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Preface

Economics is often criticized for its argumentation being built on simplifying assumptions. The art
of explaining reality lies in the right choice between complexity and simplicity. That is to isolate
the problem by disentangling reality.

On the other end of the scale, people perceive statistics as a precise science similar to engineering,
or physics. But of course, statistics is not free of assumptions either. Additionally, we only observe
a finite number of realizations of a given random variable and infer from these observations the
underlying ground truth. Yet, certainty does never exist. In this sense, probability is just a concept
to deal with imperfect knowledge. If we’d know the ground truth of all processes, probability would
become obsolete.

More or less by chance, I ended up in the fields of economics after having intermediately studied
Swedish, architecture, mathematics, English and sports. I want to thank my father for always
supporting me and my life-choices. After all, the time-span of a mammal being dependent on the
parents greatly correlates with the intelligence of a species. Let us for once take correlation for
causation and for once don’t question statistics!

I would also like to thank Nepa for supporting this thesis. In particular, thank you Goran Dizdarevic
and Stefanie Möllberg for your help. Also, Nepa’s Data Science team has my gratitude and is for
me an example of great Swedish workplace culture.

Lastly, thank you Rickard Sandberg and Ulrich Matter for your supervision.

1 Introduction

Media Mix Models (MMM) are used to understand drivers behind key performance indicators
(KPIs) such as sales and to measure effectiveness of different media channels. The aim is to infer
the optimal media mix (media allocation) and hence to maximize returns on advertising (Jin et al.,
2017). These models are usually based on weekly aggregated data, including sales, price, product
distribution, media spend and external factors such as macroeconomic variables, weather data,
holidays and others - commonly referred to as the 4Ps (Product, Price, Place, Promotion). To
derive valuable insights from MMM, marketers are required to draw causal inference from their
models which is usually achieved utilizing linear regression (Jin et al., 2017).

Of course, inferring causation from correlation is non-trivial and as presented in this thesis further
complicated in the context of MMM. Reasons for this are manyfold: Data availability of weekly
instances usually constrains the sample size which limits traditional causal inference techniques.
Media expenditures provide a weak signal compared to other drivers in the 4Ps and are usually
highly correlated due to advertisers aligning their media spending with the underlying seasonality
of their promotion cycles. Advertisers further resist to greatly vary their spend from historic
patterns which further complicates the task of disentangling each media’s impact on KPIs (Wang
et al., 2017). On the other hand, the randomized experimental benchmark for causal analysis
is rarely applied in a marketing context because of high costs associated with such experiments
among others. A further complication arises from yet another perspective: Data points are not
only few (three years of weekly data results in 154 observations) but also not necessarily from
the same data generating process. Markets are not static nor are consumer behavior patterns.
From a technical perspective, this introduces a trade-off between data availability and recency and
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gives rise to non-constant modeling parameters. Further and most importantly, response patterns
are not linear. This is to say that the relation between media investments and sales (returns on
investments, ROI) is expected to be concave or S-shaped. Such shape effects in ROI-curves are
crucial for optimal media allocation and thus the key target of MMM and at the heart of this
thesis. As marketing channels are expected to interact with each other and therefore benefit from
potential synergies ROI-curves depend on other channels’ spend. Mathematically speaking, ROI-
curves become ROI-surfaces. Yet, marketers usually abstract from this perspective and decompose
such multi-dimensional patterns to trace out two-dimensional response curves, subsequently used
to optimize media allocation decisions. This dimension reduction refers to fairly redistributing
synergistic effects to the contributing media channels and different decomposition methods are
explored in this thesis.

This ultimately leads to the formulation of our research question: How can shape effects in MMM
be captured most accurately? Now, the problem is, that both a historical or experimental analysis
is not feasible by reasoning as outlined above. But there is a third option available: Simulation.
Simulation allows us to generate ground truth in a controlled virtual environment which enables
a methodological comparison. Recall, that the research question states ”in MMM” which imposes
that the simulated data follows patterns specific to a typical marketing environment with all its
complexities. Our strategy of achieving this is to calibrate the simulation specification to mimic key
metrics from a real-life example. Nevertheless, the above outlined complications need to be well-
understood, simplified or abstracted (where legitimate) to grasp reality and reduce its complexity.
One of these abstractions can be made with regard to the time-consistency of modeling parameters.
The research question is hence applied once to a static and once to a dynamically evolving marketing
environment. The results of this analysis should help marketers to decide which methodological
approach to choose and how to handle samples over longer time horizons. Marketers are usually
exposed to the latter question when firms would like to reevaluate their strategies and update the
initial data sample (from the previous analysis) with more recent data.

In essence, a Monte Carlo simulation study is conducted, repeatedly estimating the media response
patterns and comparing them to the ground truth. Arguing that the data generating process follows
the real one allows us to compare the different methodological approaches to the same benchmark.
Such argumentation will of course be strengthened with statistical facts.

The remainder of the text is structured as follows: In section 2 we introduce the reader to the
current MMM methodology and highlight certain key simplifying assumptions of this framework.
Subsequently, in 3 the current research frontier is outlined. This encompasses challenges and oppor-
tunities in MMM, a theoretical perspective on shape effects and literature tackling the problem of
structural change in MMM. The literature section concludes by introducing the simulation frame-
work: A micro-founded consumer demand model developed in a recent Google research project.
Next, the underlying research strategy is presented in section 4 guiding the applied part of the pa-
per. Section 5 outlines the methodology, namely different modeling and decomposition approaches
and the evaluation strategy. Section 6 describes how the simulation specification is calibrated and
presents key metrics comparing the simulated data to the real data. Sections 7 and 9 presents
and discusses the results. As the simulation specification is not free from assumptions, robustness
checks are conducted in 8 changing key parameters of the simulation process. Section 10 concludes.

This structure should alleviate an understanding of MMM in its complexity from the perspective
of saturation effects. However, this perspective is not narrow but necessitates an understanding
of other interrelated subjects such as interaction effects, multicollinearity, model agnostics, game
theory, the Lucas critique, constrained optimization and many more. The aim of this thesis is thus
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not only of technical nature but in that respect also an effort to understand and break down a
multidimensional problem.1

2 A Primer on Media Mix Modeling

This section aims at a generic introduction to Media Mix Modeling as it is applied in the industry.
It should give an intuitive understanding of the different steps performed and describes some crucial
assumptions.

According to Hanssens et al. (2003, pp. 358), the determination of the optimal mix begins with the
specification of a policy preference function. If the goal is to maximize the firm’s profits then the
optimization could be specified in a illustrative manner by

max
x

Π = pQ(p,p∗,x, L,K,EV)︸ ︷︷ ︸
revenue

− pcq − cxx︸ ︷︷ ︸
cost

(1)

where Q(·) is the sales function, reflecting both the market equilibrium (potentially taking into
account a competitive market environment) and the production function, p is the product price,
p∗ the competitors’ price vector, x = {xm;m = 1, . . . ,M} the vector of M distinct marketing
variables, L,K stand for the production factors and EV captures all other environmental variables
possibly influencing sales. cq is the cost of production whereas cx represents the vector of marketing
costs. Qualitatively, the firm’s sales (captured by Q(·)) depend on the own and competitors’ pricing,
but also on the production technology, available factors of production, environmental variables (for
example weather or holidays) and marketing efforts.

Now, the here presented MMM approach abstracts from the potentially complicated problem in
equation 1 by several assumptions. First, it separates the problem into a purely marketing-related
one by writing

max
x

Πx = Qx(x)− cxx (2)

where Qx(·) now stands for the sales driven by marketing efforts. Clearly, Qx(·) is a multidi-
mensional function reflecting a ROI-surface in the n-dimensional marketing space (where n is the
number of interacting marketing channels). For illustration, a ROI-surface is depicted in figure 1
where sales are an increasing function of two media channels. Moreover, the effect is larger if the
marketer invests in both channels (synergies).

Secondly, the subsequently presented methodology makes the further abstraction that

Qx(x) = Q1(x1) +Q2(x2) + · · ·+QM (xM ) (3)

This is to say, that the marketing-sales function is basically additively separable which implies that
we can think of the ROI-surface as M independent two-dimensional ROI-curves. It is exactly this
dimensionality reduction that urges the modeler to fairly decompose the synergistic media effects
and attribute a fair share to each channel.

1The R scripts can be accessed via https://github.com/dheimgartner/master-thesis-mmm
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Figure 1: Illustration of a ROI-surface.

The standard first order condition in 2 taking into account 3 implies

dQ

dxi
= cx,i, ∀i = 1, . . . ,M (4)

The optimality condition shows that the shape of the response curves (ROI-curves) matters for
optimal allocation. We should invest in each channel until the marginal benefit equals marginal
marketing cost. Or in the spirit of Hanssens et al. (2003), allocation decisions do influence the sales
response.

Estimating the ROI-curves in 3 is the crux of MMM and a multistage procedure: First, one should
be aware that there is a contemporaneous and lagged effect dimension to the problem. The ROI-
curves depict the ’instantaneous’ impact of marketing expenditure on sales. Yet, marketing is known
to exhibit so-called carryover effects which reflect that a single ad exposure makes a customer aware
of a brand. This awareness is assumed to diminish over time and finally fade out.

Carryover effects are considered by transforming the time-series of media spend through the adstock
function (Jin et al., 2017)

adstock(xt−L+1,m, . . . , xt,m, L) =

∑L−1
l=0 wm(l)xt−l,m∑L−1

l=0 wm(l)
(5)

where wm is a non-negative weight function. The cumulative media effect is a weighted average of
media spend in the current week and the previous L− 1 weeks. L is the maximum duration of the
carryover effect assumed for a medium m. Different functional forms can be chosen for the weight
function wm but the intuition of equation 5 should be straight forward and is visualised in figure 2
where a single investment is spread out over L time periods.

These two problems (estimating lagged and contemporaneous effects) are not interrelated and can
thus be separated. Our study does not further consider carryover effects but assumes that the
marketer is able to model them correctly. Hence if we refer to media variables, then these variables
are already transformed as described in 5.

After having transformed the data accordingly, the sales process is modeled by some suitable model.
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Figure 2: Example of spending in a media channel before and after the adstock transformation.

Importantly, drawing causal inference imposes stringent requirements as later discussed. Once the
sales process is modeled, it has to be decomposed such that a sales’ contribution for each observed
media spend can be recovered. As already mentioned, if the model allows for interaction effects,
synergies need to be fairly allocated to the individual channels. This decomposition exercise results
in a scatter in the media spend - sales plane. A curve fulfilling some desirable properties fitted to
the scatter is the final ROI-curve which is also referred to as response curve. The here presented
analysis aims at scrutinizing suitable model and decomposition methodologies.

In summary, MMM is a multistep procedure. Media variables are transformed according to the
adstock function which reflects the lagged effect, also known as carryover. The shape effect, on the
other hand, reflects the curvature of the ROI-curve which is to be understood as a contemporaneous
effect. ROI-curves, also referred to as response curves are traced out by decomposing a suitable
model, after it has been fitted to the sales data. The MMM process requires simplifying assumptions
of which the reader should be aware of.

3 Literature Review

The literature review will be structured in four parts: First, challenges faced in MMM are outlined
with the aim to make the reader cautious. Second, relevant theory regarding shape effects in
MMM is presented followed by a selection of literature directly proposing and testing solutions to
capture media response curves. The third part elaborates on the problem of structural change in
the modeling period. Again, we report on more general insights taking up the discussion on why
structural change might emerge in a marketing context before diving into theoretical propositions
how to actually deal with it. Generally, the relevant literature is extensive as dynamic changes are
well understood in the time-series literature (for example Bai and Perron, 2003) and therefore focus
lies on a small marketing related subset. Finally, the reader should hopefully understand the need
to build a simulated environment in order to test and fairly compare different modeling strategies.
Hence a google research project is presented, describing the theory behind the micro-founded model
which is later leveraged in our sales and marketing simulation study. As it is to our best knowledge,
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a cross-comparison of different methods stands short and this paper is one of the first to address
the debated issues by deriving insights from the Aggregated Marketing System Simulator (AMSS).

3.1 Challenges and Opportunities in Media Mix Modeling

Chan and Perry (2017) note that MMM is concerned with one of the most demanding problems
in applied statistics, namely causal inference. Recall, that MMM is all about determining the
causal impact of ad spend on sales at any given level. To answer causal questions randomized
experiments are the gold standard.2 Because such experiments are very expensive in a marketing
setting marketers turn to historical data in order to trace out causal relations.

The authors discuss this approach with the help of the Rubin causal model for causal inference
which describes the difficulties of approximating the difference between potential and counterfactual
outcomes (causal impact). This estimated causal impact is prone to a so-called ’selection bias’ which
refers to any biases in the treatment selection mechanism that are also correlated with the outcome
(sales). In the context of MMM this means potentially everything that determines both ad spend
and sales. Chan and Perry (2017) note that the matching estimator could alleviate the problem
of selection bias but is most often infeasible in MMM due to data limitations. They therefore
propose to turn to regression models. Regression models, on the other hand, are only trustworthy
if there are enough data points, if there is useful and independent variability in the features and if
all confounding variables are included (correct model specification).

Some of the above-mentioned prerequisites will now be immersed because they are later encountered
in the text. If flexible functional response forms are required (to capture non-linear response curves)
the regression specification exhibits many parameters. Together with limited data availability, the
usual prerequisite of 7-10 data points per parameter falls short in MMM.

Further, when fitting a model to highly correlated input variables (multicollinearity) the coefficient
estimates depict a high variance. As seen in figure 3 both estimated response surfaces fit the sales
data well despite having very different slopes. The slopes correspond to the rate of change of the
linear response curve in this case. The multicollinearity issue might therefore directly impact the
ROI-curve estimates.

Yet another problem can be referred to as extrapolation bias which describes the difficulty to trace
out the true response curve when only a limited range of ad expenditures is observed. The problem
is illustrated in figure 4. The simulation approach allows, that the whole range of relevant ad spend
is realized. This is to say that the simulated data stretches over the relevant range, similar to
observing the whole scatter in figure 4. Nevertheless, in practice, this might not be the case and
difficult to scrutinize.

To correctly estimate the response surface (see 3) the statistician not only needs to disentangle
multicollinearity but also pay attention to so-called ’funnel effects’. An example of such an effect
is a TV campaign driving more related queries, which in turn increases the volume of paid search
ads. When an ad channel also impacts the level of another ad channel (funnel effect) but the
model specification does not correctly account for such interactions, the resulting response curves
are biased (Chan and Perry, 2017).

Another crucial point is related to model selection. Usually, model selection is based on some infor-

2For one of the rare studies concerned with the experimental approach in MMM the reader can refer to Lewis and
Rao (2015).
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Figure 3: Multicollinearity yields two estimated response surfaces which lead to very different
response curves, Source: Chan and Perry (2017).

mation criterion (such as R2). Chan and Perry (2017) question the validity of such an information
criteria (IC) because it does not necessarily imply the best ROI-curve fit. This is because media
variables contribute a small signal and hence don’t contribute much to the IC. The quality of the
R2 proxy can be gauged in the simulation analysis.

The authors propose three broad areas constituting opportunities in MMM: 1) Better data 2)
Better models 3) Model evaluation through simulations. This text regards all of these three points.
The first one by scrutinizing the potential of pooling data across time which increases the sample
size. Additionally, the reader will encounter the here presented challenges explicitly or implicitly
throughout the remainder of the text. It will also alleviate the discussion towards the end of the
paper trying to derive valuable practical insights.

MMM is also criticised for only considering the short-run sales-driving capacity of marketing.
Long-run brand-building properties are usually ignored. Such a more holistic point of view could
be approached by for example leveraging Cointegration and Error Correction Models as proposed
by Cain (2008). It is though yet another challenge to capture shape effects in such a setting.
The here presented analysis focuses on the short-run perspective only and abstracts from potential
brand-building capacities.

3.2 Response Curves and Shape Effects

This section introduces prominent functional forms in response patterns and presents the findings
of relevant modeling literature. It is very important to understand that ROI-curves are implied
response functions by the modeling approach and thus model contingent.

10
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Figure 4: Potential extrapolation bias when models are fitted to a limited range of data, Source:
Chan and Perry (2017).

Possible properties of a sales response function include what happens to sales when marketing
expenditure is close to zero or very large. Additionally, the rate of change in sales as marketing
activities increase can be analysed using the concept of increasing returns, decreasing returns to
scale or some sort of threshold effect like a minimum advertising investment (Hanssens et al., 2003,
pp. 94). This should make it obvious, that the discussion evolves around marketing elasticities
which describe what happens percentage-wise if the marketing effort is marginally increased (by
1%). As seen in the previous section 3.1, there are potential funnel effects (synergies) between media
channels, which makes the ROI-curves surfaces rather than two-dimensional curves (compare with
figure 3). The following discussion refers to the media spend - sales plane and assumes thus holding
other media investments constant.

Hanssens et al. (2003, pp. 95) argue that sales response functions are generally concave and only in
a few instances S-shaped. Further, if the marketing driver has a relatively limited scale (compare
figure 4), a linear approximation may be chosen. Importantly, linear approximations potentially
lead to large extrapolation biases. This is because optimal allocation decisions attribute all the
media spend to the channel with the highest ROI (the slope of the linear curve). The reader is
encouraged to visualize this scenario with the help of figure 4. Concave response curves are linked
to diminishing returns to scale: Each additional unit of marketing effort brings less in incremental
sales. Hanssens et al. (2003, pp. 103) state that empirical evidence favors such a behavior. S-shaped
response patterns (convex-concave functions) might arise if marketing efforts are characterized by
threshold effects. Tellis (2006) argues that S-shaped ROI-curves are the most plausible because,
at some very low level, advertising might not be effective at all but gets drowned out in the
noise. Further, it implies that elasticities depict an inverted bell-shaped pattern in the level of
advertising which is the most appealing form (linking ’no effect’ at zero and some saturation point
with a ’positive effect’ in between). Different product categories might depict different sale response
functions. The three potential response functional forms are presented in figure 5. One pattern
that scholars and marketers agree upon is saturation (Hanssens et al., 2003, pp. 111). Saturation
implies that no matter how much marketing effort is expended, sales won’t react to that stimulus.

11
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Figure 5: Potential media response patterns, Source: Tellis (2006).

Such is the case if buyers become insensitive or have binding budget constraints.

The reader is now introduced to the relevant literature concerned with capturing shape effects in
MMM. Jin et al. (2017) propose a media mix regression model capable of capturing both carryover
and shape effects of advertising at the same time. As the model is no longer linear in parameters
estimation is nontrivial and achieved by means of a Bayesian approach. The Bayesian method
additionally allows that prior knowledge can be incorporated into the model. More precisely, they
use an adstock transformation (compare equation 5) to capture the carryover effects and model
response patterns with the help of the (beta) Hill function (βHill). The authors realize that the
βHill function is very poorly identifiable which makes it challenging to estimate the parameters
well with any statistical method. As a consequence, they propose investigating estimation with the
help of regression splines (related to the estimation of Generalized Additive Models which will be
presented in section 5.1.3). The model specification also abstracts from synergy effects by choosing
the marketing channels to enter additively in the regression equation.

Jin et al. (2017) test their model both with real and simulated data. The simulation specification
is of the exact same nature as the model specification which is a classical Monte Carlo approach.
Additionally, the variance of sales explained by media is chosen to be higher than encountered
in real-life scenarios which comes with the consequence of an unrealistic strong signal to noise
ratios (our approach tries to correct for such unrealistic settings by calibrating the simulated data).
Also, the authors propose to resample the simulated data and generate 500 datasets because of the
randomness in the simulation process. They evaluate their findings both on a realistically small
sample size and a large one.

The authors mention that estimating the coefficients of the βHill function yields low bias but high
variability in the large sample whereas even the bias is high for the small sample. More precisely
ROI-curves are downward shifted. Jin et al. (2017) argue that the bias was introduced by wrongly
specified priors. This makes the Bayesian approach very sensitive to prior beliefs. The study by
Jin et al. (2017) has many parallels with our approach from a general viewpoint as will become
evident at later stages.
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The same group of authors published a closely related paper (Sun et al., 2017) in which they
tackle the problem of limited data availability. MMM data is usually aggregated at the national
level but could be leveraged at a finer granularity by a Geo-level Bayesian hierarchical media mix
model (GBHMMM). The authors follow the same approach as outlined above and compare the
GBHMMM to the aggregated counterpart, which is basically the model presented in Jin et al.
(2017). Indeed, there is a reduction in error due to having more observations and useful variability
in media spend. This insight is more of practical value and is closely related to the extrapolation bias
and multicollinearity issue introduced in section 3.1. An interesting note is that when bringing the
GBHMMM to real data ’TV’ exhibits concave returns to scale whereas ’Search’ (online marketing)
depicts an S-shaped response pattern. Both of the presented papers propose the usage of the
Aggregate Marketing System Simulator (introduced in 3.4) as a simulation tool.

Wang et al. (2017) is yet another paper concerned with the data availability problem. Usual
modeling windows consist of about 50 to 250 observations. Given the need to specify the model
extensively in order to draw causal conclusions and given that each media variable has at least
three parameters to be estimated, there are only a few observations per parameter. But even if a
longer time horizon would be available to fit the model such is not desirable as the market dynamics
could have shifted drastically. This is the classical trade-off between data availability and relevancy
and is further explored in section 3.3. Where the previously mentioned paper addresses this issue
by pooling data according to geographic entities Wang et al. (2017) suggest pooling datasets from
multiple brands within a product category. Again, they adopt the Bayesian hierarchical framework
presented in Jin et al. (2017). This approach also alleviates the multicollinearity issue because
media expenditures are not expected to be highly correlated across independent brands. In a
Monte Carlo approach, the authors compare their pooled strategy to the single brand model under
different simulation scenarios and considering different priors (informative versus weak). Compared
to Jin et al. (2017) the authors note, that the informative prior narrows the confidence interval for
the respective response curves and the parameter accuracy considerably.

Liu et al. (2014) do a very similar exercise as Jin et al. (2017) but don’t apply a Bayesian framework.
Also, they specify the decay transformation (to estimate carryover effects) as a Gaussian convoluted
exponential decay and leverage the Gamma (instead of Hill) function to capture saturation effects.
This identification strategy leaves them with 6 parameters per media channel. The estimation
feasibility is proven in a Monte Carlo study.

There are several commonalities shared by all the presented papers: First, they abstract from
synergies and hence assume an additive model which second, makes the decomposition straight
forward as response curves are directly estimated (for example the βHill function is also the ROI-
curve). Third, they follow a Monte Carlo simulation setting and force the world to behave like
assumed. From this observation, a common simulation framework might be very valuable to cross-
validate different modeling strategies. Synergistic effects make it difficult to trace out response
curves (as estimated surfaces have to be transformed into two dimensions). General decomposition
methods, applicable to a wide range of models are needed.

3.3 Modeling Structural Change

There are several reasons why a marketer might assume that marketing channels vary in efficiency
over time: Certainly, a marketing campaign for ice cream has a different impact on sales when lanced
in winter compared to warm summer months. Of course, one could simply include a seasonality
interaction in the model to account for this possibility. Still, it is likely, that the whole structure

13



3 LITERATURE REVIEW 18 May 2020

of how the marketing channels behave is evolving caused by for example the customer’s changing
mindset. Also, the very nature of ad channels is fast-moving (for example, influencer marketing
is depending on the person’s popularity which could melt like ice cream in the sunshine). On the
other hand, some underlying relations might be stable over time. From this perspective, allowing
for structural changes in the modeling approach could yield more accurate ROI-curves.

In the MMM context, it is frequent that businesses would like to reevaluate their marketing efficien-
cies given the actual data availability. If the whole economic relation is assumed to have changed
from the first MMM period to the now actual one, only the most recent data points should be
considered. Contrary, if the relation was fundamentally stable, fitting the model to the pooled
dataset is preferred, yielding better estimates because of the more data points. Hence, there is a
potential trade-off between data availability and relevancy as already mentioned in the previous
section. On the other hand, if some fundamental sales’ drivers (such as seasonality, holidays, etc.)
are time-constant whereas marketing campaigns are bound to vary over time, a time-varying pa-
rameter model would allow to leverage the pooled data and still account for potential dynamic
shifts. It is the aim of this thesis to shed light on the above intuitive problem description from a
more technical perspective.

As noted by Pauwels et al. (2004) and as introduced in section 3.1 there is yet the trade-off between
the endogeneity bias (’more variables’) and data points per parameter (’fewer variables’). With
this in mind, data cardinality becomes crucial. The procedure suggested in the previous section
was to pool data across geographical or business unit entities. In this respect, the potential to pool
data across time is explored here.

Pauwels et al. (2004) mention that if the hypothesis of parameter constancy is rejected, one could
alleviate the problem by formulating a time-varying parameter model. However, the authors state
that the reduced form estimation makes the model suspect to the Lucas critique which will be
explored at a later stage. Therefore marketers could circumvent this critique by focusing on impulse-
response function analysis. On the other hand, this allows only for a marginal analysis and does
hence not yield ROI-curves as an output. Generally and as becomes evident when reading Pauwels
et al. (2004), the problem of changing dynamics is widely acknowledged by scholars but mostly
approached from an inter-temporal perspective (and thus more concerned with carryover effects)
whereas we are interested in evolving contemporaneous effects. Concerning this perspective, the
authors note that even in the absence of structural breaks advertising effectiveness declines over
the life cycle of a product. The authors conclude that important aspects of marketing effectiveness
indeed are time or occasion dependent which opens a new set of research opportunities.

The Lucas critique, in a nutshell, states that economic agents are forward-looking and anticipate
policy changes. As a consequence, the past policy interventions might alter the very economic
relation by updating expectations. Van Heerde et al. (2005) claim that this problem threatens
the validity of marketing models because they are backward- rather than forward-looking. For
example, certain products are regularly sold at a discount. Once consumers anticipate this discount
cycle, they stop purchasing the product at regular prices which seemingly boosts the marketing
intervention. But truth is, that the discount campaign cannibalizes regular sales. The Lucas
critique might only apply to certain marketing campaigns fulfilling some prerequisites. Wrongly
ignoring the Lucas critique yields biased predictions of the effects of marketing policy changes.
The key outcome of the Lucas critique is that response parameters change as a function of policy
changes. Time-varying parameter models directly address the core of this problem.

Pauwels and Hanssens (2007) acknowledge that current market-response research does not offer
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a framework to either identify performance regime changes or to isolate their causes. Instead,
performance and marketing spending are either classified as evolving or stationary over the full
data period. The authors investigate how marketing actions impact performance regime changes.
Assessing regimes is achieved by time-varying parameter models among others. The time-varying
model allows to directly assess marketing effects in a single stage without the need to identify
switching regimes (join points). Their conclusion is twofold: First, even in mature markets, per-
formance stability is not the only observed business scenario but markets behave as punctuated
equilibrium. Second, marketing actions play an important role in influencing these performance
regimes and inducing a switch from one to the other equilibrium.

Tucci (1995) give an overview of classical time-varying parameter models and group the approaches
into systematic changing or stochastically evolving coefficients. The first idea assumes that parame-
ters change discontinuously at certain points in time whereas the latter allows coefficients to evolve
in a random way which can be either stationary or non-stationary. In the first case (also known
as switching regimes) the modeler simply includes a dummy variable discriminating between the
regimes. This approach can be referred to as ’recency split’ in the marketing context. Yet another
important aspect is to identify the joinpoint (breakpoint) correctly and the fashion of how the
economic relation switches between the regimes. Statistical test procedures exist and in the later
simulation study it is assumed that the joinpoint was correctly identified (or is known).

The other way of modeling time-varying parameters is by considering parameters as random vari-
ables with different realization in each time period. This random variable can either be stationary,
non-stationary or non-stochastic. In either case, the modeling approach follows a multi equation
specification where now a transition equation for the parameters (contingent on one of the three
cases) is defined. Demidenko and Mandel (2005) applies a random coefficient model to trace out
linear ROI-curves and finds that the ad efficiency is very different compared to the efficiency derived
by regular OLS. Also, the random coefficient model demonstrates higher predictability.

Hastie and Tibshirani (1993) introduce yet another possibility to characterize varying-coefficient
models which does not require a transition equation and not a fundamental statement about the
very nature of change. In fact, the only assumption is that the time-varying coefficients evolve in
smoothly over time. Given all the identifying difficulties in the previously mentioned approaches,
we will follow this elegant solution and refer to the proposed methodology as Time-Varying Effect
Model (TVEM).

Greene (2014) claims to be the first (and to our knowledge only) study to leverage TVEM to
measure the effectiveness of media mix elements in a given industry. Most likely, the model is
misspecified (as it assumes an additive relation with rather randomly chosen interaction terms and
transformations) which leaves prices having a positive effect on sales. The author comments on the
dynamic efficiency changes in marketing channels by considering the coefficient functions.

In summary, there are two critical trade-offs faced in the practical implementation of MMM: First,
the endogeneity bias and the limited number of observations which results in few data points per
parameter and second, the trade-off between recency and relevancy. The latter is caused by changes
in market dynamics. Such changes might be either caused by simply evolving efficiencies of certain
marketing channels or more economically, by forward-looking agents which is known as the Lucas
critique. Empirical evidence hints that even stationary markets are subject to performance regime
changes. One prominent suggestion to tackle the problem (no matter the cause) is to consider
some sort of time-varying parameter model. These models come in different specifications and
usually require the definition of a transition equation which characterizes the evolution of the
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model parameters separately. Such models are applied in the marketing context but mainly from a
marginal perspective and concerning the inter-temporal (not contemporaneous) evolution. This in
turn implies, that the connection to shape effects in the time-varying modeling framework has not
yet been made. The most suitable approach for the analysis is TVEM which does not require prior
knowledge of parameter dynamics and does allow for non-linear response functions given suitable
model specification.

3.4 An Introduction to the Aggregate Marketing System Simulator (AMSS)

Vaver and Zhang (2017) realized that new capabilities are needed to evaluate different measurement
methodologies in the context of MMM. They further claim that simulation can be an essential tool
for evaluating and comparing analysis options. Therefore they developed in a google research
project the Aggregate Marketing System Simulator (AMSS) capable of generating aggregate-level
time series data related to marketing measurement and ground truth for marketing performance
metrics. The capabilities provided by AMSS create a foundation for evaluating and improving
measurement methods such as MMM.

The need for simulation arises among others because randomized experiments are rare because, on
the one hand, they are expensive and on the other hand require a complex experimental design
to accurately measure small effects of marketing. The authors further elaborate on the limitations
of drawing causal conclusions from historical data. Vaver and Zhang (2017) argue that such con-
clusions would require modeling assumptions concerning the nature of the marketing environment
(e.g. how advertising changes user behavior, how ad channels interact, how pricing impacts sales,
etc.).

Both experimental and observational methods require evaluation and validation which further en-
hances the importance of a ground truth against which the accuracy of estimates can be verified.
The possibility of simulating data and running virtual experiments allows modelers to explore sta-
tistical issues, verify model performance and compare competing models (Vaver and Zhang, 2017).
This section aims to introduce the data generation methodology of the AMSS. The underlying sta-
tistical assumptions should be made available to the reader such that he understands our parameter
choice at a later stage.

The general structure of the AMSS is intuitive: AMSS splits the consumer population into different
segments, each segment representing a unique consumer mindset towards the market and the brand.
The mindset is influenced by natural forces (such as seasonality) and controllable forces (such as
marketing interventions). These forces drive migration between the segments according to specified
probability distributions. Different segments exhibit different purchase likelihoods. AMSS keeps
track of all the migration processes, computes and aggregates sales and is able to generate ground
truth by running counterfactual scenarios in the virtual environment.

The basic simulation structure is depicted in figure 6 in a simplified manner: The simulation
is characterized by time-ordered events. The ordering of the sequential events matters because
each event impacts all subsequent events through changes in the segmentation. Hence, this is the
understanding of interactions and synergies. For example, if a TV ad increases favorability towards
the brand of a segment and the segment is exposed to say a social media marketing campaign,
then this market campaign is more effective because it profits from the more favorable inclined
segment. Synergies are thus directional and can be controlled. Each event updates the population
segmentation according to a specified probability distribution. Some events generate observable
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Figure 6: Overview of the AMSS structure, Source: Vaver and Zhang (2017).

State type l Potential values Sl
Category

Market (l = 1) in-market, out-of-market
Satiation (l = 2) satiated, unsatiated
Activity (l = 3) inactive, exploratory, purchase

Brand
Favorability (l = 4) unaware, unfavorable, neutral, somewhat favorable, favorable
Loyalty (l = 5) switcher, loyal, competitor-loyal
Availability (l = 6) low, average, high

Table 1: Dimensions of the population segmentation, Source: Vaver and Zhang (2017).

outcomes (surfaced variables). The last event of each time period is the sales event which derives
advertiser’s sales according to the final population segmentation and a defined demand schedule.
This concludes the elaborations on why we need AMSS and its intuition. We will further explain
how the population is segmented and in what manner specific events cause population migration.

Consumer mindset. AMSS conceptualizes the consumer mindset along six dimensions. There
are three category states which characterize the market segment and three brand states. A given
segment is denoted by the vector s = (s1, s2, s3, s4, s5, s6)

T . Let Sl be the set of values the consumer
mindset may take in the l-th dimension, so that sl ∈ Sl ∀l ∈ {1, . . . 6}. Table 1 provides an overview
of the six dimensions and each potential qualitative value the respective dimension might take. A
short description follows.

Market state. The market state constitutes the pool of potential customers for the category. Con-
sumers who are ’out-of-market’ don’t make purchases. Changes are caused by natural migration (for
example by seasonal fluctuations or more general trends such as the adaptation of a technological
product). Market state can not be influenced by marketing efforts.

Satiation state. The satiation state refers to whether or not a person’s demand has been satisfied by
a past purchase. ’Satiated’ individuals might become ’un-satiated’ over time. A satiated individual
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can not be driven to purchase by marketing activities.

Activity state. The activity state tracks the location along the path to purchase. Different activity
states have different media consumption behaviors, different responses to marketing and different
purchase behaviors. Consumers need to reach the ’purchase’ state for the advertiser to make a sale.

Favorability state. The favorability state measures the opinion of the brand and thereby influences
the purchase likelihood. For example, it is much more likely that a ’favorable’ customer makes a
purchase compared to an ’unfavorable’ individual. Still, the unfavorable inclined individual might
purchase the good because the brand is readily available.

Loyalty state. Consumers can be loyal to the advertiser, loyal to its competitor or have divided
loyalties.

Availability state. The availability state describes how physically (or mentally) easy it is for a
customer to make a brand purchase.

The set of all segments is represented by S and is a subset of the Cartesian product S1 × · · · × S6.
It is a subset because some state combinations are not possible (for example ’satiated’ individuals
can not have a ’purchase’ intent). The restriction rules leave us with 198 different segments.

General migration. The general notation of how population migration is caused by some event
k = 1, . . . ,K is now introduced. The general notation alleviates an understanding of some pe-
culiarities of marketing and sales events. Each event k is applied once within each time interval
t ∈ 1, . . . , T . Let the size of the population assigned to a segment s ∈ S before the k-th event of
time interval t be nt,k,s. Segments can be grouped: for A ⊆ S, nt,k,A =

∑
s∈A nt,k,s. The overall

segmentation of the population at time t is denoted by the vector nt,k. The k-th event updates
the population from nt,k to nt,k+1 which reflects the change in the consumer mindset for each
population segment.

The probabilistic consumer migration requires on the one hand a notation that pins down the
migration process and on the other hand a way to control the migration probabilities. The modeler
needs to define a sequence of transition matrices for each event k. These transition matrices
characterize the segmentation update from nt,k to nt,k+1. The k-th event of time t affects a subset
of the population of size at,k. Affected individuals migrate from population segment s to s′ according

to the transition matrix Q(t,k) = (q
(t,k)
s,s′ )S×S , where q

(t,k)
s,s′ describes the probability of migrating from

segment s to s′. Recall that there are potentially 198 affected population segments which leave the
transition matrix very high dimensional (198×198 in case of an event affecting all segments)! These
are all the relevant ingredients to characterize the migration of individuals during the k-th event
of the t-th time interval

mt,k,s = (mt,k,s,s′)s′∈S ∼ Multinomial
(
at,k,s, (q

(t,k)
s,s′ )s′∈S

)
(6)

where mt,k,s,s′ is the number of people migrating from segment s to s′. Finally, the updated
population segmentation is defined as

nt,k+1,s′ = nt,k,s′ − at,k,s′ +
∑
s∈S

mt,k,s,s′ , s′ ∈ S (7)

So, there are a number of people in each population segment, some of which are affected by event k.
The affected population migrates according to a multinomial distribution which is characterized by
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the entries of the transition matrix. Equation 6 and 7 constitute really the core of AMSS. It is most
intuitive when thinking of an event as a function that takes the current population segmentation
as input and returns an updated population segmentation, along with related observable variables.
The remainder of the section explains peculiarities of some events which are worth to understand
to fully grasp the simulation specification in section 6.

Market size. The first event of each time interval determines the market size. Market size changes
naturally over time as people move in and out of the market. This allows the modeler to specify
seasonal changes or other drivers of fluctuations in market size (such as holidays). The modeler
defines an ’in-market’ target rate which pins down the number of individuals across all population
segments with market state equal ’in-market’. Further, this target rate is multiplicatively composed
according to

ρt = ρ
(seas)
t ρ

(trend)
t (8)

where ρt is the in-market target rate, ρ
(seas)
t is a seasonal trend and ρ

(trend)
t an overriding, more

general trend.

Natural migration. For each dimension potentially affected by marketing events, a natural
transition matrix has to be specified which represents equilibrium values. As marketing events
won’t have a lagged effect in our case, the population segmentation will immediately jump to
that equilibrium in the subsequent period and new marketing efforts impact again on top of that
equilibrium population segmentation.3

Marketing interventions. Generally, marketing interventions drive population segments from
less favorable to more favorable states. Marketing can drive changes in dimensions l ∈ {3, . . . 6}
which is to say it can neither influence market state (’has not the power to increase market size’)
nor satiation state (’can not force already satiated individuals to consume even more’). The media
channel is controlled via four components: audience, spend, volume and effect. These components
are now discussed sequentially.

The audience size a∗t,k,s is the population that interacts with the channel and is defined by a

population segment’s reachability. So, the modeler specifies the reachability likelihood π
(a)
s of each

population segment which further pins down the audience size via a Binomial distribution. Part

two of this thesis leverages the freedom to choose π
(a)
s in order to control the media efficiency and

impose structural change.

The component media spend needs no further explanation than that it characterizes the spending
pattern of a given marketing campaign (also known as flighting pattern). It is more important to
understand that media volume vt,k,s is controlled via a constant cost function describing the cost
per media exposure. The audience size impacts the media reach at,k,s which in turn together with
media volume pins down the average number of ad exposure referred to as frequency ft,k,s.

The final component is effect which updates the population segmentation. Here all the notation
comes together: The amount of migration in the population segmentation depends on both reach
and frequency. The former determines the number of people with the potential to migrate and the
latter influences the migration probabilities together with the respective transition matrix Q(k).

The transition matrix specifies maximal migration probabilities Q
(k)
s,s′ . Recall that there are 198

3In case the modeler adds lagged effects these natural migration matrices also determine the speed of convergence
towards the equilibrium.
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possible population segments and consumers from each segment s may migrate to each of the other
segments s′. The AMSS has to keep track of all probabilities in the high dimensional matrix Q(k).
Therefore migration in each dimension l ∈ {1, . . . , 6} happens independently. One is left to pin
down transition matrices for each dimension and hence specify the low dimensional matrices

Q(k,l) =
(
q
(k,l)
i,j

)
Sl×Sl

(9)

For example, transitions in activity state are determined by

Q(k,3) = (q
(k,l)
i,j )3×3 ⇒ Q

(k,3)
1,3 = Q

(k,3)
1,’inactive’ = (0.6, 0.3, 0.1) (10)

where the right-hand side after the arrow represents the first row of the transition matrix for the
third dimension which reads a 30% chance to convert an ’inactive’ individual to ’exploratory’ and
a 10% chance to migrate to a ’purchase’ segment. As seen, these matrices are much more intuitive
to define and fully determine all the possible migration probabilities. For an exact understanding
of how this step is achieved, the appendix C in Vaver and Zhang (2017) may be consulted.

Recall that Q
(k)
s,s′ are maximal probabilities. Maximal probabilities are scaled against the frequency

ft,k,s according to a sigmoid function (Hill function) which can be utilized to simulate concave or
S-shaped response curves by parameterising this function accordingly.

Sales event. The sales event is the final event of each time period and computes the market-
clearing sales quantity according to the final population segmentation and its likelihood to purchase.
The sales event also drives population migration because the very act of purchase can change
the consumer mindset towards the product. Sales per segment are controlled via linear demand
schedules in the price - likelihood space

rt,s = (αs − βspt) (11)

where rt,s is the purchase likelihood of a consumer in segment s at time t, αs and βs are the segment-
specific demand intercept and slope. This concludes one full sales cycle in t and we move to the
next interval t+ 1 to start again from the equilibrium relation. To summarise, AMSS keeps track
of population migration (according to 6 and 7) caused by different events which are characterized
by transition matrices or probability distributions along each dimension.

Ground truth. Ground truth is obtained empirically by generating multiple random instances of
data. For example, to generate ground truth for media contribution, media spend is set counter-
factually to zero in that particular time interval t. By comparing the counterfactual scenario to
the actual one finitely often, the estimated contribution converges to the true contribution by the
law of large numbers. We use the package amss for the implementation in R.

4 Research Strategy

In this section we’d like to provide insight into how we try to tackle the research questions exactly.
The reader should subsequently have a guideline that leads through the remainder of the text.
Also, we aim to emphasize that our approach is only one perspective on the questions posed in
the preceding sections. As always, when asking a generic question, the answer will be provided
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in a simplified setting by making necessary assumptions. The reader should be aware of these
assumptions.

As introduced, simulating data generates ground truth. Ground truth is not equal to general truth
in the sense that it does not necessarily reflect the real world but is, of course, depending on the
simulation specification. The exact simulation specification can be found in section 6 but some
assumptions are mentioned at this stage already: Shape effects are scrutinized by simulating two
media channels which are labeled media 1 and media 2. Media 1 obeys a concave response pattern
whereas media 2 follows an S-shaped response curve. Additionally, media 2 profits from synergistic
effects, whereas media 1 does not. This can be achieved by time ordering of the media channels,
that is media 2 impacts the population segmentation after media 1.

We divide our empirical strategy into two parts: The first part reflects on shape effects in a static
setting whereas the second part assumes a dynamic marketing environment with structural change.
We begin by elaborating on the first part and subsequently introduce our way of thinking about
dynamic change to pin down the strategy in the second part.

In the first part, data is generated, matching some key characteristics of a real dataset (see section
6). This observation window is referred to as window 1. Subsequently, all the different models
(see section 5.1) are fitted to model the sales-generating process. After that, the models are
locally decomposed (see section 5.2). Again, local decomposition refers to tracing out the factor
contributions for each instance of a given factor. Concerning media channels, this yields a scatter
plot in the media spend - sales plane where one scatter point for each observed media investment is
retrieved. Fitting a curve with some desirable properties to the scatter yields the ROI-curve. The
implied ROI-curve can finally be compared to the ground truth (see section 5.3). This concludes
part one.

Introducing part two, we first discuss our way of thinking about dynamic change in a marketing
environment and by taking into account the standard approach to MMM. As has been extensively
discussed in the time-series literature (see section 3.3) there exist several strategies to account for
structural changes contingent on the very nature of the structural change (break vs. transition,
stochastic vs. deterministic). It is its own research interest to discover the changing efficiency of
marketing interventions over time. It is important to emphasize that the here followed method-
ological approach to MMM requires some stability because one specific media response curve is
traced out over a time window. If the model coefficients would change for each observation in that
time window then each point lies on a different response curve. This insight is crucial because it
very clearly highlights the limitations of this MMM approach to deal with dynamic change. This,
in turn, implies that we have to narrow down the understanding of dynamic change which we do
now.

Structural change occurs only in the sense of a shift in media efficiency. Graphically, this scales
the ROI-curve along the sales dimension. Still, there are many reasons why such might be the
case. In particular, with relatively new and fast-changing marketing channels (such as social media
platforms) such a shift could be triggered by an evolving reach of that channel. The reach of
a channel might depend on the popularity of the respective media platform in a particular time
period. Hence, to implement the research strategy, a break in the audience size of each media
channel is imposed.

This understanding pins down the strategy in part two. Again, AMSS simulates data according to
the very same simulation specification as in window 1 except for the media reach. This observation
window is referred to as window 2. By the reasons discussed above, there exists a structural break
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between window 1 and window 2. A time-varying parameter model (see section 5.1.4) is fitted to the
pooled data (window 1 and 2). The implied ROI-curve for window 1 can then be compared to the
models of the first part. The following example illustrates this conception: Assume the marketer
has previously made a MMM analysis for window 2. Subsequently, he would like to update the
media allocation and in the meantime, he has the data of window 1 available. The marketer is aware
that advertising efficiency has changed between the two windows. Should he pool the data and
fit a time-varying effect model or should he make a recency split and only consider data collected
during window 1? This is the question and this concludes part two.

5 Methodology

The following sections introduce the relevant theoretical foundation of all the modeling approaches.
Further the three different factor decomposition approaches are explained. The concept of Shapley
values is crucial for both Shapley Value Regression and Shapley Additive Explanations. The reader
is therefore introduced to a general notion of the Shapley values which can be leveraged in both
sections. All the applied estimation techniques are mentioned and intuitively but briefly explained
where beneficial. The section should yield insights for why given methodologies were chosen,
what their advantages and disadvantages are and how they differ from one another. This lies
the foundation for a meaningful discussion of the results. The attentive reader might be able to
anticipate some of the later discussed outcomes. Finally, as the ultimate interest lies in comparing
the estimated response curves to the ground truth, a notation for similarity between curves is
required. Throughout the remainder of the text, upper case letters denote random variables whereas
their lower case counterparts stand for a particular realization.

5.1 Modeling Approaches

As should be clear intuition by now, the model specification has to allow for the assumed shape
of the response curves. Following that proposition, several modeling approaches are discussed,
highlighting respective strengths and weaknesses. The subsequent sections should hence provide
different potential modeling strategies but also caution the reader why some strategies might fail
to capture implied ROI-patterns in the simulation study.

5.1.1 Ordinary Least Squares (OLS)

We begin by introducing a general regression MMM specifying a parametrized sales function of the
form

yt = F (xt−L+1, . . . , xt, zt−L+1, . . . , zt; Φ) t = 1, . . . , T (12)

where yt is the sales at time t, F (·) is the regression function, xt = {xt,m;m = 1, . . . ,M} is a
vector of ad channel variables at time t and similarly zt = {zt,c; c = 1, . . . , C} is a vector of control
variables. Φ is the vector of parameters to be estimated in the model.

The remainder of the section 5.1 centers around the discussion of the appropriate multidimensional
functional form of F (·) which is inherently linked to the one-dimensional response curve and hence
pins down changes in sales caused by a change in one particular ad channel (Chan and Perry, 2017).
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As can be seen in the general form of 12, the model specification includes lagged variables which link
to the ad stock discussion in section 2. As elaborated there, we follow the approach of separating
the lagged effects by an appropriate ad stock transformation which can be considered as a different
problem. Therefore, after the transformation, the feature space includes only contemporaneous
effects. Given that problem separation, the modeler is yet left to argue for his specification of
F (xt, zt,Φ). Chan and Perry (2017) argues that both the functional form and the choice of members
xt and zt to include are ambiguous due to the complexity of the sales response process. To guide
the thinking process, Hanssens et al. (2003, Chapter 3) links the discussion to returns to scale and
threshold effect arguments. The following example provides intuition

yt = β0 + β1xt,1 + · · ·+ βMxt,M + βM+1zt,1 + · · ·+ βM+Czt,C + εt (13)

Clearly, the choice of this functional form implies no interaction (synergistic) effects between media
variable nor between media and control variables. The implied response curve is linear for each ad
channel as F (·) features constant returns to scale. This illustrative example should make it clear,
that such a specification is not appropriate for the task of scrutinizing saturation effects.

To simplify notation and as we treat media and control variables symmetrically in our theoretical
discussion, we represent all independent variables in the vector x = {xp; p = 1, . . . , P} and P =
M + C. As we only consider contemporaneous effects, time indexing is omitted.

A first natural extension of the model in 12 is polynomial regression with interaction terms

y = c0 + c1x + c2x
2 + · · ·+ cnx

n + β Interactions + ε (14)

where all coefficients now are vectors, n is the polynomial degree. Interactions can either be specified
between two or multiple media or control variables or between media and control variables. If an
S-shaped response curve is expected to reflect the most complex ROI-pattern, three degrees are
sufficient. As described in the subsequent section 6 the simulated data has three features that are
available to the marketer to model the sales process. The features will be described later, but the
model is described in terms of these variables here. The polynomial regression specification reads

sales =c0 + c1,1(media.1.spend) + c2,1(media.1.spend)2 + c3,1(media.1.spend)3+ (15)

c1,2(media.2.spend) + c2,2(media.2.spend)2 + c3,2(media.2.spend)3+

c1,3(market.rate) + β1(media.1.spend×media.2.spend)+

β2(media.1.spend×market.rate)+

β3(media.2.spend×market.rate) + ε

Yet another frequent choice in MMM is multiplicative modeling. Hanssens et al. (2003, pp. 102) and
Tellis (2006) write that the multiplicative power model is the most popular one among marketers
as it allows for the highest order of interaction between the variables and for flexible, non-constant
behaviour of response curves. The model reads compactly

y = β0

 P∏
p=1

x
βp
p

 ε (16)
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This model is also known as log-log specification as it can be log-transformed and rewritten as

ln y = lnβ0 + β1 lnx1 + · · ·+ βP lnxP + ln ε (17)

where ln ε is now assumed to be normally distributed. The slope of the response curve is charac-
terized by the first partial derivative

∂y

∂xp
= β0βpx

β1
1 . . . x

(βp−1)
p . . . xβPt,P (18)

Clearly, the slope of the ROI-curve has many degrees of freedom as it depends on the other feature
instances and coefficients. Still, it is widely known that the power (log-log) model exhibits constant
returns to scale as the coefficients can directly be interpreted as elasticities. Constant elasticities
further imply either increasing (βp > 1) or decreasing (βp < 1) returns to scale and thus either
concave or convex response patterns.

In terms of the three simulated variables the model reads

ln sales = β0 + β1 ln media.1.spend + β2 ln media.2.spend + β3 ln market.rate + ε (19)

5.1.2 Shapley Value Regression (SVR)

Shapley values originate from coalition game theory being concerned with the fair allocation of
a payout to each contributing member of a group. Applying the concept of Shapley values in a
regression setting was first done by Lipovetsky and Conklin (2001). The Shapley Value Regression’s
(SVR) desirability stems from OLS not being able to handle strong multicollinearity (MC) in the
feature space thereby destabilizing the regression coefficients (Mishra, 2016). As mentioned by Chan
and Perry (2017) MC arises as a natural problem in MMM as marketers tend to align multiple
marketing campaigns which leaves media spend on different channels correlated.

SVR proposes a unique strategy to assess the contribution of regressor variables to the regressand
variable. To formalize the concept we render the problem as follows: The value of R2 is known
after fitting a regression model F (x; Φ) and considered as the value of a cooperative game played
by x (whose members {xp; p = 1, . . . , P} work in a coalition) against y (explaining it). The analyst
only knows the total joint contribution but would like to infer the individual contributions of each
player xp. The Shapley value decomposition imputes the most likely contribution of each individual
player to R2 (Mishra, 2016).

Having formalized the game which the dependent variables play in a regression setting, a more
general definition of Shapley values follows. The definition can be leveraged later in section 5.2.3
where the concept will be encountered again, with the aim of decomposing the model in its local
factor contributions. The definition allows an exact connection to the game setting introduced in
the previous paragraph. The Shapley value for feature j is (Molnar, 2019, Chapter 5.9.3.1)

φj(val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p− |S| − 1)!

p!
(val (S ∪ {xj})− val(S)) (20)
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where S is a subset of the features used in the model, x is the vector of features to be explained
and p the number of features. val(·) is some value function and depends on the game being played
and in particular the payoff to be distributed. In the particular case of SVR the value function is
the computation of the R2.

As is evident from 20 the computation of the ’feature importance’ of j requires retraining the model
for all possible subsets S. For each possible coalition S the difference between the R2 including
feature j and the R2 of the model withholding feature j has to be computed. These differences are
then weighted accordingly (Lundberg and Lee, 2017).

Shapley values possess some desirable properties which will be discuss in 5.2.3 where the fairness
discussion (a fair payout distribution) of different attribution methods lies at the core.

As mentioned above, the actual computation of the exact Shapley values is intensive because of the
many possible coalitions and the necessity of retraining the model twice for each coalition vector.
The estimation follows by means of a Monte Carlo approximation where random coalitions are
sampled and the feature of interest j is not replaced for the first value function evaluation whereas
for the second, it is replaced from the sampled vector.

The crux of SVR is now to reweight the coefficients of the OLS estimation with the help of the
Shapley value vector V . We denote these standardized regression coefficients by the vector α and
compute them according to the quadratic programming problem (Mishra, 2016)

min
{αp;1,...,P}

f(α) =
P∑
p=1

(αp(2T − Uα)p − Vp)2 (21)

where U is the pair-wise correlation vector among regressors and T the pair-wise correlation vector
between regressand and regressors. The quadratic programming problem is not intuitive but can be
derived via an adjusted net effect formulation as fully described in Lipovetsky and Conklin (2001).

To summarize, SVR yields a more fair feature attribution by reweighting the regression coefficients
with help of Shapley values. Such an approach is expected to be superior to OLS in cases of
high multicollinearity between the features. In MMM such correlations between variables arise
naturally because of cyclical marketing campaigns, alignment of marketing ad expenditures and
synergistic effects between media channels. All of these causes are present in our simulated data
by matching metrics from real data. We use the package relaimpo for the computation of relative
feature importance (Shapley values) and write an optimization in line with 21 to implement SVR
in R. Making SVR comparable to OLS, the same model specification as in 15 and 19 is used in our
simulation analysis.

5.1.3 Generalized Additive Models (GAM)

Generalized Additive Models (GAM) have been developed to capture non-linear relations between
dependent and independent variables. One might argue, that OLS already achieves this by trans-
forming the features accordingly. As introduced in section 5.1.1, polynomial regression does so by
taking independent variables to the power of some degree. The choice of the appropriate degree
is not trivial and optimally requires some sort of prior knowledge or repeated fitting and cross-
validation. In the context of MMM the model might be overfit when imposing a polynomial of
third degree to a media channel which in fact exhibits a concave response pattern. GAM allevi-
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ates this problem by modeling the dependent variable as a sum of smooth functions (Hastie and
Tibshirani, 1986). The model reads

g(EY (y|x)) = β0 + f1(x1) + f2(x2) + . . .+ fp(xp) (22)

where g(·) is the link function and fi(·), i = 1, . . . , P is some smooth function.

The Generalized in GAM refers to the fact that the outcome variable might not be normally
distributed (but allows for any distribution of the exponential family) (Molnar, 2019, Chapter 4.3.3).
From now on we assume the outcome to be Gaussian distributed which leaves the link function
being the identity function and hence can be omitted in the notation. Clearly, the simple OLS is
a nested model when we replace fi(xi) by βixi.

The question is how to learn such non-linear functions and what degree of smoothness should they
have? There exist many different possibilities to achieve the estimation of such smooth functions.
For an elaborate discussion, the reader can refer to Hastie and Tibshirani (1986). We follow in
the remainder of the section Larsen (2015) and give a brief intuitive introduction to Smoothing
Splines and the approach to determine the degree of smoothness in order to avoid over-fitting. We
elaborate briefly on the procedure of fitting one single spline and mention towards the end the
routines that are applied to simultaneously fit multiple splines and hence estimate the GAM.

A spline curve s(x) is a piece-wise polynomial curve. The smooth function fi(xi) is now approx-
imated with help of several spline curves. For one single spline the penalized sum of squares is
minimized

P∑
i=1

(yi − f(xi))
2 + λ

∫ (
s′′(x)

)2
dx (23)

which is a combination of the residual sum of squares and a penalty term weighted by λ which
controls the trade-off between model fit and smoothness. A straight line has the same slope for
each value of x and hence the integral evaluates to 0.

As mentioned, when fitting GAM, multiple spline functions have to be estimated simultaneously
which is achieved by maximizing the Penalized Likelihood Function with some sort of Backfitting
Algorithm. The final smooth function is then a composition of the fitted splines. The optimal
smoother λ is determined by the Generalized Cross Validation Criteria which is based on a ’leave
one out’ cross-validation approach. This involves repeatedly fitting the model to all but one data
point and then estimating the prediction error for that particular point.

To summarize, GAM is a flexible additive modeling approach which is more suitable than the
strategy to transform variables (such as polynomial regression) because the appropriate degree of
smoothness is determined internally. This is to say that GAM requires no prior knowledge of the
response curve’s functional forms nor extensive and explicit cross-validation of different model fits.
On the other hand, GAM is not immune to the problem of multicollinearity which might make it
inferior to SVR. We use the package gam for the implementation in R.

Applied to our simulated data, we specify the model as
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sales =β0 + f1(media.1.spend) + f2(media.2.spend) + f3(market.rate)+ (24)

β1(media.1.spend×media.2.spend)+

β2(media.1.spend×market.rate)+

β3(media.2.spend×market.rate) + ε

which is a combination of GAM and regular regression. The interaction terms do not handicap
GAM over the polynomial regression approach. This alleviates the comparison between GAM and
OLS.

5.1.4 Time-Varying Effect Models (TVEM)

”No man ever steps in the same river twice, for it’s not the same river and he is not the same
man” (Heraclitus). The possibility of changing underlying economic relations over time imposes
an additional difficulty when it comes to modeling. The time-series literature suggests multiple
modeling approaches to account for such evolving dynamics. One subset of proposed techniques
is collected in the term Varying-Parameter Models. As discussed in section 3 these models mainly
differ in their underlying assumptions with respect to, for example, how parameters evolve over time.
A general framework not requiring any prior knowledge was introduced by Hastie and Tibshirani
(1993). Interestingly, he introduces Varying-Coefficient Models by mentioning the link to GAM.
However, the generalizations refer to the proposition that models are linear in the regressors but
parameters are allowed to change smoothly with the value of other variables which are called effect
modifiers. In this respect Tan et al. (2012) simply define the effect modifier to be time and call the
result Time-Varying Effect Models (TVEM).

Compared to other traditional analytical approaches, TVEM does not require strong parametric
assumptions about the nature of change between time-varying covariates and the outcome variable
thus allowing to model the change in a flexible manner (Tan et al., 2012). Similar to the functional
forms in GAM, the change β(t) is smooth. We therefore write

yt = Xtβ(t) + εt (25)

where Xt = {xt,p; p = 1, . . . , P} is the matrix of time-ordered features and β(t) = {βp(t); p =
1 . . . , P} is the vector of now time-varying parameters. The error terms are assumed to be normally
and independently distributed.

In principle and as mentioned, the effect modifier could be any other variable and has not to be
time. Additionally, the time-ordered observations don’t have to be evenly spaced which implies for
the context of MMM that different observation periods can be linked (with missing observations
in between). Such might be the case if businesses would like to have a reevaluation of their media
allocation after some time. For model comparison, we choose the polynomial model specification
introduced in equation 14. Tan et al. (2012) mention that the modeler is free to incorporate prior
knowledge on some coefficient functions.

The estimation procedure follows similarly to GAM either a spline-based or kernel-based approach.
The p-spline method is very nicely described in Tan et al. (2012). The interested reader is also
referred to Hastie and Tibshirani (1993). In any case and as intuitively described in section 5.1.3
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there is a trade-off between smoothness and over-fitting which is again resolved by the Generalized
Cross Validation Criteria (Tan et al., 2012).

To summarise, TVEM does not require any prior knowledge and assumptions on coefficient func-
tions other than that they have to be of continuous and smooth form. The coefficient functions
allow for additional insights in how the efficiency of marketing channels changed over time. Time-
ordered observations don’t have to be evenly spaced which makes it suitable for applications in
MMM where reevaluation of marketing strategies happens irregularly. We use the package tvReg
for the implementation in R. To compare TVEM to the previous approaches, we apply the same
model specification as in 15 in our simulation analysis.

5.2 Local Decomposition Approaches

This section presents three local factor decomposition approaches. ’Factor decomposition’ refers to
the contribution of each variable towards the predicted value (sales in this case). ’Local’ implies
a decomposition for each observation and hence for each realized factor value. If the independent
variable is media spend for a particular channel then these factor contributions are the media’s
sales driver. Some sort of fitted curve can be interpreted as ROI-curve.

The most intuitive approach (weighted factor decomposition) is first introduced and should be
perceived as the current benchmark. We further proceed by explaining more elaborated techniques
which correct for particular shortcomings. Most of the decomposition approaches stem from recent
efforts to explain ’black box’ machine learning models (such as neural networks). This field of
Model Agnostics is concerned with separating the explanation from the Machine Learning model
and has the advantage of not being model-specific (Molnar, 2019, Chapter 5). The derived method-
ologies can thus be applied to simpler parametric models as well. Under certain conditions, several
decomposition methods yield the same or similar results as will become evident.

To simplify the discussion we outline the problem with an example where, again, upper case letters
denote random variables

Yt = β1X1,t + β2X2,t + β2X1,tX2,t (26)

How much does X1,t = x1,t contribute to Yt = yt? Clearly, it depends on X2,t as the two factors
interact. The question is, how can the collaborate contribution be fairly allocated to the two
correlated variables. In brief, the Weighted Factor Decomposition approach relies on one particular
realization of X2,t whereas Accumulated Local Effects consider its conditional density. On the other
hand Shapley Additive Explanations follow a game-theoretic approach from coalition theory as will
be explained in detail. All approaches share the idea of more or less elaborate weighting schemes.
They differ in the manner these weights are determined.

5.2.1 Weighted Factor Decomposition (WFD)

The most trivial of such a weighting scheme is applied in WFD. This makes it ideal as a first
intuitive benchmark approach to which the two subsequent procedures can be compared to. The
basic intuition follows Suarab et al. (2014) but we extend the discussion of the methodology and
choose a notation in line with Molnar (2019) to simplify the comparison to the methods introduced
at a later stage and to generalize the approach to non-parametric models.
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The WFD approach follows a three-step procedure described in the algorithm below. The reader
might think of xs ∈ XS as being media spend of one particular channel s at a particular point in
time (time subscripts are omitted).

for factor XS in X do
for each xs ∈ XS do

1. substitute each instance xs of feature XS by mean(XS);
2. compute unscaled contribution Cxs according to 28;
3. reallocate difference between actual value y and sum of unscaled contributions
according to weights calculated from the absolute values of unscaled contributions
according to 27;

end

end
Algorithm 1: WFD

The original proposition by Suarab et al. (2014) is to set the respective coefficient to 0 instead of
substituting feature values. Of course such is only possible in a parametric approach and thus not
feasible in a GAM model. Instead of setting the coefficients to 0 one might set the feature to 0.
After all, this follows the intuition of setting the feature effect to 0. But, if the model specification
is of multiplicative form, it follows that the unscaled contribution is equal to y for each factor
(because the model evaluates to 0). To make the WFD procedure applicable to all the proposed
methods, each instance of the particular feature of interest can be substituted by its mean value
(as is common in other decomposition methods).

The discussion above centers around the understanding of ’leaving a factor out’. In mathematical
notation x\s denotes the vector of one particular observation ’without’ factor s. The two necessary
computations according to the algorithm above are

f̂xS ,WFD(XS) =Cxs +
|Cxs |∑n
i=1 |Cxi |︸ ︷︷ ︸

weighting scheme

(
y −

n∑
i=1

Cxi

)
︸ ︷︷ ︸

reallocate

(27)

where Cxs =y − f̂(x\s) (28)

where xs is the feature instance for which we compute the contribution, Cxi stands for the unscaled
contribution of feature instance xi, f̂ is the estimated model to be decomposed, and n is the
number of dependent variables. The notation f̂xs,WFD(xs) refers to the estimated contribution of
xs following the WFD approach and being a function of the random variable XS .

It should be clear, that in equation 28 the unscaled contribution is solely based on one single
realization of each feature in the feature space. To take up the introductory example, one realization
of X2. Literally, this makes the individual contributions calculated by the WFD random. The
resulting scatter in the media spend - sales contribution plane can therefore be expected to have a
large variation along the sales’ axis caused by variation of the variables Xi in a small neighborhood
around xs.
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Figure 7: Calculation of ALE for feature x1, which is correlated with x2. Source: Molnar (2019,
Chapter 5.3.1).

5.2.2 Accumulated Local Effects (ALE)

To correct for this randomness of the first approach ALE describes how a feature affects the
prediction on average. In particular, ALE respects the correlation relation between features by
considering the conditional density of all Xi when computing the contributions.4 Intuitively, at a
grid value of xs predictions of instances with similar xs are averaged. Still, we are left to split up
the correlation (synergistic) effect by computing the difference in the predictions instead of taking
the averages (Molnar, 2019, Chapter 5.3).

The intuition from figure 7 is best understood by going through the following algorithm.

for factor XS in X do
1. divide the features into neighborhoods (vertical lines) NS(1)−NS(k);
2. for the data instances in each neighborhood calculate the difference in the prediction
when we replace the feature xs with the upper and lower limit of the interval
(horizontal lines);

3. accumulate and center these differences to get the ALE
end

Algorithm 2: ALE

The description of the procedure makes it very intuitive why it is called Accumulated Local Ef-
fects. Local refers to small neighborhoods and the instances in it (conditional density) whereas
the Accumulated refers to the aggregation of these neighborhoods to provide an overall picture.
By centering the ALE the feature effect stands in relation to the average prediction which makes
it nice for interpretation. At this point, it should be mentioned, that ROI-curves should not be

4Partial Dependency Plots (PDP) are similar to ALE but consider the marginal distribution, thereby omitting
the correlation relation between features making it an inferior approach in MMM.
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centered. In order to invert the effect of centering, the theoretically sound assumption is imposed
that response curves have to pass through the origin.

Leveraging the intuition from the algorithm together with figure 7 the below theoretical foundation
of ALE follows naturally

f̂xS ,ALE(xS) =

∫ xS

z0,1

EXC |XS

[
f̂S(Xs, Xc)|XS = zS

]
dzS − constant (29)

=

∫ xS

z0,1

∫
xC

f̂S(zs, xc)P(xC |zS)dxCdzS − constant (30)

where f̂S(xs, xc) =
δf̂(xS , xC)

δxS
is the gradient (31)

where the notation closely follows the previously introduced definition in 27 and 28 and XC stands
for a correlated feature. z refers to the boundary points of the respective intervals where z0,1 is the
lowest such. In the actual estimation procedure, the gradient is replaced by the difference. The
gradient represents an infinitely small interval around xs.

The previous verbal discussion of the concept aligns even more with the actual estimation procedure
characterized by

ˆ̃
fj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[
f(zk,j , x

(i)
\j )− f(zk−1,j , x

(i)
\j )
]

(32)

f̂j,ALE(x) =
ˆ̃
fj,ALE(x)− 1

n

n∑
i=1

ˆ̃
fj,ALE(x

(i)
j ) (33)

where equation 32 describes the uncentered ALE and equation 33 adds the step of centering by
subtracting the average local effect as a constant. Nj(k) stands for the kth neighborhood for feature
j, nj(k) is the number of instances in that neighborhood and k indexes the respective bounds of
the neighborhood.

To fully grasp the concept, the formula 32 can explained in its individual parts beginning at the far
right. The term in the squared brackets captures the differences in prediction, whereby the feature
of interest is replaced with grid values z. This yields the effect the feature has for an individual
instance in a certain interval. The preceding sum adds up the effects of all instances within a
neighborhood which is divided by the number of instances in this neighborhood nj(k) to obtain the
local effect. Lastly, these average effects are accumulated over all neighborhoods (Molnar, 2019,
Chapter 5.3.3).

The choice of intervals (neighborhoods) has a certain influence on ALE curves. It should be clear
that the ALE curve is a piece-wise linear approximation of the theoretical ALE. This is because the
estimated ALE is linear on a given interval. The smaller these intervals the better the fit. But on
the other hand, ALE is also depending on the number of instances in each neighborhood, crucially
so if the local effect of the feature is depending on the other features (interactions). Hence, the
modeler faces a trade-off between the size of the intervals (or similar the number of intervals) and
the number of data points within each interval (Altmann et al., 2020, Chapter 7.1).
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The intermediary conclusion is that ALE corrects for the randomness of WFD by utilizing condi-
tional expectations. The conditional density accounts for correlation between features. We use the
package iml for the implementation in R.

5.2.3 Shapley Additive Explanations (SHAP)

The concept of SHAP is closely linked to the computation of Shapley values introduced in section
5.1.2. SHAP is the only approach that respects some desirable properties (linked to a fair payout
distribution) but falling short in accounting for correlation in the feature space as will be elaborated.

Like the other local decomposition approaches, SHAP aims at explaining the prediction of an
instance x by computing the contribution of each feature to the prediction. SHAP is a permutation-
based approach where feature values act as players in a coalition and the games’ payoff is the
predicted value (Molnar, 2019, Chapter 5.10.1).

Recall section 5.1.2 where the definition of Shapley values was introduced in equation 20 which is
here repeated in 34

φj(val, x) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p− |S| − 1)!

p!
(val (S ∪ {xj})− val(S)) (34)

valx(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − EX(f̂(X)) (35)

where (as previously) S is a subset of the features used in the model, x is the vector of features to
be explained and p the number of features. val(·) is some value function and depends on the game
being played and in particular the payoff to be distributed. Here, the value function is explicitly
written out as the model prediction function.

The formula 35 suggests that multiple integrations need to be computed for each feature not
contained in S. For example in the case of four features and the coalition S consisting of x1 and x3

valx(S) = valx({x1, x3}) =

∫
R

∫
R
f̂(x1, X2, x3, X4)dPX2X4 − EX(f̂(X)) (36)

The estimation follows by means of a Monte Carlo approximation

φ̂j =
1

M

M∑
m=1

(
f̂(xm+j)− f̂(xm−j)

)
(37)

where M is the number of iterations. Formula 37 is explained in more depth by going through the
algorithm 3 which is based on Molnar (2019, Chapter 5.9.3.3). It describes the procedure to derive
the Shapley value of the jth feature when the game of prediction is played.
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Figure 8: SHAP values attribute to each feature value the chain in prediction compared to some
base value. Source: Lundberg and Lee (2017).

for all m = 1, . . . ,M do
1. draw random instance z from the data matrix X;
2. choose a random permutation o of the feature values (order matters);
3. order instance x; xo = (x(1), . . . , x(j), . . . , x(p))
4. order instance z; zo = (z(1), . . . , z(j), . . . , z(p))
5. construct two new instances;

(i) with feature j: x+j = (x(1), . . . , x(j−1), x(j), z(j+1), . . . , z(p));
(ii) without feature j: x−j = (x(1), . . . , x(j−1), z(j), z(j+1), . . . , z(p));

6. compute marginal contribution (value function): φmj = f̂(x+j)− f̂(x−j);

7. compute Shapley value as the average: φj(x) = 1
M

∑M
m=1 φ

m
j

end
Algorithm 3: SHAP

So far, the only thing that changed compared to the discussion in the previous section 5.1.2 is the
definition of the value function. The extension of SHAP is the link of Shapley values to the local
interpretability of other model agnostic methods (such as LIME) where a model f(x) is locally
approximated with an explainable model g(x) for each instance of each factor X. This connection
between the two concepts yields that the desirable properties of the Shapley values (mentioned
below) hold at the local level (for each feature instance).

To formalize the notion we write (Lundberg and Lee, 2017)

f(x) ≈ g(x′) =φ0 +
M∑
j=1

φjx
′ (38)

=EX(f̂(X)) +
M∑
j=1

φj (39)

where g is the explanation model, x′ is the coalition vector, M is the maximum coalition size and
φj ∈ R is the feature attribution for a feature j, the Shapley values. The coalition vector consists
of the feature value if the feature is present in the coalition and 0 otherwise. Formula 38 implies
that we can additively explain each predicted value by feature contributions φj compared to some
base value φ0 (compare figure 8). The base value can be defined as the average predicted value
which leads to 39 (Lundberg and Lee, 2017). In addition, the following properties hold:

• Local Accuracy: The feature contributions must add up to the difference of prediction for
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x and the average.

• Missingness: If a feature instance is 0 then its contribution should be 0.

• Dummy: A feature value that does not change the prediction, regardless in which coalition,
should get a contribution of 0.

• Symmetry: If two feature values are the same, then their contribution should be the same.

• Linearity: If a game has combined payoffs, then the contributions in each subgame can be
added to arrive at the combined contributions.

SHAP is the only attribution method that fulfills these properties. For example, ALE violates the
missingness property because it averages over an interval around the observation. Additionally,
ALE does not fulfill the symmetry property either. The linearity property ensures that SHAP is
even suitable for random forest algorithms and others, which train several models to arrive at one
prediction. On the other hand, ALE respects the correlation between features by considering the
conditional densities. By construction, SHAP does not consider conditional densities but samples
from the whole distribution (of the training set). This permutation-based approach has the draw-
back that highly unlikely feature value combinations might result when features are correlated. We
use the package shapper5 for the implementation in R.

5.3 Similarity Between Curves

From a statistical viewpoint, similarity measures are often inversely related to some distance mea-
sure. Consider for example the Euclidean distance. A marginal right shift of two initially over-
lapping curves might lead to a large dissimilarity measure and a linear approximation might be
considered more similar based on this approach. Recall from section 2, that the recovered ROI-
curves are later to be used as part of the objective function in an optimization problem. As
mentioned, the shape of a response curve might matter more than the actual location in space.
Optimal media allocation is characterized by equating marginal return to marginal cost for a par-
ticular media investment as seen in equation 4. Hence again, a small shift of the curve does not
translate to dramatic changes in optimal allocation.

In order to avoid the trade-off implied by choosing an appropriate distance measure6, the problem
can be tackled from another perspective. The factor contributions (retrieved from the local factor
decomposition) represent a scatter in the media spend - sales plane. The actual ROI-curves are
retrieved by fitting an appropriate curve. The curve has to fulfill certain properties: it should be
non-decreasing, allowing for concave and S-shaped patterns and depict a saturation point. The
logistic functional form fulfills these desired properties.

The logistic function evaluates to

f(x) =
Asym

1 + exp((xmid− x)/scal)
(40)

5shapper is a python wrapper library
6An appropriate measure of similarity could be derived from the Dynamic Time Warping (DTW) algorithm usually

applied to compare multiple time series. But its application is not restricted to sequences with time dimensions only.
In our case, we could consider the media spend to be the time axis.
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Figure 9: Logistic curves with different ”scal” parameter values.

where Asym represents the asymptote, xmid is the x value at the inflection point of the curve.
The value of f(xmid) will be Asym/2 at xmid. Finally, scal is the scale parameter characterizing
the steepness of the curve. In figure 9, Asym is set to 100, xmid to 50 and the third parameter
is defined according to scal ∈ {5, 10, . . . , 100} to give an illustration. Depicting all traced-out
parameter values from the Monte Carlo simulation study in boxplots, alleviates an understanding
of why the estimated response curves deviate from the ground truth by analysing the parameter
fit individually (for Asym, xmid and scal).

Additionally, the Mean Absolute Percentage Error (MAPE) is computed across all 500 iterations
for each parameter and each model, decomposition tuple according to the formula

M =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (41)

where At refers to the actual value and Ft is the forecast value. The MAPE loss function was chosen
as media channels differ in their sales’ contribution and parameter values are defined over different
scales. As a consequence the function allows to scrutinize whether a modeling, decomposition
approach outperforms others either media-specific or for both media types. Similarly, a trade-off
between logistic parameters when choosing a given modeling, decomposition approach would be
indicative (for example depicting low MAPE values for Asym and xmid but a high value for scal).

6 Data

In this section, we leverage the theoretical description of the AMSS from 3.4 and define all the
necessary parameters. As mentioned, the simulated data should follow some key characteristics of
a real-world example which in this case is a big Swedish electronic retailer. The calibration to the
real data is not an exact science and the reader should be aware that there are many degrees of
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Figure 10: Flighting patterns of the two selected media channels.

freedom. The reason for this is, of course, the missing empirical counterparts for various parameters
(such as transition matrices). Still, the choice of appropriate values should be defended. One can
argue that all the models tested are exposed to the same potential misspecification bias. Further,
by matching the characteristics, central properties of the simulated marketing environment behave
realistically. The section is structured as follows: First, the real dataset is briefly described to
subsequently define the key properties to be matched. Next, we describe our calibration routine and
pin down all parameter values of the AMSS. Intuition for the choice is given where necessary. Then
we describe how window 2 is discriminated from window 1 by altering media reach which imposes
a structural break between the two windows. The section concludes by comparing the simulated
data to the real data and thereby presents evidence for a successful calibration. Throughout the
section, the terminology introduced in 3.4 applies.

As mentioned, the real dataset serves only as a source of key properties. These properties are:

• marketing expenditure (flighting) patterns

• signal strength of the media variables (sales to investment ratio)

• multicollinearity in the feature space

• signal to noise ratio

By achieving this, the testing environment is valid. The real dataset has dimensions (154 × 15)
and consequently consists of 154 weekly sales’ observations. Additionally, there are 9 marketing
variables and 3 additional sales-driving variables (such as holidays) and a time index. Out of these
9 marketing variables we choose two, in order to align the simulated marketing interventions. The
flighting pattern is exactly matched and depicted in figure 10. This concludes the calibration of
the first key metric. If the simulated sales process follows the real sales sequence, a realistic sales
to investment ratio follows which concludes the calibration of the second key metric.

The sales data is decomposed by leveraging the functionality of the prophet package. This decom-
position pins down the market size referred to as ρt in equation 8 which is the in-market target rate.
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This fluctuating variable is made known to the modeler and will be referred to as ’market rate’. A
10% noise ratio is added to the observed market rate (not observed by the modeler) which guides
the signal to noise ratio. Marketers are usually capable of recovering around 95% of the variation
in the sales process (R2). The specification is thus rather on the conservative side. As all the
simulated variables (market rate and media spend) follow real-world patterns, the multicollinearity
in the feature space should be realistic. This paragraph concludes the calibration of the last two
key metrics.

All the necessary parameters of the AMSS are subsequently defined in the same order as presented
in the theoretical disquisition of section 3.4.

Market size. The model economy is populated by 9 million people which roughly corresponds to
the Swedish potential customer population. Market size (the percentage of the population being ’in-
market’) is determined by employing time series decomposition as elaborated above. The migration
necessary to match the in-market target rate is the first event k = 1.

Natural migration. Recall that each dimension potentially affected by marketing events is gov-
erned by a transition matrix. Recall also, that these matrices characterize equilibrium relations. As
described below, the marketing campaigns intervene with all possible (l = {3, . . . , 6}) dimensions.
Natural migration matrices are row-identical to abstract from lagged effects. As mentioned in sec-
tion 2 the problem of estimating carryover effects can be treated separately and is not intended
here. We therefore only report the first row of the quadratic matrices. The natural transition reads

Q2,’activity’ =(0.45, 0.30, 0.25) (42)

Q2,’favorability’ =(0.03, 0.07, 0.50, 0.30, 0.10) (43)

Q2,’loyalty’ =(0.50, 0.30, 0.20) (44)

Q2,’availability’ =(0.30, 0.40, 0.30) (45)

where k was set equal to 2 because natural migration is our second event. For example, equation
42 reads: The equilibrium population is segmented in 45% ’inactive’, 30% ’exploratory’ and 25%
’purchase’ oriented individuals. The potential values of each dimension are reported in table 1.

Marketing interventions. As already mentioned, two media channels, media 1 and media 2, are
defined. Media 1 is time-ordered before media 2 which implies that the latter profits from synergistic
effects. The synergies stem from both ad channels impacting on the favorability dimension. Apart
from that common dimension, media 1 causes migration along activity and loyalty, whereas media
2 causes migration along availability. The transition matrices for media 1 read
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Q3,’activity’ =

0.50 0.30 0.20
0.00 0.70 0.30
0.00 0.00 1.00

 (46)

Q3,’favorability’ =


0.40 0.00 0.40 0.20 0.00
0.00 0.90 0.10 0.00 0.00
0.00 0.00 0.50 0.40 0.10
0.00 0.00 0.00 0.80 0.20
0.00 0.00 0.00 0.00 1.00

 (47)

Q3,’loyalty’ =

0.50 0.25 0.25
0.00 1.00 0.00
0.30 0.00 0.70

 (48)

where k was set equal to 3, indicating the chronological order of the events. The transition matrices
for media 2 read

Q4,’favorability’ =


0.20 0.00 0.50 0.30 0.00
0.00 0.80 0.20 0.00 0.00
0.00 0.00 0.50 0.50 0.00
0.00 0.00 0.00 0.70 0.30
0.00 0.00 0.00 0.00 1.00

 (49)

Q4,’availability’ =

0.25 0.50 0.25
0.00 0.50 0.50
0.00 0.00 1.00

 (50)

where k was set equal to 4, indicating the chronological order of the events. These matrices
are not in the appendix, exactly because the reader should go through them and strengthen his
understanding of why the chosen values are appropriate. We give one example by guiding through
equation 46: The activity state can take the three values ’inactive’, ’exploratory’ and ’purchase’
(see table 1). The rows and columns correspond to these states. An inactive individual (first row)
remains inactive by a 50% chance after exposure to media 1 (first row, first column). It migrates to
the exploratory state by 30% chance (first row, second column) and forms a purchase intent with
20% likelihood (first row, third column). The second row refers to an exploratory individual. Most
matrices are upper triangular because marketing interventions drive population segments from less
favorable to more favorable states.

The audience is determined by a reachability likelihood. All individuals are treated symmetrically
by setting the likelihood to 0.5. This reflects more traditional media channels (such as TV) where
marketing interventions can not be targeted. As noted by Vaver and Zhang (2017) and Chen et al.
(2018) paid search and traditional marketing channels should not necessarily be modeled equally.

Each media channel has its cost function which in turn characterizes volume and hence the average
frequency of exposure. Importantly, the cost function is the necessary degree of freedom, such that
the full ground truth ROI-curve is realized and not only one limited range which would result in
identification problems as depicted in 4. Recall that the true ROI-curve is, among others, shaped
by the Hill transformation which scales the maximal probabilities (transition matrices) against the
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Figure 11: The Hill transformation scales marketing transition matrices against the frequency and
determines the shape of the ground truth ROI-curves.

frequency. To control the shape of the ground truth ROI-curves we need to control the frequency
which is achieved by adjusting the cost function. The imposed Hill transformation is depicted in
figure 11 which leads to media 1 being of concave and media 2 of S-shaped nature.7

Sales event. Lastly, the market-clearing conditions are specified according to equation 11. As the
company sets only one price (constant supply curve) the segment-specific intercept of the demand
schedule determines the purchase likelihood of that segment. These likelihoods read

α’favorability’ =(0.01, 0.00, 0.20, 0.30, 0.90) (51)

α’loyalty’ =(0.50, 1.00, 0.00) (52)

α’availability’ =(0.10, 0.50, 1.00) (53)

Window 2 is simulated according to the exact same simulation specification with the exemption of
media reach which is reduced to 0.2.8

Figure 12 shows that the simulated sales pattern follows closely the real sales sequence. Addition-
ally, figure 13 highlights the similar correlation structure between the variables by reporting the
correlation matrices for the real and simulated data. Together with the spending pattern, visible
in figure 10, evidence is provided that the key metrics are matched.

The following assumptions summarize the data section:

• Excluding lagged effects which in practice are modeled separately.

7It is important to define the Hill transformation over the whole realized frequency range. Media 1 has a higher
frequency range which explains the slower convergence to 1. Most segments have a frequency exposure below 2 which
induced us to impose the strongest curvature below that value.

8This imposes a structural break as was affirmed by a simple CUSUM test based on the polynomial regression
specification as in 15.
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Figure 12: Simulated sales follow closely the sales time-series of the real dataset.

• The market rate is made known to the modeler which is equivalent to no omitted variable bias
neither through actually not considering an important variable nor improperly decomposing
the time-series.9

• Two media channels are simulated. The first depicts decreasing returns to scale and the
second S-shaped response patterns. Additionally, there is a synergistic effect from media 1 to
media 2.

7 Results

This section presents the results and guides the reader through the relevant output of the statis-
tical analysis. For each figure, the results are first described from a normative perspective. The
interpretation and explanation follows thereafter. The section concludes by summarising the key
findings such that the reader is able to put them into a wider context in the discussion section 9
when the whole narrative of the paper comes together.

We start with a notation remark: The abbreviations of the previous chapters apply but we add an
abbreviation for the model specification after the underline where relevant. For example svr poly
refers to the Shapley value regression modeling approach with the polynomial regression specifica-
tion as in equation 15. We should also strongly point out that the curve fitting (where a logistic
function is fitted to the contribution scatter in the media spend - sales plane as described in section
5.3) was not always successful. This implies that the curve fitting did not converge in each iteration
for all the approaches which implies leads to unequal sample sizes. This, of course, might manifest
itself in the distribution of the presented key measures. The failure rates are presented in figure
19 in the appendix A. The curve fitting procedure did never converge for the multiplicative models

9Still, a misspecified model can lead to similar consequences as omitted variables.
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Figure 13: Similar correlation structures of the real and simulated data.

in combination with the weighted factor decomposition. This is because the multiplicative speci-
fication reflects the highest order of interaction between the features but each factor contribution
computed by WFD is only based on one particular feature combination. The contributions are thus
very much depending on the instance and the respective realized factor levels which introduces a
large dispersion in the scatter plot leading to failing convergence. As a consequence, the reader will
not find results for ols multi and svr multi in combination with WFD.

Marketers usually select the appropriate model with the help of some information criterion. But
a good model fit does not necessarily translate into a good ROI-curve fit. For example, a linear
model might well approximate the sales process but, of course, completely fails to capture shape
effects. However, an alternative information criterion which allows the modeler to select the model
according to the goodness of fit concerning ROI-curves can not exist because the real curves are
counterfactual. Table 3 reports the R2 measures computed over the relevant data sample window
1. The multiplicative models (ols multi and svr multi) fit the sales data worse than the alternative
specifications. The modeler would select the gam model or probably the tvem model if he intends
to examine structural changes over the time window (recall, that tvem allows deriving further
information by looking at coefficient functions). The reader is asked to remember this model
selection based on the information criteria when considering subsequent results.

Figure 14 reports the mean percentage error (MAPE) measures for each parameter of the fitted
logistic curves. The MAPE is calculated based on all simulation repetitions and computed for each
tuple modeling, decomposition approach and each media channel separately. Modeling approaches
are color-coded and decomposition approaches are denoted with the respective symbol. The first two
graphs show the full picture: The very large MAPE values indicate that some modeling approaches
are far off.10 In particular, svr poly is the worst performing model if combined with WFD for both
media channels. Generally, the lines slope downwards which indicates that the parameter Asym
tends to be captured worse than scal which in turn shows higher MAPE values than xmid. Recall

10MAPE can be greater than 1 (compare with formula 41).

Model ols poly ols multi svr poly svr multi gam tvem

R2 0.92 0.86 0.85 0.87 0.93 0.91

Table 2: Model validation, R2 averaged over all 500 iterations.
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Figure 14: Parameter fit reported by MAPE values. The first row provides all MAPE values,
whereas the second row considers MAPE values less than 1. The columns discriminate media 1
and media 2.

from section 5.3 that xmid represents the inflection point. The fact that xmid is the most precisely
estimated parameter is somewhat encouraging because of its interpretation in MMM: The inflection
point pins down the media investment, where increasing returns are replaced by decreasing returns
to scale. This point on the domain is not necessarily the most relevant one for optimal media
allocation (as marketers need to factor in marginal costs as seen in section 2) but still is worth
knowing. In particular it represents the steepest part of the ROI-curve which corresponds to the
most efficient media investment.

The residual two graphs zoom in on the best performing modeling and decomposition approaches
with MAPE values being less than 1. First, the downward sloping tendency still holds. Second, it
is not clear, which modeling, decomposition tuple outperforms the others. For media 1, svr multi
together with the SHAP decomposition is certainly a potential candidate. On the other hand, this
methodology does not perform too well for channel 2 (which has an S-shaped response pattern).
Surprisingly, svr poly together with the SHAP decomposition is now among the best performing
approaches. Recalling that the same modeling approach together with WFD was the worst choice,
this hints that the decomposition has a big influence on tracing out the correct shape of the ROI-
curve. The last takeaway is, that SHAP and ALE dominate WFD (compare the count of circles
and triangles to the count of squares in the lower graphs). This concludes the discussion of figure
14.

A somewhat similar picture is provided by figure 15 with a focus on the distribution of the respective
parameter values. The columns refer to the different modeling approaches whereas the rows are
discriminated by the logistic parameters. Further, the boxplots for media 1 and media 2 are reported
separately. The red dotted lines are the true parameter values.

The initial comment is about a commonality shared across media channels. All applied methodolo-
gies are biased. Also, there seems to be a bias-variance trade-off depending on the parameters and
media channels: The lower the bias the higher the variance. Such is the case for channel 1 and xmid
whereas for channel 2 it holds for the Asym parameter. On the other hand, this trade-off seems less
pronounced for all the other parameters. The multiplicative models produce consistent estimates
whereas gam in combination with SHAP and ALE is overall the least biased estimator but not
very consistent. Generally, marginally lower bias comes at the cost of considerably increasing the
variance. The two models gam and ols poly perform very similarly.

When comparing media 1 to media 2 it is somewhat astonishing that the multiplicative models
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Figure 15: Parameter fit reported by boxplots. Each column reflects one modeling approach. The
top three rows report on media 1.

perform better for media 2. We explain this observation by yet another trade-off: By construction,
media 2 has an S-shaped response pattern (which handicaps the multiplicative models) but features
synergistic effects (which benefits the multiplicative models). Recall from section 5.1 that the
multiplicative specification considers the highest order of interactions among all chosen approaches.

As a concluding remark, the performance of tvem (which has been fitted to the pooled data sample,
incorporating a structural change) is evaluated. The tvem model has the same specification as the
polynomial regression and can hence be compared to the performance of ols poly. The two models
perform very similarly on average with a slightly lower variance for tvem at least for media 1.
This has two implications: First, if the modeler is not certain whether or not a structural change
occurred, the tvem methodology is among the top performers. Second and not surprisingly, the
variance can most certainly be reduced by increasing the sample size. Yet, the modeler should be
aware that increasing the sample size by pooling data across time comes with the trade-off between
recency and relevancy.

Figure 16 provides the most intuitive insight. The figures are read left to right (columns first) and
top to bottom (rows second). In each row, the results for two modeling approaches are reported.
The true ROI-curves are depicted in red. The black curves are the estimated ROI-curves for each
iteration. The degree to which these curves overlap is reflected by the black saturation (referred
to as density). The green curve is the mean of all black curves and the dashed lines represent 90%
confidence levels.

The previous discussion on parameters’ MAPE measures cautioned not to draw conclusions about
modeling performance from pure eyeballing: The vertical distance between estimated ROI-curve
and ground truth is not the only relevant goodness of fit measure. For example, the estimated
ROI-curve can perfectly match the parameters xmid and scal but completely miss the asymptote.
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Yet, the asymptote might not be too important for media allocation because optimality decisions
are a relative problem. This becomes evident when looking at the ROI-curves for svr multi, media
1. Only considering the graphical illustration (figure 16) would lead to the conclusion that this
modeling approach is useless. Complementing the discussion with the boxplots and MAPE measures
yields the valuable insight, that the red and green curves are actually more similar than thought.

Again, the figures lead to the same conclusions as previously outlined, but provide a more graphical
perspective. For example, the already mentioned bias-variance trade-off can nicely be visualized:
Large dispersion of the black lines corresponds to a large spread in the boxplots. Higher density is
indicative of lower variance.

By looking at the ROI-curves for media 1 the additional insight emerges, that WFD is the most
heterogeneous decomposition approach. There is almost no area of high density visible in the
graphs. This is not surprising as already discussed in the theoretical section 5 and in a preceding
paragraph: WFD is depending on one single realization of the covariates which makes it random
by construction.

Lastly, the svr poly approach introduces a significant trade-off between the goodness of fit in media
1 versus media 2. In fact, the methodology in combination with SHAP matches the response
patterns impressively for media 2 but disappoints for media 1.

We now summarize our findings. Contingent on the decomposition approach, the factor contribu-
tions can have a large spread in the media spend - sales plane. This implies, that the scatter to
which a logistic curve is fitted can be very dispersed which makes estimation unstable. In partic-
ular, multiplicative models featuring a high degree of interactions in combination with WFD are
problematic in that respect. Moreover, the decomposition approach matters significantly for the
goodness of fit. SHAP and ALE outperform WFD across all models. SHAP might be preferable for
more additive models, whereas ALE produces slightly better estimates for multiplicative models.

An information criterion (such as the R2) seems to be a good proxy for ROI-curve fit: Models with
higher R2 values perform better.

Among the three parameters characterizing the ROI-curve, Asym is the worst estimated such,
followed by scal and xmid. The inflection point xmid stands for the media spend where increasing
returns are replaced by decreasing returns to scale and therefore reflects the steepest slope of the
ROI-curve and the most efficient media investment. Still, all the proposed approaches produce
biased estimates and there is a bias-variance trade-off which is not equally pronounced for all ROI-
curve parameters and not shared across media channels. Most importantly, models not featuring
a high degree of interactions have lower bias but high variance. On the other hand, models being
able to capture interactions well, are prone to the synergy-shape trade-off (which is very specific
to the chosen simulation constellation). In the presented case, the synergy out-weights shape: If
media channels are likely to depict synergies, then a model reflecting a high degree of interactions
might approximate ROI-curves better even though the model implied shape is not fully correct.

The last trade-off is the one between media channels: A methodology might perform very well for
one channel but might estimate the shape of the other channel very poorly. Without having a clear
preference for the importance of the parameter ordering Asym, scal and xmid, it is not evident
which modeling, decomposition tuple dominates. For media 1 we identify svr multi in combination
with SHAP to be among the best performers whereas for media 2 we identify svr poly with SHAP
to be a strong candidate. Shapley value regression is hence an interesting methodology but might
introduce additional bias under certain conditions (potentially caused by small sample size) as it
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Figure 17: Recency split versus pooled data.

only aligns with the ground truth of one channel at a time.

The analysis incorporating structural change yields that the tvem methodology is a legitimate
approach being among the best performing models. The tvem leverages the pooled and thus larger
sample size and as a consequence reduces the variance slightly without being more biased.

8 Robustness Checks

As with real data, drawing conclusion from one analysis is never advisable. Our study is comparable
to one empirical analysis conducted with one real data set. Section 6 already discussed that the
simulation specification has many degrees of freedom which makes the simulated data to some
extent arbitrary. But it is exactly this freedom of choice which allows us to understand MMM in a
variety of scenarios. It is strongly recommended to more systematically change certain parameters
in isolation to infer model performance. For example and as in Jin et al. (2017), the sample size
could be increased to understand the role of limited data availability. This would be very important
since the model should at least perform well in a counterfactual setting with large sample size. To
increase sample size is unfortunately not trivial in the calibrated simulation setting and computation
time increases considerably. This important robustness check is left to be explored in the future.
Still, some obvious robustness checks will be conducted to strengthen the validity of the previous
results.

These come in two flavors: First, the simulation specification is not adjusted and the gam model
(one of the best overall performing models) is fitted to both observation windows (window 1 and
window 2 ). This is to say that the marketer does not consider the structural break but pools the
data to increase the sample size. This allows us to further scrutinize the potential of the tvem
approach on the one hand and to gauge the trade-off between dynamic change and data availability
(in the specific setting) on the other hand. This is referred to as the first robustness check.

Results first check. Fitting the gam to the pooled data results in a reduced fit. More precisely,
the R2 drops by 3 percentage points (compared to table 3). This already hints that the ROI-
curve fit will diminish too. As is evident from figure 17 the response pattern does not change
dramatically. Still, a deterioration is clearly visible (gam 2 is the model fitted to the pooled data).
Once again, the degree of deterioration is very much depending on the magnitude of the simulated
break. The simulated break was considerable with a 30 percentage point increase in media reach.
Therefore, this robustness check hints strongly that the small sample size might severely constrain
our ROI-curve fit.
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Second, the robustness checks are conducted by altering the simulation specification. In particular,
by changing the definition of the transition matrices, the demand schedules and the hill transfor-
mations which pin down the shape of the response curves. The migration behaviour and several
dimensions of the medias’ impact are altered as a consequence (whereas other dimensions such as
media spend or media budget remain unchanged). Further, the nature of the structural break is
changed more considerably. This is referred to as the second robustness check. Our reasoning for
the new simulation specification goes as follows:

Window 1. From the original specification a synergy-shape trade-off was identified. We hence
make the true response of the synergistic media channel concave and increase the synergies which
should benefit the multiplicative models for media 2 considerably. To achieve this, the synergies via
the common favorability transition matrix are increased and symmetry between the two channels
is imposed, meaning that both channels impact the favorability dimension equally. These increased
synergies and the symmetry might make it difficult for more additive models to attribute purchase
behaviour to one or the other channel. The previous results are somewhat disillusioning with
regard to tracing out ROI-curves accurately. One obvious limitation could be the available sample
size. Arguing in the same direction, the simulation specification potentially underestimates the
ability of media channels to nudge consumer behaviour. An extreme scenario, where advertising
has a stronger ability to influence consumer mindsets is therefore defined. Further, the dimensions
influenced by media shall provide a stronger signal which is achieved by clear discrimination of
purchase likelihoods within each dimension. This implies that media can strongly nudge customers
to more favorable states and given, they reach these states, after media exposure, more likely
purchase the good. Generally, this should increase the ROI-curve fit for all modeling approaches.
The concave shape pattern and the higher synergies benefits multiplicative models. The alternative
simulation specification can be found in the appendix B.

Window 2. The results of the first robustness check, the trade-off between data availability and
parameter stability is in favour of availability which yielded that the constant parameter model did
not perform significantly worse compared to the tvem (see figure 17. We hence force the break not
only to be in the ’intercept’ but specify completely different marketing characteristics (transition
matrices) and specify the hill transformation to be different between window 1 and 2. The break in
the media reach is left unchanged to the original setting. Generally, this alternative specification is
a robustness check concerning the tvem. To implement these propositions, the original simulation
specification is employed for window 2 and the alternative specification (as outlined above) for
window 1.

Results second check. Most of the results derived under the original simulation specification
are robust. The bias-variance and the media channel trade-offs translate to the alternative spec-
ification. But now, lower bias, higher variance only holds for the Asym parameter. As before,
marginally lower bias comes at the cost of considerably increasing the variance. The multiplicative
model specification still produces lower variance but again underestimates the Asym parameter.
Figure 18 depicts all the methodologies (yielding MAPE values smaller than 1) under the original
and alternative simulation specification. Importantly, SHAP and ALE still outperform WFD for
almost all modeling approaches and parameters. The model svr multi is again providing parameter
fits with relatively small MAPE values for media 1. Surprisingly, the increased synergistic effects
for media 2 under the alternative specification, does not benefit the multiplicative models. Inter-
estingly, although the media channels are expected to provide a clearer signal under the alternative
specification, the models tend to perform worse. We explain this fact by the increased synergies
under the alternative simulation specification which impose a challenge for both more additive and
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Figure 18: Parameter fit reported by MAPE values under the original and alternative simulation
specification.

multiplicative models.

Further, by including window 2, we note that the gam model fitted to the pooled data now performs
significantly worse. The R2 measure is only 42%. On the other hand, tvem is relatively robust with
respect to the magnitude of the break and produces similar estimates to the original specification.

In summary, most of the results are robust under the alternative simulation specification. Even if
media channels have a strong impact on consumer mindsets and clearly discriminate the purchase
intent, MMM remains a difficult task. Surprisingly, synergistic effects impose a difficulty for both
additive and multiplicative models. These interactions are hence hard to disentangle. From this
perspective, a purely additive model as for example proposed by Jin et al. (2017) might proof valid.
Tvem again provides relatively precise estimates even if the magnitude and nature of the break are
altered. The complete output of the analysis can be found in appendix C.

9 Discussion

In this section, the results are put into context. Both insights and implications for the current
MMM methodology are derived and a reference to the relevant literature is established. By doing
so, several areas interesting for further research are identified. Additionally, we will start a broader
discussion, where we put several encountered methodologies into a wider perspective. This should
yield the insight, that the outcome of this thesis can potentially be leveraged outside of MMM.

This paper is the first one to leverage the AMSS in order to generate a realistic MMM testing
framework and study shape effects. The underlying micro-founded model is able simulate synergistic
effects on the micro-level which further makes it possible to incorporate media synergies in the
virtual environment. To our best knowledge, all previous literature abstracts from such synergies
and we therefore add this layer of complexity.

The simulation process being free from the model specification yields a fair cross-comparison be-
tween the different methodologies. This decoupling between simulation and model specification is
an additional contribution and can be leveraged in further studies. Most importantly, the structure
of the AMSS allows the researcher to study a problem of interest in isolation. Concerning the here
presented difficulties in MMM this suggests the following agenda: Scrutinizing the sample size, the
degree of multicollinearity and the magnitude of structural breaks where recency splits are superior
to pooling.
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This study follows the approach to test different methodologies in an as realistic as possible setting
in an overriding effort to gauge MMM’s capabilities to capture shape effects. Yet, methodologies
should also be benchmarked in an optimal environment, free from utterly complicating factors. One
could subsequently introduce complexities in a more structured manner and layer by layer in order
to isolate crucial limitations. Still, the presented analysis could disentangle several complexities
and hint to important implications in current MMM.

It is strongly recommend replicating the paper by Jin et al. (2017) following their Bayesian ap-
proach and testing the implications of different priors. Of course, there are several other interesting
modeling approaches to be considered. Non-parametric modeling approaches such as neural net-
works or XGboost could prove more accurate. The here presented model agnostic methods can
directly decompose such models.

An important remark should be made about ROI-curves. Once again, it is worth mentioning that
the here proposed decomposition methods are concerned with additive separation. To reduce a
complex problem with interaction effects to several two-dimensional spaces is clearly a misleading
(but simplifying) abstraction and introduces an inconsistency in the current MMM methodology:
On the one hand, the marketers pay great attention to include feature interactions in their models
just to disregard them in the ROI-derivation. Our findings hint, even in the presence of synergies,
additive models might not impose too severe a limitation compared to their multiplicative counter-
parts. On the other hand, some degree of synergies should potentially be included in the modeling
specification as it might improve the model fit considerably and reduce the variance of ROI-curve
estimates. This might especially hold in a more complex scenario with multiple marketing channels.
The results hint that model fit is a good proxy for ROI-curve fit.

As soon as there is a multiplicative component to the model, decomposition is no longer straight
forward and different reflections should enter the discussion of a fair attribution method. SHAP
and ALE outperform WFD as expected. SHAP is a very general framework which fulfills some
desirable properties characterizing a fair distribution. SHAP has many further interesting applica-
tions: For example, the method can be leveraged to derive synergy effects or variable importance
measures. Still, if the feature space has a high degree of multicollinearity, we recommend using the
ALE as it considers the conditional densities. A theory perspective for further research could hence
be to derive a SHAP approach that forms coalitions and samples from the distribution taking con-
ditional densities into account. One could think of either constraining the possible coalition space
or weighting each coalition by some likelihood measure (based on the multivariate distribution).

Another approach could be to model synergies separately and include the derived interaction mea-
sures in the optimization routine (for example by once again the concept of SHAP or Friedman’s
H-statistic, Molnar, 2019, Chapter 5.4.2). The final output of MMM is usually a recommendation
for optimal media allocation. The modeling approaches should therefore also be scrutinized in that
sense after the optimization routine has been applied to the ROI-curve estimates. This poten-
tially yields a more precise picture of the preference ordering between the different ROI parameters
(Asym, scal, xmid).

Nevertheless, we prefer the picture of a single ROI-surface instead of multiple ROI-curves. In-
tuitively, it should be possible to formulate a game-theoretical approach to allow for coalition
solutions. Let’s picture a (causal) contribution-surface in three-dimensional space. Constrained
optimization would be trivial. Constraining the solution space to the plane spanned by the two
factors (for example media investments), one would simply be left to find the maximum of the
surface over that particular area. Such a causal surface would, of course, transfer the problem
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of interaction effects with other variables (not considered or influenced by a policymaker). Still,
such a solution method would probably be superior to the current one and in given situations, we
might want to assume that interaction effects are averaged out and can be neglected. Therefore,
we propose the concept of SHMEP which stands for Shapley Multiplicative Explanation.

With regard to the time dimension, the current MMM methodology is critically depending on time
consistency. This is because ROI-curves are traced out over a given time horizon. Optimally, we
would observe the whole domain of the ROI-curve (media spend) in an as short time range as
possible. On the other hand, MMM is prone to data availability limitations and larger sample
sizes would potentially lead to more precise estimates. Therefore, the potential to pool data across
time was examined and a suitable modeling approach capable of dealing with dynamic change
was scrutinized. TVEM is though not a foolproof tool because it still requires constant ROI-
curves (for the actual ROI-curve computation, but not the model estimation) and hence imposes
the necessity to identify static marketing windows correctly. However, TVEM can be estimated
leveraging a pooled data sample. Further, TVEM allows the marketer to derive valuable insights
from the coefficient functions which in turn helps to identify such stable marketing environments.
Therefore, TVEM alleviates the problem of limited data availability, gives additional insights to
the marketers, and helps to identify relevant modeling windows. Taken these propositions together
with the simulation results, TVEM should enter the toolbox of MMM.

To derive coefficient functions for various marketing channels with the help of TVEM could be
its own research interest. For example, coefficient functions could be estimated using different
product, brand or category segments. Are time patterns shared across these different segments?
Do marketing efficiencies depict considerable evolving patterns or fluctuations? Can local extreme
points be predicted such that marketers could time advertising efforts?

This thesis was very much written from a methodological and exploratory perspective with the
example of MMM. However, the here described modeling approaches can easily be applied to other
relevant subjects. In economics, empirical discussions are mostly reduced to a marginal perspective.
All else equal, what happens with y (say poverty) if we marginally increase x (schooling)? Of
course, such a question is very legitimate given that we often can not pick optimal allocations
in real-life problems, but are forced to gradually move in one or the other direction from the
actual circumstance. On the other hand, one might be interested in how factors contribute to
the final outcome. To take up the above example, we might be interested to find out whether
or not schooling is an important factor when alleviating poverty (from a global and not marginal
perspective). Manna et al. (2012) performed global factor decomposition leveraging the Shapley
value approach. Applying the insights of this thesis, the researchers could go one step further
and locally decompose poverty in its contributing factors thereby getting a more precise picture
of input-response functions and more detailed views on how certain variables shape poverty (or
whatever other response). As a consequence or even necessity, it might prove relevant to depart
from the predominantly linear modeling approaches and approximations in economics. This gives
rise to the notion of causal machine learning which might conquer policymaking in the near future.

Recall, that the specification of media transition matrices is the only unknown input in the AMSS
model. Given such knowledge would exist the AMSS framework could be leveraged as a micro-
founded media mix model. Such a model would allow for direct counterfactual experiments after
successful calibration. In particular Nepa’s experience in consumer tracking, transition matrices
should be recoverable (at least for digital marketing campaigns). The AMSS could be extended to
allow for more complex environments, such as non-linear demand schedules and a more realistic
competitive market behaviour should be incorporated. Such an approach to MMM would clearly
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be both unique and powerful. Given all the encountered difficulties of the current methodology, a
novel micro-founded approach has the potential to disrupt the industry.

Yet another critique concerning MMM is the inability of conventional models to distinguish between
short-term and long-term marketing effects (Cain, 2008). Cain (2008) argues that short-sighted
price campaigns while boosting demand in the short-term most likely erode long-term profitability
by shifting the supply curve down to sub-optimal levels. Therefore, a modeling approach paying
tribute to both short- and long-term consequences might be more suitable. To mention one possible
approach, Vector Error Correction Models (VECM) could be leveraged to understand the long-term
equilibrium relation between sales and marketing efforts (base sales). The incremental sales can be
computed following standard procedures as currently employed in MMM and this thesis (incremen-
tal sales). But now, the marketer can compare the short-term gains to long-run implications. Of
course these long-run implications (output from the VECM) need to be appropriately discounted
such that the marketer can compare the present value of base sales to incremental sales (Cain,
2008). Clearly, this thesis is concerning the short-run. However, short- and long-run analysis is
not exclusive but can complement one another and provide a more holistic viewpoint of ROI and
hence a more nuanced understanding of marketing.

We are convinced that people claiming the death of MMM do so because they became aware of one
or the other problem and assumption as encountered in this thesis. Of course, the aim of MMM
seems in light of these complexities ambitious. Yet we believe that this is also the misconception
of statistics being a precise science such as mathematics or physics. However, marketers should
not allow trust in MMM to erode. Therefore, it might be advisable to clearly communicate the
complexities and simplifying assumptions. Further, MMM should potentially reduce its ambitions
and mainly provide directional guidance and restrict its output to the derived empirical facts rather
than the exact final media allocation where biases potentially get aggregated. This could lead to
more frequent exchange between businesses and marketers and gradual convergence to the optimal
allocation after several reevaluations.

10 Conclusion

MMM tries to disentangle and understand the drivers behind KPIs such as sales. The aim is to
measure media effectiveness and infer an optimal media allocation. Ultimately, MMM is concerned
with causal inference. The usual metric to measure media impact is known as return on investment
(ROI) which pins down the expected incremental sales for each level of media spend. Theory
suggests that these ROI-curves are either linear, concave or S-shaped where the curvature can be
linked to constant, increasing or decreasing returns to scale. An S-shaped pattern might arise
if initial low media spending gets drowned in noise and has no effect at all whereas potential
customers get saturated at higher exposures. The exact shape of the ROI-curve matters for optimal
media allocation since at the optimum marginal returns should equal marginal costs for each media
channel.

The usual approach to MMM is a multi-step procedure, where, as a first step, the sales-generating
process is modeled. It is important to understand that the modeling approach can constrain
the potential shape pattern because ROI-curves are the implied model response curves. To trace
out these curves, one has to decompose the model. Decomposition is non-trivial when variables
interact with each other and we employ modern model agnostic techniques to fairly attribute
the contribution to the different factors. Concretely, three static modeling approaches and three
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decomposition methods are investigated. The models are Ordinary Least Squares (OLS), Shapley
Value Regression (SVR) and Generalized Additive Models (GAM). The decomposition methods are
Weighted Factor Decomposition (WFD), Accumulated Local Effects (ALE) and Shapley Additive
Explanations (SHAP). Models requiring a functional form are either specified as a polynomial or a
multiplicative regression where the latter is known as the multiplicative power model. The power
model is expected to capture the highest order of interaction between the variables.

We further investigated the potential to pool data thereby increasing sample size. Pooling data
is accompanied by the potential threat of structural change and thus parameter instability. The
modeling technique known as Time-Varying Effect Modeling (TVEM) is expected to handle smooth
dynamic changes well and should account for changing media efficiencies.

These methodologies were selected because MMM is prone to some inherent complexities: The
framework needs to be able to allow for causal modeling and for S-shaped response functional
forms. Optimally, the model can account for a high degree of multicollinearity (MC) in the feature
space as otherwise, estimated ROI-curves can be very unstable. SVR alleviates the issue of MC
utilizing a coalition game-theoretic approach. Response curves are also biased if the modeler does
not correctly specify interactions when synergies between media channels (also known as funnel
effects) are present. We therefore included interactions explicitly in our model specifications. On
the other hand and as mentioned above, multiplicative models should be able to account for complex
synergistic media behavior. Such multiplicative models might be highly relevant in practice since
the explicit interaction specification becomes messy when marketers employ many channels at the
same time.

Potentially the biggest difficulty is imposed by limited data availability. The typical sample size
incorporates three years of weekly data which leaves 154 data points. There are several strategies
to alleviate these data limitations, one of them being hierarchical Bayesian methods as proposed
by scholars. We followed the approach to pool data across time and identified TVEM to be a
promising method because of its theoretical properties. In particular, the modeler is not required
to know the exact time dynamic process and does not need to specify a transition equation.

On the other hand, decomposition methods were selected mainly because of their theoretical proper-
ties where WFD can be perceived as an intuitive benchmark. SHAP is the only approach fulfilling
the desirable properties of local accuracy, missingness, dummy, symmetry and linearity whereas
ALE takes conditional densities into account. The latter consideration might proof highly relevant
when features are correlated.

To build a realistic testing environment, we leveraged a micro-founded demand model known as
aggregate marketing system simulator (AMSS), a model developed in a google research project.
The AMSS allows to generate aggregate sales time-series data by simultaneously controlling for
media behavior. It further decouples the simulation specification from the model specification
which enables a fair comparison of different methodologies. The AMSS sales model was calibrated
to real data in an effort to match certain key metrics and therefore build a realistic marketing
environment. This virtual environment is characterised by probability distributions and hence
probabilistic in nature. Therefore we conducted our analysis by means of a Monte Carlo simulation
study with 500 repetitions.

Our research question read How can shape effects in MMM be captured most accurately? This
being a thesis in economics, we should give an economic answer: Well, it depends. Given all the
complexities characterizing a typical MMM environment, it would be naive to believe that there
exists a one-size-fits-all model. Our focus therefore lied on understanding the (model specific) trade-
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offs imposed by the different complexities. The following insights were derived: An information
criteria (such as R2) can be used as a proxy for the goodness of ROI-curve fit. Models fitting the
sales process more closely produce better shape estimates. The decomposition approach matters
significantly for the goodness of ROI-curve fit. We recommend using SHAP for more additive
models, whereas ALE is desirable for more multiplicative models. We attribute that insight to
ALE sampling from the conditional densities and recommend extending the SHAP to sample from
the conditional densities when building coalition vectors. All modeling approaches produce biased
estimates which might be caused by small sample size. There is a bias-variance trade-off with
additive models producing lower bias but higher variance than their multiplicative counterparts.
Yet, marginally lower bias comes at the cost of a considerable increase in variance. Strong funnel
effects (synergies) between media channels impose a challenge for all models, even the multiplicative
models featuring a high degree of interaction between variables. Considering the media channels
separately, SVR is among the best-performing methodologies. Yet, there is a trade-off between
media channels, where response patterns for one channel are matched closely by a model but missed
by wide margins for the other channel. GAM is the most balanced approach in that respect. The
multiplicative power model produces the most consistent estimates but in particular, is not able to
fit the Asym parameter correctly. This might not be too decisive for optimal allocation. TVEM can
compete with the best performing models and is not too sensitive to the degree of dynamic change,
as the robustness checks hint. The results are robust to alternative simulation specifications.

We believe that the AMSS is a valid tool to understand MMM and the trade-offs implied by different
complexities. Our approach allows marketers to isolate and vary complicating forces in isolation.
Therefore, we are convinced of the realistic virtual testing environment and recommend exploring
the approach in further research. Lastly, by breaking down the multi-dimensional task of MMM in
smaller tractable sub-problems and highlighting inherent complexities, we believe contributing to
an understanding of MMM. Optimal media allocation remains an ambitious task but faith should
not be lost. Still, both businesses and marketers should understand crucial assumptions and the
different complexities thereby updating the expectations they place on MMM: Media Mix Modeling
is a fact-based policy tool very much needed in the gut feel guided world of marketing.
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A Complementary Graphs

Figure 19: The failure rate is the ratio between unsuccessful curve fitting and total number of
iterations (500). Multiplicative models in combination with WFD did never lead to convergence in
the curve fitting algorithm.

B Alternative Simulation Specification

Marketing interventions. The transition matrices for media 1 under the alternative scenario
(compare with equations 46, 47 and 48) read

Q3,’activity’ =

0.30 0.50 0.30
0.00 0.60 0.40
0.00 0.00 1.00

 (54)

Q3,’favorability’ =


0.00 0.10 0.50 0.30 0.10
0.00 0.70 0.20 0.10 0.00
0.00 0.00 0.40 0.40 0.20
0.00 0.00 0.00 0.60 0.40
0.00 0.00 0.00 0.00 1.00

 (55)

Q3,’loyalty’ =

0.40 0.35 0.25
0.00 1.00 0.00
0.60 0.00 0.40

 (56)

where k was set equal to 3, indicating the chronological order of the events. The transition matrices
for media 2 (compare with equations 49 and 50) read
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Q4,’favorability’ =


0.00 0.10 0.50 0.30 0.10
0.00 0.70 0.20 0.10 0.00
0.00 0.00 0.40 0.40 0.20
0.00 0.00 0.00 0.60 0.40
0.00 0.00 0.00 0.00 1.00

 (57)

Q4,’availability’ =

0.10 0.60 0.30
0.00 0.30 0.70
0.00 0.00 1.00

 (58)

where k was set equal to 4, indicating the chronological order of the events.

Sales event. The segment specific intercept of the demand schedule determines the purchase
likelihood of that segment. These likelihoods (compare with equations 51, 52 and 53) read

α’favorability’ =(0.00, 0.00, 0.40, 0.60, 0.90) (59)

α’loyalty’ =(0.60, 0.90, 0.00) (60)

α’availability’ =(0.00, 0.70, 0.90) (61)

The hill parameters (hill.ec, hill.slope) were set to (2, 0.3) for media 1 and to (3, 0.8) for media 2.
In the original setting, we chose (0.8, 0.3) for media 1 and (3, 6) for media 2 which led to the shape
pattern as depicted in figure 11.

C Alternative Results

Model ols poly ols multi svr poly svr multi gam tvem

R2 0.91 0.86 0.85 0.86 0.92 0.86

Table 3: Model validation under the alternative specification, R2 averaged over all 500 iterations.
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Figure 20: Parameter fit reported by boxplots under the alternative specification. Each column
reflects one modeling approach. The top three rows report on media 1.
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D List of Resources

As mentioned throughout the text, the programming language R (R Core Team, 2013) was used
and the below-mentioned packages. For further information, the reference section can be consulted.

• amss (Inc., 2017)

• relaimpo (Grömping, 2006)

• gam (Hastie, 2019)

• tvReg (Casas and Fernandez-Casal, 2020)

• iml (Molnar et al., 2018)

• shapper (Maksymiuk et al., 2019)

• prophet (Taylor and Letham, 2020)
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