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Abstract
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pational categories labour market outcomes of workers switching occupation due to
automation is estimated using a data driven occupational mobility model. Models of
this kind are constructed using network theory, agent based modelling and, a large
data set, and have proven to be useful in analysing flows in the labour market to
understand aggregate phenomena such as the Beveridge curve. In order to determine
worker behaviour in the model, an occupational mobility network is constructed -
which contains the probabilities of transition between ordered pairs of occupations -
using all transitions that occurred in Sweden between 2016 and 2017. In addition,
the model is calibrated using the Swedish Beveridge curve. A shock, based on esti-
mates of occupation specific automation probability is implemented. In this way, the
findings of del Rio-Chanona, Mealy, Beguerisse-Dı́az, Lafond, and Farmer (2019) are
replicated using Swedish data instead of US data. Which means that it is shown that
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a high probability of automation are unaffected, while others, with low probability of
automation are adversely affected.
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1 Introduction

The impact of automation on the labour market has been a topic of discussion within eco-
nomics almost since the fields inception. Lately, the discussion has garnered widespread
interest as the efficiency and applicability of machine learning algorithms and other au-
tomation methods have proven increasingly successful. A literature devoted to analysing
the prospects of these automation tools within different occupations has received much
attention in recent years (Frey & Osborne, 2017) (Brynjolfsson, Mitchell, & Rock, 2018)
(Brynjolfsson, Rock, & Syverson, 2017). Because this work is successful in gaining knowl-
edge about which occupations are more, and which are less, suited for automation, it
may be used in a data driven labour flow network model to assess the network effects of
automation on unemployment. A model of this kind was created by del Rio-Chanona
et al. (2019), who used it to analyse US data. In addition to providing insight into the
network effects of automation on unemployment, the model is able to shed light on some
of the mechanics which underlie the relationship between the unemployment rate and the
vacancy rate. This empirical relationship is a well known macroeconomic stylised fact
called the Beveridge curve.

In this thesis, the results of del Rio-Chanona et al. (2019) will be replicated using Swedish
data. In doing so, the Swedish labour market is analysed through the same lens as that
of the US labour market, which enables direct comparison of the results. In addition, the
behaviour of the model under a completely new set of data is investigated. This provides
more evidence regarding the relationship between the model and the Beveridge curve.
Furthermore, in constructing the model, an occupational mobility network is built. This
is a network of occupations, with directed edges from one occupation to another weighted
by the transition probability, which is the probability that a worker in one occupation
finds a job in another. The concept was first introduced by Mealy, del Rio-Chanona, and
Farmer (2018) who showed that predictions made by their network correlated significantly
with transition rates. The network affects how workers move between occupations. This
is important since workers in occupations, affected by decreased demand as a result of
automation, will have to look for jobs elsewhere. In this way, the analysis conducted
here provides a more complete picture of labour market outcomes due to automation than
looking at each occupation in isolation. This makes analysis of this kind even more useful
for individuals making choices about their future career as well as policymakers.

The skill required to conduct an automatable task might be useful in conducting other
types of non-automatable tasks. The model does not explicitly cover skill but it is en-
dogenous to the network, which occupation you are employed in says a lot about the skills
you have. For example, estimates by Frey and Osborne (2017)1 claim that the tasks of
Office assistants and secretaries are more likely than those of Construction and manufac-
turing supervisors to be computerised. If this is indeed the case and the library assistant
find themselves out of a job, the skills they possess might allow them to find work in a
different occupation. Perhaps one where the automation threat is less consequential. In
contrast, the Construction supervisor is relatively safe from automation. However, work-
ers from different occupations that require similar skills but which are under more direct
automation pressure might flee to the relative safety of Construction supervisors. In their
working paper del Rio-Chanona et al. (2019) found that their model validates these claims.

1translated to the Swedish occupational classification system, SSYK, see section 4
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The analysis is conducted in two steps; first the model parameters are calibrated with
time-series of unemployment and vacancy rates, i.e. the Beveridge curve, in Sweden. The
parameters are related to the worker separating and vacancy creating processes that exist
in the labour market (del Rio-Chanona et al., 2019). Then the calibrated parameters
are used to simulate the behaviour of the market under an automation shock spanning
several decades. Each occupation is affected differently by the shock based on the results
of Frey and Osborne (2017) - where the probability of computerisation is estimated for
each occupation. The shock does not decrease aggregate demand for labour, rather it
reallocates it. Occupations with a low probability of computerisation see an increase in
demand, whereas occupations with a high probability of computerisation see a decrease
in demand. This means that labour flows between and within occupations are affected by
this exogenous shock. In replicating the work of del Rio-Chanona et al. (2019), we are
able to draw conclusions within two areas of interest:

• Claims relating to labour markets generally: To what extent is the model able
to replicate the Swedish Beveridge curve? What can the differences in optimal
parameters between Sweden and the US tell us about the differences in the labour
markets?

• Claims relating to the consequences of automation: What does the model say about
the performance of the Swedish labour market under an automation shock? Are the
phenomena found by del Rio-Chanona et al. (2019) also present in Sweden?

In addition, del Rio-Chanona et al. (2019) make claims related to the mechanics that un-
derpin the Beveridge curve. Testing their model with significantly different data provides
additional evidence regarding these claims. Furthermore, some of the aforementioned con-
clusion may be used to instruct policy. Specifically relating to the structure of optimal
job training programmes. In addition, the results are compared to a null model of the
labour market without skill restrictions. When conducting the analysis with this base,
the results change in ways expected by theory. This shows that when workers’ movements
between occupations are restricted by skill, there are significant frictions which may create
bottlenecks and result in higher unemployment.

In order for the model to be viable, a number of assumptions of various strength are made.
The consequences of these assumptions on the results are explored in the discussion but
brief descriptions of key issues encountered when making the thesis are provided here.
It is assumed that workers are perfectly geographically mobile (del Rio-Chanona et al.,
2019). This assumption allows workers to apply to any open vacancy which they have the
prerequisite position for. However, it is not an assumption that holds in Sweden - which
is sparsely populated outside of the cities. This is, of course, an issue for del Rio-Chanona
et al. (2019) as well, which they solve by decreasing the scope of the model from the entire
US to a representative city. This solution comes with its problems since national data
is more readily available than local data, something that is true in Sweden as well. To
this end, the unit of analysis is chosen to be a representative city which has worker flows
between occupations of the same scale as those for the entire country (del Rio-Chanona et
al., 2019). In the US there is a plethora of big cities, making the idea of a representative
city more palatable, which is not the case in Sweden. Therefore, the results presented in
section 5 are not based on a representative city. Rather, the implications of the geograph-
ical mobility assumption are explored in 6 where a potential solution is mentioned.
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Furthermore, the estimates of computerisation probabilities of occupations from Frey and
Osborne (2017) is used, where occupations are classified using the American SOC (Stan-
dard for Occupation Classification). However, Sweden uses its own classification system
(SSYK). Fortunately, there exists cross-walks between different classification systems oc-
cupations exist. First, a crosswalk between SOC to ISCO (International Standard Clas-
sification of Occupations) is used. Then the official crosswalk between ISCO and SSYK
provided by Statistics Sweden is used for the final step. However, the mapping is not
one to one which means that assumptions are needed regarding the transformation of the
automation shock between systems. Furthermore, there are no worker nor firm optimisa-
tion behaviour with respect to how workers choose vacancies to apply for. This may be
incorporated into the model by adding wages, a feature that exists in the model by Axtell,
Guerrero, and López (2019). However, the focus of this thesis is to replicate the findings
of del Rio-Chanona et al. (2019) using different data which means that this feature is not
something that will be incorporated here.

Similar to del Rio-Chanona et al. (2019) we find that certain occupations have a counter-
intuitive change in unemployment due to the automation shock relative to their computer-
isation probabilities. As is shown throughout the thesis, the computerisation probabilities
of an occupations neighbours2 affects the labour market outcomes of the occupation. This
means that certain occupations with a low probability of computerisation, might still be
aversely affected by automation. While, some occupations with a high probability of com-
puterisation will not be as affected by automation as might be expected. This effect likely
holds - despite problems encountered when calibrating the model.

2 Literature Review

2.1 Network models of the labour market

This sort of model comes from a large body of literature that has showed the usefulness
of analysing labour market flows with networks and agent-based models (Schmutte, 2014)
(Dworkin, 2019) (Nimczik, 2017) (Michael & Richiardi, 2018) (Alabdulkareem et al., 2018)
(Guerrero & Axtell, 2013) (Lopez, Guerrero, & Axtell, 2015) (Neffke, Otto, & Weyh, 2017)
(Diodato & Weterings, 2015) (Axtell et al., 2019) (Goudet, Kant, & Ballot, 2017) (Jackson
& Kanik, 2019). In fact, the concept originated with Granovetter (1977) who showed the
important effect that distant acquaintances in social networks have in spreading informa-
tion about vacancies. While the network analysed in this thesis is not a social network,
a similar concept underlies both ideas: workers are constrained in what vacancies they
apply for. The works referenced above tend to use networks to study these constraints
or frictions that exist in the labour market. Workers are bound by their geography, ed-
ucation and skills which prevent them from freely moving between firms, occupations or
industries. In order to get a grasp of how these frictions play out in the labour market,
data is used to construct networks depicting different aspects of labour market frictions.

For example, Axtell et al. (2019) uses employer-employee matched records to construct a
network of firms. In their work, each node is a firm and a weighted, directed edge exist

2nodes with an edge to the node in question, see 7.1
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from firm i to firm j corresponding to the flow of workers from i to j. Accounting for
this network, they model application decisions of unemployed workers and hiring policies
of firms. This enables them to create a dynamic model where workers transition in and
out of employment in different firms. Their work finds that hiring behaviour may gener-
ate bottlenecks and uneven concentrations of unemployment around specific companies.
Specifically, they show that these behaviours correlate through the network (hiring be-
haviour of a firm affects the behaviour of firms around it) and that the network topology
(see Network terms glossary) induces a large part of frictional unemployment (Axtell et
al., 2019). An effect of this kind is often called a network effect, where each node is
affected by, and affects, the nodes around them, a result of this kind is presented in sec-
tion 5. Mealy et al. (2018) take a different approach to the construction of the network,
looking at occupations rather than firms. In their network, nodes are specific occupations
and edges do not correspond to worker flows directly, although they present a network
of this kind as well. In addition, they develop a measure of similarities between each
pair of occupations using descriptions of discrete work activities that are undertaken at
these occupations. This measure serves as the weighted, undirected edge between occu-
pations and correlates to a high degree with the actual labour flows between occupations,
meaning that it is a good predictor of occupational transitions (Mealy et al., 2018). The
work of del Rio-Chanona et al. (2019) combine these different approaches by creating a dy-
namic model of worker flows - similar to that of Axtell et al. (2019) - between occupations.

The two main components of the model by del Rio-Chanona et al. (2019) are the occupa-
tional mobility network and the dynamic model where workers are random walker agents
similar to those of Axtell et al. (2019). Each node in the occupational mobility network is
an officially classified occupation category and there exists an edge from node i to node j
if workers have transitioned from occupation i to j within a period of time. The network is
constructed using empirical data and may be combined with the estimates from Frey and
Osborne (2017) by drawing the network and colouring the occupations (or nodes) based
on the computerisation probability estimate of that occupation. This network allows us
to get an idea of how the computerisation probability is distributed among different cat-
egories of occupations and how these occupations relate to each other. Analysing these
networks allows for insight into the credibility of the claims raised in section 1 but does
not provide a full answer. However, there is a literature which uses labour flow networks of
different kinds to build a dynamic model where workers flow from nodes to nodes through
the edges in the network (Jackson & Kanik, 2019) (Dworkin, 2019) (Axtell et al., 2019). In
the particular model proposed by del Rio-Chanona et al. (2019) workers are separated (let
go from their job) and vacancies are created within each occupation. In the next period
separated workers apply to a vacancy within an occupation that neighbours (is connected
to) the occupation the worker got separated from. Data then drives the calibration of the
model’s parameters. Using the calibrated model and the results from Frey and Osborne
(2017) an automation shock, happening over several decades, is introduced in the model.
In this way the model provides a way of measuring unemployment dynamics at the occu-
pational level due to shifts in labour demand following automation. It also allows us to
examine to what extent the network structure of the labour market affects the efficiency
of labour allocation (del Rio-Chanona et al., 2019). In this way, the authors demonstrate
that the network structure affects labour market outcomes due to an automation shock to
a large extent. The specifics of this model is formally developed in section 3.

6



2.2 The effect of automation on labour markets

Both within and, but perhaps especially, outside of academia there has been a flurry of
interest in the automation of labour over the last decade. It should of course be noted that
economists have studied automation arguably since the inception of the field. However,
today there is a notion among many that we are standing on the precipice of another
technological revolution. But what do the experts have to say about this? The answer
is found in the work of Frey and Osborne (2017), who used a list of descriptions of work
tasks related to different occupations and asked experts what probability they would place
on a specific task being computerised in the coming decades. They managed to compile
the probability of computerisation of all 722 occupations specified by the four digit SOC
code (each containing a variety of specific tasks classified in O*Net3). Since interviewing
experts about each of these tasks would be too time consuming for everyone involved they
instead took a sample of the tasks and used advanced machine learning methods to esti-
mate the remaining tasks (Frey & Osborne, 2017). A similar approach has been conducted
by Brynjolfsson et al. (2017), Brynjolfsson et al. (2018) - where they constructed a mea-
sure of suitability for machine learning. While del Rio-Chanona et al. (2019) implements
shocks based on both of the aforementioned estimates - their main result is based on Frey
and Osborne (2017) and this is the only one implemented here.

3 Theory

In this section, the theoretical framework of the data driven occupational mobility model
is developed. The model may be viewed as having two, interconnected components -
an occupational mobility network and an agent-based model. Below each of these are
described separately and the formal model (which combines the two) is derived. As we
shall see, there is a way to solve the model deterministicly using only the parameters
and the edges of the network - which is much more computationally efficient than the
agent-based simulation. For brevity, the derivations of the deterministic solution are not
included here but may be found in the Supplemental Information of del Rio-Chanona et
al. (2019).

3.1 Occupational mobility network

A network, or graph, is defined by an adjacency matrix, which is a matrix that has the
same set of labels on both its columns and rows. Each label then defines a node and there
exists an edge (or link) from one node to another if the corresponding value in the adja-
cency matrix is non-zero. Formally speaking, if A is an adjacency matrix with elements
Aij then i and j are nodes and an edge between them exist if Aij ‰ 0 (if negative links
are allowed). If there exists an edge between two nodes, we call these nodes neighbours.
Neighbours are an important concept in Network theory since they describe the local sur-
roundings of a node. In the context of an occupational mobility network, neighbouring
nodes have labour flows between them. As will be shown, an occupation’s neighbours are
important in determining the unemployment outcome of the occupation as a result of the
automation shock.

The adjacency matrix used to define Sweden’s occupational mobility network is con-

3Occupational Information Network
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structed from the occupational transitions between 2016 and 2017. That is, the matrix
contains information about the number of workers who transitioned between occupations.
In the raw data acquired from Statistics Sweden4 the rows and columns are labelled with
3-digit SSYK codes. In this way, each code defines a distinct occupation which is a node in
the network. The elements of the matrix are labour flows from the row occupation to the
column occupation between 2016 and 2017. Depending on the structure of the adjacency
matrix the resulting network may have different attributes. In our case we have a directed
graph, where there might exist an edge from i to j but not from j to i. In other words,
the matrix is not symmetric around the diagonal. In addition the graph has self-loops,
which means that each node points to itself. This is the case since many (most) workers
stayed within their occupation between 2016 and 2017. As shown in the section below,
these attributes of the network allow us to define a simple agent based model where the
automation shock is implemented.

So far labour flows have been discussed in absolute terms, which is how the raw data is
constructed, but in the occupational mobility network proposed by Mealy et al. (2018),
edges are weighted by transition probabilities. Therefore, we introduce the adjacency
matrix A which defines the occupational mobility network:

Aij “
Tij

ř

k Tik
(3.1)

Where T is the matrix containing raw data on number of workers transitioning between
occupations described above. In this way, we estimate the transition probabilities be-
tween all occupations. Transition probabilities are used to shape the behaviour of the
agents which populate the model. As we will show in the coming sections, they are the
foundation used to determine labour flows between occupations. In their work, Mealy et
al. (2018) showed that their occupational mobility network performed well at predicting
occupational transition rates in the US. Since a similar analysis has not been conducted
in Sweden - we assume that the transition probabilities estimated with Aij correlate suffi-
ciently with transition rates in Sweden. Having transition data over several years would,
of course, make this assumption more palatable but transitions over one year is sufficient
to conduct the analysis. Furthermore, the coming sections show how additional data is
used to calibrate other aspects of the model.

In Figure 1 and 2, the occupational mobility networks constructed using Swedish data are
presented. Since the data used to construct the networks do not have a spatial compo-
nent - the position of each node is calculated using an algorithm. The layout of the first
network in each figure is based on a spring algorithm, where each edge acts like a spring
pulling the nodes together. The nodes are initialised at random points in the xy plane
and then their positions change in discrete time steps based on the forces applied by the
springs. In this way, nodes that are more interconnected tend to be grouped closer to one
another, which allows some structure of the network to emerge. It should be noted that
since there are over 2000 edges in the network and only 143 nodes, the spring algorithm
does not converge to a steady state, where all the forces are balanced, quickly.

Nevertheless, looking at Figures we see that nodes of the same colour tend to be close
to each other. This is not trivial since the spring algorithm does not take into account

4SCB: Statistiska Centralbyr̊an
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Library and 
 Archive Assistants

Office assistants 
 and secretaries

Teachers at elementary 
 and pre-school levelConstruction and 

 manufacturing supervisors

A Occupations coloured by SSYK1

B Circular layout

Elementary occupations
Service, care and shop sales workers
Administration and customer service clerks
Mechanical manufacturing and transport workers, etc.
Agriculture, horticultural, forestry and fishery workers
Construction and manufacturing workers
Occupations requiring higher education qualifications or equivalent
Managerial occupations
Occupations requiring advanced level of higher education

Figure 1: The Swedish occupational mobility network using two different algorithms for
deciding the positions of each node. The size of the node is proportional to the amount of
workers who stayed in the occupation and the colour of each node and its edges is based
on the first level SSYK code. Some nodes are labelled with the description of the category
they represent. A: Spring layout, where each edge pulls on the target node with a force
inversely proportional to the edge weight. B: Circle layout, where each node is placed on
a circle, the first being the lowest SSYK value and the last being the highest SSYK value.
Node sizes for the circle layout are half as large.
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Figure 2: The Swedish occupational mobility network and computerisation probability dis-
tribution. Some nodes are labelled with the description of the category they represent. A:
The frequency distribution of computerisation probability values. B: The occupational net-
work using the same spring layout algorithm from Figure 1 A but with nodes and edges
coloured by their probability of computerisation. C: Circle layout of Figure 2 B, again
nodes coloured by probability of computerisation.
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that some nodes belong to the same occupational category or have similar levels of com-
puterisation probability. Rather, it shows that transitioning workers tend to move to
an occupation in the same higher order category as the one they came from (Figure 1
B). Similarly, transitioning workers tend to move to occupations with a similar level of
computerisation probability (Figure 2 B, C). However, there are exceptions which will
be shown to play an important role in our main result. The networks are also presented
using a circular layout, where each node is placed on the unit circle, ordered by SSYK
code. This type of layout can be useful for networks with large number of edges relative
to the number of nodes since it is easier to see the edges between nodes. For example,
workers in Elementary occupations transition to many different categories of occupations
(Construction and manufacturing, Service, care and shop sales workers but also occupa-
tions requiring higher education qualifications or equivalent).

Four nodes are labelled in the graphs, we are briefly going to discuss two of them: Con-
struction and manufacturing supervisors, and Office assistants and secretaries. The former
has a low probability of computerisation and the latter a high. However, the Construction
and manufacturing supervisor node is surrounded by a lot of red nodes, whereas the Office
assistants and secretaries are surrounded by blue nodes (Figure 2 B). This means that
there are labour flows between Construction supervisors and other occupations with high
probability of computerisation. Conversely there are labour flows between Office assistant
and occupations with low probability of computerisation. As is shown in section 5, this
means that they will be affected differently by the automation shock relative to other
occupations with similar computerisation probabilities. The Construction supervisor oc-
cupation observes an increase in unemployment after the shock - even though the labour
demand increases for this occupation. The explanation is that workers in neighbouring
occupations which are affected by decreased labour demand as a result of automation will
all apply to the vacancies in Construction supervision. This means that it is harder for
unemployed Construction workers to find jobs there, in addition, there are few available
jobs in neighbouring occupations as well which means that the workers stay unemployed.
Conversely, the Office assistants are able to apply to the vacancies in neighbouring oc-
cupations which observe an increase in labour demand as a result of the shock. Which
means that despite a lot of Library assistant losing their jobs - relatively many of them
are able to find jobs elsewhere. As mentioned, this is described in section 5. However,
before we get there, the coming sections describe the theoretical model and the methods
used to achieve these results.

3.2 Agent based model

The ABM framework allows us to introduce rules for workers which, combined with data,
produce labour market outcomes. To that end there are two types of entities in the model,
workers and vacancies. In addition, both entities belong to one distinct occupation and
have two different states. Workers are either employed or unemployed and vacancies are
either open or close, where both always belong to an occupation. Unemployed workers
are able to apply to open vacancies within their occupation, i, or within a neighbouring
occupation j, where there exists an edge from i to j. In this way - workers traverse the oc-
cupational mobility network in a guided, stochastic fashion. Workers move stochastically
since they are only allowed to apply to one vacancy, which they do at random. However,
the probability at which they apply to vacancies are weighted by the transition probabil-
ities Tij defined above. This means that workers in occupation i are more likely to apply
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Figure 3: Flow chart of worker behaviour during simulation

to a vacancy in occupations j when the transition probability, Tij , is higher. When the
unemployed workers have made their application, each vacancy accepts one application
with uniform probability. Vacancies that do not receive applications remain open until
the next period (Axtell et al., 2019) (del Rio-Chanona et al., 2019).

Thus far we have taken the states of the entities, employed or unemployed for workers
and open or closed for vacancies, for given. But these are determined within the model
by a combination of parameters and an initial, empirical, employment distribution across
occupations. In turn, the parameters are calibrated such that the model outputs a Bev-
eridge curve which is similar to the empirical one. The transition probabilities and the
rules followed by workers and vacancies outlined above determine what choices the workers
are able to make in the model. In addition, it is required in order to determine who will
be hired where. But it does not tell us who will lose their job or in which occupations
vacancies are available. These aspects of the model are set by separate stochastic pro-
cesses. As will be explained in formal detail below, workers transition into unemployment
and vacancies are opened following a binomial stochastic process (del Rio-Chanona et al.,
2019).

3.3 Dynamic labour market model

In the replicated model worker flows in the network are described by discrete time stochas-
tic processes for employment, unemployment and vacancies within each occupation. The
following assumptions are made:

1. Workers are perfectly geographically mobile

2. Wage pressure is neglected

3. The set of possible occupations are fixed
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In addition, a worker’s occupation is the one she was last employed in. We begin formal-
ising the model by letting ei,t, ui,t and vi,t be employment, unemployment and vacancies
respectively in occupation i at time t. In addition, let di,t “ ei,t ` vi,t denote the re-
alised demand for labour in occupation i at time t. As mentioned, these are modelled as
stochastic processes:

ei,t`1 “ ei,t ´ ωi,t`1
loomoon

separated workers

`
ÿ

j

fji,t`1

loooomoooon

hired workers

(3.2)

ui,t`1 “ ui,t ` ωi,t`1
loomoon

separated workers

´
ÿ

j

fij,t`1

loooomoooon

transitioning workers

(3.3)

vi,t`1 “ vi,t ` νi,t`1
loomoon

opened vacancies

´
ÿ

j

fji,t`1

loooomoooon

hired workers

(3.4)

Where ωi,t are the number of workers separated at time t in occupation i, νi,t the number
of vacancies opened at time t in occupation i and fij,t are the number of workers from
occupation i hired in occupation j at time t. In this way, all workers are accounted for.
The above set of master equations define the dynamics of the model and are the basis
of what occurs at each time step. As will be shown, they characterise a non-equilibrium
model where vacancies are opened and workers are separated within each occupation and
at each time step, in order for the realised demand, di,t, to reach the target demand, d:i,t of
the occupation. In addition, the equations are used to find an approximate, deterministic
solution to the model. Furthermore, the number of separated workers ωi,t as well as the
number of opened vacancies, νi,t are modelled as independent binomial processes:

ωi,t`1 „ Bin pei,t, πu,i,tq (3.5)

νi,t`1 „ Bin pei,t, πv,i,tq (3.6)

Where Binpn, pq denotes the binomial distribution with n trials and success probability p.
Thus πu,i,t and πv,i,t are the probability that a worker employed in occupation i at time t
gets separates and that for each worker in occupation i at time t a vacancy opens, respec-
tively. We break each of these into two random processes: a state-dependent process and
a state-independent (or spontaneous) process. The separation, state dependent process is
defined such that workers are more likely to get separated if the realised demand is higher
than the target demand. Conversely, the vacancy state dependent process is defined such
that vacancies are more likely to be opened if the realised demand is lower than the target
demand. In this way, the state dependent processes are adjusting the realised demand to-
wards the target demand. However, in the spontaneous processes, workers are separated
and vacancies are opened at random. Therefore, the occupations will tend to not be in
demand equilibrium and even if at some point they there, the spontaneous processes will
shift them out of equilibrium.

In order for workers to flow through the network there has to be a match between an
unemployed worker and an open vacancy. A worker is unemployed in occupation i, and
will apply to one vacancy in occupation j that neighbours i and has at least one open
vacancy. When all the unemployed workers have applied, each open vacancy that was
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applied for chooses one worker at random who fills the position and closes the vacancy.
If a vacancy is not applied for, it remains open. These rules enable us to calculate the
probability ,qij,t`1, that an unemployed worker in occupation i applies to a vacancy in
occupation j. This is done by taking the number of vacancies open in j, multiplied by the
probability that the worker applies to j, divided by the total number of available weighted
options:

qij,t`1 “
vj,tAij

ř

l vl,tAil
(3.7)

Therefore the expected number of applications submitted from occupation i to occupation
j is the probability qij,t`1 multiplied by the number of unemployed workers in ui,t:

E rsij,t`1|ui,ts “ ui,tqij,t`1 (3.8)

This is because each worker sends one application and because the random variables sij,t`1

follow a multinomial distribution with ui,t trials and probabilities qij,t`1 for fixed i and
j “ 1, ..., n, where n is the number of nodes in the network. All vacancies which receive
applications hire one worker but, as mentioned above, some may not receive applications
and will then be left open.

This is the framework that is used to model worker flows across the network. Formally, we
let δu and δν denote the overall, spontaneous probability that a worker is separated and
a vacancy is opened respectively. Where overall means that the probability is the same,
regardless of occupation or time step (which is another way of expressing state indepen-
dent). As mentioned, fluctuations in labour demand also influence the state of workers
and vacancies. This is governed by a state-dependent process, where workers are more
likely to be separated if realised demand, di,t, (current number of employed workers plus

number of open vacancies) is higher than the target demand, d:i,t. Conversely, vacancies
are more likely to be opened if current demand is lower than the target demand. Formally,
let αu,i,t and αν,i,t denote the state-dependent probability that a worker is separated or a
vacancy is opened due to an imbalance between current and target demand. As opposed
to the spontaneous processes, these probabilities depend on both the occupation, and the
time. Then, the probability that a worker is not separated is p1´ δuqp1´αu,i,tq, since the
worker does not get separated by the spontaneous process nor the state-dependent process.
Similarly, the probability that a vacancy is not opened is p1´ δνqp1´ αν,i,tq. This allows
us to express the success probabilities of the binomial processes above as:

πu,i,t “ 1´ p1´ δuqp1´ αu,i,t “ δu ` αu,i,t ´ δuαu,i,t (3.9)

πν,i,t “ δν ` αν,i,t ´ δναν,i,t (3.10)

Which are the probabilities that a worker gets separated and a vacancy opened. As
mentioned, the probabilities denoted α are state dependent. Specifically they depend
on the imbalance between realised and target demand in occupation i and at time t.
Furthermore, these probabilities are constructed such that they minimise this imbalance.
The imbalance is given by the difference between the target demand and the realised
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demand at the time and occupation. Target demand, d:i,t, is the desired quantity of labour
in occupation i at time t. This is not endogenous to the model, making it the channel
that is used to implement the automation shock over time, more on this in section 4.2. In
contrast, realised demand is internal and the sum of employed workers and vacancies in
occupation i at time t:

di,t “ ei,t ` νi,t (3.11)

In order for αu,i,t and αν,i,t to fill the roles given above, they must satisfy the following
conditions:

1. If there is no labour supply and demand imbalance, i.e. d:i,t “ di,t, then no adjust-
ment should be made and αu,i,t “ αν, i, t “ 0.

2. When realised demand is higher than target demand, αu,i,t ą 0 such that more work-
ers are separated to decrease realised demand. Conversely, when realised demand is
lower than target demand, αν,i,t ą 0 such that more vacancies are opened to increase

realised demand. Therefore αu,i,t is an increasing function of di,t ´ d:i,t and αν,i,t is

an increasing function of d:i,t ´ di,t.

3. αu,i,t and αν,i,t are probabilities and thus lie in the interval r0, 1s.

There are many functional forms of αu,i,t and αν,i,t that satisfy the above conditions.
However, del Rio-Chanona et al. (2019) assume that the supply and demand equilibrate
linearly with respect to the imbalance, which gives the following form:

αu,i,t “ γu
max

!

0, di,t ´ d
:

i,t

)

ei,t
(3.12)

αv,i,t “ γv
max

!

0, d:i,t ´ di,t

)

ei,t
(3.13)

Where the max function ensures that condition 3) is satisfied. γu and γν are parameters
that determine the speed of adjustment and lie in the interval r0, 1s. Where a value of 1
means maximum adjustment speed and a value of 0 means no adjustment at all. Here del
Rio-Chanona et al. (2019) is again followed and the parameters are such that γu “ γν .
This is because we only observe the aggregate data and are therefore unable to calibrate
them separately. In order to calibrate the parameters δu, δν , γ and τ (the length of the time
step in weeks) data on vacancy rates and unemployment, the Beveridge curve, for Sweden
is used. This is because the model outputs the number of employed and unemployed
workers as well as the number of vacancies every time step, which allows us to plot the
model’s progression on the Beveridge curve. The results of the calibration are detailed in
section 5.1

3.3.1 Deterministic Solution of the model

Using the law of large numbers and multivariate Taylor expansion, it is possible to solve the
model deterministicly at each time step. This is useful since even though the rules of how
workers and vacancies behave are simple, it is computationally costly. This is mostly due
to the large number of possible choices that unemployed workers have (del Rio-Chanona
et al., 2019). In addition to saving computational time, the output of the deterministic
approximation is easier to analyse, which is significantly useful for exploring the parameter
space and calibrating the model. This approximation is built upon analysing the system’s
behaviour in terms of expected values.
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The purpose of the approximation is to find expressions for the expected values of employ-
ment, unemployment and vacancies for each occupation and time. To keep the notation
impact let:

ūi,t`1 ” Erui,t`1 | ui,t,vi,t, ei,ts (3.14)

The master equations are reduced to a 3n dimensional deterministic dynamical system of
equations given by:

ēi,t`1 “ ēi,t ´
´

δuēi,t ` p1´ δuq γu max
!

0, d̄i,t ´ d
:

i,t

)¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

separated workers

`
ÿ

j

f̄ji,t`1

loooomoooon

hired workers

(3.15)

ūi,t`1 “ ūi,t `
´

δuēi,t ` p1´ δuq γu max
!

0, d̄i,t ´ d
:

i,t

)¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

separated workers

´
ÿ

j

f̄ij,t`1

loooomoooon

transitioning workers

(3.16)

v̄i,t`1 “ v̄i,t `
´

δv ēi,t ` p1´ δvq γv max
!

0, d:i,t ´ d̄i,t

)¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

opened vacancies

´
ÿ

j

f̄ji,t`1

loooomoooon

hired workers

(3.17)

A large part of the derivations are to show that the expected flows between occupations,
f̄ij,t`1, may be written in terms of the adjacency matrix and expected values of the state
variables. The results are shown below:

f̄ij,t`1 “
ūi,tv̄

2
j,tAij

`

1´ e´s̄j,t`1{v̄j,t
˘

s̄j,t`1
ř

k v̄k,tAik
(3.18)

s̄j,t`1 “
ÿ

i

ūi,tv̄j,tAij
ř

k v̄k,tAik
(3.19)

The relative error of the approximation is:
ˇ

ˇ

ˇ

ˇ

E rfij,t`1|ut,vt;As ´ f̄ij,t`1

E rfij,t`1|ut,vt;As

ˇ

ˇ

ˇ

ˇ

ă
c

L` c
(3.20)

Where c is a constant and L is the size of the labour force. This means that given a
set of time series for the target labour demand d:i,t and a set of initial conditions, the
above equations determine the expected employment, unemployment, and vacancies as a
function of time. In principle, this framework may be used to study all countries where
data is available and any type of occupational labour demand shock. The full derivation
of the deterministic, expected solution is available in the Supplemental Information of del
Rio-Chanona et al. (2019).

3.4 The Beveridge Curve

The Beveridge curve is a well known macroeconomic stylised fact, stating the relation-
ship between the vacancy rate and unemployment (Diamond, 1982) (Beveridge, 2014).
The idea is that when more vacancies open, unemployment goes down as workers gain
more opportunities in the job market. Inversely, when fewer vacancies are opened, unem-
ployment goes up as workers have access to fewer job opportunities. Figure 4 shows the
Beveridge curve for Sweden from Q1 2004 to Q4 2019.
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There are three features of the Beveridge curve which have been shown to exist in many
economies (Diamond, 1982) (Diamond & Şahin, 2015) (Bouvet, 2012):

1. The curve may shift away or toward the origin

2. Unemployment and vacancy rates both tend to move downward along the curve
during recessions and tend to move upward along the curve during recovery

3. The curve tends to shift outwards during a recovery, meaning that the curve would
cycle counter clockwise

There are several models that are able to explain the first two features of the Beveridge
curve. A prominent one is the Diamond-Mortensen-Pissarides model, which explains shifts
in the Beveridge curve with structural changes such as skill mismatches (Diamond, 1982)
(Pissarides, 2011). In addition, the first feature was explained by Axtell et al. (2019)
(which was mentioned in section 2), who also showed that changes in network structure
may shift the Beveridge curve towards or away from the origin. However, the third feature
is not fully understood yet. It has been argued that this is because of increased frictions
in the matching process of the economy and therefore a result of a structural change
(Diamond & Şahin, 2015). While others argue that the counter-clockwise movement of
the curve could be independent of structural change and is instead due to the business cycle
(Pissarides, 1985)(Mortensen, 1999). There is a difference in the flexibility of the variables
in these models, where vacancies arise immediately following the decisions of firms but
unemployment only decrease as a result of a match in the labour market. Because of
the lag in the hiring process relative to the vacancy creating process - the vacancy rate
recovers faster than the unemployment rate which gives you a counter clockwise motion of
the Beveridge curve. The model presented above supports this hypothesis since a simulated
business cycle results in counter clockwise motion in the Beveridge curve produced by the
simulation (del Rio-Chanona et al., 2019). In fact, as is explained in section 5.1 the model
parameters are calibrated in order for the output of the model given a simulated business
cycle to match that of the Beveridge curve during an observed business cycle. However, it
should be noted that most of this research is conducted on the US Beveridge curve. The
behaviour of the Swedish Beveridge curve is described in the following section 3.5.

3.5 The Beveridge curve in Sweden

As is explained in section 4.3, the Swedish Beveridge curve presented here is based on
seasonally adjusted, quarterly data from 2004 to 2019. In addition, the curve is coloured
by whether the economy is in a recession or a recovery. Where a a quarter is defined as
being in a recession if the output gap in GDP is lower than the previous quarter. As
is seen in the figure, the curve cycles counter clockwise from 2004 to 2014. However, in
2012, the curve cycles clockwise and, in the most recent periods, the curve looks like it
might exhibit clockwise movement. In addition, there are a few periods in which there
has been movement upwards along the curve during a recession and movement downwards
along the curve during a recovery. However, the features mentioned above are generally
exhibited in the Swedish Beveridge curve (Jonsson & Theobald, 2019).

Since the model is calibrated on this empirical data, we need to find a suitable period
for which to calibrate the model. To this end we will use the most recent business cycle,
starting in 2008Q3 (where the recession starts in the figure) and ending in 2016Q3 (where
the recovery ends in the figure). At this point it looks like the curve has traversed a bit
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Figure 4: Sweden’s Beveridge curve using seasonally adjusted quarterly data from 2004 to
2019

less than four fifths of the period, which means that we set the period to 10.25 years. The
assumption about phase do not affect the results (del Rio-Chanona et al., 2019). It is out
of the scope of the thesis to try to explain what happened in the small recession of 2012,
where the curve exhibits ’abnormal’ behaviour.

4 Materials & Methods

In this section, the practical aspects of implementing an automation shock into the model
are developed. In addition, the data and its origins is described. Furthermore, the model
is coded in Python where a novel package of functions, written by the author, is used to
conduct the analysis. More details regarding the code is found in section 7.2.

4.1 Labour Reallocation

Using the calibrated values for the spontaneous probabilities δu and δν as well as the rate
of adjustment γ and the occupational employment in 2016 as a starting point, the shock
is implemented into the model. As mentioned previously, the shock is determined by the
computerisation probabilities developed in Frey and Osborne (2017). These probabilities
determine the post-shock target demands,d:i of each occupation, which need to be specified
in the model. The key assumption here is that these probabilities specify the fraction of
total hours worked in an occupation that are automated post shock, i.e. the fraction of
total hours worked that do need require human labour. In addition, working hours are
reduced for all workers, meaning that the total number of jobs stay constant, i.e there is no
change in aggregate demand before, during and after the shock. Furthermore, the labour
force (total number of employed and unemployed workers), denoted by L is assumed to
stay constant during the simulation (del Rio-Chanona et al., 2019). Now, let x0 denote
the number of hours worked for the average worker in a year. Then the hours of work
demanded by each occupation at the start of the simulation is given by the elements of
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the vector h0:
h0 “ x0e0 (4.1)

Where e0 again is a vector containing the number of workers in each occupation at the
start of the simulation. The vector containing the computerisation probabilities of each
occupation is denoted by p. As described above, this allows us to give an expression for
the post-shock human labour hours demanded by each occupation, ht˚ :

ht˚ “ h0 ¨ p1´ pq (4.2)

Here, ¨ refers to the element-wise multiplication of vectors and 1 denotes the vector of
ones. Furthermore, t˚ refers to the time at which the automation shock has subsided.
Then the post shock, average amount of hours worked per year is:

xt˚ “

řn
i hi,t˚

L
(4.3)

Where the post shock, aggregate hours of work is split equally between occupations.
To calculate the post shock target demand of the occupations, d:t˚ , it is assumed that
automation has no impact on aggregate labour demand unemployment. This allows the
hours of labour demanded by occupations to be split equally among workers:

d:t˚ ” d: “ ht˚
1

xt˚
(4.4)

As shown in del Rio-Chanona et al. (2019) it is possible to specify the model such that
there is an aggregate increase or decrease in the number of jobs (labour demand). Their
findings were expected: if there is an aggregate increase in the number of jobs - the changes
in unemployment rate as a result of the shock are lower. More jobs simply means that
more people find jobs. Conversely, the changes in unemployment rate when there is an
aggregate decrease in the number of jobs are higher - less people are able to find jobs as
a result of the shock.

4.2 Time dependent shock

Within the innovation literature it is suggested that adoption of technologies begins at
an exponential rate but over time decays to a logarithmic rate, which is described by
a sigmoidal function (Stoneman, 2001). This gives the shape of the automation shock.
The computerisation probabilities estimated by Frey and Osborne (2017) are said to cover
’some unspecified number of years, perhaps a decade or two’. This is probably because
it is harder to estimate the progress of technology within an exact time frame. del Rio-
Chanona et al. (2019) assumes that the shock happens within 30 years, where the bulk
happens within 10 years and also explore different alternatives. In addition, they assume
that the initial target demand is the steady state demand and over time it reaches the
post-shock reallocated demand d:. This yields the following expression for the dynamics
of the target demand:

d:i,t “

#

di,0 if t ă ts

di,0 `
d:i´di,0

1`ekpt´t0q
if t ě ts

(4.5)

Where t0 is the time at which the target demand is in the middle of the initial and post
shock values and ts is the time at which the shock begins. The midpoint of the curve
occurs 15 years after the shock begins: t0 “ ts ` 15. In addition, the growth rate of the
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curve, k, is set to 0.79, which guarantees that the target demand equals the post-shock
reallocate demand up to a 0.0001 tolerance.

As with the calibration, the model is first initialised so that it converges to the steady state
unemployment rate and to the employment distribution of occupations in 2016. When the
steady state is reached, the shock is implemented as explained above. del Rio-Chanona
et al. (2019) show that when the time span of the automation shock is increased, the
change in unemployment rate become lower. And conversely that when the time span is
decreased the changes become lower. This is because there is more time for workers to
leave occupations which are becoming computerised - there is more time to respond to the
automation shock.

4.3 Data

Data plays a central role in this thesis and is used for different purposes. Before we dive
deeper into the mechanics of the analysis let us take a moment to describe what the data
is and where it is used. First we have empirical data regarding the Swedish labour market,
this includes:

1. Occupational transitions between 2016 and 2017

2. Aggregated, quarterly, seasonally and calendar adjusted unemployment data from
2004 to 2020

3. Aggregated, quarterly, seasonally and calendar adjusted employment data from 2004
to 2020

4. Aggregated, quarterly seasonally adjusted vacancy data from 2004 to 2020

5. Aggregated, monthly, seasonally adjusted and smoothed hours worked from 2014 to
2018

6. Occupational employment data from 2014 to 2018

While some of this data is not available directly on Statistics Sweden’s website, it has been
collected through correspondence with different departments of Statistics Sweden. This
data is used for three different purposes. 1) is used for constructing Sweden’s occupational
mobility network. Using 2), 3) and 4), the Beveridge curve for Sweden is constructed,
which is used to calibrate the dynamical model. Employment per occupation, 5), is used
as an equilibrium starting point both for the calibration of the model and the automation
shock analysis that follows. Finally, hours worked is used to implement the automation
shock, where automation plays out by reducing hours worked in some occupations (more
on this below). In addition, the results of Frey and Osborne (2017) is used to construct the
automation shock that the analysis is built upon. The calibration is independent of this
shock, which means that once the model is calibrated a number of different shocks may
be applied to it. Conversely the aggregate calibration data (2), 3) and 4)) is not used in
the analysis. The above is enough data to conduct the analysis, which is the primary goal
of this work. However, for future work a source of data that is left unexplored is that of
the Swedish Public Employment Service5, which publishes forecasts on occupations based
on SSYK as well as geographical data on employment. As is discussed in section 6, this
could be useful in extending the model in order to relax the assumption of perfect worker

5Arbetsförmedlingen
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mobility.

4.3.1 Occupational classification with SSYK

1) and 5) is data grouped by the Swedish occupation classification system, SSYK6. Each
occupation is defined by a 4 digit code, where each digit is a sub-category of the digit before
it. The first digit is a number between 0 and 9 and therefore defines 10 broad categories
of occupation. For example, the digit 1 defines the category ”Managerial Occupations”,
11 and 15 then define further sub-categories of ”Managerial Occupations” (managerial
occupations within politics and healthcare respectively). In this way, the more digits
that are used to define an occupation, the more precise that definition becomes and more
occupations are defined. The occupational employment and labour flow data received
from Statistics Sweden uses 3 digits. This presents some challenges when translating the
automation shock, which are discussed in the next section. In addition, The data that
is used to define Sweden’s occupational mobility network is different than that used by
Mealy et al. (2018) to define the US’s occupational mobility network (OMN). Statistics
Sweden has complete data over all transitions for the entire work force, whereas Mealy et
al. (2018) uses survey data on peoples occupations taken at different times to define their
network. That data only describes the flow between occupations and not how many people
stayed in an occupation (Mealy et al., 2018) (del Rio-Chanona et al., 2019). Therefore
they approximate an aggregate share of employees who stayed in their occupation, which
is the same for all occupations. Something that we do not have to do in Sweden’s case.
However, the US Current Population Survey (CPS) span several years, which, of course,
is important, especially when dealing with labour flows which have considerable variance.

There are two categories of occupations that had no transitions to nor from other occu-
pations, this is probably because only transitions which happened between 2016 and 2017
are in the data. These occupations are labelled Therapists in alternative medicine and
Fishery workers and had 117 and 604 employees respectively in 2018. In addition, there
is another occupation, labelled Square and market vendors, which had no incoming tran-
sitions from other occupations. In 2018, there were 190 employees within this occupation.
Including these occupations in the analysis does not change the results to a large extent.
However, the choice was made to remove the nodes which only has self-loops (the first two
that were mentioned). This is because even though the occupations do not contain large
numbers of workers, they are affected by the model. Each time step some of them are
separated and, if vacancies exist, they will be filled. However, the workers are only able
to apply to vacancies within their occupation. In addition, they are the only workers able
to apply to those vacancies. This means that occupations with a high Computerisation
Probability and no transitions to, such as Fishery workers that have a value of 72%, will
have a large number of unemployed workers after the shock. It is unlikely that no Fishery
workers would find a different job as a result of being let go due to automation, which
the model would imply if the occupation was left in. But since the occupation labelled
Square and market vendors has outgoing transitions, workers which are unemployed here
are able to apply to vacancies in a different occupation (labelled Shop staff). This means
that these workers are still able to enter the occupational mobility network. However,
the post-shock demand may still be calculated for all occupations which is found together
with other data in the Appendix 7.3.

6Standard för Svensk Yrkesklassificering
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Unemployment rate Vacancy rate

Count 64 64
Mean 7.31 1.44
Std 0.77 0.51
Min 5.88 0.64
25% 6.74 1.06
50% 7.40 1.33
75% 7.89 1.89
Max 8.92 2.34

Table 2: Summary statistics for Beveridge curve data

4.3.2 Data Processing

As stated above, the computerisation probabilities derived by Frey and Osborne (2017)
are given using the Standard Occupation Classification (SOC) system that is used to
classify occupations in the US. As mentioned above, Sweden uses a different system for
classification, SSYK. Therefore we need to translate this data from SOC to SSYK. This
is a fairly common task and official crosswalks (translation keys) exists between SOC and
the ISCO (International Standard Classification of Occupations). In addition, Statistics
Sweden has released a crosswalk between ISCO and SSYK. These keys were used to
move the Frey and Osborne (2017) computerisation probabilities from SOC to SSYK. The
resulting network is illustrated in Figure 2. However, the data from Frey and Osborne
(2017) is more fine grained (contains more occupations) than the labour flow data I have
for Sweden. This is because the SOC codes that are the basis for the estimates produced
by Frey and Osborne (2017) are equivalent to the 4 digit SSYK codes. Therefore, the
shock was translated to 4 digit SSYK first, and then an average shock was calculated
based on the 4 digit codes which share the first 3 digits. For example, the SSYK code 333
corresponds to the nurse occupation, but since there are many types of nurses (emergency
nurses - SSYK: 2226, allergy nurses - SSYK: 2221, etc), each of which might have a different
computerisation probability, the only way to proceed with the analysis is to somehow map
all of the computerisation probabilities of different nurses into one value for the entire
category. The most straightforward way of doing this is to take the average of all the
computerisation probabilities - which is what is done here. A way to improve upon this
would be to take an average weighted by the employment share of each type of nurse -
however, that data is not publicly available.

5 Results

In this section the results of the replication of the data driven occupational mobility model
described in section 3.3 are presented. In addition, the analysis is synthesised into two
figures (7 and 8).

The model is calibrated using the Beveridge curve by implementing a simulated business
cycle. The fluctuations are generated by oscillating aggregate target demand, Dt, around
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its initial value with a sine wave. The amplitude along with the other parameters, δu, δν , τ ,
are calibrated to match the empirical Beveridge curve during the most recent Swedish
business cycle.

5.1 Replication of Beveridge curve feature reproduction

The aim of the model calibration is for the Beveridge curve produced by the model given
a set of parameters to match the empirical Beveridge curve. This is done by imposing a
simulated aggregated demand shock on the model. The demand shock is given by a sine
curve:

Dt “
ÿ

i

d:i,0p1` a sinp
t

2πT
qq (5.1)

Where Dt is the aggregate target demand and d:i,t the target demand in occupation i,
both at time t. a is the amplitude of the demand shock as a share of the initial target
demand and T is the period of the shock. In calibrating the model, the intersection and
the union of the area enclosed by the empirical curve, Ae, and the simulated curve, Am,
are compared. The minimising function used is:

min
a,δu,δν ,γ,τ

1´
Ae XAm
Ae YAm

(5.2)

The model is initialised with the occupational employment distribution in 2016 where the
economy is assumed to be in equilibrium. This means that the initial target demand of
each occupation is equal to the number of employed workers in said occupation in 2016.
Then, the dynamics described in section 3.3 begins, with workers being separated and
vacancies created according to the spontaneous processes characterised by the parameters
δu and deltaν . Note that the state dependent processes, characterised by αu,i,t and αν,i,t,
do not affect the system at first since the target demand is equal to the realised demand by
the equilibrium assumption. However, as workers begin to become separated and vacan-
cies open, the system leaves exits the equilibrium and the state dependent processes begin
to take effect. The system continues to evolve in this manner until a new steady state is
reached. At this point, the model is not in equilibrium, rather the state dependent and
spontaneous processes cancel out. Meaning that the aggregate number of hired workers
is the same as the aggregate number of separated workers. During this time, the target
demand of each occupation has remained at its initial level matching the employment dis-
tribution of 2016. When the model has reached this state, it makes little to no movement
on the Beveridge curve. Until the simulated business cycle described above is introduced.
Then the target demand of each occupation begin to move in tandem according to the
sine function. This throws the system out of its steady state and it begins a cycle on the
Beveridge curve. Since the sine function returns to its original point after a period, T , the
system also tracks the same pattern over again as the initial period passes and the next
cycle begins.

Two examples of what this looks like are presented in Figure 6. As is clear from the
graphs - the calibration was not very successful. Before we go into the details of how
the model behaves under different sets of parameters, the result of the replication with
respect to shifts in the Beveridge curve is discussed. In del Rio-Chanona et al. (2019)
are able to show that their model reproduces the three features of the Beveridge curve
mentioned in section 3.4. They show that structural changes such as a decrease in the
efficiency of worker-vacancy matching, cause the Beveridge curve to shift with respect to
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Figure 5: Steady state of the model for different values of δu and δν . Green dots come
from the empirical network and purple dots come from the complete network.

the origin by changing the topology of the occupational mobility network and keeping the
demand constant. Specifically, they replace the empirical network with a complete one
where Aij “

1
n , meaning that each occupation is linked to every other occupation with

equal weight. Such a network corresponds to the null hypothesis of no skill restrictions,
where every worker may apply to every occupation. The points that lie on the diagonal
correspond to the case where δu “ δν “ 0.006, each step to the right of this correspond to
an increase of δu by 0.001 and a decrease of δν by 0.001. Similarly, each step to the left of
the diagonal correspond to a decrease of δu by 0.001 and an increase of δν by 0.001. As
shown in the figure - removing skill restrictions shifts the steady state downwards towards
the origin, but not by much. This behaviour is expected when removing matching frictions
because vacancies are more likely to be applied for since any unemployed worker may apply
for any vacancy. This shows the first feature mentioned in section 3.4 (del Rio-Chanona
et al., 2019). In addition, the simulated Beveridge curve moves downward and out during
periods of decreasing aggregate labour demand and upwards and in during periods of
increasing aggregate labour demand (Figure 6). Furthermore, the model exhibits the
counter clockwise behaviour described in section 3.4, moving upwards along the line in a
recovery and downwards in a recession. Similarly to del Rio-Chanona et al. (2019), this
feature is present when δu ą δν and the model exhibits clockwise motion in the opposite
case. Thus the model is able to reproduce the dynamics of the Beveridge curve (del
Rio-Chanona et al., 2019). The calibrated values of the model using Swedish data are
substantially different than the calibrated values found by del Rio-Chanona et al. (2019)
using US data, which is to be expected. However, the behaviour of the model given the
truth value of δu ą δν is similar. But the similarity between the generated Beveridge curve
and the empirical Beveridge curve is not ideal - the reasons for this are explained below
and the consequence of this with respect to the results of the simulation are discussed in
section 6.
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Figure 6: Left figure shows the calibration which the results are based on and the right figure
is an example of a set of parameters which give a good shape but a incorrect location.

Parameter Example Sweden US

δu 0.01 0.011 0.016
δν 0.005 0.005 0.012
γ 0.2 0.1 0.16
τ 8 8 6.67

Table 3: Calibrated values for the two figures using Swedish data, and the calibrated values
of del Rio-Chanona et al. (2019)

Because of the large parameter space that determine the relevant output of the model, the
calibration of the model is not trivial. Initially, hundreds of sets of parameter values were
drawn from normal distributions and the sets which yielded a curve in the right neigh-
bourhood were used to calibrate the normal distributions for each parameter. However,
there is to an extent a guiding theory, as each parameter controls a specific part of the
simulation. We say that the output of the model calibration, measured in terms of the
Beveridge curve, has a shape and a location. Each parameter affects the features of the
output in a different way. As mentioned - we are dealing with a non-equilibrium model.
The values of the parameters determine the steady state of the model del Rio-Chanona
et al. (2019). If δu and δν are both zero - the state dependent processes will never kick
in since the model will remain at the initial equilibrium and therefore no adjustments
are needed - resulting in 0 % unemployment rate and vacancy rate. However, the state
dependent processes would kick in as soon as the realised demand would differ from the
target demand. This means that δu and δν do not control unemployment and vacancies
independently, rather both of them affect both dimensions of the Beveridge curve.

This proved to be a persistent problem especially since the unemployment rate and the
vacancy rate both depend on employment. Meaning that the vacancy rate increases as the
spontaneous probability of separation, δu, increases. This is because the size of the work
force is fixed - an increase in unemployment directly leads to a decrease in employment
which is part of the denominator of the vacancy rate. Since Sweden had a vacancy rate
close to 0.5% and an unemployment rate of about 8% during the second quarter of 2009,
this means that a good balance between δu and δν is hard to achieve. I was able to find
a good shape that fit the empirical Beveridge curve (Figure 6, but at the wrong location
and, conversely, a good location but with the wrong shape. This is because the curve
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moves upwards and away from the origin for increasing δu. Decreasing δν in response to
this movement makes the generated curve lose its desired shape since the recovery after
the financial crisis is steep. In addition, too large values for γ (which would create more
vacancies in the recovery) means that vacancies are created too quickly and unemployment
decreases by too much. However, given enough data data from the model, it is possible
that a machine learning algorithm trained on this data would be able to find better results.
This process was started with the use of an evolutionary algorithm, which helped to find
the curves presented here.

5.2 Unemployment under automation shock

Despite challenges during the calibration process, results of the kind presented in del
Rio-Chanona et al. (2019) are found below. The figures are based on 5 agent based
simulations for the occupational mobility network and a deterministic simulation of the
complete network7 are presented. The complete network corresponds to the null case of no
skill frictions. For both cases the model starts at the unemployment level matching that
of 2016, around 6.6%. However, similarly to del Rio-Chanona et al. (2019) we find that
the network structure is important in determining the unemployment outcomes, where
the structure of the occupational network is less efficient in dealing with the reallocated
demand due to the automation shock (Figure 8 B). In addition, the change in target
demand as a result of the automation shock are presented for two occupations which we
discussed in sections 1 and 3.1.

The peak unemployment for the occupational mobility network is about 7.5% which is
more than 0.5% higher than that of the complete network. The peak is reached after a
little more than half of the shock duration has transpired, where it then starts to decay.
In addition, the peak is about 0.9% higher than the pre-shock unemployment rate (which
corresponds to the level in 2016) for the empirical network. In the complete network, the
shock results in an increase of about 0.5%, which means that the change in unemployment
due to the shock is almost twice as large for the empirical network. We again focus on the
changes from the initial level (0.9% and 0.5%) and compare with the effect of the shock
in the US from del Rio-Chanona et al. (2019). There, the unemployment rate increased
from the initial level of about 5.3% to the peak of 6.7% before it decays, meaning that the
US empirical network is more affected by the shock than the Swedish network. This also
holds for the complete network, which in the US increased from about 4.1% to 4.7%.

This means that for the US case, the change in unemployment rate for the empirical
network is also about twice as large as that of the complete network. This might be a
coincidence but it would be interesting to analyse the differences between the Swedish
occupational mobility network and that of the US and see if it is possible to predict this.
There are only two differences between the empirical networks and the complete ones, the
number of edges (which is n2 for the complete network where n is the number of nodes)
and the edge weights. It is likely that the difference in unemployment rate change due
to the shock between the empirical networks and the complete networks is related to the
number of edges being added, although testing this is outside the scope of the thesis.

7Agent based simulations for the complete network are very computationally costly, which means that
the occupational mobility network results were prioritised
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Figure 7: Outcomes of the simulation shock for deterministic solution and agent-based
simulation, over time. The shaded area corresponds to the shock period. A: Changes in
target demand for two occupations, Office assistants and secretaries as well as Construction
and manufacturing supervisors. B: Aggregate unemployment over time as a result of the
shock - where dotted lines are deterministic results and full lines are agent-based simulation
results.

The next, and final, result is unemployment change for individual occupations as a result
of the automation shock. Following del Rio-Chanona et al. (2019) unemployment rates for
individual occupations are calculated as the average unemployment rate over the period:

ui, average pT q “
100

T

ř

tPT ui,t
ř

tPT pui,t ` ei,tq
(5.3)

For each occupation, the unemployment change is compared to the computerisation prob-
ability, where the size of the dot is proportional to the average employment of the oc-
cupation during the shock (Figure 8). Results for both the empirical network and the
complete network are presented. A key aspect of the figure is that the only thing affecting
the unemployment change of the occupations in the complete network (purple dots) is
their computerisation probability. Which is demonstrated by the almost8 perfect relation-

8Some of the purple dots are above the ’line’ that the others are on, which should not be the case. This
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Figure 8: Change in average unemployment due to automation shock. Each point is an
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ones based on the complete network. For the occupational mobility network, the size of the
point is proportional to average employment during simulation.

ship between unemployment change and computerisation probability. This is because the
occupations in the complete network is unaffected by network effects since every node is
connected to every other node. Therefore all the deviations from the purple ’line’ are due
to the structure of the occupational mobility network. This means that, as have been
mentioned previously, some occupations are more adversely affected by the automation
shock than that expected by their computerisation probability, for example the Construc-
tion and manufacturing supervisors. In addition, other occupations are less affected by
the automation shock than that predicted by the computerisation probability, for example
the Office assistants and secretaries. These results are completely in line with those of
del Rio-Chanona et al. (2019). In addition, the effects are large, however, as is further
discussed in section 6, we should be careful in interpreting these results. Partly due to
the state of the calibration and partly due to idealised nature of the model. Nevertheless,
the change in unemployment rate presented here are of the same order of magnitude as
those presented in del Rio-Chanona et al. (2019), where the minimum is about -25, and
the maximum over 100. Which is the same as the results presented here. Available results
for all occupations are presented in the Appendix 7.3

6 Discussion

There are a number of issues which hinders certain conclusions to be drawn. However,
most of the results from del Rio-Chanona et al. (2019) were successfully replicated using
Swedish data, but it remains to be seen if the model, as it is currently formulated, can be
satisfactorily calibrated using Swedish data. The model, implemented on top of Sweden’s
occupational mobility network, behaves in the manner described by del Rio-Chanona et
al. (2019) and exhibit similar features with respect to the parameter values of δu and δν .

is probably because the complete network data is from only one simulation.
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But since the model calibration was relatively unsuccessful, it is hard say if this provides
evidence for or against the theory that the counter cyclical nature of the Beveridge curve
is due to business cycle dynamics. To this end, we refrain from drawing any particular
conclusion with respect to the Beveridge curve debate.

As expected based on the differences in the empirical Beveridge curves of Sweden and the
US, the calibrated values for δu and δν are much smaller in the case of Sweden. This means
that the Swedish labour market is less dynamic than the that of the US, and vacancies
are created and workers are separated to a lower extent. This is likely due to the rigidity
associated with employing people in Sweden.

The second conclusion which is hindered by the calibration, is that of the magnitudes
of the demonstrated effects. Below it is argued that the main effect presented here still
holds, despite the calibration. However, it is certainly not argued that the effect is of the
magnitude presented here. In addition, at various points, certain assumptions have been
made, the implications of which are discussed below.

A strong assumption is that workers are perfectly geographically mobile - which they most
certainly are not in a country with low population density such as Sweden. This is im-
portant since, currently, the only thing that hinders workers from applying to vacancies
are their position in the network (in which occupation they are employed). To address
this the transition probabilities between occupations should incorporate some spatial ele-
ment. This would require workers and vacancies to have a geographical location and the
probability that a worker applies to a vacancy should be inversely proportional to this
distance. It is possible that the data required to augment the analysis in this way is avail-
able from the Swedish Public Employment Service. If workers are perfectly geographically
mobile this means that a friction in the network is omitted. If workers would be unable
or unwilling to apply to vacancies far away, less occupations would be applied for and
more workers would be unemployed for longer. Omitting this friction therefore skews the
aggregate unemployment in Figure 7 B downwards.

Another assumption is that wage pressure is neglected - this means that workers do not
factor in potential wage differences between occupations when choosing which vacancy to
apply for. It is possible to implement wages into a model of the kind used here, as is
done by Axtell et al. (2019). This is another example of an omitted friction in the model,
since workers might choose to stay unemployed rather than apply for a vacancy in a lower
paying occupation. Again, omitting this friction skews the aggregate unemployment in
Figure 7 B downwards. In addition, the automation shock implemented here decreases
the amount of hours worked by every worker while keeping the aggregate demand con-
stant. This is done since amount of hours worked has a historical decreasing trend whereas
unemployment does not have a trend. However, Boppart and Krusell (2020) shows that
falling hours worked are due to stronger income effects on labour/leisure choice and not
solely automation. Since there are no worker nor firm optimisation behaviour in the model
- this fact can not be accounted for. If wages were present in the model - workers would
be able to optimise their labour/leisure decisions based on economic theory. Furthermore,
the set of jobs is constant and automation is completely exogenous. This makes the model
descriptive in the sense that it makes predictions not through firm nor worker optimisation
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but rather through pure empirical observations. It can never answer the question of why
there is automation - only estimate the effects of it.

This not a criticism of the model, rather, there are some benefits because of this. Since
the shock is exogenous, any type of occupation specific labour demand shock may be im-
plemented. For example, given estimates of how occupations are affected by the current
CoVid-19 pandemic, it is possible to estimate the future unemployment outcomes as a
result of this. Which could be useful in analysing the effect of continued lock-down. This
shock would have to be a bit different, since the changes in labour demand across occupa-
tions would be more or less temporary - rather than permanent. This result in particular,
could be useful when choosing who to target with job-retraining programmes.

The main result from del Rio-Chanona et al. (2019) is that certain occupations with high
probability of computerisation are more or less unaffected by the shock - while other occu-
pations with low probability are more affected than expected. As we have seen throughout
the paper, this result is found to be true in Sweden’s case as well. Despite the aforemen-
tioned issues, we argue here that this result still holds. This is because we do not observe
the effect in the null case of the complete network - where changes in unemployment for
individual occupations are only due to the computerisation probability of that occupation.
This means that the structure of the occupational mobility network affects labour mar-
ket outcomes. However, the problems mentioned above certainly make the magnitude of
the presented results dubious. Furthermore, these results are not predictions of what the
observed levels of unemployment will look like in the coming decades. This is because of
the large number of variables that affect unemployment, for example a global pandemic.
The model presented here gives us an estimate of how one of these variables,9 automation,
may affect occupational employment in a, seemingly, counter-intuitive way.
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7 Appendix

7.1 Network term glossary

Adjacency matrix - A matrix having the same set labels in its columns and rows. It con-
tains the data that is used to construct the graph (or network). Often denoted A.
Node - Each node is defined by the column and row labels in the adjacency matrix.
Edge - Edges between nodes are defined by the cell values, Aij , in the adjacency matrix.
For undirected graphs Aij “ Aji meaning that A is symmetric in the diagonal. For di-
rected graphs this does not have to be the case, meaning that the edge from i to j (Aij),
is not necessarily the same as the edge from j to i (Aji).
Neighbour - A node is a neighbour to another node if there exists an edge between them.
Degree - The number of edges connected to a node. For undirected graphs: degree “
in-degree “ out-degree.
In-degree - The number of edges going to a node (for directed graphs only).
Out-degree - The number of edges going from a node (for directed graphs only).
Density - The number of actual edges in the graph divided by the number of possible edges
in the graph.
Topology/structure - The set of nodes and edges that are present in the graph. Defined
by the adjacency matrix.
Complete network - A specific network topology where all possible edges between nodes
exist. Always has density 1. May be directed or undirected.
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7.2 The model in python code

As mentioned in section 4 the model is coded in Python. All of the data, the package
and the jupyter notebooks which compile different parts of the results may be found here.
Most of the code is commented, where more attention is given to the functions that are
used to execute the model. In order to run everything a few more packages, in addition
to python itself, are needed. These are:

• pandas - A data handling package. One of the most well-known and widely used
data science packages in Python.

• numpy - A data handling and processing package which implements features from
MatLab into Python. In addition, it is optimised meaning that it data handling is
fast.

• networkx - A data handling, processing and illustration package for networks. Comes
with a large amount of useful built in functions for handling networks.

• matplotlib - A data illustration package which implements graphing tools from mat-
lab into Python. Allows for highly customisable graphs.

• DEAP - Distributed Evolutionary Algorithms in Python. This package was used for
the calibration and implements evolutionary algorithms.

• Shapely - Used for calculating union and intersection of curve areas in the calibration.

In addition, jupyter notebook is required to run the notebooks. To install packages and
jupyter notebook I would recommend using Pip. Once all the packages are installed, it
should be straightforward to run the code from the notebooks.

7.3 Occupational data and results

Below is a table with individual results for occupations.

Description Computerisation Employment Post-shock Unemployment
SSYK Probability 2016 demand 2016 (%) change (%)

171 Hotel and
conference managers

0.00390 1471 2661 4.84 -6.80

221 Medical Doctors 0.00420 38873 72700 7.29 -27.54
152 Managers of social

and curative work
0.00700 4812 8973 5.72 -18.95

224 Psychologists and
psychotherapists

0.00700 8588 16082 5.11 -10.84

151 Healthcare
managers

0.00730 11718 22159 5.71 -16.14

141 Managers in
elementary,
high-school and
adult education

0.00730 10198 19066 5.32 -9.70

Continued on next page
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Description Computerisation Employment Post-shock Unemployment
SSYK Probability 2016 demand 2016 (%) change (%)

233 High school teacher 0.00780 29858 53149 6.01 -14.78
222 Nurses 0.00900 83956 147208 8.48 -29.06
227 Naprapaths,

physiotherapists,
occupational
therapists and other

0.01244 19896 35686 5.31 -11.06

142 Managers in
preschool activities

0.01500 4463 8304 5.51 -14.26

154 Managers and
leaders of faith
communities

0.01655 708 1063 3.77 -40.75

133 R&D managers 0.01750 6232 10997 5.37 -10.89
226 Dentists 0.02150 6081 11049 5.08 -13.26
228 Other specialists

within healthcare
0.02235 9730 18480 5.42 -12.03

137 Production and
manufacturing
managers

0.03000 16575 29162 5.68 -4.01

231 Teachers in higher
education

0.03200 35359 62343 6.26 -16.45

131 Information
technology managers

0.03500 10801 19648 5.72 -11.32

267 Priests and deacons 0.03789 3795 6363 5.36 -18.55
225 Veterinarians 0.03800 2308 4311 5.14 -26.94
149 Other managers

within education
0.04820 1094 2085 4.71 -9.15

266 Social secretaries
and curators

0.05375 38285 77525 6.60 -17.09

121 Chief Financial
Officers

0.06900 16864 30110 6.08 -14.07

214 Advanced
engineering
occupations

0.07375 88418 160228 9.66 -17.84

234 Teachers at
elementary and
pre-school level

0.08153 189597 312531 10.48 -22.59

172 Restaurant and
kitchen managers

0.08300 7460 12657 4.92 0.72

153 Managers within
elderly care

0.08365 9716 15921 5.54 -14.73

251 IT-architects,
system developers
and others

0.08389 111725 209359 9.84 -21.07

Continued on next page

34



Description Computerisation Employment Post-shock Unemployment
SSYK Probability 2016 demand 2016 (%) change (%)

112 Assorted Chief
Officers

0.08750 24598 35305 5.63 -9.62

217 Designers 0.09064 14227 24732 5.56 -10.19
344 Traffic teachers and

instructors
0.09331 6211 10148 5.20 -6.70

235 Other teachers with
theoretical, special
competence

0.10025 35506 58538 6.56 -15.57

111 Politicians and
higher officials

0.10050 3889 4813 5.10 -9.75

161 Managers in
banking, finance and
insurance

0.10540 6203 8833 5.29 -9.85

223 Other nurses 0.11167 21623 34603 6.05 -17.65
125 Sales and marketing

managers
0.11700 29866 50433 6.62 -13.33

312 Construction and
manufacturing
supervisors

0.11867 21382 39234 6.19 7.35

242 Organisational
developers and
HR-specialists

0.12581 103534 175997 9.52 -20.42

341 Treatment assistants
and pastors

0.13000 25709 32620 5.68 -7.72

213 Biologists,
pharmacologists and
specialists within
agriculture and
forestry

0.13052 6585 10823 5.08 -6.34

124 Information,
communication and
PR managers

0.13371 3789 6763 4.85 -0.64

232 Teacher in
occupational
subjects

0.13440 10093 15539 5.22 -6.64

342 Athletes and leisure
coaches

0.14278 23871 41081 5.84 -8.45

212 Mathematicians,
actuaries and
statisticians

0.14840 1929 3434 5.83 -17.18

136 Construction, plant
and mine
operational
managers

0.16367 17035 27194 5.94 -2.63
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179 Other service
managers

0.16875 7020 10639 5.22 -5.63

351 Operation, support
and network
technicians

0.18000 46483 67954 7.03 -12.00

261 Lawyers 0.18429 21037 32702 5.95 -13.12
174 Managers within

wellness, sport and
leisure

0.19700 1304 2128 4.66 -0.13

173 Managers within
trade

0.20000 11092 14938 5.62 -10.39

264 Authors, journalists
and translators

0.22725 14173 20159 5.17 -5.30

243 Marketing and
public relations

0.23060 37141 53258 6.48 -10.38

531 Childcare and
student assistants

0.24000 115195 170351 8.20 -8.92

159 Other managers
within societal
services

0.25000 16208 22941 6.01 -13.43

134 Architecture and
engineering
managers

0.25000 9858 15352 5.65 -7.70

218 Specialists within
environmental- and
health protection

0.26678 7643 11285 5.43 -8.32

262 Museum
superintendents and
librarians

0.28411 10496 13819 5.42 -10.18

216 Architects and
surveyors

0.29060 11405 15104 5.53 -7.72

129 Other
administration and
service managers

0.29765 20973 29789 6.02 -8.09

211 Physicists, chemists
and similar

0.29964 6301 7939 5.23 -8.73

122 Personnel and HR
officers

0.32393 7876 10604 5.45 -7.17

514 Beauty and body
therapists

0.34342 9692 12382 5.03 -1.85

135 Real estate and
administration
managers

0.35500 3742 4588 4.91 -2.38
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516 Other service
personnel

0.35526 3309 4528 4.99 1.22

345 Chefs and sous chefs 0.36500 3647 4523 4.95 0.19
511 Cabin crew, train

personnel and guides
0.36888 8050 9801 5.07 -0.02

534 Caretakers, carers
and personal
assistants

0.37022 161192 180960 8.71 -9.62

332 Insurance advisers,
business sales and
purchasing

0.37277 134197 152627 9.94 -6.01

315 Pilots, ship and
machine officers

0.37713 5295 5879 5.10 -5.03

265 Artists, musicians
and actors

0.38005 9150 10875 5.17 -5.70

532 Assistant nurses 0.40056 186915 193910 9.73 -14.89
336 Police officers 0.40097 15947 17274 5.58 -10.12
343 Photographers,

decorators and
entertainment
artists

0.41637 7466 7330 5.64 -9.20

533 Nursing assistants 0.41900 76546 78746 6.57 -2.94
123 Administration and

planning managers
0.42312 10816 11075 5.58 -6.87

335 Tax and social
security officers

0.43500 47554 43944 6.66 -8.91

324 Animal nurses and
others

0.44450 2127 2716 4.75 -31.46

311 Engineers and
technicians

0.44948 98649 104777 9.46 -5.63

911 Cleaners and home
service staff

0.46571 75409 74187 6.22 14.58

333 Intermediares and
others

0.47090 36325 30075 6.41 -8.22

541 Other security
proffessions

0.47885 37697 35662 6.14 -1.73

331 Bankers and
accountants

0.51447 56687 49669 7.28 -4.91

933 Harbor workers and
ramp staff

0.52800 7970 8369 5.30 18.32

132 Purchasing, logistics
and transport
managers

0.53031 10954 9506 5.64 -2.63
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742 Electronics repairers
and communication
electricians

0.53373 10613 8792 5.23 4.22

241 Accountants,
financial analysts
and fund managers

0.53477 46540 41951 7.24 -9.68

741 Installation and
industrial
electricians

0.53894 41852 35680 6.32 23.77

833 Truck and bus driver 0.54467 80359 65453 7.39 44.87
321 Biomedical analysts,

dental technicians
and laboratory
engineers

0.57239 27193 20502 5.90 -7.57

832 Car, motorcycle and
bicycle driver

0.58362 18638 13851 5.30 20.70

723 Vehicle mechanics
and repairers

0.59464 58964 44638 6.98 37.35

535 Dental nurses 0.59500 10308 7521 5.55 -9.48
325 Dental hygienists 0.59500 3773 2741 4.94 -3.48
753 Tailors, wallpapers

and leather
craftsmen

0.60135 2466 1675 4.71 6.17

352 Image, sound and
lighting technicians

0.61083 3891 2988 4.92 5.20

612 Animal breeders and
caretakers

0.61200 8068 5804 5.13 6.28

912 Washers, window
cleaners and other
cleaning workers

0.61333 5638 4858 5.39 18.33

961 Recycling workers 0.62967 8875 5889 4.96 49.77
522 Shop staff 0.63730 223919 145078 10.06 9.50
731 Fine mechanics and

craftsmen
0.63787 4108 2632 4.99 21.65

831 Locomotive driver
and yard staff

0.63867 5635 3587 4.88 52.74

334 Legal secretary,
chief secretary and
department
secretary

0.63950 11529 11221 5.61 3.90

712 Ceiling fittings,
flooring and
plumbing workers

0.66692 35869 22332 6.20 53.82
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711 Carpenter, mason
and construction
workers

0.66976 100639 63380 8.74 57.97

611 Plant growers in
agriculture and
gardening

0.67000 17675 10718 5.25 26.72

421 Croupiers and debt
collectors

0.67167 1736 1366 4.82 15.17

443 Elected official 0.67457 869 553 5.26 3.29
138 Forestry and

agriculture
managers

0.67513 607 435 4.44 -2.36

819 Operating
technicians and
process supervisors

0.69513 19093 10528 5.66 29.62

932 Hand packers and
other factory
workers

0.70500 11184 5886 5.05 35.60

621 Forestry workers 0.71857 3590 1812 4.96 19.31
835 Sailors and

deckhands
0.72500 1087 679 5.12 8.00

732 Prepress
technicians, printers
and bookbinders

0.72750 8179 3708 5.21 19.57

422 Travel agents,
customer service
personell and
receptionists

0.72760 62331 31356 7.09 11.08

834 Machine drivers 0.72908 34912 17949 6.03 79.93
512 Cooks and cold bar

attendants
0.73200 39641 19701 5.70 36.99

817 Process operators,
wood and paper
industry

0.73429 16605 7890 5.38 83.77

613 Plant breeders and
animal breeders,
mixed operation

0.76000 3946 1563 5.03 34.58

811 The ore processing
profession and well
drillers

0.77273 8934 3430 5.37 116.79

432 Warehouse workers
and transport
managers

0.77711 93679 40162 7.70 42.96
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721 Casters, welders and
sheet metal blowers

0.77714 26927 10641 5.61 103.67

515 Cleaning managers
and property
managers

0.78000 42803 17710 6.10 40.25

761 Butchers, bakers
and food processors

0.78100 8315 3284 4.89 55.26

713 Painters, lacquers
and chimney sweeps

0.78125 24293 10162 5.47 87.98

818 Other process and
machine operators

0.81285 8333 2573 5.52 66.57

816 Machine operators,
food industry

0.81600 15692 5170 5.07 56.39

931 Rough workers in
construction and
civil engineering

0.81778 6510 2374 5.62 76.00

962 Newspaper
distributors,
custodians and other
service workers

0.82885 39224 12012 5.79 56.24

752 Surface finishers,
wood and furniture
carpenters

0.83375 11180 3290 5.58 58.15

722 Blacksmiths and
toolmakers

0.85000 59479 13830 6.66 96.51

524 Event sales and
telemarketing

0.85500 9241 2213 5.68 46.78

513 Head waitors,
waitors and
bartenders

0.85667 23619 6649 5.56 41.77

442 Mail and post
workers

0.86000 16842 4228 5.48 49.56

815 Machine operators,
textile, laundry and
leather industry

0.86571 5287 1290 5.20 70.09

813 Machine operators,
chemical and
pharmaceutical
products

0.86714 5179 1239 5.16 100.52

814 Machine operators,
rubber, plastic and
stationery industry

0.87368 13379 3170 5.43 74.18
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812 Process and machine
operators, at steel
and metal plants

0.88000 14526 3726 5.37 101.20

411 Office assistants and
secretaries

0.88297 174494 35557 10.59 18.02

921 Berry pickers and
planters

0.88333 3140 648 4.33 99.26

941 Fast food staff,
kitchen and
restaurant assistants

0.88625 77340 15887 6.00 56.25

821 Installers 0.91571 49282 9216 6.87 68.62
523 Cashiers and others 0.93400 15101 1562 5.68 62.54
441 Library and Archive

Assistants
0.95750 3463 249 4.97 49.29
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