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Abstract

This thesis analyses the short term behavior of daily emission allowance (EUA) log

returns with a focus on volatility dynamics in the recent market environment. In

this thesis, I present a historical overview of the European Union Emission Trading

System (EU ETS), analyze the stylized facts of the time series, employ appropriate

time series models, and assess model in-sample and out-of-sample performance. Due

to the existence of leptokurtosis and volatility clustering in the time series, I im-

plement three GARCH models. In addition to a simple GARCH model, I analyze a

GJR-GARCH model and an EGARCH model to assess the existence of a leverage com-

ponent. The performance of the three models is examined and benchmarked against

a naive model, which is not incorporating any conditional variance modeling. I ex-

amine the models’ performance by conducting in-sample goodness of fit and out-of-

sample forecasting analysis. The findings strongly support the appropriateness of

models capturing leptokurtosis and volatility clustering in the time series while not

unambiguously confirming the suitability of models incorporating a leverage effect.
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1 Introduction

In a world characterized by an increasing focus on climate change and its consequences,

the search for a sustainable solution has been intensifying. National governments, as

well as the European Union (EU), have implemented an array of regulations and subsi-

dies to incentivize green investments and reduce greenhouse gas (GHG) emissions. One

of the key initiatives at the supranational level has been the EU’s implementation of the

EU Emission Trading System (EU ETS). While the program has suffered from a structural

oversupply for an extended period, the EU has implemented various regulatory changes

addressing the issue.1 At the same time, the EU has emphasized its commitment to

creating a well-functioning carbon market with the purpose of reducing greenhouse gas

emissions in a cost-effective and economically efficient manner (European Union, 2003).

Current European Union Allowance (EUA) prices are at a historically high level, and

the latest round of regulatory changes starting from 2020 aims to set up the market to

function appropriately and incentivize innovation and competition.2

In light of the recent EUA market developments and a supportive political backdrop

driven by increased environmental awareness, the EUA market will probably play a more

prominent role than it has done for the past decade. With increasing importance may

come an increasing need for hedgers, risk managers, and speculators to understand the

time series behavior of EUAs in order to make appropriate decisions. Therefore, this

thesis provides (i) a brief overview of the EU ETS and its historical market developments

and regulatory changes; (ii) an updated analysis of EUA log return behavior based on the

most recent market data in the third trading period of the EU ETS;3 (iii) and compares

the forecasting accuracy of the time series models. Three different GARCH models are

recursively estimated and analyzed to address leptokurtosis, volatility clustering, and

leverage effects in the EUA log return series. The models are benchmarked against a

1The main regulatory changes that addressed the oversupply are the Commission Regulation (EU) No

176/2014 of 25 February 2014 and the Decision (EU) 2015/1814 of the European Parliament and of the

Council of 6 October 2015.
2The latest revision of the EU ETS was established by Directive (EU) 2018/410 of the European Par-

liament and of the Council of 14 March 2018 amending Directive 2003/87/EC to enhance cost-effective

emission reductions and low-carbon investments, and Decision (EU) 2015/1814.
3The considered time period in this thesis spans from 2016 to 2019 while the full third trading period

of the EU ETS started in 2013 and will finish at the end of 2020.
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naive model, not incorporating conditional volatility features.

1.1 Overview of the EU Emission Trading System

In 1997 the Kyoto Protocol was adopted, and the EU committed to reducing its green-

house gas emissions by 8% compared to the 1990 level by the first commitment period

from 2018 to 2012.4 In order to meet its target, the EU adopted Directive 2003/87/EC

in 2003, setting out the framework for the EU ETS, which ultimately went into force in

2005 and thereby created a new market. The EU ETS is still the primary tool of the EU’s

policy to reduce greenhouse gas emissions in line with its climate and energy targets

for 2020, 2030, and its long term climate strategy. Alongside other goals in relation to

energy efficiency and the share of renewable energy consumption, the EU has set out to

cut its greenhouse gas emission by 20% compared to 1990 levels by 2020 and by 40%

compared to 1990 levels by 2030.5,6

The EU ETS is a cap and trade system, which caps the EU-wide total amount of emis-

sions and allows trading emission allowances in the secondary market in order for total

emissions to be reduced in the most cost-effective and economically efficient manner

(European Union, 2003). The emission allowances or EUAs give the right to emit green-

house gas emissions equivalent to the global warming potential of one tonne of CO2

equivalent. Each participant must return the number of allowances for each tonne of

CO2 equivalent the company has produced that year. This goal may be achieved by re-

ducing emissions itself or purchasing more allowances to meet the requirements. In

cases of non-compliance, a penalty per tonne has to be paid by the participant. The level

of the cap, and hence the total amount of allowances available to participants in the

4The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) was

adopted on December 10, 1997. The European Community signed the Kyoto Protocol in April 1998 and it

was ultimately ratified by the European Union and its member states in May 2002.
5The 2020 climate and energy package’s targets were set in 2007 at the European Council and a set

of legislation was enacted in 2009. The three main 2020 targets are: reducing greenhouse gas emission

by at least 20% below 1990 levels, increasing the share of energy consumption from renewable sources to

20%, and improving energy efficiency to reduce primary energy by 20% compared to forecasted levels.
6The 2030 climate and energy framework was adopted in 2014 at the European Council and targets

revised upwards at the 2018 Katowice UNFCCC Conference. The three main 2030 targets are: reducing

greenhouse gas emission by at least 40% below 1990 levels, increasing the share of energy consumption

from renewable sources to 32%, and improving energy efficiency to reduce primary energy by 32.5%

compared to forecasted levels.
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system, is reducing every year by 1.74% during the third phase of the EU ETS (Euro-

pean Union, 2009). The framework operates in 31 countries of the European Economic

Area (EEA) and covers approximately 11,000 installations as well as 500 aircraft op-

erators.7 The EU ETS coverage is equivalent to approximately 39% of the total EU’s

greenhouse gas emissions.7 The majority of emissions covered under the EU ETS are

produced by electricity and heat production, accounting for about 54% of 2018 EU ETS

covered emissions.7

1.2 Historical regulatory and market developments

In the pilot phase from 2005 to 2007, the allowance cap was set at the national level via

National Allocation Plans (NAPs), and the majority of allowances were given to affected

business at no charge. Power generators and energy-intensive industries were the only

covered industries within the pilot phase. The issuance of allowances was excessive in

the first trading period driven by the absence of reliable emissions data and by the exis-

tence of an inherent agency problem. The system was inherently incentivizing national

governments to give out more rather than fewer allowances to their respective country’s

industries to ensure the competitiveness of those industries. Prices collapsed early 2006

following the dissemination of emissions data evidencing the oversupply of allowances by

the NAPs. In 2007 prices fell to zero due to the oversupply and the system’s prohibition

to use phase one certificates for compliance in phase two.

The second phase of the EU ETS lasted from 2008 to 2012. In response to market devel-

opments during the pilot phase, the NAPs issued 6.5% less allowance.8 In contrast, the

share of freely allocated allowances was still high, with approximately 90% in 2012.8 In

accordance with the Kyoto Protocol, participants in the system were able to use Interna-

tional Credits under the Clean Development Mechanism (CDM) and Joint Implementation

(JI) program in order to meet part of their requirements under the EU ETS.9 The amount

of International Credits a participant was able to use was determined by the respec-

7As presented in the report from the European Commission to the European Parliament and the Council

on the functioning of the European carbon market. COM/2019/557 final/2.
8Summary of phase one and two policies provided by the European Commission on

https://ec.europa.eu/clima/policies/ets/pre2013_en
9Clean Development Mechanism and Joint Implementation program are set out in Article 6 and 12,

respectively, of the Kyoto Protocol to the UNFCCC on December 10, 1997.
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tive NAP. The CDM allows an industrialized country to invest in an emissions reduction

project in developing countries as an alternative to investing in emission reduction in

their own country and thereby create certified emission reduction (CER) credits. Simi-

larly, the JI program allows countries to invest in projects in other industrialized coun-

tries and thus create emission reduction units (ERUs). The global financial crisis induced

a severe economic downturn that resulted in lower emissions and hence lower demand

for allowances. The fall in demand is well described by the significant decrease in veri-

fied emissions recorded in 2009, as illustrated in Figure 1.10 While the negative effects

on the demand side were quick to realize, the regulatory and rules-driven supply side

was not able to adjust, causing a surplus of allowances. This structural imbalance was

carried over well into the third trading period. Figure 2 provides an illustration of the

development of the accumulated surplus across the second and third periods showing

the vast majority of the surplus was created in the second period of the EU ETS.10

The third phase of the ETS started in 2013 and will finish at the end of 2020. With

the start of the new trading period, major reform came into effect, mainly set out in

Directive 2009/29/EC (European Union, 2009). A single EU-wide cap was introduced

compared to national caps in the prior two phases. In addition, the cap is reducing every

year by 1.74% from a 2013 level of 2.1bn allowances, the level equivalent to the average

allowances over the 2008-2012 period. Compared to the first two phases, the amount

of freely allocated allowances was significantly reduced, and a harmonized auctioning

process was established. The main auctioning market place of the primary market is the

EEX in Leipzig, Germany. The auctioning of allowances is the default method of allocat-

ing EUAs in the third phase. However, over the full trading period, from 2013 to 2020,

an approximate amount of 43% of allowances are still freely distributed.11 The policies

around free allocation are organized by industry and designed to avoid carbon leakage.12

10The data sources for Figure 1 and 2 are the reports from the European Commission to the European

Parliament and the Council on the state of the European carbon market in 2012 (COM(2012) 652 final),

the report on the functioning of the European carbon market from 2015 (COM(2015) 576 final), and the

report on the functioning of the European carbon market from 2019 (COM/2019/557 final/2).
11As presented in the report from the European Commission to the European Parliament and the Council

on the functioning of the European carbon market. COM/2019/557 final/2.
12Carbon leakage refers to the situation in which businesses make a cost based decision and decide to

re-located their installations to international locations not covered by the EU ETS and with lower emissions

standards and constraints.
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Industries deemed to be significantly exposed to carbon leakage receive a higher amount

of freely allocated EUAs in order to ensure the international competitiveness of these in-

dustries under the EU ETS. The emissions price continued to suffer from the structural

oversupply established during the second phase, as can be observed in Figure 4. More

details regarding the oversupply and the interventions taken, namely back loading and

the Markets Stability Reserve (MSR), are provided in subsection 1.3.

The fourth trading period will commence in 2021 and last until 2030. The main changes

include an accelerated decrease in the emissions cap at 2.2% compared to 1.74% applied

during the third phase. The oversupply measures mentioned in the previous paragraph

and outlined in more detail in subsection 1.3 will take effect in the fourth trading period.

The carbon leakage list has been updated to improve the precision of the targeted goal.

In addition to amendments to the existing rules, the fourth phase will see the establish-

ment of new features, including the Modernisation Fund and the Innovation Fund, to

help affected sectors fund the investments required to transition to a low-carbon econ-

omy. The majority of legislation has been entered into force in April of 2018 under

Directive (EU) 2018/410 European Union (2018).

1.3 Structural oversupply and regulatory interventions

In the second period of the EU ETS, the emissions market was characterized by a struc-

tural imbalance in demand and supply. Supplied emissions were significantly outpacing

verified emissions. The accumulated surplus reflected in Figure 2 shows the majority

of the surplus was create in the second phase of the EU ETS. The imbalance can be

largely attributed to lower than expected emissions driven by the economic downturn

induced by the financial crisis and higher than expected supply driven by a large inflow

of International Credits eligible for use in the EU ETS. The eligible International Credits

under the Kyoto protocol refer to credits created through the CDM and JI program. In

the second phase, the quantity of International Credits used by participants amounted

to 1.06bn credits.13 This amounts to more than 50% of the surplus created in the second

phase. The expected amount of International Credits used in the third phase amounts to

13Quantification of used International Credits in the second trading period provided by the European

Commission on https://ec.europa.eu/clima/policies/ets/credits_en
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600m, i.e., a significant decrease compared to the second phase. On the demand side,

the reduction of emissions, particularly in 2009, see Figure 1, are highlighting the link of

emissions to economic activity. At the same time, the share of electricity generated from

renewable sources steadily increased from 17% in 2008 to 32% in 2018, as illustrated in

Figure 5.14 In summary, the combination of an inadequate and immature framework and

the coinciding economic environment were critical drivers for the structural imbalance.

With the apparent inadequacy of the existing system, the EU took action in 2014 (Eu-

ropean Union, 2014) and announced to postpone the auctioning of 900mt of allowances

over the 2014 to 2016 period to the 2019 to 2020 period. This short term measure is re-

ferred to as back loading aimed at cutting the supply side to balance demand and supply.

The measure succeeded in the sense that during the years 2014-2016 back loading was

applied, the surplus shrank. However, structurally there had been no change, and the

emissions price remained in a single-digit price range until 2018. To address the issue

with a more long term solution, the EU announced the introduction of a Market Stability

Reserve (MSR) (European Union, 2015), aiming to create a rules-based mechanism that

dynamically adjusts the supply side in reaction to demand developments. The MSR be-

gan operating in 2019. Back loaded allowances were put in the MSR rather than being

auctioned in 2019/2020. If circulating allowances exceed 833mt as published in an an-

nual report from the Commission, allowances will be placed in the MSR. In contrast, if

published figures are below 833mt, allowances are released from the MSR. Throughout

2019 to 2023, in cases the allowances in circulation exceed 833mt, 24% of the allowance

surplus is placed in the reserve rather than auctioned in each year. From 2023 onward,

an additional mechanism will apply, canceling all previous allowances above the previous

year’s auction volume. With this comprehensive set of changes and in combination with

the accelerated cap reduction by 2.2% from the start of the fourth trading period, the

EU has set out a more robust framework that will show its effectiveness in the coming

years.

14Data reported by Eurostat on https://ec.europa.eu/eurostat/web/products-datasets/-/sdg_07_40
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1.4 Price determinants of emission allowances

As Benz and Trück (2009), Christiansen et al. (2005), and others outline the main cate-

gories of emission price drivers are the regulatory framework and fundamentals. Having

outlined the regulatory framework and historical developments in the previous subsec-

tions, it is clear that the long term demand and supply, but particularly the supply, are

heavily impacted by the framework mechanics. Similarly, fundamental factors impacting

the discharge of emissions are influencing the demand-supply dynamics. The funda-

mental factors impacting the production level of CO2 are multifaceted and inter-related

due to the implicit connection of the emissions market to other markets, most notably

the energy markets. The interconnection extends to both the fuel input, such as the

oil and gas markets, but also the output in relation to the electricity market. In addi-

tion, weather related increases in production requirements may occur, but also much

broader global economic growth is impacting production levels. These relationships are

discussed by various authors including Hammoudeh et al. (2014), Aatola et al. (2013),

Chevallier (2011), and Mansanet-Bataller et al. (2007). While both regulatory factors and

fundamental factors can shift more broadly over time, they can similarly impact short

term price and particularly volatility dynamics in the EUA market. On the regulatory

side, short term impacts may arise from EU decisions, announcements, and other pub-

lications such as the carbon market report containing new information the market has

not yet incorporated. While regulatory decisions are discussed thoroughly in advance,

small unexpected changes in the outcome of a decision can equally lead to short term

effects. In addition to new information, the regulatory framework can also implicitly

lead to varying return and volatility dynamics if the mechanics are more or less effective

than anticipated by market participants, particularly in the context of rapidly changing

fundamental factors. As highlighted by the very much present market volatility due to

the coronavirus, changes in economic outlook can change significantly in a short time

frame and have an immediate knock on effect on energy and emission prices. Short term

volatility of a different type can also arise due to weather related events. Such events

can be cold snaps or generally cold winters increasing demand for heating and hence

electricity and gas. Consequently, the increasing production of CO2 requires companies
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to purchase more EUAs in the market. With an ever increasing amount of electricity

being generated by renewable sources, as previously discussed and illustrated in Figure

5, one may suspect that the weather plays an increasing role in the demand for EUAs.

In prolonged, very windy, and sunny conditions, the electricity production mix of a coun-

try, can substantially shift towards renewable sources and crowd out fossil fuel based

electricity production given their higher break-even production points. The immediate

impact in the electricity market is driven by the uniqueness of it with its constant phys-

ical requirement of supply and demand balance. In an environment with a high number

of periods with extreme weather and the increasing share of renewable sources could

lead to the conclusion that the emissions price will experience more periods of higher

volatility.

In addition, to events outside of market participants’ control, the price of EUAs may also

be impacted by the direct decisions of emitters on their hedging programs, fuel switch-

ing decisions, and more broadly renewable investment decisions. Again both short and

long term dynamics may be impacted directly by the aforementioned decisions. As a

number of emitters, particularly large utilities, are responsible for a large share of emis-

sions covered under the EU ETS, the decision of one may have a significant impact on

overall prices. The decision information is asymmetric in nature, and hence other mar-

ket participants would not be aware before the decision is announced or action is taken,

consequently potentially leading to short term shocks in return and volatility. Overall the

emissions allowance price is impacted by a variety of inter-correlated and uncorrelated

factors that can have both long term as well as short term implications.

This thesis analyses the short term implications for the log return behavior of EUAs with

a focus on the volatility dynamics in the recent market environment. The performance of

three different GARCH models is examined and benchmarked against a t-distribution (T-

DIST). All three GARCH models should outperform the simple t-distribution if volatility

clustering is a pronounced feature in the data. Both GJR-GARCH and EGARCH should

outperform the simple GARCH model if there is a leverage effect in the volatility pro-

cess. EGARCH should outperform if non-negativity constraints in the parameter estima-

tion for GARCH and GJR-GARCH are active and if the leverage effect is in fact reversed

and positive shocks are more pronounced. The results of this thesis indicate volatility
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clustering and leptokurtosis are prominent features in the data, while asymmetry is not

unequivocally supported. The results can be used in order to choose an appropriate

model to forecast short term volatility and returns in the context of the most recent mar-

ket environment, capturing underlying regulatory developments and fundamentals. The

remainder of the thesis provides a review of the existing literature, discusses methodolo-

gies used in order to complete the aforementioned analysis, and presents the empirical

results.
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2 Literature review

The literature on emission allowances investigating the return dynamics from an econo-

metric and risk management angle has seen rapid advancement since the inception of

the market in the mid 2000s. While the market matured and regulatory changes have

been implemented, underlying market dynamics have changed as well. Particularly in

the first trading period, the findings are highly dependent on the time period, which is

analyzed as can be easily deduced from the erratic price movements in the first phase

of the EU ETS, depicted in Figure 4. In the period shortly after the inception of the

emission allowances market in the EU ETS, both empirical studies, as well as theoretical

models, were developed to capture EUA price dynamics and market mechanics.

In a theoretical approach Fehr and Hinz (2006) describe a model focusing on the energy

sector’s agents decisions in regards to short term abatement levels, i.e., fuel switching,

based on the cheapest available options. In contrast, Seifert et al. (2008) develop a

stochastic equilibrium model in which each affected company decides to spend the opti-

mal amount of money on lowering emissions with the total expected amount of emissions

as a key decision driver. The authors find that a CO2 price process should not necessarily

be characterized by seasonal patterns but should possess the martingale property and

exhibit time and a price dependent volatility structure. Chesney and Taschini (2012) con-

struct an endogenous model generating the price dynamics of emission permits under

asymmetric information, allowing inter-temporal banking and borrowing. The equilib-

rium permit price is determined by optimizing each firm’s decision and imposing the

market clearing condition.

In an early study Christiansen et al. (2005), identify key drivers impacting EUA market

prices: regulatory and policy issues, market fundamentals, and technical analysis. The

authors highlight the importance of the regulatory and policy issues during the first trad-

ing period while expecting the increase of the significance of fundamental factors going

forward. Fundamental factors are including the CO2 production, which itself is driven

by factors including weather, fuel prices, and economic growth as well as the emission

cap and supply of credits from CDM projects. Benz and Trück (2006) investigate stylized

facts of the EU ETS and draw from market experience in the SO2 market in the US. Sim-
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ilarly to Christiansen et al. (2005), Benz and Trück (2006) distinguish two main drivers

that should be taken into consideration when modeling EUA price dynamics, namely pol-

icy and regulatory issues as well as market fundamentals directly affecting supply and

demand. The authors suggest applying a GARCH and Markov switching model in or-

der to capture different phases of volatility in the data. Alberola et al. (2008) further

characterize market fundamentals as well as identify structural breaks in April 2006 and

October 2006. The first structural break occurs in April 2006 after disclosure of the

2005 verified emissions informing market participants about the net short/long positions

of installations causing the EUA price to collapse, implying the framework is not strin-

gent enough to incentivize CO2 emissions reduction. The second structural break occurs

after the European Commission’s announcement regarding more stringent rules in the

second trading phase form 2008 to 2012. In an analysis of the early trading period from

2015 to 2017, Daskalakis et al. (2009) find that the EUA price follows a non-stationary

process, and discontinuous jumps are a prominent characteristic of the data consistent

with Alberola et al. (2008) findings of structural breaks. Daskalakis et al. (2009) con-

clude that the price is most appropriately described by a Brownian motion augmented

by a jump-diffusion process as proposed by Merton (1976). In addition, Daskalakis et al.

(2009) highlight pricing differences for intra-phase and inter-phase derivatives due to

the regulatory prohibition of banking between phases of the EU ETS. In a previous anal-

ysis Daskalakis and Markellos (2008) show both spot and futures EUA markets are not

weak-form market efficient, highlighting the inadequacy of the initial trading period’s

regulatory framework.

The analysis by Borak et al. (2006) based on the initial trading period underlines the

market expectations of price risk and high uncertainty of regulatory allocation plans re-

flected by significant convenience yields in future contracts beyond the initial phase of

the EU ETS. However, Uhrig-Homburg and Wagner (2009) note that the link between

spot and futures prices via the convenience yield approach is not useful for contracts

that are maturing outside of the current trading period due to the previously described

strict regulatory prohibition of banking and borrowing of EUAs outside of the current

trading period. Nevertheless, Uhrig-Homburg and Wagner (2009) conclude that the

cost-of-carry approach links spot and futures within the first trading period, and that
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futures markets are incorporating information first and then transfer the information to

the spot market. In further studies Milunovich and Joyeux (2010) as well as Chevallier

et al. (2010) do not find evidence to support a cointegration relationship between spot

and futures contracts. However, Rittler (2012) concludes that mixed findings are due to

low-frequency data and that he indeed finds an unambiguous cointegration relationship

between spot and futures prices based on high-frequency intra day data. Rittler (2012)

additionally confirms that futures markets are leading the price discovery. In a further

application of high-frequency data, Conrad et al. (2012) show that the fractionally in-

tegrated asymmetric power GARCH specification as suitable in describes futures price

dynamics, implying the second conditional moment of the time series is characterized by

long memory, power effects, and asymmetry.

As suggested in their previous research, Benz and Trück (2009) implement a Markov

switching model and an AR-GARCH model to capture price dynamics of emission al-

lowances. The authors find models with constant variance clearly show a poor fit com-

pared to models with conditional variance, including the Markov switching model, which

shows the best in-sample fit. Similar to the in-sample results, the conditional variance

models also significantly outperform out-of-sample in terms of density forecasting. Benz

and Trück (2009) conclude that the outperformance of conditional variance models is

due to the emission allowance price’s relationship with regulatory factors and funda-

mental variables. Although Daskalakis et al. (2009) implemented a different model, as

previously mentioned, to capture the distributional characteristics of the log returns they

too confirm the non-normality and heavy tails of the log return series. Benz and Trück

(2009) argue adequate pricing and forecasting models need to incorporate issues such

as shifts in price, non-normality or short periods of extreme volatility. Paolella and Tas-

chini (2008) develop an innovative GARCH-type structure to approximate the conditional

dynamics while applying a Pareto distribution to unconditional tails in order to appro-

priately capture the dynamics of the emission allowance spot market returns. In later

studies Benschopa and López Cabrera (2014) apply a Markov regime switching model

to the data of the second trading period and find results confirming findings from Benz

and Trück (2009) highlighting volatility clustering, breaks in the volatility process and

heavy-tailed distributions are well captured by the proposed model. Segnon et al. (2017)
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expand the analysis to a Markov switching multifractal (MSM) model and data observed

across the second and third trading period and find the MSM model outperforms simple

GARCH, FIGARCH, and Markov switching GARCH models for most performance indica-

tors and forecasting horizons.

Besides the covered literature, there are additional streams of research, including re-

search regarding the interaction of the EUA market with other markets, particularly the

energy market, and research pertaining to the impact of emissions pricing on firm per-

formance. However, the literature review will not expand to the aforementioned areas

of research as the focus topic area of this thesis is in relation to the univariate stochastic

properties of EUA prices.
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3 Methodology

This section provides an overview of methodologies used in this thesis in order to analyze

the time series properties of emission allowances, choose and estimate an appropriate

mean and variance model, assess the model fit, and assess the model’s forecasting ac-

curacy. Both models for the mean (ARMA models) and the variance (GARCH model) are

described in this section, noting the focus of the thesis is on the variance model due to

the higher relevance in the context of the analyzed emission allowances time series. Be-

fore delving into the model methodology, the following section will provide an overview

of relevant concepts and statistical test outlining the foundation for any further analysis.

After that, the ARMA and GARCH models are outlined, and in the last subsection of this

section, the forecasting accuracy measurement methods are described.

3.1 Stationarity, linear dependence, and normality

The concept of stationarity is important in time series analysis and is a prerequisite if

one wants to draw an accurate conclusion from the models discussed in the following

subsections. As Brooks (2002) outlines, the non-stationarity of a time series can strongly

influence its behavior and properties, can lead to spurious regressions, and a regres-

sion’s standard assumptions for asymptotic analysis are not valid. A time series is a

strictly stationary process if the distribution of its values remains the same across time.

In contrast, a weakly stationary process is one where the process has a constant mean,

constant variance, and constant autocovariance structure. If a time series is found to be

non-stationary, it can be differenced d times to become a stationary time series. In the

context of financial time series, it is often the case that the price time series is consid-

ered non-stationary and that the first difference, the return series, is often considered

stationary. This common transformation from prices to log returns is shown in Equation

1.

ln

(

St

St−1

)

= rlog (1)
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Visual inspection of the autocorrelation function (ACF) can be indicative of a unit root

and hence non-stationarity. The autocorrelation is defined as

ρs =
γs
γ0
, s = 0, 1, 2, .. (2)

where γs is the autocovariance at lag s. While the ACF can suggest the existence of a

unit root, a formal test is required for more certainty for the existence of such a unit root.

One such test was developed by Dickey and Fuller (1979). The test’s null hypothesis is

that the series as described by Equation 3 contains a unit root, i.e., that φ = 1 in

yt = φyt−1 + ut (3)

while the alternative hypothesis is that φ < 1 and hence stationary. For practical appli-

cations the test is set up for ∆yt = yt − yt−1 such that the regression becomes

∆yt = ψyt−1 + ut (4)

and hence the null is ψ = 0. Dickey and Fuller (1979) also developed extensions to this

test that allow for a drift and deterministic time trend. A common criticism of the test,

as outlined by Brooks (2002), is that its power is low, and it is difficult to correctly test

processes with true φ close to 1.

For the time series models applied in this thesis, it is vital to determine the correct

model specifications. Similarly to the non-stationarity detection, the autocorrelation can

be assessed visually via the ACF. However, it is also useful to utilize a formal test in

determining whether the autocorrelations at one or more lags are jointly statistically

significantly different from zero. Ljung and Box (1978) developed such a formal test.

The Ljung-Box statistic with the formal null hypothesis of

H0 : ρ1 = ρ2 = ... = ρ10 = 0

versus the alternative hypothesis

Ha : ρs 6= 0, for s ∈ {1, 2, ..., 10} ,
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and the Ljung-Box statistic is derived as follows:

Q∗
s = n(n+ 2)

s
∑

k=1

p̂2k
n− k

(5)

where n is the sample size, p̂2k is the sample autocorrelation function at lag k , and s is the

number of lags. The Ljung-Box statistic Qs asymptotically follows a χ2 distribution with s

degrees of freedom. The test is an extension and a more general form of the Box-Pierce

test developed and named by Box and Pierce (1970).

In addition to testing for linear dependence, it is crucial for a variety of applications in

time series analysis to test the normality. Normality is often an underlying assumption

due to the desirable mathematical properties of the normal distribution and its high

practical relevance. Hence it is also vital to test whether the assumption holds or not

to, avoiding miss-specifications and incorrect decisions from statistical tests. Bera and

Jarque (1981) developed the Jarque-Bera test defined as

JB =
n

6

(

S2 + (K − 3)2/4
)

(6)

where n is the sample size, S is the sample skewness, and K is the sample kurtosis. The

test using the properties of the normal distribution in regards to skewness and kurtosis

to test whether the data is derived from a normal distribution. The test statistic is χ2
2

distributed, and the null hypothesis is a joint hypothesis of

H0 : S = (K − 3) = 0

as the expected sample skewness and excess kurtosis of the normal distribution are zero.

The following subsections will provide an overview of relevant mean and variance models

in which the above concepts are embedded.

3.2 ARMA models

The ARMA models are widely used in time series analysis, combining autoregressive

and moving average processes. The autoregressive model describes a model where the
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current value yt depends on previous values of the time series and an error term. The

moving average model is a linear combination of white noise error terms, meaning the

current value yt depends on the previous and current values of the error terms. The

combination of the two types of models are ARMA models, defined as

yt = µ+

q
∑

i=1

φiut−i+

p
∑

j=1

θjyt−j + ut (7)

with E(ut) = 0, E(u2t ) = σ2, E(ut, us) = 0, and t 6= s. The determination of ARMA(p,q)

orders can be achieved via a graphical analysis of the ACF and partial autocorrelation

function (PACF). The PACF is the correlation between lag s and the current lag while

controlling for the correlation of the lags in between lag s and the current lag. Visual

inspection of the ACF and PACF can be accompanied by information criteria that quantify

the ranking of different model specifications. Popular information criteria are Akaike’s

information criteria (AIC) as defined by Akaike (1974) and the Bayesian information

criteria (BIC) as defined by Schwarz (1978). The two information criteria are respectively

defined as

AIC = ln(σ̂2) +
2k

n
(8)

BIC = ln(σ̂2) +
k

n
ln(n) (9)

where k is the number of parameters, n is the sample size, and σ̂2 is the residual vari-

ance. The information criteria will not necessarily give the same results as they impose

a varying penalty for additional parameters in the model specification. However, the

combination of ACF and PACF, as well as the usage of the information criteria, provide a

broad picture to make the most appropriate model choice when facing noisy real data.

3.3 GARCH models

While ARMA models provide for the mean to follow an autoregressive and moving aver-

age process, this class of time series models is linear in nature. As Brooks (2002) points

out, many financial time series are characterized by features that warrant the motivation

to consider non-linear models. Such features include leptokurtosis, volatility clustering,
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and leverage effects. Leptokurtosis describes the tendency of financial asset returns

to exhibit excess kurtosis and fat tails. Volatility clustering refers to the effect that a

time series exhibits autocorrelation in the second moment, implying volatility occurs in

clusters such that there distinct periods of high volatility and periods of low volatility.

Leverage effects in financial data explain the tendency for a higher increase in volatility

after a negative return shock compared to a positive return shock of the same magnitude.

The previously mentioned ARMA models are not modeling the variance and thus assume

homoscedasticity. This feature deems ARMA models unsuitable when considering a time

series that exhibits heteroskedasticity. Estimating a model under the assumption inno-

vations are homoscedastic while the time series is in fact implying the innovations are

heteroscedastic, could lead to wrong standard error estimates.

Engle (1982) developed the first model addressing the heteroskedasticity in time se-

ries with his ARCH(p) model, where ARCH stands for “autoregressive conditionally het-

eroskedastic”. The ARCH model is defined as

yt = µ+ ut (10)

ut = εtσt εt ∼ N(0, 1) (11)

σ2
t = α0+

q
∑

i=1

αiu
2
t−i (12)

where α0 > 0, αi ≥ 0, εt are i.i.d. with zero mean and unit variance. The ARCH model

captures leptokurtosis and volatility clustering due to the conditional volatility’s depen-

dence on ut−i. However, the model does have limitations in practical applications as

outlined by Pagan (1996), specifically noting the inability of a parsimonious ARCH model

to capture both height and shape dimensions of the ACF and hence fully describe the

time series’s features. In addition, the non-negativity assumption for αi is not practical

for most financial time series, particularly if i is large, the probability of one or more

negative parameter estimates is high, and the conditional variance could be negative,

which is a meaningless result.

The Generalised ARCH (GARCH) model is overcoming limitations of the ARCHmodel and

is widely used for financial time series applications. Both Bollerslev (1986) and Taylor,
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S (1986) independently developed the GARCH model. Assuming yt and ut as defined in

Formula 10 and 11 respectively, the conditional variance under the GARCH (p,q) model

is defined as:

σ2
t = α0+

q
∑

i=1

αiu
2
t−i+

p
∑

j=1

βjσ
2
t−j (13)

where α0 > 0, αi ≥ 0, and βj ≥ 0 and
q
∑

i=1

αi+
p
∑

j=1

βj < 1 . The conditional variance pro-

cess is stationary, and the conditional variance process is positive and consequently well

defined if the aforementioned conditions are met. Considering a GARCH(1,1) model the

unconditional variance is then defined as V ar(ut) =
α0

1−(α1+β)
. In contrast, if α1+β ≥ 1 the

variance process is non-stationary, the unconditional variance is not defined, and such a

model specification has undesirable characteristics not suitable for practical application.

The model is dependent upon prior residuals and the prior conditional variance, making

it synonymous with an ARMA(1,1) model of the squared residuals u2t . Compared to ARCH

models, GARCH models are more suitable for most financial time series data as a more

parsimonious model can be applied to capture the desired data properties.

Although the GARCH model is widely used, it does not account for leverage effects often

observed in financial time series. Both the EGARCH as defined by Nelson (1991) and

the GJR-GARCH as defined by Glosten et al. (1993) are known as asymmetric GARCH

models, capturing similar asymmetry features.

GJR-GARCH is part of the asymmetric power GARCH (APGARCH) class of models that

are characterized by including a power coefficient γ and leverage coefficient δ . The GJR-

GARCH model has a power coefficient γ = 2, which reduces the model to the standard

GARCH case of dependence upon lagged squared innovations and lagged conditional

variance but including a leverage coefficient. Assuming yt and ut as defined in Formula

10 and 11 respectively, the conditional variance under the GJR-GARCH (p,q) model is

defined as

σ2
t = α0+

q
∑

i=1

αiu
2
t−i+

q
∑

i=1

δiI[ut−i > 0]u2t−i+

p
∑

j=1

βjσ
2
t−j (14)

where α0 > 0, αi ≥ 0, and βj ≥ 0 and
q
∑

i=1

αi+
q

1
2

∑

i=1

δi+
p
∑

j=1

βj < 1 . Additionally to the

standard GARCH model, the indicator function is defined as I = 1 if ut−i < 0 and I =

0 if ut−i < 0 and the leverage coefficient −1 < δ < 0 . The conditional variance pro-
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cess is stationary, and the conditional variance process is positive and consequently well

defined if the aforementioned conditions are met. The lagged innovation ut is the deci-

sion variable in the indicator function, implying that the additive leverage term will only

apply in cases of a negative ut as the term is otherwise zero given multiplied by a zero

indicator function. Consequently, the GJR-GARCH is useful under the hypothesis that

negative shocks induce higher volatility than for positive ones with equal magnitude.

In comparison to the APGARCH family of GARCH models and the simple GARCH model,

the EGARCH model is modeling the log of the conditional variance rather than the con-

ditional variance. That distinction naturally implies that the non-negativity constraint is

relaxed. The EGARCH model is featuring a leverage effect that can capture both asym-

metric positive or negative shocks. The EGARCH model is defined by

yt = µ+ ut (15)

ut = ztσt (16)

log(σ2
t ) = α0+

q
∑

i=1

αi

[

|ut−i|
√

σ2
t−i

− E

{

|ut−i|
√

σ2
t−i

}]

+

q
∑

i=1

δi

(

ut−i
√

σ2
t−i

)

+

p
∑

j=1

βjlog(σ
2
t−j) (17)

where the expected value E

{

|ut−i|√
σ2

t−i

}

depends on the distribution of zt. For the standard

case of a normal distribution, the expected value is defined as

E

{

|ut−i|
√

σ2
t−i

}

= E {|zt−i|} =

√

2

π

and for the case of a student’s t-distribution with ν degrees of freedom the expected

value is defined as the following.

E

{

|ut−i|
√

σ2
t−i

}

= E {|zt−i|} =

√

ν − 2

π

Γ
(

ν−1
2

)

Γ
(

ν
2

)

The specification of an alternative distribution for the innovation distribution is not

unique for the EGARCH model but can be applied to the aforementioned ARCH and

GARCH models. However, only for the EGARCH does the choice of innovation distri-

bution directly flow into the estimation function. While the normal distribution is the
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standard choice across model specification, the use of other distributional assumptions

may be more appropriate for a specific set of data. The student’s t-distribution is a more

appropriate choice if the GARCH process is not fully capturing the leptokurtic properties

of the data. Hence, if the innovation series of a GARCH process exhibit excess kurtosis

and fat tails, a model specification with t-distributed innovations may be more appropri-

ate.

3.4 Forecasting accuracy measures

The out-of-sample performance of the calibrated models is assessed via point forecast

as well as density forecast accuracy measures. The forecasted returns are compared

to the observed returns to determine the forecast errors and subsequently the accuracy

measures. Common point accuracy measures, the mean squared error (MSE), and the

mean absolute error (MAE), are employed to determine which model performs best. The

MSE and MAE are defined as

MSE =
1

T − (T1 − 1)

T
∑

t=T1

(yt − yf,t)
2 (18)

MAE =
1

T − (T1 − 1)

T
∑

t=T1

|yt − yf,t| (19)

where T is the total sample size, T1is the first observation of the out-of-sample period, yt

is the realized return in time t and yf,t is the forecasted return in time t.

While point forecast accuracy measures are useful in determining out-of-sample perfor-

mance, they do not paint the full picture. In contrast, density forecast accuracy measures

provide a better understanding of the full density of the out-of-sample performance, par-

ticularly relevant for practical risk management applications. There are different ap-

proaches to achieve this goal as discussed by Christoffersen (1998), Bollerslev (1986),

Diebold et al. (1998), and Crnkovic and Drachman (1995). This thesis replicates the ap-

plication Benz and Trück (2009) used as suggested byDiebold et al. (1998) and Crnkovic

and Drachman (1995). The accuracy of the density forecasts is assessed by utilizing

distributional tests measuring the difference between an empirical and theoretical dis-
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tribution. The test set up requires i.i.d variables with a comparable distribution and

hence the forecasted variables need to be transformed. As Rosenblatt (1952) shows, if

the loss distribution is correctly specified, the transformation

xt =

yt
ˆ

−∞

f̂(u)du = F̂ (yl,t) (20)

is resulting in i.i.d. and uniformly distributed xt. In Equation 20 yl,t are the ex-post loss

forecasts and f̂(•) is the forecasted loss density. Importantly, the transformation holds

independent of the underlying distribution of yl,t. Once the xt are determined, tests

such as Kolmogorov-Smirnov (KS) and Kuiper test can be employed in order to check

the data for uniformity. Both the Kuiper and KS tests are testing the null hypothesis

that an empirical cumulative distribution function is equal to a theoretical cumulative

distribution function. The KS test statistic is defined as

KS = max[|F̂ (x)−G(x)|]

and the Kuiper test statistic is defined as

DKupier = D+ +D−

D+ = max[F̂ (x)−G(x)]

D− = max[G(x)− F̂ (x)]

where F̂ (x) is the empirical cumulative distribution function and G(x), and is the theo-

retical distribution function. In this context F̂ (x) is representing the probability integral

transforms of the one day ahead forecasts and G(x) represents the uniform cumulative

distribution function. In addition to the statistical test, Diebold et al. (1998) suggest

assessing the histograms of the probability integral transforms. The histograms should

describe a uniform distribution, and the shape of the histograms can provide additional

feedback on the models’ shortcomings.
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4 Empirical results

4.1 Data

The data which this thesis is resting upon is obtained from the European Energy Ex-

change (EEX) through Bloomberg. The EEX which is one of the major spot exchanges

in which EUAs can be traded and is traded with significant enough liquidity to provide a

non-distorted liquid spot price. Each spot contract for EUAs permits the holder to emit

one ton of carbon dioxide or one ton of a carbon dioxide equivalent, within the meaning

of the EU ETS. The secondary market tick size is 1000 EUAs. The data comprises daily

EUA spot prices, and the considered time period is part of the third trading period and

spans from January 01, 2016 to December 31, 2019. The data period was chosen to re-

flect the latest developments and regulatory changes and to avoid noisy log returns in a

low price level environment in the early years of the third trading period while ensuring

a sufficient sample size. The data from January 01, 2016 to December 31, 2017 is used

to calibrate the models, i.e. the in-sample data set, while the remaining period from Jan-

uary 01, 2017 to December 31, 2019 is used to assess out-of-sample performance. Figure

6 shows the daily spot prices of the third trading period. From visual inspection, it is

clear that the market experienced low variability in the level of prices within the majority

of the third trading period, with prices having remained in the single-digit range until

2018. For the purpose of using the data for the proposed time series models, the data

needs to be stationary. Visual inspection of the price graph as well as the ACF and PACF

in Figures 4 and 7, respectively, lead to the conclusion that the price time series is not

stationary. The persistent ACF shows signs of a unit coefficient on the lagged dependent

variable, implying that shocks do not die away. The PACF shows only the first lag is sig-

nificant, implying no moving average term is appropriate and in connection with the ACF

show the classic characteristics of a non-stationary time series. The augmented Dickey

Fuller test with results in Table 2 confirms the conclusion from the visual evidence.

Consequently, the time series is transformed by deriving the log return series accord-

ing to Formula 1. Figure 8 shows he transformed data series in the full third trading

period while Figure 10 Panel (a) shows the log returns for the considered time period

for calibration and out-of-sample testing. In addition, Table 1 shows summary statistics
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for the full considered period, the in-sample period, and out-of-sample period. The sta-

tionarity is confirmed by the augmented Dickey Fuller test with results in Table 2. The

log returns series in the different considered periods show the mean is very close to

zero not larger than 25bps in all periods and not significantly different from zero given

the null hypotheses under the student’s t-test can not be rejected at the 5% significance

level. The minimum of the log return series could be observed in September 2018 with a

negative 19.5% return, and the maximum return of 14.5% occurred in December 2016.

In the calibration period, the log returns are right-skewed, exhibiting skewness of 0.16,

while the out-of-sample series is left-skewed with -0.78 skewness. However, only the

out-of-sample skewness is significantly different from zero at the 5% significance level.

Both the in-sample and out-of-sample periods are characterized by highly significant ex-

cess kurtosis. Figure 9 shows the histograms of log returns for the three periods and

the fitted normal distribution and t-distribution. In line with the descriptive statistics,

one can see the empirical log return distribution is peaked around the mean and has fat

tails. The fitted t-distribution appears to be better in describing the empirical distribu-

tion compared to the normal distribution. The Jarque-Bera test for normality confirms

the non-normality of the data in the three considered time periods. Figure 10 show the

log returns, squared log returns, and absolute log returns showing returns occurring in

bursts indicating heteroskedasticity. The leptokurtosis, volatility clustering, and lever-

age effects in the data series indicate a simple normal distribution is not sufficient to

model data, and hence alternative models shall provide a better fit.

4.2 Time series models

The analysis of the log returns suggests that GARCH models may be appropriate to fit

the data. Therefore, in-sample fit and out-of-sample performance are assessed for a sim-

ple GARCH model, a GJR-GARCH, and an EGARCH model. Based on the results in the

data analysis, it is clear that the time series is non-normal and shows strong signs of

leptokurtosis. Therefore, the error terms in the GARCH model are assumed to follow

a t-distribution instead of a Gaussian distribution. In addition, results from the GARCH

models are benchmarked on a t-distribution of the log returns. The benchmark model
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is not explicitly modeling the volatility of log returns but only the mean equation. Both

mean and volatility equations need to be assessed for adequacy. In the first step, the ap-

propriateness of an ARMA model for the mean equation is assessed. The ACF and PACF

of log returns in Figure 11 indicate there is little evidence in the data to support an AR

or MA or ARMA model for the mean process. However, given the third lag appears to

be slightly significant, the application of an analytical test is appropriate to confirm the

intuitive graphical evidence. The Ljung-Box test statistic for linear dependence, as de-

fined in Equation 5, is statistically not significant for the joint test for ten lags, as shown

in Table 3. Therefore, the null hypothesis of zero autocorrelation at all lags cannot be

rejected. In an additional test, the information criteria for various combinations of model

specification, p and q , are determined, and results are illustrated in Table 5. While the

AIC suggests a model specification of ARMA(2,2), the BIC suggests ARMA(0,0). Over-

all, the results are mixed. However, in combination, the ARMA(0,0) is most appropriate

supported by the lacking evidence for significant autocorrelation as determined by the

LB test, the graphical indication of the ACF and PACF as well as the BIC. In addition to

the combined picture of the test and figures, a parsimonious model is desirable. On that

basis the mean equation is describes as

yt = µ+ ut (21)

ut = εtσt (22)

where εt ∼ t(0, σ2
t , df). The mean equation serves as the basis for all considered models

in this thesis. While all GARCH models specifically add a variance equation, the naive

model does not. Hence the naive model assumes σt = σ , i.e. the model implies an

unconditional variance.

4.3 In-sample results

In the following, the in-sample results for the four considered models are discussed. A

naive model is chosen to benchmark the results of the GARCH models. The naive model

is fitting a t-distribution on the log return series resulting in parameter estimates of

µ = −0.00042 and σ2 = 0.0011 and degrees of freedom of df = 5.19. Hence the model
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is fully described by yt = µ + ut where ut ∼ t(0, σ2, df). The parameter estimates are

derived via maximum likelihood estimation for all models in this thesis. The residual

series of the naive model appears to exhibit non-constant variance illustrated by the

ACF and PACF of the squared residual series in Figure 12. In addition, the Ljung-Box

test results for the joint test for ten lags, as shown in Table 3, is rejecting the null of

zero autocorrelation in the squared residual series with a p-value close to zero. The

ARCH test, as defined by Engle (1982), is confirming the presence of heteroskedasticity

in the time series. The ARCH test results for the standardized residual series are shown

in Table 3. Based on the results, a GARCH model is an appropriate choice to improve

the in-sample fit compared to the naive model. In line with the prevalent usage in the

academic literature, a parsimonious GARCH(1,1) model is fitted. The variance equation

is therefore described by

ut = εtσt σ2
t = α0 + α1u

2
t−1 + β1σ

2
t−1 (23)

where εt is i.i.d. and εt ∼ t(0, σ2, df). The parameter estimation results are presented

in Table 6. The GARCH coefficient is highly significant with a p-value close to zero, and

the ARCH coefficient is significant at the 5% significance level. Both constant terms are

not significant, while the degrees of freedom are highly significant. Similarly to other

financial time series, the sum of α1 and β1 is close to 1; in this case approximately 0.95,

implying a highly persistent volatility structure. In the context of financial time series,

the ARCH coefficient α1 is high with an estimate above 0.1 while the GARCH coefficient

is at the low end with 0.85. Both features are indicating a spiky volatility structure

observable in time series of an active market environment. Figure 13 displays the in-

novations and conditional standard deviation of the GARCH(1,1) model. The conditional

standard deviation clearly shows significantly varying levels of volatility occurring in

spikes. Noting the volatility decreased towards the end of 2017 with only a small spike

in October. Overall the volatility in the in-sample period spans from quiet periods with

low volatility in the 0.02 to 0.025 range and more active periods in which the volatility

increases to up to 0.06. While the GARCH model is capturing the volatility clustering

and leptokurtosis of the time series, it does not capture any leverage effects. In order to
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verify whether asymmetric leverage effects adding additional explanatory power to the

model a GJR-GARCH(1,1) model is calibrated and the variance equation is defined as

ut = εtσt σ2
t = α0 + α1u

2
t−1 + δ1I[ut−1 > 0]u2t−1 + β1σ

2
t−1 (24)

where εt is i.i.d. and εt ∼ t(0, σ2, df). Similarly to the GARCH model for the GJR-GARCH

model, the ARCH and GARCH lag specification at 1 follows standard practice in the aca-

demic literature. The estimation results are presented in Table 7. The derived parameter

estimates for the GJR model are similar to the GARCH parameter estimates in terms of

magnitude. The significance of the estimates follows a similar pattern with the GARCH

coefficient being highly significant, while the ARCH coefficient is only significant at the

10% significance level, and the mean and variance constants are not significant. The ad-

ditional leverage coefficient δ in the GJR model is not statistically significant, hinting at

the possibility that there is an inability of the additional parameter to improve the model.

Compared to the GARCH model, the GJR-GARCH volatility structure is spikier and has

maximum volatility of 0.062 while the minimum is in line with the GARCH model’s mini-

mum.

Finally a EGARCH(1,1) model is calibrated to the data. The EGARCH model differs

in the parameter estimation as the model is not modeling σ2 but rather log(σ2). The

EGARCH(1,1) model is defined as

ut = ztσt log(σ2
t ) = α0 + α1

[

|ut−1|
√

σ2
t−1

− E

{

|ut−1|
√

σ2
t−1

}]

+ δ1

(

ut−1
√

σ2
t−1

)

+ β1log(σ
2
t−1) (25)

with

E

{

|ut−1|
√

σ2
t−1

}

= E {|zt−1|} =

√

ν − 2

π

Γ
(

ν−1
2

)

Γ
(

ν
2

)

where zt is i.i.d and zt ∼ t(0, σ2, ν). Table 8 displays the parameter estimates. The ARCH

and GARCH coefficients are both highly significant, while the other coefficients, includ-

ing the leverage parameter, are not statistically significant. The leverage coefficient is

negative, implying negative shocks have a more substantial impact on volatility than pos-

itive ones of the same magnitude. This finding is in line with the assumptions under the

GJR-GARCH model. The volatility structure of the EGRACH model is illustrated in panel
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c of Figure 13. The volatility structure is less spiky and has a maximum value of 0.57,

the lowest out of the three variance models.

Results of the Ljung-Box test for serial autocorrelation of the respective squared resid-

ual series are presented in Table 10. All residuals from GARCH models can not reject

the null of zero autocorrelation implying the three GARCH models have appropriately

captured autocorrelation in the data. This result also confirms the appropriateness of

a small order in GARCH models for this time series as expected and in line with wide

application for financial time series. In contrast and as previously shown, the squared

residuals series of the ARMA(0,0) process produces squared residuals with significant

autocorrelation. Similarly, the ARCH test for heteroskedasticity, presented in Table 11,

confirms the Ljung-Box test results implying GARCH models capture the heteroskedas-

ticity while the naive models does not. The test results confirm by visual inspection of the

ACF and PACF of the residuals series, illustrated in Figure 14. The log-likelihood along-

side the information criteria AIC and BIC of the four considered models is presented in

Table 9. All models incorporating a conditional variance specification clearly outperform

the naive t-distribution model in terms of log-likelihood and information criteria. While

the EGARCH model exhibits the highest log-likelihood, all three GARCH models are very

close in terms of in-sample fit. The simple GARCH performs best according to both in-

formation criteria. The lower amount of parameters is making up for the slightly lower

log-likelihood compared to the asymmetric models. Overall, none of the models incorpo-

rating a conditional variance process outperforms, but all models fit better to the EUA

log return time series than the naive model. Therefore, one can conclude that in-sample

volatility clustering and leptokurtosis is an essential feature in the data, while leverage

appears to be less vital. In the following subsection, the out-of-sample performance is

assessed.

4.4 Forecasting results

The out-of-sample performance of the four considered models is determined by compar-

ing of one day ahead point forecast accuracy as well as assessing the density forecasts.

The out-of-sample period spans from January 01, 2018 to December 31, 2019. The mod-
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els are assessed based on return forecasts rather than volatility forecasts due to the

inherent difficulty in specifying an appropriate benchmark for the forecasted volatilities.

The forecasts are based on a fixed, recursive, and rolling window of data-samples con-

sidered for estimating the parameter coefficients. The fixed window implies only the

in-sample data is used to estimate the coefficients, and there is no re-estimation. This

approach can be interpreted as a benchmark as one would expect the re-estimation of

parameters, incorporating more recent data points, would improve the forecasting accu-

racy. The recursive window uses all in-sample data points, and the amount of data points

used is expanding with each re-estimation iteration of the one-step-ahead forecast. The

rolling window is re-estimating at each iteration and statically moving the estimation

window such that the amount of data points used is staying constant. In contrast, the

window moves with each iteration. Therefore, both recursive and rolling windows are

incorporating the most recent data to estimate parameters compared to the fixed win-

dow only using in-sample data.

The point forecasts accuracy is measured by the mean squared errors (MSE) and the

mean absolute errors (MAE). Table 12 presents the mean errors for each considered

model and re-estimation window approach. Overall, the results are very close; however,

the simple GARCHmodel has the lowest errors across forecasting windows and accuracy

measures. As expected, the fixed window shows the highest errors in all four considered

models, implying that re-estimation is beneficial to model accuracy. The recursive win-

dow is performing best according to MSE, and the rolling window is outperforming in

terms of MAE. The naive model exhibits the highest errors in all categories, while the

difference in terms of magnitude is still very small. The small difference highlights the

need for a more sophisticated approach to measuring the models’ out-of-sample perfor-

mance. Particularly in terms of practical relevance, it is vital to gain an understanding of

not only the models’ return forecasting accuracy but also their risk forecasting accuracy.

In order to achieve a more in-depth understanding of the models’ forecasting accuracy,

the density forecasts are assessed. As previously outlined in subsection 3.4, there are

several approaches to achieve this measurement. The fundamental transformation, ac-

cording to Rosenblatt (1952), is the basis for the distributional test employed in this

thesis. The histograms of the probability integral transforms of the four considered
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models are presented in Figure 15. A perfect model would display a flat line represent-

ing the uniform distribution implied by the transformation. While all models do show a

tendency to higher peaks in the middle section, it appears the GARCH models are less

peaked than the naive model. This tendency for concentrated frequencies in the middle

quartiles implies more often than not that the forecasted confidence intervals are too

wide. The fact that the naive model is exhibiting such behavior is not surprising as the

variance is unconditional and hence does not consider volatility clustering. Visually it is

difficult to see a clear best performing model among the GARCH models. Interestingly,

all models, including the naive model, show a high frequency of the lowest distribution

bucket on the left side of the graphs. At the same time, the highest distribution bucket

on the right side of the graphs is infrequent across models. This concentration implies

the models failing to capture fat tails on the left side of the return distribution, i.e., neg-

ative returns. These results align with the findings in the descriptive statistics, showing

the out-of-sample returns are left-skewed with a high statistical significance. While one

would expect the asymmetric models to show a less pronounced feature, they in fact

show higher frequencies in the lowest distribution bucket. As discussed in the in-sample

analysis, the estimated leverage coefficients are relatively small and not statistically

significant in the in-sample period, which extended throughout the re-estimation in the

out-of-sample period implying a lacking ability of the models to capture the data features

appropriately. Figure 16depicts the 95% confidence bands and the observed returns un-

derlying the findings mentioned above from the histograms in Figure 15. The GARCH

model shows the most pronounced reaction to high volatility in returns, particularly in

the third and fourth quarter of 2018. The flat confidence intervals of the naive model

represent the lacking modeling of conditional variance.

While the visual inspection provides a meaningful interpretation of the results, it is dif-

ficult to assess the best model out-of-sample performance ultimately, and hence a quan-

tification with the help of a statistical test is a useful tool. Table 13 provides a summary

of the test results of the KS and Kuiper test for uniformity of the probability integral

transforms of the one day ahead forecasts. High p-values imply the underlying distribu-

tion of the probability integral transforms is close to the uniform distribution. Hence a

p-value of one would imply the histograms in Figure 15 were completely flat. An addi-
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tional visual interpretation of the data is illustrated in Figure 17. The Figure represents

the empirical cumulative distribution function of the probability integral transforms, and

the theoretical uniform cumulative distribution function. The statistical tests specifically

use the cumulative distribution functions and determine the goodness of fit via distance

between the two functions. The results in Table 13 show that the naive model is perform-

ing worst by a large margin and is rejected at the 10% and 1% significance level at the

KS and Kuiper test, respectively. This result can be easily inferred from panel d in Fig-

ure 17 as the gray line showing the empirical cumulative distribution function is clearly

different from the blue line representing the theoretical uniform cumulative distribution

function. The three GARCH models show better results both in the statistical test and

also visually the empirical lines are closer to the theoretical ones. The asymmetric mod-

els markedly outperform the simple GARCH model, and the EGARCH model performs

best overall for both the KS and Kuiper test. The simple GARCH model rejects the null

of a uniform distribution at the 10% significance level for the Kuiper test while it does

not reject the null under the KS test. On an aggregated basis, the EGARCH model ap-

pears to be performing best on an out-of-sample basis while noting the results are overall

close. Notably, Berkowitz (2001) points out that both the Kuiper and KS tests have some

instability in sample sizes below 1000 data points. Taking this into consideration, the

difference between the GJR-GARCH model and the EGARCH model is indeed very small

and likely not significant. Nevertheless, the difference between the GARCH models and

the naive model is large enough to conclude there is a significant difference presumably

not materially impacted by the sample size. Hence the models modeling the conditional

variance are markedly outperforming the naive model in terms of out-of-sample density

forecast accuracy.

4.5 Comparison with the existing literature

The existing literature shows varying results in different time periods. Looking at data

from the pilot phase, Benz and Trück (2009) find that Markov-Switching models perform

best, capturing different phases of volatility and heteroskedasticity in log returns. The

authors suggest regime switching models and GARCH models, incorporating conditional
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variance equations, are appropriate to account for shifting uncertainty arising from reg-

ulatory, political, and fundamental drivers. Similarly, Daskalakis et al. (2009) highlight

that prices in the pilot phase are characterized by jumps and are non-stationary. The

authors also find skewness, leptokurtosis, and find non-normality for both prices and

returns. The authors that are covering the pilot phase highlight the immaturity of the

emissions market and the significant uncertainty driven by the regulatory framework. In

a study analyzing data from the second trading period, Benschopa and López Cabrera

(2014) apply a Markov switching GARCH model and confirming findings from the pi-

lot phase, as shown by Benz and Trück (2009), highlighting volatility clustering, breaks

in the volatility process, and a heavy-tailed distribution of emissions returns. Segnon

et al. (2017) show that the Markov switching multifractal model is outperforming simple

GARCH and Markov switching models based on data across the second and third trading

period. The results of this thesis support the overarching notion that volatility clustering

and leptokurtosis are a prominent feature in the data across all trading periods, includ-

ing the latest market data.
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5 Conclusion

This thesis examines the short term log return behavior of EUAs and focuses on the

volatility dynamics in the recent market environment. The performance of three differ-

ent GARCH models is assessed and benchmarked against a naive model. The results

are useful for market participants in complementing their trading strategies, furthering

their risk management, and providing enhanced decision tools for hedgers. The daily log

returns are characterized by skewness, excess kurtosis, fat tails, and varying levels of

volatility. All three GARCH models provide a better in-sample fit than the naive model,

a simple t-distribution. The EGARCH model shows the highest log-likelihood, but all

three GARCH models show close in-sample goodness of fit. The out-of-sample forecast-

ing accuracy assessment shows similar results. While the point forecasts show only small

superiority of the conditional variance models, the density forecast assessment clearly

shows the naive model is inferior. The simple GARCH model shows the best point fore-

cast results while fails to hold up performance when considering the density forecasts.

The EGARCH model shows the best results in terms of density forecasts, marginally out-

performing GJR-GARCH. The simple GARCHmodel and the naive t-distribution model fail

to show statistically convincing results in regards to the density forecast assessment.

The results strongly support the use of conditional variance models in modeling the daily

log returns of EUAs. Hence volatility clustering is a vital feature in the data, highlight-

ing that the impact from regulatory framework developments and fundamental drivers of

EUAs are creating short term changes in the volatility structure. The good performance

of the EGARCH and GJR-GARCH models both in terms of in-sample fit and out-of-sample

performance hint that leverage may be an essential feature in the time series. How-

ever, the notion is curtailed by the small magnitude and statistical insignificance of the

leverage coefficient as well as the lacking overarching outperformance compared to the

simple GARCH model. Both the descriptive statistics of daily EUA log returns and the

EUA price graph show a change in EUA behavior in the out-of-sample period compared

to the in-sample period. The log returns exhibit strong skewness in the out-of-sample

period, and the price reaches new significantly higher levels compared to the major-

ity of the third trading period. Therefore, it is imperative to continually re-assess the
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short term return and volatility dynamics and aim to capture the latest features in the

data. This notion of development is mirrored in the existing literature showing varying

GARCH, and regime switching models outperform depending on the considered time

period. However, both the existing literature and this thesis conclude the existence of

volatility clustering and leptokurtosis is prominent in the respective time series and high-

lights the importance of volatility modeling for practical applications. Particularly in the

context of risk management applications, the density forecast results indicate that ad-

ditional research may be appropriate in formulating a suitable model that incorporates

the latest features of the time series.
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Figure 1: Annual verified emissions across the second and third phases of the EU ETS.
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Figure 2: Development of the accumulated surplus across the second and third phases

of the EU ETS.
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Figure 3: Annual emissions cap for installations and verified emissions in the third

phase of the EU ETS.
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Figure 4: Daily EUA spot prices from April 2013 to January 2020
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Figure 5: The share of renewable energy consumption in gross final energy consump-

tion according to the Renewable Energy Directive in the EU (28 countries) from 2008

to 2018. The gross final energy consumption is the energy used by end-consumers plus

grid losses and self-consumption of power plants. The presented data refers to renew-

able energy sources in electricity only.
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Figure 6: Daily EUA spot prices from January 01, 2013 to December 31, 2019
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Figure 7: Sample autocorrelation function (left panel) and sample partial autocorrela-

tion function (right panel) of the daily EUA prices with non-robust standard errors. The

considered sample period spans from January 01, 2016 to December 31, 2019.
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Figure 8: Daily EUA log returns from January 01, 2013 to December 31, 2019
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(a) Full period
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(b) In-sample period
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(c) Out-of-sample period

Figure 9: Histogram of daily EUA log returns for the full considered period from January

01, 2016 to December 31, 2019 (panel a), the in-sample period from January 01, 2016

to December 31, 2017 (panel b), and out-of-sample period from January 01, 2018 to

December 31, 2019 (panel c) with fitted normal distribution and t-distribution.
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Figure 10: Daily EUA log returns (panel a), squared log returns (panel b), and absolute

log returns (panel c) from January 01, 2016 to December 31, 2019
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Table 1: Descriptive statistics and statistical tests for the daily EUA log return series

for the full considered period from January 01, 2016 to December 31, 2019, the in-

sample period from January 01, 2016 to December 31, 2017, and out-of-sample period

from January 01, 2018 to December 31, 2019. Mean, skewness, and excess kurtosis are

tested for zero mean. Jarque-Bera designates the empirical statistic of the Jarque-Bera

test for normality.

Time Period Full sample In-sample Out-of-sample

Mean (%) 0.0012 0.0002 0.0023

T-stat 1.24 0.10 1.75

P-value 0.13 0.49 0.04

Minimum -0.1945 -0.1285 -0.1945

Maximum 0.1451 0.1451 0.0912

Standard deviation 0.0311 0.0330 0.0291

Skewness -0.24 0.16 -0.78

Z-stat -3.06 1.47 -7.05

P-value 0.00 0.07 0.00

Excess kurtosis 2.97 2.07 4.41

Z-stat 18.87 9.22 19.95

P-value 0.00 0.00 0.00

Jarque-Bera 360.24 84.43 437.20

P-value 0.00 0.00 0.00

Table 2: Augmented Dickey-Fuller test statistic for the EUA price and log return series,

testing for existence of a unit root. The considered time period spans from January 01,

2016 to December 31, 2019.

Price time series Log return series

Augmented Dickey-Fuller test statistic -0.08 -22.66

P-value 0.95 0.00

Table 3: Statistical test summary for the EUA log return and squared residual series

of the ARMA(0,0) process with t-distributed error terms. Q2
LB(10) refers to the ten lags

Ljung-Box test for serial autocorrelation.

Log returns Squared

residuals

Q2
LB(10) 9.60 50.88

P-value 0.47 0.00
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Figure 11: Sample autocorrelation function (left panel) and sample partial autocorre-

lation function (right panel) of EUA log returns with non-robust standard errors. The

considered period is the in-sample period from January 01, 2016 to December 31, 2017.
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Figure 12: Sample autocorrelation function (left panel) and sample partial autocorrela-

tion function (right panel) with non-robust standard errors of the squared residuals of an

ARMA(0,0) process of the EUA daily log returns. The considered period is the in-sample

period from January 01, 2016 to December 31, 2017.

Table 4: Statistical test summary for the standardized residual series of the ARMA(0,0)

process with t-distributed error terms. ARCH(5) refers to Engle (1982)’s test for condi-

tional heteroskedasticity with five lags.

ARCH(5) 4.59

P-value 0.03
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Table 5: Akaike information criteria (AIC) and Bayesian information criteria (BIC) for

ARMA(p,q) models with t-distributed error terms. Largest negative values for each in-

formation criterion are highlighted in bold.

AIC BIC

ARMA(p,q) 0 1 2 3 0 1 2 3

0 -1925 -1924 -1922 -1924 -1921 -1915 -1909 -1908

1 -1924 -1922 -1922 -1923 -1915 -1909 -1905 -1902

2 -1922 -1922 -1928 -1926 -1909 -1905 -1907 -1901

3 -1925 -1923 -1926 -1924 -1908 -1902 -1901 -1895

Table 6: In-sample parameter estimation results for the GARCH(1,1) model with t-

distributed error terms. DoF refers to degrees of freedom.

Coefficient Standard error t-statistic

Mean equation

Constant µ 0.0004 0.0013 0.33

Variance equation

Constant α0 0.0001 0.0000 1.50

ARCH α1 0.1051 0.0443 2.37

GARCH β1 0.8500 0.0614 13.84

DoF 5.9346 1.4728 4.03

Table 7: In-sample parameter estimation results for the GJR-GARCH(1,1) model with

t-distributed error terms. DoF refers to degrees of freedom.

Coefficient Standard error t-statistic

Mean equation

Constant µ 0.0002 0.0013 0.12

Variance equation

Constant α0 0.0001 0.0000 1.60

ARCH α1 0.0790 0.0430 1.83

GARCH β1 0.8360 0.0657 12.72

Leverage δ1 0.0701 0.0733 0.97

DoF 5.8633 1.4281 4.11
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Table 8: In-sample parameter estimation results for the EGARCH(1,1) model with t-

distributed error terms. DoF refers to degrees of freedom.

Coefficient Standard error t-statistic

Mean equation

Constant µ 0.0002 0.0013 0.17

Variance equation

Constant α0 -0.4151 0.2562 -1.62

ARCH α1 0.2263 0.0804 2.82

GARCH β1 0.9402 0.0371 25.38

Leverage δ1 -0.0368 0.0455 -0.81

DoF 5.9398 1.5108 3.93

Table 9: Log-likelihood, Akaike information criteria (AIC) and Bayesian informa-

tion criteria (BIC) for the four considered models. T-DIST refers to the simple t-

distribution model, GARCH refers to the GARCH(1,1) model, GJR-GARCH refers to the

GJR-GARCH(1,1) model, and EGARCH refers to the EGARCH(1,1) model.

Log-likelihood AIC BIC

T-DIST 963.41 -1924.82 -1920.66

GARCH 979.32 -1952.63 -1940.14

GJR-GARCH 980.08 -1952.15 -1935.50

EGARCH 980.28 -1952.55 -1935.90

Table 10: Statistical test summary for the squared residual series of the four considered

models. Q2
LB(10) refers to the ten lags Ljung-Box test for serial autocorrelation. T-DIST

refers to the simple t-distribution model, GARCH refers to the GARCH(1,1) model, GJR-

GARCH refers to the GJR-GARCH(1,1) model and EGARCH refers to the EGARCH(1,1)

model.

Q2
LB(10) P-val

T-DIST 50.88 0.00

GARCH 6.67 0.76

GJR-GARCH 6.36 0.78

EGARCH 6.46 0.78
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Figure 13: Inferred conditional standard deviations. Results are displayed in the re-

spective panels for the GARCH(1,1) model (panel a), the GJR-GARCH(1,1) model (panel

b), and the EGARCH(1,1) model (panel c). The considered period is the in-sample period

from January 01, 2016 to December 31, 2017.
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Table 11: Statistical test summary for the standardized residual series of the four

considered models. ARCH(5) refers to Engle (1982)’s test for conditional heteroskedas-

ticity with five lags. T-DIST refers to the simple t-distribution model, GARCH refers to

the GARCH(1,1) model, GJR-GARCH refers to the GJR-GARCH(1,1) model, and EGARCH

refers to the EGARCH(1,1) model.

ARCH(5) P-val

T-DIST 4.59 0.03

GARCH 3.88 0.57

GJR-GARCH 3.35 0.65

EGARCH 3.31 0.65

Table 12: Forecasting point accuracy measures. Results for the mean-squared error

(MSE) and mean absolute error (MAE) for the point forecasts of the four considered

models. Smallest mean errors are highlighted in bold. T-DIST refers to the simple t-

distribution model, GARCH refers to the GARCH(1,1) model, GJR-GARCH refers to the

GJR-GARCH(1,1) model, and EGARCH refers to the EGARCH(1,1) model.

GARCH GJR EGARCH T-DIST

Rolling window

MSE 0.0008477 0.0008496 0.0008494 0.0008498

MAE 0.0216143 0.0216288 0.0216179 0.0216601

Expanding window

MSE 0.0008462 0.0008468 0.0008465 0.0008482

MAE 0.0216403 0.0216482 0.0216445 0.0217033

Fixed window

MSE 0.0008466 0.0008477 0.0008475 0.0008505

MAE 0.0217309 0.0217585 0.0217518 0.0218193
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Figure 14: Sample autocorrelation function (left sub-panels) and sample partial auto-

correlation function (right sub-panels) with non-robust standard errors of standardized

residuals of the considered GARCH models for the EUA daily log returns in the in-sample

period from January 01, 2016 to December 31, 2017. Results are displayed in the respec-

tive panels for GARCH(1,1) model (panel a), the GJR-GARCH(1,1) model (panel b), the

EGARCH(1,1) model (panel c).
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(d) T-DIST

Figure 15: Histogram of the probability integral transforms of the one day ahead fore-

casts for the EUA daily log returns in the out-of-sample period from January 01, 2018 to

December 31, 2019. Results are displayed in the respective panels for the GARCH(1,1)

model (panel a), the GJR(1,1) model (panel b), the EGARCH(1,1) model (panel c), the

naive model of a t-distribution (panel d). All results are based on the rolling window

forecasting approach.
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Figure 16: Log returns and predicted 95%-confidence intervals for the four considered

models in the out-of-sample period from January 01, 2018 to December 31, 2019. Results

are displayed in the respective panels for the GARCH(1,1) model (panel a), the GJR-

GARCH(1,1) model (panel b), the EGARCH(1,1) model (panel c), the naive model of a

t-distribution (panel d). All results are based on the rolling window forecasting approach.
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Figure 17: Cumulative distribution function of the uniform distribution and empirical

cumulative distribution function of the probability integral transforms of the one day

ahead forecasts of the four consider models for EUA daily log returns in the out-of-

sample period from January 01, 2018 to December 31, 2019. Results are displayed in

the respective panels for the GARCH(1,1) model (panel a), the GJR(1,1) model (panel

b), the EGARCH(1,1) model (panel c), the naive model of a t-distribution (panel d). All

results are based on the rolling window forecasting approach.
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Table 13: Results for the Kolmogorov-Smirnov and Kuiper tests for the four considered

models with the uniform distribution as theoretical distribution and the empirical dis-

tribution based on the respective probability integral transforms of the one day ahead

forecasts. KS refers to the Kolmogorov-Smirnov test statistic. All results are based on

the rolling window forecasting approach. Smallest test statistic values are highlighted in

bold. T-DIST refers to the simple t-distribution model, GARCH refers to the GARCH(1,1)

model, GJR-GARCH refers to the GJR-GARCH(1,1) model, and EGARCH refers to the

EGARCH(1,1) model.

KS P-value Kuiper P-value

GARCH 0.0421 0.3379 0.0765 0.0615

GJR-GARCH 0.0399 0.4044 0.0652 0.2137

EGARCH 0.0378 0.4727 0.0648 0.2234

T-DIST 0.0574 0.0749 0.1062 0.0006
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Emission Allowances And Natural Gas: A

Cointegration Analysis

Franziska Manke

June 24, 2020

Abstract

This thesis analyses the long-run relationship between emission allowances (EUA)

and European natural gas (TTF). I determine whether emission allowances and nat-

ural gas have a long-run relationship, whether this relationship has changed over

the considered period, and which market leads the price discovery process. The hy-

pothesis I suggest in support of the existence of a long-run relationship between the

EUA and TTF time series is that fuel switching from coal to natural gas is one of

the main practically achievable and available options to power producers in order

to abate emissions and that the fuel switching decision is connected to the price of

emission allowances. This thesis’s empirical results suggest that there is a cointe-

gration relationship between the two time series in the sample period covering the

calendar year 2019 while showing no cointegration relation in earlier sample peri-

ods. As a logical consequence, one can assume that the relationship between the two

variables has changed over time. The estimated parameter coefficients of the Vector

Error-Correction Model (VECM) are employed to analyze the price discovery process.

The results do not unequivocally support the assumption that EUAs drive the price

discovery process.
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1 Introduction

The European Union (EU) has set out the ambitious target to achieve a climate-neutral

economy and society by 2050.1 The EU Emission Trading System (EU ETS) is the pri-

mary tool of the EU to reduce greenhouse gas emissions and is designed to do so in the

most cost-effective and economically efficient manner European Union (2003). In order

to achieve the long term goal of net-zero emissions, new technological innovations are

required. In the interim, existing solutions towards lower emissions are a vital stepping

stone. The two central angles to achieve decarbonization are conservation and seques-

tration. Conservation technologies and processes reduce gross emitted emissions, and

sequestration technologies and processes reduce net emissions. The latter refers to both

natural approaches, e.g., reforestation, and carbon capture and storage technologies.

While sequestration is vital in achieving a net-zero carbon goal, existing methods and

technologies have not reached commercial scaleability that compares to the advances

and already available solutions in conservation.

The most notable and intuitive conservation approach is the increased use of renew-

able energy sources in power generation. As highlighted in the first part of this thesis,

the share of renewable energy has significantly increased in the European Union over

the past decade. As there is inherent variability of energy production from renewable

sources based on weather conditions and lacking storage technology able to handle this

variability, reliable power generation still requires fossil fuels at this stage. The electric-

ity demand and supply in a system need to balance at all points in time due to the lacking

ability to store electricity effectively. Therefore, the constantly changing demand driven

by economic activity is met by power production in order of cost of production, referred

to as the merit order. While the merit order differs in detail across countries based on the

local energy mix and natural resource availability, broadly speaking, renewable plants

and nuclear plants form the basis with the lowest costs, and fossil fuel-based power

generation follows with higher costs associated with production. Besides regional differ-

ences, the merit order among fossil fuels is additionally dependent on the costs arising

1The European Green Deal: Communication from the Commission to the European Parliament, the

European Council, the Council, the European Economic and Social Committee and the Committee of the

regions (COM/2019/640 final)
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from emitting emissions that are captured by the EU ETS

Although the power generation sector is one of the main emissions emitters under the

EU ETS, it also offers an additional source of emissions conservation that is already

available, namely fuel switching from high carbon-intensive fuel sources to low carbon-

intensive fuel sources. The most widely considered and relevant fuel switching pair is

the switch from coal to gas. The incentive for power generators, i.e., mainly utilities, to

switch from the cheaper but more carbon-intensive coal to the less carbon-intensive gas

as fuel for power generation must be high enough that the related abatement costs are

outweighed by the benefit of not emitting emissions and hence not having to buy emis-

sion allowances. This incentive to switch comes in the form of relative costs of the two

fuel options in question and EUA prices that constitute a saving for the power producers

when using gas compared to coal. While the historical price and regulatory develop-

ments of the EUA market have been outlined in detail in the first part of this thesis, the

second part of the thesis revolves around the relationship between emission allowance

prices and natural gas prices.

In detail, the focus of this part of the thesis is to determine whether emission allowances

and natural gas have a long-run relationship, whether this relationship has changed

over the considered period, and which market leads the price discovery process. The

hypothesis of this thesis underpinning a significant long-run relationship between emis-

sion allowances and natural gas is that fuel switching from coal to natural gas is one

of the main practically achievable and available options to power producers in order to

abate emissions and that the fuel switching decision is connected to the price of emis-

sion allowances. This hypothesis also incorporates the assumption that the emission

allowances market is driving the price discovery and therefore is impacting the demand

for natural gas versus the alternative assumption that natural gas prices are driving the

price discovery as the lower emissions emitted from switching fuel from coal to gas is

impacting the demand for emission allowances. Independent on whether the hypothe-

sis or alternative hypothesis of the price discovery is supported by empirical evidence,

the relationship of emission allowances and natural gas is assumed to be positive. The

analysis of this thesis extends the existing literature by using the latest market data and

hence capturing the latest regulatory and market developments. This thesis’s empirical

4



results suggest that there is a cointegration relationship between the two time series and

that this relationship has only developed in 2019 compared to non-significant cointegra-

tion results for earlier sub-samples starting from 2014. The price discovery measures

indicate that emission allowances are incorporating information first. However, the em-

pirical results do not appear to be unequivocally clear. The following sections outline the

relevant literature, methodology, and empirical results.
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2 Literature Review

In the initial phase of emission trading, researchers focused on finding factors influenc-

ing the behavior of EUAs. Christiansen et al. (2005) identify three main factors impacting

EUAs: policy and regulatory factors, market fundamentals, and technical indicators. An-

alyzing data from the first year of the first phase of the EU ETS, Mansanet-Bataller et al.

(2007) show that energy sources principal factors in the determination of EUA prices

and find that oil prices, natural gas prices but also temperatures in Germany are signifi-

cant EUA price drivers. Alberola et al. (2008) confirms the findings of Mansanet-Bataller

et al. (2007) and additionally shows that there are structural breaks in the emissions

time series in the first phase of the EU ETS. In one of the first papers incorporating

the cointegration relationship of energy markets and the EUA market, Bunn and Fezzi

(2007) show EUA prices are cointegrated with British naturals gas (NBP) prices and UK

electricity prices. Using a cointegrated VAR model, the authors show that gas prices are

driving carbon prices, and both gas and carbon prices are driving electricity prices. In

contrast, Rickels et al. (2007) do not find a cointegration relationship among EUAs, oil,

natural gas, and coal prices using data from the first phase of the EU ETS. Compared

to Bunn and Fezzi (2007) and besides the focus on various input prices for power gen-

eration, the authors use Zeebruegge natural gas (ZTP) prices rather than the NBP price

series used by Bunn and Fezzi (2007). It is further noteworthy that Rickels et al. (2007)

find a cointegration relationship under the Johansen approach, but testing the variables

shows that oil, natural gas, and coal are weakly exogenous to the error correction term

and that the application of a single equation error correction model yields strong evi-

dence against cointegration. In a later study using data from both the first and second

phase of the ETS, Bredin and Muckley (2011) show that the cointegration relationship

between emissions futures and fundamentals, including economic growth, weather, en-

ergy spreads (clean dark and spark spreads for coal and gas to electricity, respectively),

and oil prices, is more evident in the second phase of the EU ETS. The authors employ

three different cointegration frameworks, the Engle-Granger approach, the Johansen

approach, and a modified cointegration approach accounting for heteroskedasticity and

analyze the development over time. While the Engle-Granger approach does not show
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a significant cointegration relationship throughout the two phases, both the Johansen

and modified cointegration approach show that the cointegration is developing over the

second phase. Bredin and Muckley (2011) conclude that the second phase of the EU

ETS is more efficient than the pilot phase with higher trading volumes and that theoret-

ically established relations are empirically apparent. Creti et al. (2012) builds upon the

research of Bredin and Muckley (2011) and shows that there exists a cointegration rela-

tionship between EUAs and fundamentals for both the first and second phase of the EU

ETS. The fundamentals used in this study are an equity index, oil prices, and switching

costs between gas (NBP prices) and coal (API2 - Rotterdam coal futures). The positive

cointegration results for the first phase are dependent on accounting for the structural

break in 2006. Creti et al. (2012) additionally conclude that the cointegration relation-

ship shifts towards a fundamentals-driven relationship in the second phase of the EU ETS

and that the switching costs were not a significant driver of the long-run relationship in

the first phase. While the literature extends in findings of EUA market drivers in a short

term setting, the above literature review represents the core of literature focused on the

long-run relationship of emissions prices and energy prices, including natural gas.
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3 Methodology

This section provides an overview of methodologies relevant for the analysis of the re-

lationship between the daily emission allowances and the natural gas price time series.

In a first step, the univariate analysis methodologies, namely unit root testing and sta-

tionarity testing, are outlined as the outcome of such analysis forms the basis and is pre-

requisite for the following multivariate time series analysis. In the multivariate space,

the concepts of and approaches to cointegration analysis are forming the core of the

Methodology section and this thesis. While two prominent methodologies of cointegra-

tion analysis are presented, the focus is set on the Johansen approach (Johansen, 1988)

as this is the main framework applied in this thesis.

3.1 Unit Roots and Stationarity

Similar to the univariate analysis of the emission allowances returns in Part I of this the-

sis, the concept of stationarity forms a crucial role in the context of multivariate analysis

and specifically, cointegration analysis. Compared to the analysis discussed in Part I,

the focal point of this Part of the thesis is the price time series, i.e., levels of the data,

rather than the log returns, i.e., differences of the data. Although the prices of assets in

the financial context are generally considered non-stationary, a more refined analysis is

required to formulate the appropriate model and derive meaningful conclusions from the

cointegration analysis. Conversely to the analysis done in Part I, the implicit goal, i.e.,

fulfilling prerequisites for subsequent analysis, of the unit root and stationarity testing

is not to show that the time series are stationary but rather that the time series under

consideration are integrated to the same order and non-stationary in levels. More details

regarding cointegration analysis prerequisites are provided in the respective section.

As mentioned in Part I of this thesis and as Brooks (2002) outlines, non-stationary time

series need to be treated differently from stationary ones as the non-stationarity can

strongly influence a time series’s behavior and properties, can lead to spurious regres-

sions, and a regression’s standard assumptions for asymptotic analysis are not valid. The

most restrictive form of stationarity is the strict stationarity, which requires a stochastic

process, yt, to have a joint distribution of {yt,, yt+1, ..., yt+h} to depend only on h and
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not t. This assumption is generally not fulfilled by financial time series as it implies the

distribution is independent of time. In contrast, a weakly or also covariance stationary

process requires the series to have a constant mean, constant variance, and constant au-

tocovariance. Generally, financial return series, such as the emissions log return series

discussed in Part I of this thesis, are expected to be weakly stationary.

In the realm of non-stationary time series, two types can be frequently observed; the

stochastic and deterministic non-stationarity. The two forms are expressed in Equation

1 and Equation 2, respectively

yt = µ+ yt−1 + ut (1)

yt = α + βt+ ut (2)

Stochastic non-stationary processes are also called unit root processes, random walks

with drift, and difference stationary processes. The latter alludes to the fact that the

time series is stationary in differences; hence, the process described by Equation 1 takes

the following form in differences.

∆yt = µ+ ut (3)

The stationarity of the first differences implies the time series yt of Equation 1 is inte-

grated of order I(1). More generally, a time series is said to be integrated of order I(d)

, where d is the number of times the series is differenced. Hence a stationary process is

integrated of order I(0) as it is already stationary itself.

In contrast, deterministic processes are not stationary in differences but require de-

trending to derive a stationary series. A deterministic non-stationary process is also

called a trend stationary process as the series is stationary around the trend.

To identify the correct underlying data generating process, one shall firstly plot the time

series and the first differences. Additional graphical support can be provided by an auto-

correlation function. While experienced researchers may have developed a good sense

from purely inspecting the graphical evidence, a more formal procedure is required to

confirm the initial prognosis. Common tests for this purpose are the Augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979), the Phillips-Perron (PP) test (Phillips and Per-

ron, 1988), and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test (Kwiatkowski
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et al., 1992). Importantly, the ADF test and PP test are testing for the existence of a unit

root in the process, while the KPSS test is testing for the stationarity of it.

The ADF test allows for different variations, and its most basic form has been discussed

in Part I of this thesis. The full spectrum of the ADF test’s regression set up is described

by

yt = c+ δt+ φyt−1 + β1∆yt−1 + ...+ βp∆yt−p + εt (4)

where ∆ is the differencing operator, p is the number of lagged difference terms, βp are

the difference coefficients, c is the drift coefficient, δ is the deterministic trend coeffi-

cient, φ is the AR(1) coefficient, and εt is the innovation process which is assumed to be

a white noise process. The null hypothesis is that φ = 1 ,i.e., the data contains a unit root,

against the alternative φ < 1. The ADF test produces test statistics that do not follow

a standard distribution as the null hypothesis is that the process is non-stationary. The

critical values are derived by simulation. The researcher must choose the type of model

and the lag length p for the ADF test. The model type specifies whether the drift coeffi-

cient c and the deterministic trend coefficient δ is present in the alternative hypothesis.

The choice is depending on the underlying data generating process and can be assessed

via t-test and F-test of the coefficients in questions. The plot of the time series helps

determine what model choice is likely to be appropriate, but the formal assessment of

t-stat and F-stat will provide more clarity. The lag length p is another input to be de-

termined by the researcher and one that the test outcome is sensitive to. Information

criteria can be used in order to find the best model fit and determine the lag length. Pop-

ular information criteria (IC) are Akaike’s IC (AIC) (Akaike, 1974) and the Bayesian IC

(BIC) (Schwarz, 1978). The different criteria may select the same or different lag length

as they penalize additional parameters to varying degrees.

The Phillips-Perron test uses a similar set up to the ADF test, and the regression equation

is

yt = c+ δt+ αy + e(t) (5)

where c is the drift coefficient, δ is the deterministic trend coefficient, α is the AR(1)

coefficient, and e(t) is the innovation process. The test statistics are modified Dickey-

Fuller stats to account for the serial autocorrelation of the innovation process e(t) as
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the regression formula does not include lagged difference terms that account for the

autocorrelation in the ADF test. The null hypothesis is that α = 1 ,i.e., the data contains

a unit root, against the alternative α < 1. The lag length and model selection procedure

is equivalent to the one used in the context of the ADF test.

Compared to the ADF and PP tests, the KPSS test has a null hypothesis that the yt is

stationary rather than testing the existence of a unit root, which implies non-stationarity.

In that sense, the KPSS test is confirmatory to the ADF and PP test, and the combined

conclusions from the tests should match so that if the null under either the ADF or PP

test is rejected, the null should not be rejected under the KPSS test and vice versa. This

is particularly useful as the ADF and PP tests have a weakness in that they tend to have

relatively low power and may not reject the null because the null is true but because

there is insufficient evidence in the data to suggest it was not. The KPSS’s test null

hypothesis is stationarity, so the default is the opposite. Kwiatkowski et al. (1992) define

a structural model

yt = ct + δt+ u1t (6)

ct = ct−1 + u2t (7)

where δ is the trend coefficient, u1t is a stationary process, u2t is an i.i.d. with zero mean

and variance σ2, and ct is the random walk term. The null hypothesis is that σ2 = 0,

implying the random walk term ct would act as an intercept and hence yt was stationary.

In contrast, if σ2 > 0, under the alternative hypothesis, a unit root is introduced in the

system. Similarly to the ADF and PP tests, the KPSS test can be performed with or

without the deterministic trend term δ depending on the underlying data generating

process. For the lag length Kwiatkowski et al. (1992) suggest
√
T , where T is the sample

size, is an appropriate lag length.

The tests discussed in this subsection help establish whether a univariate time series is

stationary or non-stationary and help determine the time series’s order of integration.

This information is the basis for the applicability of the subsequent multivariate analysis.
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3.2 Cointegration

Cointegration refers to the relationship between two or more time series and their ten-

dency to move together over time. This concept is commonly observed in various mar-

kets and grounded in economic theory. Examples include spot and futures markets of the

same assets, the same asset traded in different locations, and substitute assets. Engle

and Granger (1987) first formally defined the cointegration concept. According to Engle

and Granger (1987) the components of a vector yt are cointegrated of order CI(b, d) if all

components of xt are I(d) and there exists a vector α 6= 0 so that

zt = α′xt ∼ I(d− b) (8)

with b > 0. In other words, the components of xt are cointegrated if there is a station-

ary linear combination of the components. Most financial time series are b = d = 1,

implying the innovation process is stationary, i.e., I(0). Cointegrated variables have a

long-term relationship but may deviate from that relationship in the short term. The

dynamics of the deviation and reversion from and to the long term relationship are cap-

tured in error-correction models. Economic theories provide the initial hypothesis for

long term relationships of economic and financial variables. However, empirical meth-

ods are required to confirm such theories. In the following two main testing and estima-

tion approaches are presented; the Engle-Granger approach (Engle and Granger, 1987)

and the Johansen approach (Johansen, 1988). This thesis applies and hence focuses on

Johansen’s approach.

3.2.1 Engle-Granger approach

The Granger representation theorem Engle and Granger (1987) states that if there is an

error correction model, i.e., a dynamic linear model with I(0) innovations, exists, and

the underlying data components are I(1) the components are co-integrated. The Engle-

Granger or residual based approach makes use of this fact employs an OLS regression

of one variable on the other components and tests the residuals for stationarity. The

approach assumes the pre-testing of individual variables for integration such that all
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variables are I(d) for d > 0. Considering the general regression

yt = β1 + β2x2t + ...+ βkxkt + ut (9)

where ut represents the innovation process that is stationary if yt,x2t,...,xkt are cointe-

grated. While the ADF test approach to unit root testing can be applied, the critical

values of the test distribution are not equal to the one in the standard application as the

innovation process represents an estimated series itself and not raw data. Engle and

Yoo (1987) develop a new set of critical values to account for this fact. If the null hy-

pothesis of ût ∼ I(1) is rejected and the alternative hypothesis of ût ∼ I(0) consequently

accepted the variables yt,x2t,...,xktare cointegrated. The Engle-Granger approach can at

most detect one cointegration relationship while there may be more relationships among

the variables. However, if only two variables are included, there can only exist one coin-

tegration relationship by definition, and this approach restriction does not cause issues.

If the testing has concluded there is a cointegration relationship, the parameters of the

error-correction model can be estimated in a second step. In this second step, the resid-

uals are inserted into the error-correction model such that the model is defined as

∆yt = β1∆xt + β2(ût−1) + vt (10)

where ût−1 = yt−1 − τ̂xt−1 and since û is stationary as tested in the first step, any lin-

ear combination is equally stationary, and OLS is an appropriate approach for model

estimation. It is noteworthy that the Engle-Granger approach requires the researcher

to specify one variable, here yt, as the dependent one while this selection may not rep-

resent the actual or theoretical relationship. In addition, the Engle-Granger approach

does not allow for hypotheses testing. However, the Johansen approach overcomes these

shortcomings.

3.2.2 Johansen approach

The Johansen approach is based on the Vector-Autoregressive (VAR) model, which cor-

responds to the univariate case of AR processes discussed in Part I of this thesis. The
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VAR model is augmented by inclusion of the cointegration term resulting in the Vector

Error-Correction (VEC) model as describes by

∆yt = Cyt−1+
q

∑

i=1

Bi∆yt−i + εt (11)

where Cyt is the error-correct term which itself is described by Equation 12. The re-

maining part of Equation 11 is equal to the VAR model. The error-correction term is

described by

Cyt−1 = AB′yt−1 (12)

where B is the cointegrating matrix that measures the error, meaning the deviation

from the equilibrium, and A represents the adjustment speeds or the rate at which the

process returns to equilibrium after a given shock. The number of lags q in the VEC(q)

model is related to the lag order of a VAR(p) model such that q = p − 1. The lag length

is impacting the Johansen test outcome, and hence the lag selection is a vital step that

can be accomplished via information criteria. The parameter estimation is done via the

maximum likelihood approach.

The Johansen test is determining whether a process is cointegrated based on the rank of

C given that in equilibrium Equation 11 reduces to

Cyt−1 = 0 (13)

as
q
∑

i=1
Bi∆yt−i and E[εt] are equal to zero in equilibrium. Therefore if there was a cointe-

gration relationship, C must have a rank of larger than zero so that there is a non-zero

solution to Equation 13. If there was no non-zero solution, i.e., rank = 0, Equation 11

reduces to the VAR model in first differences. If matrix C has full rank, it is implied that

yt is stationary. So if there are one or more cointegration relationships, the rank r of

matrix C, with g dimensions, has to fulfill 0 < r < g .

The Johansen test employs two testing methods with test statistics presented in Equation

14 and 15 for the trace test and the maximum eigenvalue test, respectively.

λtrace(r) = −T
g

∑

i=r+1

ln(1− λ̂i) (14)
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λmax(r, r + 1) = −T ln(1− λ̂i) (15)

Where λ̂i are the eigenvalues that are sorted in ascending order. The trace test is a joint

test with the null hypothesis that the number of cointegrating vectors is less than or

equal to r. The maximum eigenvalue test is testing each eigenvalue separately whether

the eigenvalue is equal to r. Both test methods are done in a sequential manner so there

is a test statistic for each r . The test statistics do not follow a standard distribution,

and critical values are provided by Johansen and Juselius (1990). The Johansen testing

set up additionally allows for hypothesis testing within the cointegration matrix C that

consists of matrices A and B, as described in Equation 12. Restrictions on A or B can

be imposed by substituting them into the respective matrices. If the eigenvalues under

the restricted model are not significantly different from the unrestricted model the test

statistic in Equation 16 shall not exceed χ2(m) distributed critical values with m number

of restrictions.

test statistic = −T
r

∑

i=1

[ln(1− λi)− ln(1− λ∗

i )] ∼ χ2(m) (16)

Similarly to the univariate case discussed in the context of testing for a unit root or

stationarity, deterministic terms in the data generating processes are essential to take

into consideration to correctly specify models and be able to draw accurate conclusions

from testing procedures. Incorporating deterministic terms in Equation 11 it becomes

∆yt = Cyt−1+
q

∑

i=1

Bi∆yt−i +Dx+ εt (17)

whereDx is an exogenous term that may represent constants, linear deterministic trends,

or quadratic deterministic trends in the levels, i.e. yt, of the data. Johansen (1995) iden-

tifies five forms that Cyt−1+Dx can take covering the majority of applications in financial

and economic time series. The first and most basic form is described by Equation 12,

implying there are no intercepts or trends in the cointegrated series and no intercepts or

deterministic trends in the levels of the data. The second form, as shown in Equation 18,

additionally includes an intercept in the cointegrated series but no deterministic terms
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in the levels of the data.

Cyt−1 +Dx = A(B′yt−1 + c0) (18)

The third form adds a constant c1 outside of the cointegrated series to account for a

deterministic trend in the levels of the data. While this term is expressed as a constant

in the Equation 19, it appears as a trend in the levels as the VEC model is expressed in

differences.

Cyt−1 +Dx = A(B′yt−1 + c0) + c1 (19)

The fourth form adds a deterministic trend to the cointegrated series resulting in Equa-

tion 20.

Cyt−1 +Dx = A(B′yt−1 + c0 + dct) + c1 (20)

The last and fifth form incorporates d1t outside of the cointegrated series and hence

accounting for quadratic deterministic trends in the levels of the data.

Cyt−1 +Dx = A(B′yt−1 + c0 + dct) + c1 + d1t (21)

The appropriateness of the model choices can be confirmed via pairwise likelihood ratio

tests with the test statistic

test statisticLR = 2 ∗ [uLL− rLL] ∼ χ2(dof) (22)

where uLL is the unrestricted likelihood of the unrestricted model, rLL is the restricted

likelihood of the restricted model, and dof refers to the degrees of freedom that are

equal to the number of restrictions imposed.

3.2.3 Price Discovery

Price discovery measurement is a vital tool to bridge theoretical assumptions of the

relationship of markets with the empirical results. Price discovery refers to the concept

that one market will reflect new information more timely than the others and will drive

the formation of prices in those markets. Two popular measurements are the component

share (CS) based on Gonzalo and Granger (1995) and the information share (IS) based
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on Hasbrouck (1995). Both measures are common factors models.

The CS measure or common factor weight is captured by

CFWa =
−δb

δa − δb
(23)

where δa and δb are the adjustment speeds for the respective markets. This measure is

attributing price leadership to the market that has the lowest rate of adjustments or in

other words adjusts the least to price information in the other market. One can observe

that if δa = 0, Equation 23 reduces to 1, implying market a is solely leading the price

discovery.

The IS measure consist of a lower and upper bound captured by

ISa
lower =

(

δbσa − δa σa,b

σa

)2

(δbσa)2 − 2δaδbσa,b + (δaσb)2
(24)

and

ISa
upper =

(δb)2
(

(σa)2 − (σa,b)2

(σa)2

)

(δbσa)2 − 2δaδbσa,b + (δaσb)2
(25)

where δa and δb are the adjustment speeds for the respective market and (σa)2,σa,b, and

(σb)2are the constituents of the covariance matrix of the innovations of the respective

VEC model (representative of εt in Equation 11). Compared to the CS measure, the

IS measure is attributing price leadership to the market for which the contribution to

the variance of the innovations is the highest. Baillie et al. (2002) highlight that if the

innovations εt are uncorrelated, the two measures, CS and IS, are related. However, if

the correlation of εt is high, the concepts are not related, and the spread between the

upper and lower bounds of the IS measure is wide. Baillie et al. (2002) suggest the

average of the two bounds to be a sensible measure.
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4 Empirical results

4.1 Data

The data for this thesis was collected via Bloomberg. It consists of the daily EUA spot

price data from the European Energy Exchange (EEX) and the daily 1-day ahead physical

forward prices for natural gas delivered to the Virtual Trading Point Netherlands Title

Transfer Facility (TTF). More details regarding the emissions data is provided in the

respective section in Part I of this thesis. The TTF natural gas (in following abbreviated

to TTF) prices are used in this thesis as a proxy for European natural gas prices in

order to capture consumers of European natural gas, including power generation assets,

that are also under the scope of the EU ETS. The TTF trading point is one of the main

continental European hubs, and hence it is a reasonable proxy for the purpose of this

thesis. The TTF prices are expressed in EUR/Mwh. As a first step in the preparation

of the data, the trading days are matched. All trading days that do not have an entry

for both time series are removed. Due to extreme volatility in the TTF prices in March

2018, two outliers, which are a multiple of the average price, are removed. The full

considered period spans from January 01, 2014 to December 31, 2019 (Full Sample

in the following). Therefore the entire time period falls within the same EUA trading

phase avoiding major structural regulatory breaks. In order to determine whether the

relationship between EUAs and TTF prices have changed over time, three equally sized

sub-periods are considered. The sub-periods are reflecting two calendar years each such

that the first sub-period spans from January 01, 2014 to December 31, 2015 (Sample 1

in the following) , the second from January 01, 2016 to December 31, 2017 (Sample 2

in the following), and the third January 01, 2018 to December 31, 2019 (Sample 3 in

the following). In addition to the three equally sized sub-periods, a fourth sub-period

(Sample 4 in the following) of the most recent full year, i.e., 2019, is considered. This

additional sub-period is considered in order to assess whether the recently increased

momentum in the carbon market reflected in the consistently high price levels during

2019 is changing the dynamics of the long-run relationship of natural gas and emissions

prices.

The price time series and the price histograms of the Full Sample depicted in Figure 1
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and Figures 2 and 3, respectively, clearly indicate that the EUA prices have seen a shift

towards a higher price level while the TTF prices do not appear to indicate a structural

shift sustained over time. The descriptive statistics of the time series for the full and sub-

periods are shown in Table 1. The statistics confirm the assertion that the mean of the

EUA price series is increasing over time and that the TTF price does not indicate such

behavior. Additionally, the statistics highlight the relatively higher standard deviation

of both the EUA and TTF prices from 2018 going forward. Noteworthy is also the very

low standard deviation in sub-sample 1 and 2 for the EUA price series. In aggregation,

if one were to assume there was a relationship between the two time series, it appears

likely that this relationship would have changed over time. However, from this visual

inspection, it is not clear if there is a relationship and the nature of that relationship.

The following empirical results subsections establish whether there is a relationship, it

has changed over time, and what is the directionality of the relationship. The following

subsections are organized into three components that are building upon the results of

the respective previous sections. In a first step the univariate variables are pre-tested

for unit roots and stationarity. The following subsection is presenting the results of

the cointegration analysis itself and the tests for different model specifications. In the

last subsection of the empirical results, the price discovery measures for established

cointegration relationships are presented.

4.2 Unit Root and Stationarity Testing

Establishing the integration I(d) for each of the considered variables is vital to conduct

the cointegration analysis. All variables, i.e., the EUA and TTF time series, need to be in-

tegrated of order d. As both time series are price time series, it is reasonable to suspect

the order of integration is one, meaning that the levels of the data are non-stationary

while the first differences, the returns, are stationary. This initial assumption can be

firmed up by plotting the time series and their first differences before concluding the

analysis with formal tests. Figures 2 to 11 show the price and return series for both EUA

and TTF underliers for the full and all sub-samples. The plots of both time series show

standard patterns in log returns that support the assumption both time series are inte-
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grated of order one. The plots of the prices and descriptive statistics clearly show that

the mean in both price time series is significantly different from zero. In addition, the

mean and variance of both time series appear to change over time, as evidenced by the

varying levels of mean and standard deviation presented in Table 1. However, weak sta-

tionarity requires a constant mean, variance, and autocovariance structure. The visual

queues and descriptive statistics points support the notion that the levels of the data are

not stationary. In order to confirm this assumption and therefore confirm the two price

time series are suitable for cointegration analysis, the ADF, PP, and KPSS tests are used

as formal statistical tests.

The ADF test requires lag length choice and model specification choice to reflect accu-

rate results. In a first step, the lag length is assessed using the information criteria AIC

and BIC with optimal choices reported in Table 2. Unsurprisingly, the AIC is selecting a

higher lag order than the BIC for most of the sub-samples as the BIC is putting higher

penalties on additional parameters. The t-test and F-test results of the ADF test for both

the EUA and TTF price series are reported in Table 2 for each possible model specifica-

tion at optimal lag length determined by AIC and BIC respectively. The decision outcome

based on a 5% significance level is consistent across lag length choice via the two criteria

despite the sometimes significantly different lag length.

In contrast, the model specification choice does influence the decision outcome for some

of the sub-sample based on a 5% significance level. While the Figures 2 and 3 for the full

sample period do not seem to indicate the presence of deterministic terms in the data

generating process, the individual sub-samples, assessed independently from the full

and other sub-samples, show signs that deterministic terms may be present. The ADF

test is hence conducted for all model specifications, i.e., AR, ARD, and TS. The model

specification AR refers to Equation 4 where c = δ = 0. The model specification ARD

refers to Equation 4 where δ = 0. The model specification TS refers to Equation 4. For

the ARD test, the F-test assesses the joint hypothesis that φ−1 = 0 and c = 0, and for the

TS specification, the F-test assesses the joint hypothesis that φ − 1 = 0 and δ = 0. The

p-values for each test and model specification at optimal lag length for AIC and BIC are

presented in Table 2.

The results indicate that for EUA prices, the F-test is rejecting the joint null at the 5%
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significance level for Sample 1 and Sample 2 for each lag specification. This result would

imply the TS model specification, including a deterministic drift and trend term, is appro-

priate for Sample 1 and Sample 2 of the EUA series. However, looking at the coefficient

estimate for δ it becomes clear that the magnitude is negligible with δ1 = 0.0004 and

δ2 = 0.0002 for Sample 1 and Sample 2, respectively. The deterministic coefficients for

all EUA and TTF samples are reported in Table 3. The EUA Sample 1 results for the

TS model specification indicate that the null of a unit root is rejected at the 5% signifi-

cance level. The EUA Sample 2 results can only reject the null at the 10% significance

level. The other model specifications for these two samples show that the null of a unit

root cannot be rejected. Based on the small magnitude of the deterministic trend term

and the lacking rejection under other model specifications, it appears difficult to make

a definite decision on the existence of a unit root for the EUA Sample 1 series. The

EUA Sample 2 series seems to not have significant enough support even at the TS model

specification to come to the conclusion that there is no unit root. The results for the TTF

data series are more compellingly clear. All lag length, model specification, and sample

period combinations cannot reject the null hypothesis of a unit root. Similarly to the EUA

data series, the deterministic terms have little magnitude overall.

Therefore, one can conclude that, with the exception of EUA Sample 1 and Sample 2,

it is reasonable to assume that all sample time series are non-stationary. The ADF test

results for the log return series are not reported, but all combinations of lag length and

model specification for all samples of the EUA and TTF time series are highly significant,

implying the first differences of the original time series are stationary according to the

ADF test. The combination of both of these findings implies the price time series are

integrated of order one, i.e., I(1). As there are some doubts in relation to two samples

and as good practice it is advisable to also consider the results of additional test. An

additional test assessing the null hypothesis of the existence of a unit root is the PP test.

The lag length and model specifications are in line with the ADF test approach. The PP

test results are presented in Table 4. The pattern of results is confirming the ADF test

results.

The KPSS test requires both lag length specification and model specification. As previ-

ously outlined, the choice to include a deterministic term is not evident from inspecting
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the data plots. The two model specifications are hence both evaluated. Kwiatkowski

et al. (1992) suggest
√
T , where T is the sample size, is an appropriate lag length. In

addition to the suggested lag length, results with lag length equal to one and ten are

considered to determine whether the results are consistent across lag length choice.

The results for all samples, model specifications, and lag length choices are presented

in Table 5. The results for the EUA samples are only consistent across lag length and

model specification for the full sample and sample three. For these samples, the KPSS

test clearly rejects the null of stationarity. Sample 2 and Sample 4 of the EUA series

show p-values of below 10% but above 5%, suggesting the null cannot be rejected at the

5% significance level, but it can be rejected at the 10% significance level. Lower leg

choices imply clear rejections of the null, and the assumption of a trend for EUA Sam-

ple 4 does not appear suitable when considering the graphical evidence in Figure 10.

Therefore, the results for sub-sample two and four are leaning towards the suggestion

that the time series are non-stationary in line with the EUA Full Sample and Sample 3.

P-values for EUA Sample 1 suggest results in favor of the stationarity assumption for the

model specification that includes a deterministic trend and for both lag length 10 and 22

(=
√
T ). This result is consistent with the ADF test findings, although the magnitude of

the deterministic trend is questionable.

The results for the TTF samples are consistent across lag length and model specifica-

tion for the Full Sample, Sample 3, and Sample 4, while Sample 1 and Sample 2 show

inconsistencies. The former samples’ results suggest to reject the null of stationarity in

line with ADF test results. TTF Sample 1 and Sample 2 do not appear to include a trend

term according to Figures 5 and 7. Based on that and the results of the ADF test, it

appears reasonable to assume TTF Sample 2 is non-stationary. For TTF Sample 1, both

the results, including and excluding a deterministic trend, cannot reject the null at the

5% significance level. However, the results are not consistent across lag length choice

and the conclusion of stationarity would be inconsistent with results of the ADF test.

The KPSS test results for the log return series are not reported but all combinations of

lag length and model specification for all samples of the EUA and TTF time series, ex-

cept TTF sample one, are not significant at the 5% level, implying the first differences of

the original time series are stationary according to the KPSS test. The TTF sample one
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results indicate p-values just below 5% for the model specification with a deterministic

trend and lag length 10 and 22 (=
√
T ).

In summary, the results of the unit root and stationarity tests of the price and log return

series suggest that the price time series are integrated of order one, i.e., I(1). This result

is in line with expectations drawn from the graphical examination. Noteworthy is that the

EUA Sample 1 series is potentially trend stationary while other inconsistencies across

tests and model specifications did not rise to a level that would reasonably overturn the

expectations from the graphical evidence. Therefore, it is appropriate to move forward

with the cointegration analysis under the Johansen approach.

4.3 Cointegration Analysis

In this subsection, the results of the cointegration test under the Johansen approach are

presented, and consequently, it is shown whether there is a long-term relationship be-

tween EUA and TTF prices. The results further indicate whether the relationship has

changed over time. The cointegration test under the Johansen approach requires lag

length and model specification for accurate results. The lag length is determined via

information criteria for the VAR model in first differences, i.e., the log returns. A VAR(p)

model is fitted for p = {1; 2; ..; 10}. For each model, the AIC and BIC are determined.

Both the AIC and BIC suggest p = 1 has the best model fit. Therefore, the VEC model

should have a lag length of q = p − 1 = 0. Johansen (1995) and Juselius (2006) suggest

a lag length of q = 2 is sufficient for most applications. The AIC and BIC specified lag

length is below the suggestion so that one can assume the number of parameters is not

the issue. However, one may presume the autocorrelation is not appropriately captured

with a small lag length specification. The innovation time series of the VAR(p) model are

checked for autocorrelation to confirm the appropriateness of the lag length choice. The

autocorrelation functions of the innovations show that there is little residual autocorre-

lation in the innovation series, and hence the lag length choice is appropriate.

In the next step, the model specification for the Johansen test is to be determined. As

there is no theory on the nature of the relationship between the two variables and incon-

clusive evidence on the deterministic terms in the levels of the data, three out of the five
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models Johansen (1995) suggests, are considered. The three cointegration terms are

described by Equations 18,19, and 20 and in the following referred to H1*, H1, and H*,

respectively. The resulting VEC(q) models according to Equation 11 with q = 0 reduce to

Equations 26, 27, and 28, respectively.

∆yt = A(B′yt−1 + c0) + εt (26)

∆yt = A(B′yt−1 + c0) + c1 + εt (27)

∆yt = A(B′yt−1 + c0 + dct) + c1 + εt (28)

The results of the Johansen test for the three specifications are presented in Table 6. The

results for both the trace test and maximum eigenvalue test are presented. The tests

produce the same decision outcome across samples and models. The results show no

statistically significant long-term relationship between emission allowance and natural

gas in the Full Sample as well as Samples 1 to 3. The results show that C in Equation

13 has a rank of zero, implying there is no cointegration relationship, and the VAR(1)

model in first differences is the appropriate multivariate model of the respective time

series. In contrast, the results for Sample 4, i.e., the calendar year 2019, show that

there is a significant cointegration relationship using models H1* and H1. The results

are significant at the 10% and 5% level, respectively. A likelihood ratio test is employed to

check whether one of the models is more appropriate than the others. The results of the

pairwise likelihood ratio test for Sample 4 are presented in Table 7. The results suggest

that the most restrictive model H1* in line with Equation 26 can not be rejected in favor

of the less restricted H1 and H*. The least restrictive model H* is clearly not superior to

the less restrictive models. This result also provides additional comfort the cointegration

relationship is statistically significant as the H* does not suggest a relationship exists

compared to the other two models that appear to be more appropriate according to the

likelihood ratio test.

The non-significant cointegration relationship in the full and earlier sample periods ver-

sus the significant relationship in 2019 suggests that the relationship between the vari-

ables has changed over time. This result is supported by the hypothesis that the sus-
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tained high price levels of emission allowances are robust enough to create a link to nat-

ural gas prices as the relative attractiveness of fuel switching increases with increased

emission price levels. In addition, regulatory changes in the EU ETS and in particular

the introduction of the Market Stability Reserve (MRS) (European Union, 2015) in 2019

make the emission allowances market less susceptible to structural oversupply that had

left the emission market at depressed prices throughout the second and large parts of

the third trading period from 2008 to 2018. The relatively higher attractiveness of fuel

switching and hence the demand for natural gas is not only assumed to be driven by

emission prices by making it cheaper to use natural gas compared to coal for power gen-

eration but also by direct regulations aimed at reducing or fully abolishing coal as a fuel

source in the long term. The latter is underpinned by coal phase-out plans on national

levels within the EU. Such laws have been adopted in recent times as environmental

awareness has gained mainstream traction and governments, supranational institutions,

and private corporations have set ambitious goals to reduce emissions. Of course, such

ambitious goals are also driving innovation that may make fossil fuel-based power gen-

eration completely obsolete in the future. It is further noteworthy that the global oil and

gas market has also experienced a significant shift in the past decade. The exploration of

shale gas in the US has transformed the local energy mix away from coal to the abundant

and hence cheap natural gas as a fuel source. This shift consequently impacted energy

markets globally with an increased supply of no longer needed coal while natural gas

remained on the local market due to the lacking technology to transport large volumes.

In the absence of meaningful innovation or regulatory breaks, one may assume the coin-

tegration relationship between EUAs and TTFs, as suggested by the results for 2019 will

continue into the future.

The dynamics of the cointegration relation are described by the VEC model that is es-

timated via maximum likelihood methodology in the Johansen approach. The estimated

model for Sample 4 and the H1* model specification is described by

∆yt =







−0.1281

−0.1292







([

0.4755 0.2921

]

yt−1 + (−15.56)
)

+ εt (29)

in line with Equation 26. Within the Johansen approach, the vectors A and B are not
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separately estimated but rather the cointegration matrix C as described by Equation 12

is estimated. The estimation results and standard errors, t-stats, and p-values are pre-

sented in Table 8. The results show that the estimates are highly significant. In an ad-

ditional step, the adjustment speeds of vector A as shown in Equation 29 as







−0.1281

−0.1292







are tested in the Johansen framework to determine whether the coefficients are signifi-

cantly different from zero. The test set up is comparing a restricted with an unrestricted

model, and the test statistics are formed by Equation 16. The restriction is imposed

on each element of A separately such that the restricted Matrix A1
r =







0

−0.1292






and

A2
r =







−0.1281

0





 are used in the estimation of the log-likelihood of the restricted model.

The null hypothesis states the restriction holds, i.e., the restricted model is true versus

the unrestricted model of the alternative hypothesis. If one of the elements of A was

determined to be zero, then the respective variable is not adjusting from disequilibrium

in the cointegration relationship. In the context of two variables, that means if one was

zero, the other variable would be 100% responsible for the system to return to equilib-

rium. The results of the adjustment speeds test in the Johansen framework are shown in

Table 9 and show that both the adjustment speed parameters of the EUA and the TTF se-

ries are not zero as both restricted models are clearly rejected with p-values below 1%.

Therefore, both variables contribute to the adjustment to disequilibrium. In the next

step, it is determined whether the EUA or TTF time series is leading the price discovery,

meaning which market incorporates information first.

4.4 Price Discovery

Price discovery measures help understand the directionality of the relationship between

variables. An initial hypothesis is that the EUA market is incorporating information first

as the EUA price influences the demand for TTF by virtue of making fuel switching more

attractive and therefore implying higher demand for natural gas. On the other hand, one

may presume that TTF prices are directly making it more or less attractive for power

producers to switch fuels and that the TTF price determines the fuel switching decision
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that will consequently influence the power producer’s requirement to purchase EUAs

due to lower emissions output (in the case of a positive fuel switching decision from

coal to gas) and hence impact the demand of EUAs. A first measure to check the price

discovery is the component share as described in Equation 23, and results are presented

in Table 10. As the two adjustment speeds are relatively close in magnitude, the resulting

measures are rather large. However, it is clear that the component share of the EUA

series is larger in absolute values than the component share of the TTF series. This result

implies that EUAs are leading the price discovery process according to the component

share measure. The second measure, the information share, is described by Equations

24 and 25, and results are presented in Table 10. The average of the lower and upper IS

measures indicate that the EUA series is leading the price discovery given the average

IS share is above 50%. However, it is worth highlighting that the results are very close

to 50%, and the lower and upper bounds cross over the 50% mark for both variables.

As Baillie et al. (2002) suggest, the spread between the upper and lower IS measure

are wide when there is a large and significant correlation between the residuals of the

VECM. Checking the residual series indeed shows that they are significantly correlated

with correlation equal to p = 0.29 . Although both the CS and IS measures are consistent

and indicate the EUA series is leading the price discovery process, it is equally clear that

the results are close, and one may conclude there is insufficient evidence to support the

hypothesis that EUA prices incorporating information first.

4.5 Comparison with other papers

The existing literature shows varying cointegration results for the pilot phase of the

EU ETS while showing more consistency for the second trading period. While Bunn

and Fezzi (2007) find a cointegration relationship among emission allowances, coal, gas,

and electricity prices, Rickels et al. (2007) does not find evidence to suggest there is a

cointegration relationship among emission allowances and energy inputs. While using

the data from the same time period the authors of the two papers use different proxies

for both coal and natural gas. Extending the time period and incorporating coal and

natural gas fundamentals via dark and spark spreads, respectively, Bredin and Muckley
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(2011) show that the cointegration relationship among fundamental drivers of emission

allowances is stronger in the second trading phase of the EU ETS than the first. Creti

et al. (2012) is supporting this notion by showing that switching costs do not have a long-

run relationship with emission allowances in the first but in the second trading period.

Compared to the existing literature, this thesis is considering a different natural gas

proxy and time period with data spanning the third trading period of the EU ETS and

hence incorporating the latest market and regulatory changes. However, the result of

this thesis that there is a cointegration relationship in 2019 potentially indicates that

in market environments that would suggest fundamentals are the driving forces, the

cointegration relationship between emissions and respective energy prices appears to

be present.
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5 Conclusion

This thesis examines the long-run relationship between emission allowances and natural

gas. The Johansen cointegration testing framework is employed to establish whether

the time series are cointegrated when considering three model specifications and five

different considered sample periods. Preliminary testing of the order of integration of

the respective univariate time series is conducted in order to verify the prerequisites for

cointegration analysis are indeed met. The results show the time series are integrated

of order one, i.e., I(1) across time periods, and hence prerequisites for the Johansen test

are met. In order to accommodate potential deterministic terms and different cointegra-

tion relationships, three model specifications of the error correction terms are analyzed.

The cointegration test is conducted both via trace test and maximum eigenvalue test

within the Johansen framework. The cointegration tests show that there is no evidence

of a long-run relationship for the Full Sample period and Sample periods 1 to 3 indepen-

dent of the model specification. In contrast, Sample 4, spanning the time period from

January 2019 to December 2019, shows there is a cointegration relationship when con-

sidering two out of three model specifications. The results are consistent across trace

and maximum eigenvalue tests. A likelihood ratio test confirms that the most restric-

tive model specification is the most appropriate choice. This specification shows that

the cointegration relationship is significant at the 10% significance level. In an effort to

understand the price discovery mechanics, the component share and information share

measures are calculated and analyzed. The results suggest that EUAs are leading the

price discovery while noting the close results and correlation in the innovation process,

weakening that conclusion.

Considering the results suggest that only in the most recent year there has been a sta-

tistically significant long-run relationship between emission allowances and natural gas,

it is a logical conclusion that the underlying relationship between the two variables has

changed over time. However, the driver of this change is not explicitly identified as part

of the scope of this thesis. However, it is noteworthy that the EUA market has suffered

a long period of structural oversupply and, consequently, depressed prices that suggest

that the EUA market was removed from fundamental driving forces. At the beginning
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of 2019, the Market Stability Reverse (MSR) was introduced to address precisely this

issue of oversupply and increase the functionality of the EUA market. The 2019 price

levels in the EUA market are a positive signal the MSR is working and expected to work

going forward. Considering the high price levels in 2019 with the finding that there is

a long-run relationship between emission allowances and natural gas, one may further

suspect that the EU ETS is effective in incentivizing market participants to switch fuel

from higher carbon-intensive coal to gas and therefore reduce emitted emissions. The

results from the price discovery analysis support this hypothesis but do not conclusively

establish this result.

It is clear from both the results of this thesis and the existing literature regarding earlier

trading periods that a continued assessment of the latest market data is required to con-

firm the conclusions of this thesis. The recent market turmoil due to the Coronavirus and

the oil price dislocation offer additional opportunities to test the robustness of the coin-

tegration relationship among emission allowances, economic activity, and energy market

fundamentals, including natural gas prices.
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(b) TTF prices

Figure 1: Histograms of the daily EUA prices (panel a) and daily TTF prices (panel b)

from January 01, 2014 to December 31, 2019

Table 1: Descriptive statistics for the daily EUA (panel a) and TTF (panel b) price series

for the Full Sample from January 01, 2014 to December 31, 2019, Sample 1 from January

01, 2014 to December 31, 2016, Sample 2 from January 01, 2016 to December 31, 2017,

Sample 3 from January 01, 2018 to December 31, 2019, and the Sample 4 from January

01, 2019 to December 31, 2019.

(a) EUA prices

Time Period Full sample Sample 1 Sample 2 Sample 3 Sample 4

Mean 10.97 6.83 5.62 20.36 24.81

Minimum 3.91 4.35 3.91 7.62 18.72

Maximum 29.76 8.65 8.17 29.76 29.76

Standard deviation 7.50 1.07 1.00 5.72 2.19

(b) TTF prices

Time Period Full sample Sample 1 Sample 2 Sample 3 Sample 4

Mean 18.08 20.43 15.63 18.09 13.60

Minimum 7.50 13.80 10.60 7.50 7.50

Maximum 34.40 26.85 23.00 34.40 22.68

Standard deviation 4.39 2.58 2.76 5.65 3.68
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Figure 2: Daily EUA spot prices and EUA log returns from January 01, 2014 to Decem-

ber 31, 2019
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Figure 3: Daily TTF futures prices and log returns from January 01, 2014 to December

31, 2019
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Figure 4: Daily EUA spot prices and EUA log returns from January 01, 2014 to Decem-

ber 31, 2015
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Figure 5: Daily TTF futures prices and log returns from January 01, 2014 to December

31, 2015
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Figure 6: Daily EUA spot prices and EUA log returns from January 01, 2016 to Decem-

ber 31, 2017
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Figure 7: Daily TTF futures prices and log returns from January 01, 2016 to December

31, 2017
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Figure 8: Daily EUA spot prices and EUA log returns from January 01, 2018 to Decem-

ber 31, 2020

41



Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019

10

15

20

25

30

(a) Prices

Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Log returns

Figure 9: Daily TTF futures prices and log returns from January 01, 2018 to December

31, 2020
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Figure 10: Daily EUA spot prices and EUA log returns from January 01, 2019 to Decem-

ber 31, 2020
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Figure 11: Daily TTF futures prices and log returns from January 01, 2019 to December

31, 2020
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Table 2: Augmented Dickey-Fuller test results, as measured by p-values, for the daily

EUA (panel a) and TTF (panel b) price series for the Full Sample and Samples 1 to 4 as

previously specified. The model specification AR refers to Equation 4 where c = δ = 0.
The model specification ARD refers to Equation 4 where δ = 0. The model specification

TS refers to Equation 4. Results for the t-test are presented for all model specifications

and results for the F-test are only presented for the ARD and TS specification. For the

ARD test the F-test assesses the joint hypothesis that φ− 1 = 0 and c = 0 and for the TS

specification the F-test assesses the joint hypothesis that φ − 1 = 0 and δ = 0. The lag

length specifications are based on the minimum respective information criteria.

(a) EUA prices

t-test F-test

Lags AR ARD TS ARD TS

Full sample
AIC 9 0.96 0.96 0.87 0.69 0.86

BIC 0 0.92 0.93 0.79 0.78 0.82

Sample 1
AIC 0 0.88 0.36 0.02 0.39 0.03

BIC 0 0.88 0.36 0.02 0.39 0.03

Sample 2
AIC 0 0.53 0.29 0.09 0.47 0.02

BIC 0 0.53 0.29 0.09 0.47 0.02

Sample 3
AIC 7 0.92 0.23 0.48 0.11 0.43

BIC 0 0.86 0.26 0.24 0.20 0.23

Sample 4
AIC 6 0.71 0.20 0.47 0.33 0.60

BIC 1 0.66 0.22 0.44 0.36 0.59

(b) TTF prices

t-test F-test

Lags AR ARD TS ARD TS

Full sample
AIC 10 0.19 0.17 0.42 0.19 0.57

BIC 7 0.18 0.19 0.46 0.22 0.61

Sample 1
AIC 10 0.13 0.39 0.62 0.36 0.78

BIC 1 0.11 0.37 0.59 0.30 0.75

Sample 2
AIC 9 0.74 0.38 0.26 0.55 0.38

BIC 0 0.75 0.57 0.37 0.76 0.48

Sample 3
AIC 10 0.38 0.78 0.60 0.94 0.71

BIC 7 0.37 0.76 0.59 0.93 0.71

Sample 4
AIC 4 0.07 0.17 0.83 0.13 0.57

BIC 4 0.07 0.17 0.83 0.13 0.57
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Table 3: Deterministic coefficient estimates of the ARD and TS model specifications

under the Augmented Dickey-Fuller test for the daily EUA (panel a) and TTF (panel b)

price series for the Full Sample and Samples 1 to 4 as previously specified. The lag

length specifications are based on the minimum respective information criteria.

(a) EUA prices

Lags ARD constant TS constant TS trend

Full sample
AIC 9 0.02 0.00 0.0001

BIC 0 0.02 0.00 0.0001

Sample 1
AIC 0 0.09 0.30 0.0004

BIC 0 0.09 0.30 0.0004

Sample 2
AIC 0 0.10 0.12 0.0002

BIC 0 0.10 0.12 0.0002

Sample 3
AIC 7 0.27 0.44 0.0007

BIC 0 0.24 0.44 0.0010

Sample 4
AIC 6 1.12 1.23 0.0004

BIC 1 1.03 1.16 0.0005

(b) TTF prices

Lags ARD constant TS constant TS trend

Full sample
AIC 9 0.15 0.17 0.0000

BIC 0 0.15 0.17 0.0000

Sample 1
AIC 0 0.30 0.39 -0.0001

BIC 0 0.29 0.38 -0.0001

Sample 2
AIC 0 0.21 0.34 0.0004

BIC 0 0.16 0.29 0.0004

Sample 3
AIC 7 0.10 0.57 -0.0008

BIC 0 0.11 0.57 -0.0008

Sample 4
AIC 6 0.29 0.20 0.0003

BIC 1 0.29 0.20 0.0003
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Table 4: Phillips-Perron test results, as measured by p-values, for the daily EUA (panel

a) and TTF (panel b) price series for the Full Sample and Samples 1 to 4 as previously

specified. The model specification AR refers to Equation 5 where c = δ = 0. The model

specification ARD refers to Equation 5 where δ = 0. The model specification TS refers to

Equation 5.The lag length specifications are based on the minimum respective informa-

tion criteria.

(a) EUA prices

Lags AR ARD TS

Full sample
AIC 9 0.95 0.95 0.84

BIC 0 0.92 0.93 0.79

Sample 1
AIC 0 0.88 0.36 0.02

BIC 0 0.88 0.36 0.02

Sample 2
AIC 0 0.53 0.29 0.09

BIC 0 0.53 0.29 0.09

Sample 3
AIC 7 0.88 0.27 0.31

BIC 0 0.86 0.26 0.24

Sample 4
AIC 6 0.58 0.15 0.23

BIC 1 0.58 0.18 0.31

(b) TTF prices

Lags AR ARD TS

Full sample
AIC 10 0.19 0.12 0.33

BIC 7 0.19 0.12 0.32

Sample 1
AIC 10 0.11 0.42 0.62

BIC 1 0.14 0.37 0.57

Sample 2
AIC 9 0.76 0.58 0.36

BIC 0 0.75 0.57 0.37

Sample 3
AIC 10 0.37 0.66 0.44

BIC 7 0.37 0.65 0.43

Sample 4
AIC 4 0.08 0.15 0.67

BIC 4 0.08 0.15 0.67
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Table 5: Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test results, as measured by

p-values, for the daily EUA (panel a) and TTF (panel b) price series for the Full Sample

and Samples 1 to 4 as previously specified. The model specification are trend=false

and trend=true referring to Equation 6 where δ = 0 for the trend=false specification.

P-values above 0.1 are reported as 0.1 and p-values below 0.01 are reported as 0.01.

P-values above 5% are highlighted in bold.
√
T for the full sample and samples one to

four are 38, 22, 22, 22, and 16 respectively.

(a) EUA prices

Lags

Trend 1 10
√
T

Full sample
false 0.010 0.010 0.010

true 0.010 0.010 0.010

Sample 1
false 0.010 0.010 0.010

true 0.010 0.068 0.100

Sample 2
false 0.010 0.010 0.059

true 0.010 0.010 0.010

Sample 3
false 0.010 0.010 0.010

true 0.010 0.010 0.010

Sample 4
false 0.010 0.010 0.100

true 0.010 0.010 0.055

(b) TTF prices

Lags

Trend 1 10
√
T

Full sample
false 0.010 0.010 0.049

true 0.010 0.010 0.010

Sample 1
false 0.010 0.010 0.100

true 0.010 0.010 0.064

Sample 2
false 0.010 0.010 0.010

true 0.010 0.010 0.100

Sample 3
false 0.010 0.010 0.010

true 0.010 0.010 0.010

Sample 4
false 0.010 0.010 0.049

true 0.010 0.010 0.021
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Table 6: Johansen test results expressed in p-values for cointegration between the EUA

and TTF price series for model specification H1*,H1, and H* for the Full Sample and

Samples 1 to 4 as previously specified. The underlying VEC(q) models for the three

model specifications are described by Equations 26,27, and 28, respectively. The test

results are shown for the null hypotheses of rank = 0 and that the rank = 1 under both

the trace test and the maximum eigenvalue test.

trace test maximum eigenvalue test

rank = 0 rank = 1 rank = 0 rank = 1

Full sample

H1* 0.25 0.87 0.12 0.87

H1 0.15 0.77 0.11 0.77

H* 0.48 0.71 0.44 0.71

Sample 1

H1* 0.58 0.45 0.72 0.45

H1 0.49 0.07 0.77 0.07

H* 0.20 0.65 0.15 0.65

Sample 2

H1* 0.62 0.88 0.48 0.88

H1 0.30 0.33 0.34 0.33

H* 0.12 0.49 0.12 0.49

Sample 3

H1* 0.38 0.42 0.49 0.42

H1 0.19 0.11 0.35 0.11

H* 0.49 0.35 0.73 0.35

Sample 4

H1* 0.07 0.52 0.06 0.52

H1 0.02 0.08 0.04 0.08

H* 0.37 0.88 0.19 0.88

Table 7: Likelihood ratio test results expressed in p-values for pairwise tests for H1*,

H1, and H* test set ups for Sample 4. P-values below 0.05 suggest the restricted model is

rejected in favor of the unrestricted model and p-values above 0.05 suggest the restricted

model cannot be rejected at the 5% significance level.

H1* H1 H*

H1* - 0.39 0.39

H1 - - 0.96

H* - - -
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Table 8: Results of the parameter estimation of the VEC model for the cointegration

matrix C.

coefficient estimate standard error t-stat p-value

C(1, 1) -0.0609 0.0196 -3.1098 0.0019

C(2, 1) -0.0614 0.0185 -3.3260 0.0009

C(1, 2) -0.0374 0.0120 -3.1098 0.0019

C(2, 2) -0.0377 0.0113 -3.3260 0.0009

Table 9: Results of the adjustment speed test within the Johansen framework for Sample

4 and model specification H1*. The EUA row shows the test results for the null hypothe-

sis including A1
r =

[

0
−0.1292

]

in the restricted model and the TTF row shows results for

the null hypothesis including A2
r =

[

−0.1281
0

]

in the restricted model. P-values below

0.05 suggest the restricted model is rejected in favor of the unrestricted model and p-

values above 0.05 suggest the restricted model cannot be rejected at the 5% significance

level.

test statistic critical value p-value

EUA 7.232 3.841 0.007

TTF 8.244 3.841 0.004

Table 10: Results of the component share and information share measures of price

discovery. Coefficient estimates and variance covariance matrix of the residuals are

derived from the VEC(q) model estimated using the Sample 4 data and the H1* Johansen

form.

CFW ISlower ISupper ISaverage

EUA 114.02 0.382 0.687 0.534

TTF -113.02 0.329 0.600 0.465
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