon pricing level that actually consistent
with achieving the target temperature of the Paris agreement.

To the interest of policy-makers, our findings suggests the following: Firstly, a
carbon tax of sufficiently high level can be an efficient policy-tool to stimulate clean
innovation and accelerate the transition to a low-carbon economy. Secondly, a higher
carbon tax likely pays off better in terms of stimulating clean innovation than does

69The simple average of the real Swedish carbon tax in our panel data is 65.08 in constant (1990)
USD, while the simple average of all other countries’ real carbon taxes together, over the whole
time period in our sample, is 12.39 in constant USD. This makes the average real Swedish carbon
tax 5.26 times higher than the average real carbon tax of all other countries together.
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a carbon tax at a moderate level, which might even have no effect at all. This is
consistent with predictions by Acemoglu et al. (2012) and findings by Aghion et al.
(2016). Thirdly, our findings suggest that it is more efficient in efforts of shifting
incentives for direction of innovation to act more strongly, early on in terms of climate
policy.

Due to the limitations of this study, since we do not quantify the value of innovation
measured, however, we cannot state anything certain about the economic magnitude of
carbon taxes on clean innovation. Nevertheless, we might anticipate that the economic
impact is significant, given the substantial increase in high value patents compared to
the counterfactual case. This should also be an important take-away for policy-makers.

6.6 Opportunities for future research

Finally, we recognize that this study, to our knowledge, is one of the first to employ the
synthetic control method to evaluate the impact of a carbon tax on clean technology
innovation on a macro-level. As previously noted, there is a growing strand of literature
that investigates the impact of carbon pricing policies from a theoretical standpoint or
that estimates effects on a microeconomic level (of which many have investigated fuel
prices as a proxy for carbon taxes rather than looking at real carbon taxes), however,
there is a gap in literature that estimates the effect of existing carbon taxes on clean
innovation using a general equilibrium approach. One reason the the relatively limited
literature investigating the impact of real world carbon taxes on clean innovation
possibly due limited availability of data. However, novel methods, such as the synthetic
control method employed in this thesis, provides new and enhanced opportunities to
investigate the impact from the data at hand. Furthermore, as carbon taxes are on
the rise and many countries have recently implemented carbon taxes, the availability
of data on carbon taxes is growing and in the next few years there should already be
much broader data set available for empirical analysis.

In this study we have discussed that the existence of path-dependency effects might
impact carbon taxes in such a way that levels matter, and only relatively high carbon
taxes will actually shift incentives for innovation. This discussion provides two potential
avenues of interesting further research. Firstly, with growing data material on real
carbon taxes, there would be great merit in efforts to empirically investigate how
differences in levels of carbon taxes impact the effect on clean innovation. Secondly,
it should also be highly meaningful to empirically analyze path-dependency effects
using real carbon tax data, potentially by looking at how carbon taxes impacts the
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substitution rates between dirty and clean technologies patented, within and economy.
Moreover, we believe that efforts to quantify the economic magnitude of clean

innovation induced from carbon tax policies, would be a highly relevant subject of
study for future research. Lastly, in our estimations we find that the effect of carbon
taxes on clean innovation patents might not be stable over time. While this might to
some extent be explained by the volatility of our measure used, patents per million
capita, this is something that researchers could, with merit, study in greater detail in
the future.
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7 Conclusions

This thesis analyzed the impact of national carbon taxes on the development of clean
innovation, as measured by climate change mitigating patents. We conduct a case study
of the Swedish carbon tax, implemented in 1991, using the relatively novel synthetic
control method. Through a data-driven approach, this method uses pre-treatment
observations on a set of key predictor variables of clean innovation to construct a
counterfactual by a weighted average of donor countries, which best matches the pre-
treatment path of Sweden in terms of the outcome variable. To our knowledge this
is the first study that uses this method to estimate the impact of a carbon tax on
technological innovation on a macro-level.

Our results show that the Swedish carbon tax contributed to stimulating clean
innovation in the 15 years after the introduction. We estimate that the Swedish carbon
tax increased clean innovation by on average 1.88 patents per capita million, or 14.1%
in an average year, over the post-treatment period in our sample, 1991-2005, compared
to the counterfactual case. Aggregating over the population, this suggests that Sweden
produced in total 249.88 more clean technology patents relative to the synthetic Sweden
counterfactual in the first 15 years of the carbon tax being in effect. Reassuringly, these
results are robust to a series of placebo tests.

We also employ a traditional panel data regression method to estimate the impact
of carbon taxes on innovation on a cross-country sample of the 17 countries that
implemented a national carbon tax during the time period 1990-2016. By this method,
however, we find no significant effect of carbon taxes.70 We discuss to potential reasons
to why this might be, given that we find rather strong results of an effect from our case
study of Sweden. Firstly, this might be due to the limitations of cross-country data
on carbon taxes, since only few countries have implemented such taxes, the sample is
small and the panel highly unbalanced. This makes it difficult to detect an effect using
panel data regression methods even if there is one. The second potential explanation is
that we only detect an effect in the case of Sweden because Sweden has a uniquely high
tax, driving the effect. In fact, the Swedish carbon tax is on average more than 5 times
higher than the average of all other sample countries’ carbon taxes together. According
to theory, see Acemoglu et al. (2012), and previous empirical findings, see Aghion et al.
(2016), the prevalence of path-dependency effects (in dirty innovation) has a substantial

70We also test the same model using fuel taxes, which gives a much larger sample of 1 135
observations from 37 OECD countries in a balanced panel 1978-2016, as a proxy for carbon taxes.
These results in fact give some tentative indications on a positive effect on clean innovation, but
results are not significant or robust enough to take it as evidence of a true effect.
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impact on the direction of innovation, and suggest, that only relatively high carbon
taxes would create incentives to shift innovation, while a relatively moderate tax would
make little difference.

In sum, while cross-country data shows no significant effects, our results from the
Swedish experience suggest that carbon taxes that are on par with the goals of the
Paris 2015 agreement indeed contribute to fostering clean innovation on a substantial
scale. Arguably, our findings have meaningful policy-implications. Firstly, a sufficiently
high carbon tax has a positive effect on stimulating clean innovation. Secondly, the
level of the tax matters, according to our results only a carbon tax consistent with
the pricing targets of the Paris 2015 agreement has a detectable effect. Altogether,
our findings imply that (relatively high) carbon taxes can be an efficient policy tool
to contribute in the efforts of accelerating the shift toward clean technologies and the
transition to a low-carbon economy. The fact that we only detect an effect of a higher
carbon tax tentatively indicates, in line with previous research, that there might be
path-dependency effects, which could also explain why moderate taxes have little or
no effects. This suggest that it is more efficient to act strongly in terms of policy to
efficiently impact the incentives of innovation.

With this study we have tried to fill some of the knowledge gap in the field of
carbon taxes’ effects on innovation, however, there are still much ground to be covered
in this area of research. We believe that for future studies it would be meaningful
to investigate and quantify the economic magnitude of clean technologies that can be
linked to carbon taxes, and the overall economic impact on the economy. Furthermore,
in our study we note some time-incongruities in the effect of carbon taxes on clean
innovation patents, while this might to some extent be explained by the volatility of our
measure used, it might also be that the effect is not stable over time. This is something
that future research could investigate further with merit. Lastly, as carbon taxation
initiatives are increasing across the world, the availability of data on real carbon taxes is
increasing rapidly, this should provide many opportunities for empirical studies ahead.
In particular, in this study we have discussed that the effect of carbon taxes, because
of path-dependency effect in the economy, might not be stable but differences in level
might matter substantially. There are exciting future research opportunities exploring
the use of growing data on carbon taxes to investigate the effects of differences in levels
on clean innovation.
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9 Appendix

Figure 11: Sweden: CC technology patents per capita million
over full sample period 1960-2016

In figure 11 above we show the path of climate change mitigation technology patents
per capita million for Sweden over 1960-2016, the full period of data available. Source:
OECD Patents Indicator data (2020)

Figure 12: Sweden:
Carbon tax (USD)

1990-2005

Figure 13: Sweden:
Carbon tax (USD)

1990-2016
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Figure 14: Real carbon tax in 17 OECD countries between
1990-2016

54



9.1 Synthetic control without-cross validation

We minimize the error on the whole pre-treatment period in this case. As we can
see from the graph, this method produce a synthetic counterfactual to Sweden very
similar to the synthetic Sweden using cross-validation. Summary statistics on predictor
averages are shown below.

Figure 15: Path of CC technology patents per capita million
between Sweden and synthetic Sweden, no cross-validation
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Figure 16: Gap in CC technology patents per capita million
between Sweden and synthetic Sweden, no cross-validation

This graph is corresponds to figure 4, and shows the estimated gap in climate
change mitigation technology patents between Sweden and synthetic Sweden using the
synthetic control method without cross-validation.

Table 8: Key predictor means pre-intervention, no
cross-validation

Treated synthetic sample mean

GDP per capita 23650.146 24789.948 22242.449

Patents app. per capita million 439.898 381.816 344.149

Urban population share 83.089 78.717 73.716

Tax exclusive real fuel price 0.321 0.338 0.391

CC patents per capita million 1978 6.391 6.117 3.158

CC patents per capita million 1984 7.911 7.312 4.388

CC patents per capita million 1990 6.472 6.894 4.597

Above table shows average values on key predictors for Sweden, synthetic Sweden
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(optimized over the full pre-treatment period, i.e. no cross-validation) and the donor
pool sample mean. Even with this method, we find a closer match on predictor values
between Sweden and synthetic Sweden as compared to the donor country sample mean.
Particularly, we note that the donor country sample mean is substantial lower on our
three lagged values of the outcome variable compared to the synthetic control.

Table 9: Predictor weights V ∗, no cross-validation

Variable V ∗

GDP per capita 0.207

Patent app. per capita million 0.000

Urban population share 0.051

Tax-exclusive real fuel price 0.215

CC patents per capita million (1978) 0.157

CC patents per capita million (1984) 0.262

CC patents per capita million (1990) 0.108
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Table 10: Country Weights W ∗, no cross-validation

Weight Country Country Number

0.270 Germany 6

0.250 France 5

0.242 Switzerland 14

0.231 Belgium 3

0.000 Australia 1

0.000 Austria 2

0.000 Canada 4

0.000 Greece 7

0.000 Ireland 8

0.000 Italy 9

0.000 Japan 10

0.000 Netherlands 11

0.000 Spain 12

0.000 United Kingdom 15

0.000 United States 16

In this table we see the country-weights produced by the synthetic control method
without the cross-validation feature. While Germany, France and Switzerland still
dominates the weights, similarly to the cross-validation approach, we note that
Australia gets no weight in this specification whilst Belgium takes a rather large
weight. This is arguably not worrying since it fundamentally does not change any
results and also, it is not completely unexpected that we get a slightly different result
when we optimize over a different period.
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