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Abstract 

Predictions of the equity premium have historically been made by using traditional 

predictive regressions. Despite the great promise of machine learning applications for 

prediction tasks, it has largely been overlooked in the financial literature. We predict 

the monthly equity premium, defined as the monthly excess return on the S&P 500, 

using three linear and five non-linear machine learning models. The models are 

evaluated against a benchmark consisting of the historical average return. Six of our 

models outperform the benchmark, with the three most successful being non-linear 

models. We perform a statistical evaluation of the machine learning forecasts, finding 

that three of the outperforming models are significantly different from the benchmark. 

Additionally, the models are evaluated economically by calculating an implied Sharpe 

ratio using the predictive results, showing meaningful economic gains even for models 

with only a slight increase in predictability. Successively, we translate our forecasts to 

their inherent directional prediction, finding that four models beat the benchmark. By 

formulating a naïve investment strategy, we show that also the directional 

predictability can be exploited to generate a higher Sharpe ratio than that of the market. 
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1. INTRODUCTION 

 

Trying to predict the direction and magnitude of movements in equity markets has a long-

standing history in the finance literature. Some of the first known publications date back to the 

early 20th century and were a series of articles by C.H. Dow, later published in book format 

under the title Scientific Stock Speculation (1920). Despite being extensively researched, most 

attempts at predicting stock market movements have had problems to outperform the use of 

historical averages as a prediction, leaving the time-series variation in excess return largely 

unexplained. For instance, Welch & Goyal (2008) argue that previously suggested models for 

predicting the equity premium1 do not seem robust. Until recently, the literature has mainly 

been focused on finding traditional linear models which could explain equity returns. Out-of-

sample predictability is debated but found to improve with, for instance, time-varying 

coefficients, as opposed to constant coefficients (Dangl and Halling, 2012). Lately, a new sub-

field trying to predict movements with both advanced linear and non-linear methods (i.e. 

machine-learning applications) has been growing rapidly. The concept of machine learning is 

not new itself; it was pioneered in its simplest form already in the 1950s by, for instance, Alan 

Turing (1950). Yet, it has taken more than half a century for these applications to gain traction 

in the literature related to predicting the equity premium. Generally, the literature that does 

exist has been focusing either on predicting the direction of index movement or predicting the 

actual return. While both mechanisms are meaningful from an economic standpoint, this paper 

will focus mainly on trying to predict the magnitude of excess returns. However, we do 

translate these predictions to their inherent directional predictions to get an understanding of 

the predictive performance in this aspect too. While there is not a myriad of existing literature 

on the subject, some studies suggest increased predictability when using machine learning. For 

instance, Feng et al. (2018) show that applying deep learning algorithms to a set of eight 

predictors can improve forecasts enough to outperform a benchmark consisting of the historical 

average return. In this paper, we evaluate the predictive power of 8 models using 48 predictors 

between January 2000 to December 2019. The number of predictors exceeds that of most equity 

premium prediction literature, but the models are selected partly on their ability to handle a 

vast predictor set.  

 

1 Throughout this paper, we use the terms “equity premium” and “excess return” interchangeably when we refer 

to the return in excess of the risk-free rate. 



   

 

   

 
2 

 

We are able to conclude that the light gradient boosting machine is the most accurate 

model in the context of this study. The model produces a forecast significantly different from 

the historical average and shows a meaningful improvement in the Sharpe ratio. Additionally, 

we show that various measures of change in the moving average price level have an important 

role in prediction for many of the applied models.  

The remainder of this paper is structured as follows. Section 2 surveys the existing 

literature on equity premium prediction and machine learning applications in finance. Section 

3 describes the data. Section 4 covers the methodology of our study and provides a brief 

introduction to the machine learning models used. Section 5 shows our results and provides 

some comparisons to the existing literature. Finally, Section 6 contains a short discussion based 

on the results, as well as a few suggestions for future research within the field. 

 

2. PREVIOUS PREDICTION LITERATURE 

 

Campbell (2008) states that the excess return, or equity premium, was often considered as a 

constant in the 1960s and 1970s. He explains that this consensus stemmed from the prevailing 

interpretation of the efficient market hypothesis, and the historical average excess return was 

considered to be the closest estimate of the actual premium. As years went by, the financial 

literature suggested that the use of predictive regressions, i.e. regressing lagged variables2 on 

the excess market returns, could predict the equity premium. Among the most popular 

predictors were valuation ratios, like the dividend yield and earnings-price ratio, which were 

shown to predict returns on a long-run basis (see, for example, Rozeff, 1984; Fama and French, 

1988). The predictability of the equity premium faced criticism based on spurious correlation 

bias in combination with data mining issues (Ferson et al., 2003). However, predictability was 

later defended by Cochrane (2008), who states that the observed variation in dividend yield 

requires that either returns or dividend growth must be predictable. Hence, the author argues 

that the absence of dividend growth predictability should be seen as strong evidence of return 

predictability. The performance of a number of predictive regressions was re-evaluated on 

equal terms by Welch & Goyal (2008), who found that out-of-sample performance had been 

poor for over thirty years and that most investors would have been better off using the historical 

 

2 Throughout this paper, we use the terms “predictor” and “variable” interchangeably when referring to variables 

used for predicting the return. 
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average equity premium as a forecast. Overall, the topic has been discussed widely and 

predictive regressions have divided the research community for a long time. While using time-

varying coefficients (Dangl and Halling, 2012), and including effects of time-varying volatility 

and estimation risk (Johannes et al., 2014), seem to improve the performance of predictive 

regressions, some researchers are abandoning traditional regression methods in favor of more 

complex machine learning applications in the pursuit of higher prediction accuracy. 

Our review of the machine learning literature within finance shows that the studies are 

fewer and to a greater extent published in data science journals, rather than recognized financial 

journals. Despite this, machine learning should have great potential when it comes to predicting 

excess equity returns, or equivalently measuring the equity premium, as prediction is a task 

where machine learning algorithms are particularly well suited (Gu et al., 2020). As Gu et al. 

point out, the use of predictive regressions carries some problems which could possibly be 

severe, most importantly, it is problematic that these regressions are generally not well 

equipped to handle the numerous predictor variables that the literature has compiled over many 

decades. While machine learning models are typically designed to work well with a large 

predictor set and often improve predictions, Gu et al. (2020) stress that it is important to 

understand that the predictions themselves do not discover economic mechanisms or equilibria. 

For machine learning to be useful for such purposes, it requires that the individual intentionally 

evaluates certain pre-specified structures that can be applied via the models (Gu et al., 2020).  

Machine learning applications for prediction have been used and published more 

frequently in two sub-fields of financial literature, namely, prediction of the magnitude of 

returns and predicting the directional movement of the market. Directional movements refer to 

whether the return will be positive or negative over the coming period. In this paper, our main 

focus is to apply and compare different machine learning techniques in their ability to predict 

the magnitude of realized returns. However, this implies that we inherently also predict the 

directional movement for each month, allowing a comparison of the tested algorithms in this 

aspect as well. This renders both sub-fields relevant for us, although predicting the magnitude 

of the equity premium is the focal point of this study.  

Fischer and Krauss (2018) were able to exploit predictability to get a Sharpe ratio of 

5.8 before transaction costs, which is high compared to the market’s 0.34 over the same period. 

The predictions were carried out using a specific deep learning model called long short-term 

memory networks, using daily return data from the S&P 500 between 1992 and 2015. However, 

the authors note that the ability to make excess returns from directional predictability dropped 
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sharply from 2010 onwards. Kara et al. (2011) were able to show an average accuracy of above 

75% when predicting the direction of return on the Istanbul Stock Exchange index, using 

artificial neural networks. While this is not translated into excess returns by the authors, they 

note that they outperform certain previous papers using a similar methodology but that their 

model has its lowest accuracy during the financial market turmoil of 2001. 

Gu et al. (2020) predict the magnitude of asset risk premiums using a range of machine 

learning methods and find that there are large economic gains for an investor when using 

machine learning forecasts. The authors also discover that the best performing prediction 

models are random forests and neural networks and trace the most successful predictors to 

variations in momentum, liquidity, and volatility. An investor using the authors’ neural network 

model to time the S&P 500 has an annualized Sharpe ratio of 0.77, compared to 0.51 of a buy-

and-hold investor, showing clear economic gains even for simple index investments. Feng et 

al. (2018) apply deep learning and vary the number of hidden layers in an artificial neural 

network to predict asset returns, using the same data as Welch and Goyal (2008). They claim 

to find nonlinear factors explaining asset returns, and these factors are shown to have the most 

impact at the extremes of the characteristic space. The authors apply both a rolling window and 

an expanding window to estimate the prediction models, with the highest accuracy achieved 

with the latter. Their belief is that the models more easily identify nonlinear structures when 

provided with more training data, hence the approach of an expanding window is more suitable. 

Feng et al. evaluate their models based on the out-of-sample R2, just like Welch and Goyal 

(2008) did for predictive regressions. Feng et al. find positive out-of-sample R2 for several 

models, meaning that they are able to outperform the benchmark prediction consisting of the 

unconditional mean return. 

 

In summary, the debate surrounding the use of traditional predictive regressions for equity 

premium prediction seems to continue in parallel with researchers’ increasing curiosity 

regarding the prospects of machine learning for this purpose. So far, machine learning has 

shown promising signs for predicting both directional movements and the magnitude of excess 

returns. The predictability is often shown to generate returns in excess of the market, leading 

to an increase in the Sharpe ratio, which for a mean-variance investor implies utility gains. 

However, some studies, like Fischer and Krauss (2018), argue that the ability to make abnormal 

returns with their trading strategy almost vanished after 2010. Others, like Kara et al. (2011), 

exhibit substantially worse performance in times of turmoil in financial markets. Consequently, 
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many questions remain unanswered concerning the use of machine learning applications for 

making predictions in financial markets. 

 

3. DATA 

 

The monthly total return on the S&P 500 was obtained from the Center for Research in Security 

Prices (“CRSP”) for the sample period, beginning in January 2000 and ending in December 

2019. The reason for not going back further in time is the lack of historical data available for 

some of our predictor variables. While an increased time horizon is generally beneficial for 

machine learning applications, we decided not to drop the predictors lacking historical data 

before 2000, in favor of evaluating the models using this extended set of predictors. The 48 

predictor variables can be divided into three subcategories: successful variables from previous 

equity premium prediction literature, successful variables from machine learning literature on 

returns or directional movements, and variables affecting the constituents of S&P 500. 

The process of selecting the aforementioned predictors was based on several criteria. 

Firstly, variables proven to predict returns in equity premium literature were considered. For 

instance, the dividend yield as shown by Rozeff (1984), albeit with stronger prediction power 

for longer time horizons than the monthly predictions in our study (Fama and French, 1988). 

These variables are generally collected from researcher websites or Thomson Reuters Eikon. 

Secondly, we included variables from machine learning literature on return prediction. Kara et 

al. (2011) show that moving averages can be important in explaining directional movements, 

which was the precedent for including, for instance, changes in moving averages and 

exponential moving averages in our paper. These variables mostly consist of technical 

indicators, which can be derived from the S&P 500 total return index itself. Finally, we wanted 

to test a number of variables impacting the constituents of the S&P 500. While these do not 

have the same type of history in the literature, they could still prove to have an effect on the 

excess return. These variables are predominately made up of interest rates, macro-economic 

indicators, and currency exchange rates, and can generally be collected from the Federal 

Reserve Economic Data (FRED). Please refer to Appendix 1 for a full list of variables, 

explanation of variables, and sources of data. 

Throughout the predictor selection process, we exclusively considered variables for 

which data was available on a monthly basis to match our prediction frequency, without having 
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missing data for some time periods. It is important to note that a substantial number of 

predictors were collected in the form of levels or nominal values. However, to match our 

dependent variable and avoid any bias toward higher values in an upward trending predictor, 

all such variables have been converted to monthly changes in percent. The main goal of this 

study is to compare a set of machine learning models and find the best one for predicting the 

excess return on the S&P 500. Applying traditional regression methods would limit the 

possibility to include many predictors successfully. However, the models studied in this paper 

were selected partly based on their ability to handle vast predictor sets, without encountering 

major problems even when faced with high pairwise correlation or multicollinearity among the 

predictors. The model selection allows us to include more variables without manually having 

to adjust the model setup, but we do understand that the ability to effectively manage the vast 

predictor set varies between the selected models. The model selection and their respective 

properties are discussed further in Section 4. 

 

4. METHODOLOGY 

 

This section describes the overarching framework applied for each of the models, as well as 

the specific models themselves. The presentation and description of models aim to give the 

reader an overview of how each model is applied and what makes that model different from 

the others. Essentially, we provide only a high-level introduction to the models and their 

history, as opposed to describing the statistical and computational mechanisms in detail. This 

approach allows a greater focus on the core contribution of this paper, which is to evaluate and 

compare the prospects of a set of machine learning techniques for predicting the excess equity 

return.  

 

4.1 Overarching Framework 

We focus on predicting the monthly equity premium, in this paper defined as the monthly 

simple excess return on the S&P 500. We use Python to apply machine learning models using 

an expanding window of observations to estimate model parameters. To find the excess return 

we deduct the equivalent of one month’s return on the risk-free rate. The yield on the 3-month 

treasury bill is used as a proxy for the risk-free rate. On a high level, we assume that the excess 

return on the S&P 500 can be thought of as an additive model: 



   

 

   

 
7 

 

 

 𝑟𝑡 = 𝐸𝑡−1(𝑟𝑡) + 𝜖𝑡 , (1) 

   

where 𝜖𝑡 is the error term and expected excess return, 𝐸𝑡−1(𝑟𝑡), is represented by: 

 

 𝐸𝑡−1(𝑟𝑡) = 𝑔∗(𝑧𝑡−1) . (2) 

   

In this paper, we try to predict 𝑟𝑡 by testing different models to approximate the function 𝑔∗() 

in Equation 2. The predictions are driven by a set of predictor variables, denoted in vectorized 

form as 𝑧𝑡−1. In general, we assume no specific functional form of 𝑔∗(𝑧𝑡−1). Instead, we apply 

a wide range of models with a combined ability to detect both linear and non-linear 

relationships with the goal of minimizing the sum of squared prediction errors and, hence, 

maximizing the out-of-sample prediction power for the realized return on the S&P 500, 𝑟𝑡. 

While the framework is highly flexible, it does impose the important restriction of using only 

predictor values available at t-1 for predicting the return in month t.  

Deciding on the split between data used for estimation and out-of-sample testing is a 

dubious task for traditional regressions. This task is no easier for machine learning models, 

where data has to be used for three purposes: estimation of parameters, optimization of 

hyperparameters, and testing. This ambiguity is discussed by Welch and Goyal (2008), who 

stress that it is important that the first estimation is done over an adequate number of 

observations to get a reliable estimate of model parameters for the first prediction. While their 

statement concerns predictive regressions, we apply the same reasoning for the machine 

learning models applied in this study. Thus, we use one-fourth of the data collected, 

corresponding to 60 months, to estimate the algorithms’ parameters and hyperparameters 

before predicting the excess return in month 61. Next, we successively add one month of data 

and re-estimate the models’ parameters before predicting the return for the next month, 

implying that each prediction is truly out-of-sample. This method allows us to utilize the 

collected data more efficiently, both for model estimation and true out-of-sample prediction, 

as opposed to if we would have split the data into separate parts for estimation, cross-validation, 

and testing, respectively. Instead, the cross-validation and simultaneous tuning of model 

hyperparameters are done solely based on data from the first 60 months.  

Hyperparameters are model inputs used to control the learning process of a machine 

learning algorithm. By definition, these are not decided when estimating the model but rather 
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set by the researchers themselves. Parameters3, on the other hand, are estimated automatically 

by fitting a model to the data points. As mentioned, the optimal values for the hyperparameters 

are sought after by applying K-fold cross-validation. Our implementation of the cross-

validation procedure splits the data used for cross-validation into two random sets, 80% for 

training with certain hyperparameters, and 20% held out for testing. This process is repeated K 

times, after which the scores from each test are evaluated automatically. Cross-validation can 

be used for multiple purposes, but in our study, it is used solely to optimize hyperparameters 

with the objective of balancing the bias-variance tradeoff4. In essence, our goal is to introduce 

a reasonable amount of bias into the models while trying to limit the variance of out-of-sample 

predictions. Depending on the number of folds, cross-validation can be computationally intense 

even with today’s modern computers, hence, the extent to which these parameters can be 

optimized is somewhat limited. We use 64-fold cross-validation for the penalized linear models 

and eight-fold for the non-linear models, based on data from the first 60 months. Another 

approach would be to re-estimate the hyperparameters using a rolling cross-validation window, 

moving simultaneously with the expanding window of observations used for parameter 

observation. This method has the benefit of maintaining the temporal ordering of the data. 

However, it is computationally complicated and reduces the interpretability of models even 

further. Additionally, our time-horizon is limited compared to other equity premium prediction 

literature, and the K-fold cross-validation allows us to more effectively use the data held out 

from making predictions. 

 

4.1.1 Prediction Performance Evaluation 

We evaluate the models based on out-of-sample R2, just like Campbell and Thompson (2008) 

did for predictive regressions. The same evaluation approach is used by both Feng et al. (2018) 

and, with minor adjustments, by Gu et al. (2020) for machine learning prediction models. The 

out-of-sample R2 is defined as: 

 

 

3 For example, the parameters in an OLS regression are the coefficients. However, an OLS regression has no 

hyperparameters, as it is unbiasedly fitted to the data points.   
4 The bias-variance tradeoff relates to the total prediction error of the model across samples. The variance stems 

from too high model complexity, also called overfitting. Bias, on the other hand, is an error that arises from 

erroneous assumptions in fitting the model, which results in underfitting. The tradeoff itself is related to 

minimizing the total error stemming from these two individual sources of errors. For a more extensive explanation, 

see for instance Section 2.9 in Hastie et al. (2017). 
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𝑅𝑂𝑆

2 = 1 −
∑ (𝑟𝑡 − �̂�𝑡)2𝑇

𝑡=1

∑ (𝑟𝑡 − 𝑟𝑡)2𝑇
𝑡=1

  , (3) 

 

where rt is the one-month realized excess return on the S&P 500 at time t, �̂�𝑡 is the predicted 

one-month excess return on the S&P 500 based on information available up until time t-1, and 

𝑟𝑡 is the historical average monthly return up until time t-1. By definition, if 𝑅𝑂𝑆
2 >  0 the 

predictive model is producing a lower mean squared prediction error than the historical average 

return, meaning that it has higher accuracy in its predictions. Hence, this metric inherently 

compares the models to a no-predictability benchmark5 which, as discussed in Dangl and 

Halling (2012), is equivalent to an unconditional model neglecting the predictive power of all 

our collected predictive variables. Important, however, is that even though this is a no-

predictability benchmark, it is still updated successively as also the benchmark is estimated 

over an expanding window of observations.  

 We also assess the applied models based on the root mean squared prediction error 

(“RMSE”), a measure which is computed by taking the average of the square root of the sum 

of squared prediction errors (“SSE”): 

 

 

𝑆𝑆𝐸 = ∑(𝑟𝑡 − �̂�𝑡)2

𝑇

𝑡=1

 (4.1) 

 
𝑅𝑀𝑆𝐸 =  

√𝑆𝑆𝐸

𝑇
  . (4.2) 

 

To get an understanding of how the models perform in different time periods, we calculate a 

twelve-month rolling RMSE. Our belief is that models should learn by having access to an 

increasing amount of data for estimating parameters. In that case, we would expect to see a 

decrease in the rolling RMSE over time. 

 We conduct a statistical evaluation of the predictions from all of the machine learning 

models using the Diebold and Mariano (1995) test for differences in out-of-sample forecasts. 

The forecast produced by each machine learning model is compared to the forecast based on 

the unconditional mean return. The test is also adjusted according to the suggestion by Harvey 

 

5 Throughout this paper, we use the terms “historical average”, “unconditional mean”, and “benchmark” 

interchangeably when referring to our benchmark return consisting of the average historical return on the S&P 

500. This benchmark is updated on a monthly basis, as more data is in-sample for parameter estimation. 
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et al. (1997). Their corrections have the most impact when testing a small sample of predictions, 

yet it has been shown to generate better results than the original test in larger samples as well 

(Mariano, 2004). The modified test statistic (DM*) is defined as: 

 

 

𝐷𝑀∗ = √
𝑇 + 1 − 2ℎ + 𝑇 + ℎ(ℎ − 1)

𝑇
 𝐷𝑀 ~ 𝑇𝑑𝑖𝑠𝑡(𝑇 − 1)  , (5) 

 

where T is the number of predictions, h is steps forecasted (in our case equal to 1), 𝑇𝑑𝑖𝑠𝑡 is the 

T distribution, and DM is the original Diebold and Mariano test statistic defined as 𝐷𝑀 =

�̅�/�̂��̅�. In the DM test statistic, �̅� is the average of the squared error differential between the 

two forecasts, and �̂��̅� is a consistent estimate of the standard deviation of �̅�. 

 

 

�̅� =
1

𝑇
 ∑(�̂�𝑡,𝑖

2 − �̂�𝑡,𝑎𝑣𝑔
2 )

𝑇

𝑡=1

  (6) 

 

In our case, the squared error differential will be between one of the machine learning models 

and that of the historical average, in Equation 6 indexed as i and avg, respectively. 

 We also undertake an economic evaluation of the prediction results by calculating the 

implied Sharpe ratio of improved predictability over the benchmark. Campbell and Thompson 

(2008) showed that the Sharpe ratio obtained by an active investor making use of predictive 

information, summarized as R2
OS, can be adjusted using the Sharpe ratio of a passive investor 

(“SR”). This adjusted Sharpe ratio (“SR*”) was later adopted in the machine learning literature 

by Gu et al. (2020). 

 

 

𝑆𝑅∗ = √
𝑆𝑅2 + 𝑅𝑂𝑆

2

1 − 𝑅𝑂𝑆
2   . (7) 

 

The adjustment of the Sharpe ratio shown in Equation 7, is one way of showing that even small 

improvements in predictability can be of economic importance, as pointed out by Campbell 

and Thompson (2008). Furthermore, we calculate the implied Sharpe ratio improvement of 

utilizing predictive information as 𝑆𝑅∗ − 𝑆𝑅. 
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4.1.2 Directional Prediction 

All models applied to predict the return will also inherently predict whether the return on the 

S&P 500 will be positive or negative over the following month. We are aware that the existing 

literature on directional movements largely focuses on daily changes (see, for example, Kara 

et al., 2011; Patel et al., 2015) rather than monthly, and that our models will be tuned to predict 

the magnitude of returns and not direction. Yet, evaluating to what extent they are right in their 

directional prediction is interesting as it serves as an easily interpretable indication of the 

models’ prediction accuracy. The models will be assessed based on the share of positive and 

negative directional predictions that are true and false, respectively. Successively, we use these 

directional predictions to construct a naïve investment strategy in which we are 100% invested 

in the market whenever the equity premium is predicted to be greater than 0, and stepping out 

entirely whenever the premium is expected to be less than or equal to 0. While the focus of this 

study is to construct and evaluate prediction models, not forming novel investment strategies, 

this exercise allows us to get an initial understanding of whether the models could be applied 

in practice to exploit any predictability found. To measure the performance of the naïve 

investment strategy, we calculate the annualized Sharpe ratio (“SR”), as discussed by Sharpe 

(1994): 

 

 
𝑆𝑅𝐴𝑛𝑛𝑢𝑙𝑖𝑧𝑒𝑑 =

𝑇𝑟�̅�

√𝑇 𝜎𝑟𝑖

= √𝑇
𝑟�̅�

 𝜎𝑟𝑖

   , (8) 

 

where T is the frequency over which the returns are measured, in our study equal to 12, 𝑟�̅� is the 

average monthly excess returns of the strategy based on algorithm i, and 𝜎𝑟𝑖
 is the monthly 

standard deviation of the excess return. While Sharpe points out that this annualization method 

is not ideal, as it builds on some dubious assumptions, he still stresses that it could provide at 

least a somewhat meaningful comparison between different strategies. It also provides us with 

Sharpe ratios in the same magnitude as other studies, although any comparisons will still be 

questionable and treated with caution as the time horizon and method are likely to be different. 

The performance of the naïve investment strategy will be compared to a benchmark consisting 

of a buy-and-hold investor in the S&P 500 index. 
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4.2 Machine Learning Models 

Machine learning is often defined vaguely, and different authors refer to different techniques 

when using the term. When the term is used in this paper, we refer to models that are more 

advanced in their underlying statistical framework compared to a traditional ordinary least 

square (“OLS”) regression. In the following subsections, we will provide a high-level overview 

of the models used in this paper. Besides serving as an introduction for anyone with limited 

experience with these types of models, it also further clarifies what is defined as machine 

learning in the context of this paper. The model selection is based on what has successfully 

been used in previous literature (see, for example, Gu et al., 2020; Feng et al., 2018). 

Additionally, the models should be capable of effectively making use of vast predictor sets, or 

having the ability to efficiently select which variables to use as predictors.  

 

4.2.1 Penalized Linear Models: Ridge, Lasso, and Elastic Net 

An OLS regression becomes inefficient for prediction when the number of predictors increases, 

particularly when the number of predictors is approaching the number of observations. Gu et 

al. (2020) go as far as saying that simple linear models are bound to fail when many predictors 

are included in the model, with the clarification that an OLS regression begins to overfit the 

noise rather than find the true patterns in the data. When approaching financial prediction tasks 

similar to those in this paper, overfitting is particularly problematic as the signal-to-noise ratio6 

often tends to be quite low (Gu et al., 2020). A commonly applied technique for tackling this 

issue is adding a regularization term, commonly also referred to as a penalty term, to the 

original loss function of the OLS regression. By applying this penalty, the in-sample fit is 

systematically deteriorated in an attempt to increase out-of-sample performance. The concept 

is motivated by the notion that an improvement will occur if the penalty reduces the extent to 

which the model is fitted to noise versus actual signals. Adding the penalty term to the original 

OLS regression loss function ℒ(β) generates the following general loss function for penalized 

linear models: 

  

 ℒ(β; ∙) = ℒ(β) +  𝜙(β; ∙ ), (9) 

   

 

6 The signal-to-noise ratio is the amount of true signal value compared to the noise in the data. A low ratio indicates 

that the data is noisy compared to how much true signal value exists, and can be a problem as only signals can be 

modeled and predicted.  
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where the traditional OLS loss function ℒ(β) in our case can be written as: 

 

 ℒ(β) = (𝑔∗(𝑧𝑡−1) − 𝑟𝑡)2  . (10) 

 

The penalty term 𝜙(β; ∙ ) in Equation 9 can take many functional forms and in this study, three 

advanced regression methods with different types of loss functions are evaluated: ridge 

regression, lasso regression, and elastic net regression. All hyperparameters of the penalized 

linear models applied in our study are optimized using 64-fold cross-validation and can be 

found in Appendix 6. 

 The ridge regression, as made popular by Hoerl and Kennard (1970), applies a penalty 

in the form of: 

 

 

𝜙(β; 𝜆) =  𝜆 ∑ β𝑗
2

𝑃

𝑗=1

, (11) 

   

meaning that the model is penalized for the sum of squared coefficients. This implies that some 

coefficients are suppressed when minimizing the residual sum of squares. Important to note is 

that in a ridge regression the coefficients do not converge exactly to zero as a result of the 

regularization process. This means that the penalty term in ridge regressions helps in the bias-

variance tradeoff of prediction tasks but does not inherently help with predictor selection, 

although some high-value coefficients are suppressed to a value closer to zero. When predictors 

are many, and potentially highly correlated, a traditional OLS regression can estimate one of 

these to a giant positive value, only to be counterbalanced by a similar but negative value on 

the correlated variable. Imposing a penalty on coefficient size, which is effectively what the 

ridge regularization process does, alleviates the problem by punishing large coefficients and as 

such results in predictors having smaller coefficients. 

 The least absolute shrinkage and selection operator (“lasso”) regression, as presented 

by Robert Tibshirani (1996), has a penalty term which is similar to ridge: 

 

 

𝜙(β; 𝜆) =  𝜆 ∑|β𝑗|

𝑃

𝑗=1

. (12) 
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However, the fact that it applies a penalty to the sum of the absolute value of the estimated 

parameters β𝑗 has some important implications. Firstly, the nature of how the penalty term is 

constructed makes it both possible and likely that it will produce some coefficients exactly 

equal to zero. The implication of coefficients set to zero is that the model not only alleviates 

problems related to multicollinearity, like the ridge loss function, but also automatically assists 

in the model specification by dropping variables.  

 The elastic net regularization (Zou and Hastie, 2005) is essentially a compromise 

between the ridge and lasso penalties, taking the form: 

 

 

𝜙(β; 𝜆1, 𝜆2) =  ∑(𝜆1|β𝑗| + 𝜆2β𝑗
2)

𝑃

𝑗=1

. (13.1) 

 

From Equation 13.1 we define the hyperparameter 𝛼 as a function of 𝜆1 and 𝜆2: 

 

 
𝛼 =  

𝜆2

(𝜆1 + 𝜆2)
  , (13.2) 

 

allowing us to rewrite the loss function in Equation 13.1 to: 

 

 

𝜙(β; 𝜆, 𝛼) = 𝜆1+2 ∑((1 − 𝛼)|β𝑗| + 𝛼β𝑗
2)

𝑃

𝑗=1

. (13.3) 

 

As can be seen from Equation 13.3, the two previously defined penalized linear models are at 

the extremes of the hyperparameter 𝛼, and setting it to exactly 0 or 1 yields a lasso or ridge 

penalty term, respectively. Simplified, this means that the hyperparameter 𝛼 defines how much 

the model behaves like a ridge regression versus a lasso regression. In practice, the elastic net 

regression mitigates problems with correlated predictors through two mechanisms, as specified 

by Hastie et al. (2017). The ridge part of the error term tends to average highly correlated 

coefficients and the lasso part favors a sparse solution with respect to the number of 

coefficients, meaning that some of them are likely to be exactly zero (Hastie et al., 2017). 

Conclusively, the elastic net is often highly effective when the number of predictors exceeds 
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the number of observations, but its features are also well suited to handle many, possibly 

correlated, predictors in general (Zou and Hastie, 2005).  

 

4.2.2 K-Nearest-Neighbors (“KNN”) 

KNN’s history goes back at least to Fix and Hodges (1952) and is based on the rather simple 

idea of making predictions based on how close the new observation is to the historical data. 

Despite having been around for some time and being based on a rather simple idea, it has been 

successful for prediction tasks, at the very least when it comes to classification problems 

(Hastie et al., 2017). The model can also handle continuous data and is then usually referred to 

as a KNN regression, even though it is a non-linear model. As the model is non-parametric and 

quite intuitive visually at the basic level, its basic properties are best described via imagery.  

 

Figure 1. Illustration of K-Nearest Neighbors Regression Properties 

 
Notes:  Illustration of KNN’s basic properties. When new data is introduced to the model the prediction is based on the 

 average of the K nearest neighbors in the predictor space. In this illustration, there are only two dimensions, 

 whereas our model has 48 predictors. The prediction of the out-of-sample data, illustrated by the orange dot, is 

 typically based on the average of the K nearest neighbors. Xn represents predictors. 

 

KNN makes predictions of new out-of-sample data by taking the average of the excess return 

on the S&P 500 for the K nearest neighbors. There is also an option to make the model slightly 

more complex by weighting the closer neighbors higher in the prediction, as compared to a 

straight average. Compared to the two-dimensional version presented in Figure 1 we have 

significantly more predictors, but the intuition is still the same, the model’s output is based on 

X1

X2

K=3



   

 

   

 
16 

 

the average of the K nearest neighbors. Despite being more successful for classification 

problems, its simplicity is appealing when trying to build an intuitive model for predicting 

excess returns. When applying eightfold cross-validation it turns out that the optimal value for 

K is 12, and that weighting the distances for prediction is sub-optimal in our case. 

 

4.2.3 Classification and Regression Trees (“CART”) 

CART was formally introduced in a book by Breiman et al. (1984), building on the logic of 

decision trees dating back several decades earlier (see, for example, Morgan and Sonquist, 

1963). Just like KNN, it can handle both classification and regression data, but as we perform 

no classification, only the regression tree is relevant for us. Again, it is important to note that 

although the name of the method includes the word “regression”, it is a non-linear method 

which imposes no assumptions of the distribution of data. A regression tree is fitted to the 

training data by recursive binary splitting, which means that the data is partitioned repeatedly 

at different threshold values for the predictors in that specific model. This process generates 

several groups of data that have similar characteristics. 

 

Figure 2.1 Decision Tree Partitions Figure 2.2 Partitioned Predictor Space 

  
Notes:  Illustration of a decision tree partitioned into 5 
 terminal nodes (Rn) based on two predictors 
 (Xn), tn is the threshold value for each split. 

Notes:  Illustration of the predictor space of a decision 
 tree with 5 nodes (Rn) based on two predictors 
 (Xn), tn is the threshold value for each split. 

 

As illustrated in Figure 2.1, the first split is at threshold value t1 for predictor X1, giving two 

new branches with data being sorted in each one. Based on the data in each leg, new threshold 

values (t2 and t3) for predictors X2 and X1 are found, respectively, based on what best splits the 

data into disparate groups. This sequence is repeated and divides the predictor space into 

several regions (denoted as Rn in Figures 2.1 and 2.2) and approximates the value of the 
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independent variable as the mean of the values in that region when producing predictions. As 

with the KNN, the relatively simple intuition of a regression tree is appealing for excess return 

prediction. Since the regression tree makes no assumption regarding the relationship between 

predictors, and splits the data based on what forms the most distinct difference between nodes, 

the model is unlikely to make a second split on a correlated predictor. This suits our dataset, as 

some of the variables show high pairwise correlation (see Appendix 4 for a correlation matrix). 

The hyperparameters are optimized through eightfold cross-validation. 

 

4.2.4 Random Forests 

Random forests (Breiman, 2001) is fundamentally an extension of decision trees, in which 

many trees are combined with the purpose of reducing the out-of-sample error in prediction. 

Hastie et al. (2017) point out that regression trees generally produce low-bias predictions, 

which often results in a high variance in their out-of-sample predictions. Random forests use a 

modified version of bootstrap aggregation, commonly referred to as bagging, to reduce the 

variance. For our return data, the algorithm repeatedly draws a bootstrap sample from the 

training data and fits a tree using a random selection of predictors to the data, until a certain 

pre-specified number of trees are fitted. As mentioned in Gu et al. (2020), considering a lower 

number of predictors for each tree than the total available lowers the correlation between the 

trees. This is important as the total variance of the model has a negative relationship to the 

correlation between trees (Hastie et al., 2017). The prediction on out-of-sample data consists 

of the average prediction of all of the trees in the random forest. Hyperparameters consist of 

the depth of the trees, the number of predictors considered in each of the splits, as well as the 

number of bootstrap samples, and are all optimized using eightfold cross-validation. 

 

4.2.5 Light Gradient Boosting Machines (“LGBM”) 

Gradient boosting decision trees is another popular extension for improving the predictions of 

decision trees. Like the random forests, this model is also considered an ensemble learning 

method, meaning that it fits multiple trees on the data with the purpose of achieving better 

predictions when aggregated than those of individual trees. Instead of fitting each model on a 

bootstrapped sample of the data, it sequentially fits a tree on a modified version of the initial 

data set (James et al., 2013). Simplified, it fits a number of trees B, on the prediction residuals 

from the previous trees. This procedure allows each fitted tree to learn from the mistakes of 

those prior. LGBM (Ke et al., 2017) is a modification of gradient boosting, requiring less 
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computational power than its predecessors. What makes it unique in practice is that the trees 

are grown node by node, instead of level by level as other boosting algorithms. Simplified, this 

means that the algorithm considers each individual node when deciding on the next split, 

instead of growing all terminal nodes simultaneously. Boosting algorithms also tend to perform 

well with noisy data and be efficient in finding non-linear patterns. One of the reasons for 

performing well is believed to be the slow learning rate of the model, allowing each tree to 

learn from the previous ones and improve predictions where it is not performing well (James 

et al., 2013). Unlike random forests, the trees are not de-correlated as each tree learns from the 

previous trees. This means that an LGBM model is more easily overfitted, requiring caution 

when optimizing the hyperparameters. The learning rate, the number of trees, and the number 

of splits in each tree are controlled by the hyperparameters, all of which are tuned in eightfold 

cross-validation in our study. 

 

4.2.6 Artificial Neural Networks (“ANN”) 

Artificial neural networks are non-linear models with a mild similarity to how a biological 

brain supposedly works. Input variables, in our case predictors of the equity premium, are fed 

to the model. At each neuron, depicted as grey dots in Figure 3, the variables can interact or be 

transformed after which they are fed forward to the next hidden layer. A feed-forward neural 

network can in theory have anywhere between 1 to N hidden layers where the data is 

transformed. The final layer is the output layer, in which the output from the aforementioned 

hidden layers is provided, in our case prediction of the excess return. We apply a specific neural 

network algorithm commonly referred to as ADAM, because of its suitability in handling a 

vast number of predictors (Kingma and Ba, 2014). Our neural network has two hidden layers, 

which is decided through our eightfold cross-validation along with the other hyperparameters. 

While having a record of being fruitful in complex prediction tasks involving non-linear 

patterns, ANN is known to be notoriously hard to interpret and having a lack of transparency, 

as pointed out by Gu et al. (2020). Despite its relative lack of interpretability, it has been 

successfully implemented for predicting equity returns by, for example, Gu et al (2020) and 

Feng et al. (2018). 
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Figure 3. Illustration of the Basic Properties of a Feed-Forward Artificial Neural Network 

 
Notes:  The figure depicts the basic properties of how an artificial neural network works. Simplified, predictor data 
 is fed to the model and the neurons (depicted by grey dots in the hidden layers) which are arranged in 
 hidden layers in the model. At each neuron, they are transformed and interactions between variables can 
 take place, and signals are sent from neuron to neuron until it reaches the final layer which is the output. 
 Pn is the n:th predictor in the dataset. 

 

4.3 Predictor Importance 

With the ambition of understanding which predictors have the most impact on our decision-

tree based predictions of the equity premium, we extract the measure of relative variable 

importance for the final month of prediction. As a result of using an expanding window of 

observations, this is the month in which the models have been trained on all of the data except 

for the very last month in the sample. As such, we hope that it can shed some light on which 

variables have the most impact on predictions. The relative importance score is based on the 

Gini importance score7 as first suggested in the original CART paper by Breiman et al. (1984). 

For a single regression tree, it is exactly equal to the Gini importance score. For additive tree 

models, like the random forest applied in our study, it scales by averaging the score over the 

number of trees. However, when the individual trees become non-additive the computation 

gets more complicated, and explaining it in detail is outside the scope of this paper. As the 

measure is relative, we scale all results to a value between 0 and 100 to make comparisons 

across the tree-based models.  

 

7 For a more comprehensive yet high-level explanation of the Gini impurity score see section 10.13.1 in Hastie et al. (2017). 
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 The coefficients of the final month’s penalized linear regressions are also reported, 

mostly to illustrate which predictors’ coefficients are penalized to converge to zero. The 

coefficients are to be interpreted with care as they are updated each month when observations 

are added to the training set.  

 For KNN and ANN, we do not provide any measures of variable importance. One of 

the reasons is that the discussion regarding how to measure the importance of predictors in a 

feed-forward ANN model is still active in the computer science literature (see, for example, de 

Sa', 2019). Instead, we focus on the more well-established measurement methods, as our core 

focus is comparing the performance of predictive models, and not measures for variable 

importance. 

 

5 EMPIRICAL RESULTS 

 

In the following sections, we present empirical results from the outlined methodology. First, 

we compare models based on predictive performance. Second, we present relative predictor 

importance values for selected models. Finally, we translate predictions made by the models to 

their inherent directional movement and present the performance of the naïve investment 

strategy. Where applicable, we offer comparisons to findings presented in previous financial 

literature. The existing research typically differs in several aspects, making it difficult to find 

adequate benchmark studies. Hence, the comparisons made in the following sub-sections will 

be supplemented by further comments on differences in methodology. 

 

5.1 Out-of-Sample Performance 

Of the eight models applied to predict the equity premium, a total of six outperform the 

benchmark forecast, illustrated by the positive values of R2
OS. Compared to the traditional 

predictive regressions evaluated by Welch and Goyal (2008), these six models show higher 

accuracy. It should be noted that their study re-evaluates previously suggested predictors, rather 

than attempting to find a new predictive model. The best performing model in our study is 

LGBM, with an out-of-sample R2 of 0.261, followed by regression trees and random forests. 

Interestingly, all of these are based on the non-linear algorithmic procedure in decision trees 

and produce significantly different forecasts compared to the benchmark, as shown by the 
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DM*-test statistic. In terms of ensemble learning methods, boosting was more successful than 

bagging in our context, as seen by the outperformance of LGBM relative to random forests.  

All of the penalized linear methods outperform the historical average, albeit with a 

narrow margin. The ranking of performance based on RMSE shows that the penalized linear 

models are separable from each other in terms of performance, despite showing identical results 

down to the fourth decimal. While the forecasts of the penalized linear models are not 

significantly different from the historical average in the modified Diebold-Mariano test, it can 

be translated into a Sharpe ratio improvement of 0.15. The narrow but consistent 

outperformance of the benchmark using penalized linear models aligns with the results of Feng 

et al. (2018). The authors find that both lasso and elastic net regressions outperform narrowly 

when using an expanding window to estimate models. Also, all of Feng et al.’s penalized linear 

models demonstrate similar predictive performance, which is comparable to what we find. 

Feng et al.’s study differs from ours in many aspects; the time horizon; the number of variables, 

variable type, considering interactions between variables; and predicting logarithmic returns 

instead of simple. Importantly, their main focus is to evaluate ANN models, most of which 

outperform the historical average in their study, in contrast to our implementation of ANN.  

 The results of our models’ predictive performance are summarized in Table 1, alongside 

the DM test statistic and the implied Sharpe ratio improvement. 

 

Table 1. Out-of-Sample Performance – Full Prediction Period 
 

Penalized Linear 
 

Non-Linear 
 

   

 
Ridge Lasso ENet 

 
KNN RT RF LGBM ANN Hist. Avg. 

  
R2OS 0.011 0.011 0.011  -0.092 0.192 0.062 0.261 -0.009  N/A 
RMSE 3.98% 3.98% 3.98%  4.18% 3.60% 3.88% 3.44% 4.02% 4.00% 
RMSE Rank  6 5 4  9 2 3 1 8 7 
DM*  1.49 1.55 1.55  -2.57** 1.76* 2.16** 4.79*** -0.14 N/A 
SR* 0.53 0.53 0.53  N/A 1.74 0.98 2.11 N/A N/A 
SR*-SR 0.15 0.15 0.15  N/A 1.36 0.59 1.72 N/A N/A 
Notes: This table presents the full prediction period performance of our predictive models in terms of out-of-
sample R2, root mean squared error(“RMSE”), and a rank based on the root mean squared error (“RMSE rank”). 
The modified Diebold-Mariano test statistic is shown (DM*), with standard significance thresholds shown as “*”, 
“**”, “***”, for a significant difference in forecast compared to that of the historical average at the 10%, 5%, and 
1% level, respectively. The adjusted Sharpe ratio (SR*) and improvement in Sharpe ratio (SR*-SR) vis-à-vis a 
passive investor is also reported. N/A is used for values not applicable to that specific model. Ridge, lasso and 
elastic net (“ENet”) are the penalized linear regressions applied. Light gradient boosting machines (“LGBM”), K-
nearest-neighbors (“KNN”), regression trees (“RT”), random forest (“RF”), and artificial neural networks (“ANN”) 
are the non-linear methods applied. 

 

 The machine learning models perform well in predicting returns in the early part of our 

out-of-sample data, but only some of them beat the historical average in terms of rolling 12-

month RMSE. During the financial crisis of 2008 to 2009, all models show increasing errors 
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as the market becomes more unstable. LGBM and regression trees seem to have lower errors 

in those years, yet also shows large increases in rolling RMSE. From mid-2009 to the end of 

2017, all models are on a downward trend in the error measure, with a few seemingly 

simultaneous disruptions to the trend. ANN is the worst performing in years classified as a 

period of recession by the National Bureau of Economic Research (“NBER”). As the model 

gets more data via the expanding window and the market stabilizes, it recovers and actually 

has errors comparable to the best models in some periods. This aligns with the findings of Feng 

et al (2018) to some extent, as they point out that the ANN models perform better the more 

data they are allowed to train on. As such, using a longer horizon and being able to reoptimize 

hyperparameters periodically like in Gu et al. (2020) could have the potential to improve the 

model’s predictions significantly. We present a graph showing the development of the 12-

month rolling RMSE for all models in Figure 4. 

 

Figure 4. Rolling 12-Month Root Mean Squared Prediction Error (“RMSE”) 

 
Notes: The chart displays the rolling RMSE for the last twelve months. Ridge, lasso and elastic net (“ENet”) are the 
penalized linear regressions applied. Light gradient boosting machines (“LGBM”), K-nearest-neighbors (“KNN”), 
regression trees (“RT”), random forest (“RF”), and artificial neural networks (“ANN”) are the non-linear methods 
applied. The shaded area represents the only NBER recession in our out-of-sample data. 

 

The models seem to behave quite differently in how they predict excess returns. All of our 

penalized regression methods produce very stable predictions compared to the other models. 

In fact, looking at Figure 5 they are too close to be separable visually. We believe that these 

models are under-fitted as the predictions seem to be roughly around 0, however, their 

predictions are still better than the benchmark, as seen in Table 1. LGBM shows more variation 

in its predictions and seems to track the market realized excess returns more accurately, 
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explaining why it is the best performing model in terms of out-of-sample R2. The regression 

tree also follows market movements quite well, although it has some large deviations in its 

predictions between 2014 and 2015. It also becomes evident from Figure 5 why the models’ 

rolling RMSE increases so significantly during the financial crises, as the large deviations from 

the realized return of the market can be seen clearly in the shaded area. The magnitude of 

variation in realized market returns also sheds some light on the deviations from the downward 

trend in Figure 4. In periods where market movements are large, the models generally have 

higher errors in their predictions.  

 

Figure 5. Out-of-Sample Machine Learning Prediction and Realized Excess Return  

 
Notes: The chart shows the monthly prediction of each machine learning model, and the realized excess return on S&P 500 

(“Market”). For readability purposes the colors have been altered slightly vis-à-vis the other charts presented in this paper. 

Ridge, lasso and elastic net (“ENet”) are the penalized linear regressions applied. Light gradient boosting machines 

(“LGBM”), K-nearest-neighbors (“KNN”), regression trees (“RT”), random forest (“RF”), and artificial neural networks 

(“ANN”) are the non-linear methods applied. The shaded area represents the only NBER recession in our out-of-sample 

data. 

 

5.2 Predictor Importance 

In the final prediction period, the variable importance of the tree-based methods shows that 

among the top-ranking predictors are changes in moving average and exponential moving 

average, as well as the change in the moving average compared to the current index level of 

S&P 500. It can arguably be said that these could serve as proxies for two known important 

effects in financial markets, namely momentum and mean reversion. While momentum has 

previously been found to generate abnormal returns both for both cross-sectional (Jegadeesh 

and Titman, 1993) and time-series implementation (Moskowitz et al., 2012), any effect on our 

predictions would be stemming from time-series momentum, as we are predicting only the 
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S&P 500. Gu et al. (2020) present the one-month momentum as the overall most important 

predictor across their applied models, although their study is based on data on individual stocks 

and ranges over a longer time horizon. Both LGBM and regression trees assign importance to 

only a select few variables. This is likely to be a result of the hyperparameter tuning process, 

where the attempts of reducing out-of-sample variance have excluded the majority of the 

predictors. Looking back at Table 1, LGBM is our best performing model and forecasts the 

equity premium far more accurately than the benchmark in our sample. LGBM’s forecast is 

also different from the benchmark with high significance. It is the only model in our selection 

with relatively high importance assigned to the Variance Risk Premium (“VRP”), which we 

find somewhat surprising as the VRP has been shown to be a strong predictor of returns, albeit 

with a peak in predictability at a four-month horizon (Bollerslev et al., 2014). As expected, the 

random forest differs from the other tree-based methods by assigning weights more evenly 

across several predictors, resulting from the de-correlated tree growing process. In Figure 6, 

we display a chart of final month predictor importance for all tree-based models. 

 

Figure 6. Predictor Importance for Tree Based Models 

 
Notes:  The chart shows the relative predictor importance values in the final prediction month, on a scale of 

 0-100. The values are available for regression trees. (“RT”), random forests (“RF”), and LGBM. Refer 

 to Appendix 1 for a list of variable descriptions. 
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 In Appendix 5, we present the coefficients of our penalized regression models for the 

prediction of the final month. These are to be interpreted with caution as the models’ 

coefficients are updated each month, as new data is added to the training data successively. 

However, after inspecting them, we are reasonably confident that our hyperparameters, 

selected via cross-validation, resulted in underfitting the models as many coefficients are zero 

or extremely close to zero. Lasso and elastic net are expected to force some coefficients to zero, 

but the non-zero coefficients are surprisingly small. Furthermore, an underfit of the models 

would explain why the predictions of excess returns given by the penalized linear models are 

hovering around zero. 

 

5.3 Directional Prediction and Naïve Investment Strategy 

After having converted the models’ predictions to their inherent prediction of directional 

movement, it is evident that they are generally better in predicting the months with a realized 

positive return than the negative ones. LGBM is the most successful in this aspect as well, with 

a total accuracy of 71.7%. It performs well in predicting the positive returns, but especially 

outperforms other models in negative months. The penalized linear models have a high 

similarity also in directional prediction and the lasso and elastic net regressions output identical 

results. In Table 2, the full directional prediction results are presented, divided into realized 

positive, realized negative, and total accuracy. 
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Table 2. Directional Prediction Accuracy 
  

Penalized Linear 
 

Non-Linear  
   
  

Ridge Lasso ENet 
 

KNN RT RF LGBM ANN Hist. Avg. 
   

Realized 
Positive 

True Positive  80 82 82  87 92 104 92 87 81 
False Negative  39 37 37  32 27 15 27 32 38 
Total Real. Pos.  119 119 119  119 119 119 119 119 119 
Accuracy Pos.  67.2% 68.9% 68.9%  73.1% 77.3% 87.4% 77.3% 73.1% 68.1% 

Realized 
Negative 

True Negative  25 23 23  12 32 23 37 31 26 
False Positive 36 38 38  49 29 38 24 30 35 
Total Real. Neg. 61 61 61  61 61 61 61 61 61 
Accuracy Neg. 41.0% 37.7% 37.7%  19.7% 52.5% 37.7% 60.7% 50.8% 42.6% 

Total 

Total True 105 105 105  99 124 127 129 118 107 
Total False 75 75 75  81 56 53 51 62 73 
N. Total Periods 180 180 180  180 180 180 180 180 180 
Total Accuracy 58.3% 58.3% 58.3%  55.0% 68.9% 70.6% 71.7% 65.6% 59.4% 

Notes: The table presents the accuracy of the inherent directional predictions of our models, versus the prediction of 
the historical average return. We report the results both in terms of the number of instances and the accuracy in 
percent. The panes divide the results into the months where the realized return was positive or negative and provides 
an aggregation of these in the total-pane. True/False describes whether the prediction was right or wrong, respectively. 
Positive/Negative refers to if the realized return was positive or negative, respectively. As an example, “True Positive” 
represents when a model predicted a positive return and the realized return turned out to be positive. Ridge, lasso, and 
elastic net (“ENet”) are the penalized linear regressions applied. Light gradient boosting machines (“LGBM”), K-
nearest-neighbors (“KNN”), regression trees (“RT”), random forests (“RF”), and artificial neural networks (“ANN”) are 
the non-linear methods applied. 

 

When using the directional results in our naïve investment strategy, all models but KNN 

produce a higher Sharpe ratio than the benchmark portfolio of a buy-and-hold index investor 

(“Market”), as shown in Table 3. Despite underperforming the benchmark in predicting the 

magnitude of returns, the naïve strategy using ANN’s directional forecast shows a greater 

Sharpe ratio than the market. ANN’s relative success in this regard is a consequence of 

performing well in directional predictions, compared to the other models. Unsurprisingly, all 

of the respective models’ strategies have lower volatility, which is likely a result of not being 

invested in the market when the forecasted excess return is negative. 

 

Table 3. Naïve Investment Strategy - Annualized Return, Standard Deviation, and Sharpe Ratio 
 

Penalized Linear 
 

Non-Linear 
 

   
 

Ridge Lasso ENet 
 

KNN RT RF LGBM ANN Market 
  
Ann. Return 6.3% 6.8% 6.8%  4.9% 14.3% 11.7% 14.8% 8.8% 8.4% 
Ann. StDev 9.3% 9.5% 9.5%  9.6% 9.2% 9.5% 8.7% 11.4% 13.7% 
Sharpe Ratio 0.681 0.714 0.714  0.517 1.561 1.236 1.700 0.774 0.610 
Notes: The table shows the annualized returns (“Ann. Return”), standard deviations (“Ann. StDev”), and Sharpe 
Ratio of the naïve investment strategy, compared to that of a buy-and-hold investor (“Market”). Ridge, lasso and 
elastic net (“ENet”) are the penalized linear regressions applied. Light gradient boosting machines (“LGBM”), K-
nearest-neighbors (“KNN”), regression trees (“RT”), random forest (“RF”), and artificial neural networks (“ANN”) 
are the non-linear methods applied.  

 

As seen in Figure 7, LGBM and regression trees undoubtedly benefit from being the best in 

predicting the negative return months. As a result, they lose a lot less value in the financial 
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market turmoil of 2008 to 2009, and in other market downturns. While we find the high returns 

and Sharpe ratios rather impressive, they are actually lower than the Sharpe ratio of 5.8 that 

Fischer and Krauss (2018) present. Their study differs from ours in many ways, yet the 

magnitude still puts our results in perspective and shows what could possibly be achieved. 

 

Figure 7. Cumulative Return of Naïve Investment Strategy vs. Buy-and-Hold Market 

 
Notes: The chart shows the cumulative return as if $1 was invested in January 2005, then timed the market based 
on our naïve investment strategy. It also shows the cumulative return of a buy-and-hold investment (“Buy & Hold”). 
Ridge, lasso and elastic net (“ENet”) are the penalized linear regressions applied. Light gradient boosting machines 
(“LGBM”), K-nearest-neighbors (“KNN”), regression trees (“RT”), random forest (“RF”), and artificial neural 
networks (“ANN”) are the non-linear methods applied. The shaded area represents the only NBER recession in our 
out-of-sample data. 

 

 

6 DISCUSSION 

 

By applying machine learning methods to predict the equity premium, we are able to 

outperform the benchmark. The enhanced predictability can be exploited to earn higher returns 

with lower volatility, leading to a considerable improvement in Sharpe ratio. Considering that 

our models’ hyperparameters were only optimized once, we believe that it should be possible 

to increase accuracy by allowing for re-optimization at regular intervals. While prediction 

results from a short time-period should be treated with caution, we believe that our study 

emphasizes the great promise of machine learning for equity premium prediction. Furthermore, 

our results suggest that non-linear models better describe the monthly movements in equity 
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premium than penalized linear models. We interpret this as an indication of non-linearity in the 

time-series variation of the equity premium. 

The relative complexity of machine learning models often results in a loss of 

interpretability, especially regarding what drives the output of models. Yet, we are able to 

present an indication of which of the variables applied in our study that are more successful in 

predicting the excess returns on the S&P 500. The variable importance aligns reasonably well 

with previous literature, despite the introduction of many non-proven predictors in our study. 

Hence, we interpret the selection and importance of predictors as a sign of robustness in our 

models, even though comparable studies differ in methodology and time horizon. 

To some extent, it seems like we have succeeded in selecting machine learning models 

that can handle a vast predictor set. A majority of the models consider only a selected set of 

important variables. Some, like random forest, make use of more predictors but assign higher 

importance to the predictors which are also used in the sparser models. This relative success in 

model selection also shows that our inclusion of variables with impact on the constituents of 

the S&P 500 had limited prediction power in our study. We were unable to report any 

noteworthy results relating to the importance of, for instance, currency exchange rates or 

interest rates. Instead, the most successful predictors came from existing literature. 

Converting the excess return predictions to predictions of the directional movement 

produced some encouraging results. Despite optimizing our models to predict the magnitude, 

and not the direction of the excess return, the naïve investment strategy generates an 

improvement of the Sharpe ratio compared to a buy-and-hold investor. Predicting directional 

movement is essentially a classification problem rather than a regression problem, meaning 

that re-optimizing our models for that purpose could possibly have generated even higher 

accuracy. 

We propose that future studies of machine learning applications for equity premium 

prediction focus on two issues. First, increasing the interpretability of models. This can 

possibly be achieved by quantifying predictor importance in a structured way across 

algorithms. Second, testing machine learning applications within the context of a theoretical 

framework relevant to financial markets. Combining the predictive ability of machine learning 

algorithms with existing, or new, financial theory has the potential to immensely enhance our 

understanding of the equity premium.  
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APPENDIX 

Appendix 1. Variables, Descriptions, and Sources 

Name Source Explanation 

S&P 500 Total Return CRSP 
The total monthly return on the S&P 500 (incl. 
distributions) (%) 

S&P 500 Total Index (TI) Thomson Reuters Eikon 
The total monthly return index level of the S&P 500 (incl. 
distributions) 

MA50d Derived from S&P 500 TI 50-day moving average (monthly change in %) 

MA200d Derived from S&P 500 TI 200-day moving average (monthly change in %) 

EMA50d Derived from S&P 500 TI 50-day exponential moving average (monthly change in %) 

EMA200d Derived from S&P 500 TI 
200-day exponential moving average (monthly change in 
%) 

DiffMA50d Derived from S&P 500 TI 
The distance between the index level and 50-day MA 
(monthly change in %) 

DiffMA200d Derived from S&P 500 TI 
The distance between the index level 200-day MA (monthly 
change in %) 

DiffEMA50d Derived from S&P 500 TI 
The distance between the index level 50-day exponential 
MA (monthly change in %) 

DiffEMA200d Derived from S&P 500 TI 
The distance between the index level 200-day exponential 
MA (monthly change in %) 

3M FRED  3-month treasury constant maturity rate (%) 

6M FRED  6-month treasury constant maturity rate (%) 

1Y FRED  1-year treasury constant maturity rate (%) 

2Y FRED  2-year treasury constant maturity rate (%) 

3Y FRED  3-year treasury constant maturity rate (%) 

5Y FRED  5-year treasury constant maturity rate (%) 

7Y FRED  7-year treasury constant maturity rate (%) 

10Y FRED  10-year treasury constant maturity rate (%) 

20Y FRED  20-year treasury constant maturity rate (%) 

30Y FRED  30-year treasury constant maturity rate (%) 

Diff10Y2Y FRED  
10-year treasury minus 2-year treasury constant maturity 
rate (%) 

Gold FRED  
Fixing price 10:30 A.M. (London time) in London Bullion 
Market, USD (monthly change in %) 

Silver FRED  
Fixing price 12:00 noon (London time) in London Bullion 
Market, USD (monthly change in %) 

Brent FRED  
Benchmark prices which are representative of the global 
market. (monthly change in %)  

WTI FRED  
Benchmark prices which are representative of the global 
market. (monthly change in %) 

USDEUR FRED  
Foreign Exchange Rate, averages of daily noon buying rates 
(monthly change in %) 

USDGBP FRED  
Foreign Exchange Rate, averages of daily noon buying rates 
(monthly change in %) 

USDCHF FRED  
Foreign Exchange Rate, averages of daily noon buying rates 
(monthly change in %) 

USDJPY FRED  
Foreign Exchange Rate, averages of daily noon buying rates 
(monthly change in %) 

USDCAD FRED  
Foreign Exchange Rate, averages of daily noon buying rates 
(monthly change in %) 

RealEffR FRED  
Weighted avg. of bilateral exchange rates adjusted by 
relative consumer prices. (monthly change in %) 
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M3 FRED  

A measure of money supply including all physical currency 
and deposits in checking accounts, deposits in savings 
accounts, certificates of deposit, institutional money 
market accounts, repurchase agreements, and other large 
liquid assets (monthly change in %) 

LIBOR1M FRED  
1-month Overnight London Interbank Offered Rate, based 
on USD (%) 

LIBOR3M FRED  
3-month Overnight London Interbank Offered Rate, based 
on USD (%) 

LIBOR6M FRED  
6-month Overnight London Interbank Offered Rate, based 
on USD (%) 

LIBOR12M FRED  
12-month Overnight London Interbank Offered Rate, based 
on USD (%) 

ConsSent FRED  
According to the surveys covering three broad areas of 
consumer sentiment: personal finance, business and buying 
(index)  

CPI FRED  
Consumer Price Index: all items for the United States 
(monthly change in %)  

DiscRate FRED  
The interest rate at which the central bank lends to 
commercial banks to meet their liquidity needs (%) 

Dividend Thomson Reuters Eikon Twelve-month S&P 500 price-to-earnings ratio 

FEDTotal FRED  
Total Assets on Fed Balance Sheet (Less Elim. from 
Consolidation) (monthly change in %) 

GDP FRED/OECD 
Leading Indicator of Gross Domestic Product for United 
States. (2012 = 100) 

P/E Thomson Reuters Eikon 
Trailing twelve-month price-to-earnings ratio of the 
S&P500  

VIX Thomson Reuters Eikon 
Volatility Index. A measure of expected price fluctuations in 
S&P 500 Index options over the next 30 days, calculated by 
the CBOE. 

VRP Hao Zhou's Website 
Variance Risk Premium as defined by Bollerslev et al. 
(2014) 

EVRP Hao Zhou's Website 
Expected Variance Risk Premium as defined by Bollerslev 
et al. (2014) 

ExpInf1Y Cleveland Fed 
Estimates of the annual expected rate of 1-year inflation 
(%) 

ExpInf5Y Cleveland Fed 
Estimates of the annual expected rate of 5-year inflation 
(%) 

ExpInf10Y Cleveland Fed 
Estimates of the annual expected rate of 10-year inflation 
(%) 

ExpInf30Y Cleveland Fed 
Estimates of the annual expected rate of 30-year inflation 
(%) 

Prod FRED  
Industrial Production: Total Index (Real output for all 
facilities located in the US manufacturing, mining, electric, 
and gas utilities. 2012 = 100) (monthly change in %) 

Notes: The table describes the data used in the study and the respective source of data collection for each variable. 
S&P 500 Total Return is the dependent variable in our analysis, the S&P 500 Total Index is not used as a predictor 
variable, rather as the basis for calculating the various moving average predictor variables. CRSP is the Center for 
Research in Security Prices. FRED is the Federal Reserve Economic Data, managed by St. Louis Fed. Cleveland Fed 
is the website of the Federal Reserve Bank of Cleveland. Hao Zhou is the website of one of the original inventors of 
the Variance Risk Premium measure. Thomson Reuters Eikon is the financial analysis software provided by 
Thomson Reuters and Refinitiv. 
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Appendix 2. Descriptive Statistics of Variables 

 Name Mean Median St. Dev. Min Max 

S&P 500 Total Return (%) 0.483 0.957 4.167 -16.755 10.900 

MA50d (%) 0.537 0.970 2.624 -12.615 8.476 

MA200d (%) 0.506 0.901 1.530 -6.131 4.499 

EMA50d (%) 0.538 1.105 2.507 -13.864 5.452 

EMA200d (%) 0.510 0.883 1.442 -5.525 2.485 

DiffMA50d (%) 10.499 -0.037 92.183 -1.000 1092.245 

DiffMA200d (%) 1.766 0.038 16.752 -0.996 255.072 

DiffEMA50d (%) 12.266 -0.032 163.490 -0.998 2536.087 

DiffEMA200d (%) 0.840 0.019 4.780 -0.985 57.245 

6M (%) 1.779 1.170 1.843 0.040 6.390 

1Y (%) 1.877 1.325 1.786 0.100 6.330 

2Y (%) 2.118 1.625 1.707 0.210 6.810 

3Y (%) 2.342 1.895 1.616 0.330 6.770 

5Y (%) 2.781 2.485 1.456 0.620 6.690 

7Y (%) 3.131 2.925 1.349 0.980 6.720 

10Y (%) 3.432 3.395 1.234 1.500 6.660 

20Y (%) 3.977 4.230 1.233 1.820 6.860 

30Y (%) 4.082 4.275 1.081 2.120 6.630 

Diff10Y2Y (%) 1.314 1.435 0.910 -0.410 2.830 

Gold (%) 0.806 0.643 4.769 -18.785 13.153 

Silver (%) 0.857 -0.107 8.435 -27.897 27.490 

Brent (%) 0.781 1.776 8.603 -26.909 21.562 

WTI (%) 0.712 1.742 8.385 -28.875 24.467 

USDEUR (%) -0.013 -0.076 2.293 -6.006 8.111 

USDGBP (%) 0.110 -0.027 2.162 -5.810 10.015 

USDCHF (%) -0.171 -0.013 2.344 -7.016 12.397 

USDJPY (%) 0.051 0.027 2.267 -6.201 7.658 

USDCAD (%) -0.028 -0.060 1.924 -5.832 11.954 

RealEffR (%) 0.014 -0.009 1.199 -3.566 5.640 

M3 (%) 0.500 0.470 0.365 -0.462 2.298 

LIBOR1M (%) 1.928 1.310 1.925 0.151 6.804 

LIBOR3M (%) 2.053 1.337 1.901 0.223 6.863 

LIBOR6M (%) 2.195 1.570 1.850 0.322 7.105 

LIBOR12M (%) 2.424 1.816 1.764 0.534 7.501 

ConsSent 85.782 88.600 12.232 55.300 112.000 

CPI (%) 0.018 0.020 0.029 -1.770 1.380 

DiscRate (%) 2.295 1.750 1.842 0.500 6.250 

Dividend (%) 1.890 1.900 0.371 1.110 3.600 

FEDTotal (%) 0.915 0.121 4.870 -13.949 62.489 

GDP 100.030 99.939 0.922 97.716 101.846 

P/E 25.867 21.724 17.819 13.008 122.413 

VIX 19.491 17.170 7.868 9.510 59.890 

VRP 12.528 10.416 21.199 -218.564 80.611 
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EVRP 14.884 9.160 21.757 -48.195 201.397 

ExpInf1Y (%) 1.986 1.954 0.627 -0.481 3.760 

ExpInf5Y (%) 2.014 1.908 0.485 1.207 3.400 

ExpInf10Y (%) 2.108 2.023 0.433 1.412 3.349 

ExpInf30Y (%) 2.384 2.333 0.298 1.915 3.218 

Prod (%) 0.066 0.109 0.655 -4.337 1.517 

Notes: This table provides descriptive statistics of all variables used in the analysis, both for the dependent variable 
(S&P 500 Total Return %), and for the predictor variables. We present the mean, median, standard deviation, as well 
as the minimum and maximum value. 
 

 

 

Appendix 3. Descriptive Statistics of Predictions Per Model 

 
 Mean (%) Median (%) St. Dev. (%) Min (%) Max (%) 

       

Penalized 
linear 

Ridge 0.17 0.25 0.39 -0.66 1.44 

Lasso 0.18 0.29 0.38 -0.66 0.83 

Elastic Net  0.18 0.29 0.38 -0.66 0.83 
       

Non-linear 

KNN 0.45 0.46 0.86 -2.45 2.63 

RT 0.63 1.36 2.72 -8.01 3.81 

RF 0.55 0.67 0.79 -3.39 1.99 

LGBM 0.65 1.17 1.47 -3.71 2.73 

ANN 0.38 0.40 1.03 -1.96 3.90 
       

 Hist. Avg. 0.12 0.10 0.25 -0.55 0.47 
       

Notes: This table presents descriptive statistics of the predictions of excess return per model, as well as for the 
historical average (“Hist. Avg”). Light gradient boosting machines (“LGBM”), K-nearest-neighbors (“KNN”), 
regression trees (“RT”), random forest (“RF”), and artificial neural networks (“ANN”) are the non-linear methods 
applied. 
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Appendix 4. Correlation Matrix for All Predictors 

 

 
Notes:  This figure depicts the correlation matrix for all predictor variables, as well as the dependent variable. 
 Please refer to Appendix 1 for a full description of predictors. 
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Appendix 5. Coefficients of Penalized Regression Methods, Final Prediction 

Predictor Ridge Lasso ENet 

MA50d 2.19241E-10 0 0 

MA200d 8.7079E-11 0 0 

EMA50d 4.11153E-10 0 0 

EMA200d 1.372E-10 0 0 

DiffMA50d 7.56379E-07 2.24529E-05 2.07191E-05 

DiffMA200d -3.76496E-09 0 0 

DiffEMA50d -9.83555E-08 0 0 

DiffEMA200d -4.72966E-08 0 0 

6M -5.28338E-09 0 0 

1Y -4.85688E-09 0 0 

2Y -4.84896E-09 0 0 

3Y -4.62298E-09 0 0 

5Y -3.86231E-09 0 0 

7Y -3.53498E-09 0 0 

10Y -2.87937E-09 0 0 

20Y -2.27079E-09 0 0 

30Y -1.81517E-09 0 0 

Diff10Y2Y 1.96959E-09 0 0 

Gold 2.86045E-11 0 0 

Silver 1.53101E-11 0 0 

Brent -1.18453E-10 0 0 

WTI -1.94343E-10 0 0 

USDEUR 1.03529E-10 0 0 

USDGBP 6.48482E-11 0 0 

USDCHF 8.18497E-11 0 0 

USDJPY 1.29045E-10 0 0 

USDCAD -2.53748E-11 0 0 

RealEffR 2.54124E-11 0 0 

M3 -1.48107E-11 0 0 

LIBOR1M -5.49118E-09 0 0 

LIBOR3M -5.28111E-09 0 0 

LIBOR6M -5.20652E-09 0 0 

LIBOR12M -5.25291E-09 0 0 

ConsSent -2.02635E-08 0 0 

CPI 2.17786E-08 0 0 

DiscRate -1.18091E-09 0 0 

Dividend 1.289E-09 0 0 

FEDTotal 3.69353E-11 0 0 

GDP 7.9524E-12 0 0 

P/E -5.44031E-08 0 0 

VIX 1.16258E-08 0 0 

VRP 7.9867E-08 0 0 

EVRP 8.53145E-08 0 0 

ExpInf1Y -1.64426E-11 0 0 

ExpInf5Y -1.45452E-11 0 0 

ExpInf10Y -1.24185E-11 0 0 

ExpInf30Y -7.70065E-12 0 0 

Prod 4.76577E-12 0 0 

Notes: The table presents the coefficients of the penalized regression models for the final prediction 
period. Please note that these coefficients update each month and should be interpreted with care. 
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Appendix 6. Cross-Validated Hyperparameters 

Model Hyperparameter Value Description 

    

Ridge Lambda*, 𝜆 5.5 Constant that multiplies the penalty term*. 
    

Lasso Lambda, 𝜆 1.25 Constant that multiplies the penalty term. 
    

Elastic Net 

Lambda, 𝜆1 + 𝜆2 3.1 Constant that multiplies the penalty terms. 

Alpha, 𝛼 0.41 

The elastic net mixing parameter, with 0 <= 𝛼 <= 1. For 𝛼 = 
0 the penalty is a ridge penalty. For 𝛼 = 1 it is a lasso 
penalty. For 0 < 𝛼 < 1, the penalty is a combination of lasso 
and ridge. 

    

K-Nearest 
Neighbors 

N-Neighbors 12 Number of neighbors to use for k-neighbors queries. 

Weights Uniform All points in each neighborhood are weighted equally. 
    

Regression 
Trees 

Splitter Best 
The strategy used to choose the split at each node. The 
'Best' strategy chooses the best split in terms of MSE. 

Max Leaf Nodes 3 
Max leaf nodes that a tree can reach by choosing the best 
split. 

    

Random 
Forests  

Max Depth 2 The maximum depth of each tree. 

Max Features 3 
The number of features to consider when looking for the 
best split. 

N-Estimators 30 The number of trees in the random forest. 

Min Samples Split 0.0001 
The minimum number of samples required to split an 
internal node. 

   

Light GBM 

Learning Rate 0.001 Controls the learning rate in the boosting process. 

Max Depth 3 Maximum tree depth for base learners. 

N-Estimators 160 Number of boosted trees to fit. 

N-Leaves 2 Maximum tree leaves for base learners. 
    

ANN 

Hidden Layer Size (200, 200) The number of neurons in the hidden layers respectively. 

Learning Rate 0.001 
The initial learning rate. It controls the step-size in 
adjusting the weights. 

Tol 1.00E-04 Tolerance for the optimization 

Max Iterations 88 
Maximum number of iterations that solver iterates until. 
This determines the number of epochs (how many times 
each data point will be used). 

N-Iterations to change 25 Maximum number of epochs.  
    

Notes: The table presents the values of the optimized hyperparameters for each model. Ridge, lasso and elastic net 
(“ENet”) are the penalized linear regressions applied. Light gradient boosting machines (“LGBM”), K-nearest-
neighbors (“KNN”), regression trees (“RT”), random forest (“RF”), and artificial neural networks (“ANN”) are the 
non-linear methods applied. * This is an alternative way of stating the value of 𝜆, not to be interpreted as the constant 

described in Equation 11 of this paper. 
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