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Abstract

In this paper we examine whether standard linear regression and machine learning tools can be
used to predict the time series of total returns in excess of the risk-free rate on the S&P500 and
FTSE100 indices. We have virtually no success in predicting monthly returns. However, we
do have some success in predicting annual returns. Fully 78 out of our 132 attempts at annual
return prediction have a positive out-of-sample R2. Furthermore, we find that this translates
to economic gains. We find that in 87 cases, long-only portfolios formed based on our models
have a Sharpe ratio higher than a simple buy-and-hold portfolio. We achieve our best result
when using US data from 1926 to 2019, to predict annual returns, using the random forest
algorithm and a cumulative estimation window. We find that if we use this model to form a
long-short portfolio, we have a Sharpe ratio of 0.996. This set up also has an out-of-sample
R2 of 0.564. We use a Diebold-Mariano test to conclude that this performance, relative to
benchmark predictions equal to the historical mean, is significant on the 1% level.
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1 Introduction

People within the field of finance have long been interested in the question of whether stock returns

are predictable. Within academia this interest is largely driven by curiosity about the process

underlying stock returns in practice and how that squares with theory. Within business the interest

is driven by commercial considerations, if stock returns are predictable there may be opportunities

to make money. Consequently, the last century has seen endless attempts at predicting stock

returns, both by researchers and by asset managers. Lately, these attempts have to an increasing

extent utilized the methods of machine learning.

In this paper, we examine whether we are able to predict stock returns using machine learning

algorithms. We use monthly data from the US and the UK to predict aggregate stock returns on

both a monthly and an annual basis. For the US we try to predict the return on the S&P500 index

and for the UK we use the FTSE100 index. The returns we try to predict are the logarithm of

returns in excess of the risk-free rate.

We use combinations of six different datasets, two return horizons, two training methods and

eleven statistical algorithms, to make a total of 54 384 predictions. Our results are based on these

predictions.

We find that it is hard, but not impossible, to predict returns. In total we make 132 attempts to

predict monthly returns and equally as many to predict annual returns.1 Of these only 13 monthly

forecasts are successful in terms of having a positive out-of-sample R2. Having a positive out-of-

sample R2 means the model makes more accurate predictions than a benchmark consisting of the

historical mean return.

We are more successful when predicting annual returns. Fully 78 attempts are successful in

terms of out-of-sample R2. This discrepancy between annual and monthly prediction is in line with

1In this context, an attempt should not be confused with a prediction. The latter is the outcome of a single forecast
for a single period, the former is what we call the aggregate results of a combination of data, model estimation method
etcetera.
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the literature we have studied. Returns should be easier to predict in the long run, see for instance

Shiller (2013).

We find that our results translate to economic gains. If we average the performance of our

models over different set ups we find that the best performer when it comes to predicting annual

returns is the random forest model. In our results, this model is able to achieve good financial

performance if implemented to form a trading strategy.

We form two different strategies based on the direction of our predictions. One strategy is a

long-only portfolio and the other is a long-short portfolio. The random forest, on average over our

set ups, achieves a long-only Sharpe ratio of 0.79. This compares to a market average over our set

ups of 0.47.

There is a risk that these results are spurious. We fit many models and there is thus a risk

that some of them will perform well due to happenstance. One way in which we address this

is by comparing US results to UK results. We find that we are about as likely to succeed in

predicting returns in the UK as in the US. However, we find the best performing models are not

the same in both countries. This fact increases our concern about “data mining.” However, we

perform significance testing for some of our results and find that several of our successful forecasts

on annual returns hold up using the Diebold-Mariano test.

Finally it is worth putting the results in the context of machine learning versus other methods.

We find that machine learning in general does not succeed in outperforming historical benchmarks

when it comes to predicting monthly returns. We do however find that this is the case when it

comes to annual returns. Furthermore, we find that non-linear models are more successful than

linear models when it comes to predicting annual returns.

We structure the rest of the paper in the following way. Section two gives a brief overview

of relevant literature. Section three lays out what data we have used. Section four contains a

presentation of the method we used to arrive at our results. Section five contains our main results.

Section six concludes.
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2 Literature review

The finance literature contains volumes of research into the question of whether stock returns are

predictable, and if so, how to best predict them. Attempts to formalize the theory around stock

price movements can be traced back at least a century to when C. H. Dow posited that dividend

ratios could help make predictions and that short-term price fluctuations were likely to reverse in

the medium term (Dow and Selden, 1920). Dividend ratios are still a common tool discussed in

the literature on return prediction.

In this section we provide a brief overview of relevant research and we split it into four parts.

First, what the theory says about aggregate stock market predictability. Second, the history of

empirical research into the question of aggregate stock market predictability. Third, the entry of

machine learning into the field of stock market prediction. Fourth, a summary of how we hope to

contribute to this literature.

2.1 Theory

In 1970, Euguene Fama published his seminal paper Efficient Capital Markets: A Review of Theory

and Empirical Work. In it, he puts forth three forms of efficiency in financial markets, a framework

still used today. First, weak efficiency, prices only reflect historical information implying that

returns cannot be predicted from for example historical prices. Second, semi-strong efficiency,

prices reflect all currently available public information implying that returns cannot be predicted

from any information openly available at the time of prediction. Third, strong efficiency, this

is similar to the semi-strong form apart from that it also includes private information making it

virtually impossible to predict returns at all (Fama, 1970).

The thinking goes that competition among profit seeking rational agents should drive the price

of an asset to equal the present value of its future cash flows. In response to new information

becoming available this process should happen near instantaneously. To quote the great Robert
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Shiller “As the theory went, because they are rationally determined, they are changed from day

to day primarily by genuine news, which is by its very nature essentially unforecastable” (Shiller,

2013).

Since the initial days of efficient market theory, finance has evolved as a field. In 1981, Shiller

published an influential paper. In it he noted that if stock prices are to reflect the present values

of their cash flows, essentially their dividends, stock prices should probably vary less than realized

dividends. This is however not the case. In a graph that has become rather famous, at least so

far as graphs from economics papers can be famous, he illustrated that the price of the US stock

market has fluctuated more than what he called the rational ex-post price based on its dividends

(Shiller, 1981).

Since then, several attempts have been made at explaining why expected returns vary over

time. One example is the habit model suggested by Campbell and Cochrane (1999). In brief, they

posit that the incorporation of fluctuations in consumption level may explain variations in stock

prices. However, Shiller (2013) points out that this model has also failed in providing a conclusive

explanation of aggregate movements in stock prices.

2.2 Empirical evidence

For the purpose of our paper, the theory behind whether, how and why stock returns may or may

not be predictable is of limited interest. These are important subjects and in a perfect world we

would delve into them as well. However, this is primarily an empirical paper and we are concerned

with two main questions, are aggregate stock returns predictable, and if so, are they predictable

enough to allow for superior returns to be achieved.

We are of course not the first to concern ourselves with this question. The fourth issue of

the 21st volume of the Review of Financial Studies can be considered a special edition on return

predictability. Going over all the papers in detail would be unnecessary, but to illustrate the

disagreement still existent in the field, two papers should be mentioned.
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The first one is The Dog that did not Bark: A Defense of Return Predictability by Cochrane.

He reiterates that if returns are not predictable then dividend growth must be and vice versa. He

goes on to argue that it is returns that are predictable. He does this partly by regressing long-term

returns on dividend-to-price ratios with the result being statistically and economically significant

coefficients (Cochrane, 2008).

The other one is A Comprehensive Look at the Empirical Performance of Equity Premium

Prediction by Welch and Goyal. They take a broader approach examining the out-of-sample per-

formance of a vast number of models suggested during the prior decades. They come to the con-

clusion that most of these models perform poorly out-of-sample and that they are volatile (Welch

and Goyal, 2008).

In light of these disagreements it is worth pointing out that there is some agreement on that, if

returns are predictable, returns are probably more predictable in the long-term (Shiller, 2013).

2.3 Machine learning

Machine learning applies algorithms to data to detect patterns and make predictions. A common

feature is that the model is continuously updated as new data is gathered. In recent years there has

been a surge in interest in these techniques as computing power and the amount of data available

has increased (James et al., n.d.).

In recent years, these methods have been garnering more interest in the field of finance. In

particular, they have been hypothesized to be able to make gains when it comes to predicting stock

returns, both with regard to the cross section and in the aggregate. There are several reasons for

this. One is that even simple machine learning methods make use of tuning of parameters which

allows for more sophisticated learning processes compared to just simple iterative linear regression.

Furthermore, many models allow for weaker assumptions when it comes to the form of the data

generating process of the target variable. This is probably more in line with the complex process

underlying the equity risk premium (Gu, Kelly, and Xiu, 2020).
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The verdict on machine learning methods in predicting asset returns has so far not been con-

clusive. Several papers do however find that machine learning can significantly improve upon more

traditional models. For instance, Freyberger, Neuhierl, and Weber (2020) are able to produce an

out-of-sample Sharpe ratio of 2.75 when predicting the cross section of returns compared to 1.06 for

a simple linear model. Furthermore Gu, Kelly, and Xiu (2020) are able to produce a Sharpe ratio of

0.77 when predicting aggregate returns. Their best result is achieved with a neural network model

and they hypothesize that this is because these models are good at picking up subtle non-linear

relationships. This is supported by the findings of Feng, He, and Polson (2018) who achieve their

best results with deep learning models.

2.4 Our contributions

To summarize, the theory says that stock returns should be hard to predict. Nevertheless, in the

literature there is an abundance of papers that manage to predict stock returns. However, these

results have been disputed as spurious by subsequent papers. Recently, researchers have tried to

improve upon models for predicting stock returns by implementing machine learning algorithms.

The results have so far been somewhat promising, especially for deep learning and neural networks.

In light of this, we would like to contribute to the field in the following three ways. First, follow

in the footsteps of researchers before us by applying machine learning algorithms to more recent

US data. Second, try to replicate these results with UK data, thus trying to determine whether the

results are spurious. Third, we use iterative tuning of hyperparameters hoping to achieve better

results.
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3 Data

Throughout the paper we use six different datasets described briefly below.

First, the dataset we would simply like to call “US data, full sample.” This is our largest

dataset; it spans from December 1926 until November 2019 and contains sixteen variables of US

data described in more detail later on.

Second, a dataset we refer to as “US data, VRP subsample.” This dataset contains the same

variables as US data with the addition of the predictor VRP. It spans from January 1990 to

November 2019.

Third, a dataset we refer to as “US data, VRP subsample excluding the VRP.” This spans the

same exact time period as the second dataset but only contains the same variables as the first

dataset.

Fourth, “UK data, full sample.” It spans from February 1998 to January 2021 and contains

some 12 variables of UK data described in more detail later on.

Fifth, a dataset we refer to as “UK data, VRP subsample.” This dataset contains the same

variables as UK data with the addition of the predictor VRP. It spans from January 2000 to

December 2019.

Sixth, a dataset we refer to as “UK data, VRP subsample excluding the VRP.” This spans the

same exact time period as the fifth dataset but only contains the same variables as the fourth

dataset.

The variables of the aforementioned datasets are now laid out in more detail by country.
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3.1 US data

Here we describe how we calculated the variables we used to arrive at our results for the US data.

Unless otherwise specified the source of the data is the updated version of the dataset used by

Welch and Goyal in their 2008 paper. The dataset contains monthly observations of the S&P500

index, its return and accompanying variables (Goyal, n.d.).

When calculating our predictor variables we have also largely followed the approach suggested

by Welch and Goyal (2008).

3.1.1 Variable “period”

This variable contains exactly the information that can be expected from its name. It is simply

the year and the month to which the predictors and the target variables are attributable.

3.1.2 Variable “dp”

This variable contains the dividend to price ratio prevailing at the time of the observation. We

calculate it as follows:

dpt = log (Dt)− log (Indext) (1)

In this equation D is the twelve-month moving sum of dividends and Index is the level of the

S&P500 index.

10



3.1.3 Variable “dy”

This variable describes the dividend yield an investor would have received if they invested twelve

months prior. We calculate it in the following way:

dyt = log (Dt)− log (Indext−12) (2)

In this equation D is the twelve-month moving sum of dividends and Index is the level of the

S&P500 index.

3.1.4 Variable “ep”

The variable ep describes the ratio between earnings per share and the price per share. When

calculating it we take the following approach:

ept = log (Et)− log (Indext) (3)

In this case E is the twelve-month moving sum of earnings and Index is the level of the S&P500

index.

3.1.5 Variable “de”

This variable describes the dividend payout ratio, the degree to which earnings are returned to

shareholders in the form of dividends. We calculate it as follows:

det = log (Dt)− log (Et) (4)

In this case E is the twelve-month moving sum of earnings and D is the twelve-month moving sum

of dividends.
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3.1.6 Variable “svar”

The variable svar represents the volatility of the S&P500 index and is the sum of squared daily

returns. We do no calculations of our own here, the variable is readily available in the dataset.

3.1.7 Variable “bm”

This variable describes the book-to-market ratio of the Dow Jones Industrial Average. We do no

calculations of our own here, the variable is readily available in the dataset.

3.1.8 Variable “ntis”

The variable ntis is a measure of the issuing activity of corporations in the US. A higher value

means more equity issuing activity relative to the market capitalization of firms listed on the New

York Stock Exchange and vice versa. We do no calculation of our own here, the variable is readily

available in the original dataset.

3.1.9 Variable “tbl”

This variable describes the rate at which the government can conduct its short-term borrowing

activity. It is based on the historical rates for US Treasury Bills with different short maturities.

Here we do no calculations of our own.

3.1.10 Variable “ltr”

This variable describes the long-term rate of total return on long-term US government bonds. Here

we do no calculations of our own. Welch and Goyal retrieve the numbers from Stocks, Bonds, Bills

and Inflation (Ibbotson and Harrington, 2020).
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3.1.11 Variable “tms”

The variable tms is a measure of the term spread on US government bonds, that is the difference

between the yield on long-term and short-term government bonds. We calculate it in the following

way:

tmst = ltyt − tblt (5)

Here lty is the yield on long-term US government securities, based on different maturities over time

and we calculate tbl as above.

3.1.12 Variable “dfy”

This variable describes the default yield spread, the difference between the yield on highly rated

corporate bonds and lower rated corporate bonds. We use the following formula to calculate it:

dfyt = BAAt −AAAt (6)

Here BAA is the yield on corporate bonds rated BAA and similar for AAA.

3.1.13 Variable “dfr”

The variable dfr is a measure of the default return spread. It is the difference between the long-term

total return on corporate bonds and government bonds. When calculating it, we take the following

approach:

dfrt = corprt − ltrt (7)

Here we calculate ltr as described earlier and corpr is a similar measure for corporate bonds. Both

are readily available in the dataset.
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3.1.14 Variable “infl”

This variable describes the latest published, not seasonally adjusted, inflation rate according to the

urban consumer price index. Here we do no calculations of our own, the variable is readily available

in the original dataset.

3.1.15 Variable “vrp”

This variable describes the variance risk premium. The variance risk premium is the difference

between the volatility implied by option prices and the actual realized volatility. It is defined as

follows:

vrpt = IVt −RVt (8)

In this equation IV is the end of month value of the VIX index squared and then divided by twelve.

RV is the sum of squared five-minute log return for the S&P500. We get this data readily prepared

from Zhou (n.d.).

3.1.16 Variable “log.mo.ex.ret”

This is our target variable when we predict monthly returns. We calculate it as follows:

log.mo.ex.ret = log (1 + CRSP.SPvwt+1 −Rfreet+1) (9)

Here CRSP.SPvw is the value weighted total return for the S&P500. Rfree is the risk-free rate

which is just the variable tbl divided by 12.
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3.1.17 Variable “log.ye.ex.ret”

This is our target variable when we predict annual returns. We take the following approach to

calculating it:

log.ye.ex.ret = log
(
tot.idxt+12
tot.idxt

− tblt
)

(10)

Here tbl is the variable we have already mentioned and tot.idx is a total return index we calculate

based on the CRSP.SPvw variable.

3.2 UK data

In this section we describe how we arrive at the variables in the UK data. Our methods are similar

to those for the US data but different in that we use fewer variables and that we have collected the

raw data ourselves.

3.2.1 Variable “period”

This variable contains exactly the information that can be expected from its name. It is simply

the year and the month to which the predictors and the target variables are attributable.

3.2.2 Variable “dp”

This variable contains the dividend to price ratio prevailing at the time of the observation. We

calculate it in the following way:

dpt = log (Dt)− log (p.idxt) (11)

In this equation D is the dividend level at the time and p.idx is the level of the FTSE100 price

index. We retrieve the price index directly from Datastream. We calculate the dividend level based
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on the dividend yield, retrieved from Datastream, in the following way.

Dt = dt ∗ p.idx (12)

Where d is the current dividend to price ratio of the FTSE100 and p.idx is the level of the FTSE100

index. We retrieve both of these from Datastream.

3.2.3 Variable “dy”

The variable dy is the dividend yield an investor would have received if they invested twelve months

prior. We use the following approach when calculating it:

dyt = log (Dt)− log (p.idxt−12) (13)

In this equation D is the dividend level at the time and p.idx is the level of the FTSE100 price

index.

3.2.4 Variable “de”

This variable describes the dividend payout ratio, the degree to which earnings are returned to

shareholders in the form of dividends. We calculate it in the following way:

det = log (Dt)− log (Et) (14)

In this equationD is the dividend level at the time and E is the earnings level of the FTSE100 index.

We calculate the earnings level based on the price-to-earnings ratio, retrieved from Datastream, in

the following way.

Et = 1
pe
∗ p.idx (15)
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Where pe is the current price to earnings ratio of the FTSE100 and p.idx is the level of the FTSE100

index. We retrieve both of these from Datastream.

3.2.5 Variable “ep”

The variable ep describes the earnings to price ratio and we calculate it in the following way.

ept = log (Et)− log (p.idxt) (16)

Where the constituent parts are calculated and retrieved as described above.

3.2.6 Variable “svar”

This variable describes the volatility of the FTSE 100 and is the sum of squared daily returns. The

daily returns are calculated by dividing the total return index of one day with that of the previous

day. We retrieve the total return index from Datastream.

3.2.7 Variable “tbl”

This variable describes the yield on short-term government bonds. For this we use the one-year

rate if that is available, otherwise we use the six-month rate and if even that is not available we

use the 18-month rate. We retrieve yields on government bonds from the Bank of England (n.d.).
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3.2.8 Variable “tms”

This variable describes the term spread, the difference between long-term and short-term yields on

UK government bonds. We calculate it in the following way:

tmst = ltyt − tblt (17)

For lty we use the 20-year rate if that is available, otherwise we use the 19-year rate and if even

that is not available we use the 15-year rate. We retrieve yields on government bonds from the

Bank of England (n.d.).

3.2.9 Variable “dfy”

This variable describes the default yield spread, the difference between the yield on triple A rated

corporate bonds and bonds rated BAA. We take the following approach when calculating it.

dfyt = BAAt −AAAt (18)

For BAA we use the yield on the “S&P UK BBB IG CORP BOND INDEX” and for AAA we use

the yield on the “S&P UK AAA IG CORP BOND INDEX.”2 We retrieve both from Datastream.

3.2.10 Variable “infl”

This variable describes the latest published, not seasonally adjusted, inflation rate. We calculate

this as the one month percentage increase in the retail price index (Office of National Statistics,

n.d.).

2BBB corresponds to BAA depending on ratings system.
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3.2.11 Variable “vrp”

This variable describes the variance risk premium. The variance risk premium is the difference

between the volatility implied by option prices and the actual realized volatility. We use the

following formula when calculating it.

vrpt = IVt −RVt (19)

In this equation IV is the end of month value of the FTSE100 Implied Volatility Index squared and

then divided by twelve (FTSE-Russell, 2021). Furthermore, the RV is calculated as the monthly

sum of squared log five-minute returns added to the sum of squared log close-to-open returns, all

this multiplied by 10 000. The input numbers were provided by our excellent tutor Tobias Sichert,

Assistant Professor at the Department of Finance, Stockholm School of Economics (Sichert, 2021).

3.2.12 Variable “log.mo.ex.ret”

This is our target variable when we predict monthly returns. We calculate it as follows:

log.mo.ex.ret = log
(
tot.idxt+1
tot.idxt

−Rfreet

)
(20)

Here tot.idx is the total return index for the FTSE100. Rfree is the risk-free rate which is just the

variable tbl divided by 12.

3.2.13 Variable “log.ye.ex.ret”

This is our target variable when we predict annual returns. We use the following approach when

calculating it.

log.ye.ex.ret = log
(
tot.idxt+12
tot.idxt

− tblt
)

(21)
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4 Method

In this section we describe the method used to arrive at our results. We split it into three parts.

First, a description of our approach in general. Second, going deeper into the individual algorithms

used for prediction. Third, a description of the performance measures we use to evaluate our results.

4.1 General approach

We perform time series prediction of aggregate stock returns in the United States and in the United

Kingdom. In making these predictions we use the datasets described in the “data” section of the

paper. The returns we predict are the total returns in excess of the risk-free rate for the S&P500

and the FTSE100 indices respectively.

In all, we make 54 384 predictions. Each prediction consists of a choice of dataset, model, return

horizon, estimation method and estimation window. As our six different datasets have already been

discussed in length, we will omit further description of them from this section. The other choices

will be described briefly.

First, we make use of eleven different models to predict returns. These will be discussed further

later on in the methods section. The models are (our short names for them within parenthesis);

ordinary least squares (OLS), partial least squares (PLS), least absolute shrinkage and selection

operator (Lasso), ridge regression (Ridge), elastic net (ElasticNet), principal component regression

(PCR), linear support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF),

single-layer neural network (NN), three-layer deep neural network (DL1) and historical average

(Hist).

Second, we predict returns over two different horizons, monthly returns and annual returns. In

both cases, predictions are made monthly, that is, annual returns are also predicted every month.

Third, estimation method and estimation window. We use two different kinds of estimation
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methods, rolling window and cumulative window. In the first case, we use a fixed number of

months to fit our model. When we have done our prediction and move one month forward, both

the starting month and end month of the estimation window increase by one. The length of this

window depends on the dataset being used. The lengths in months are; US data (600), US data

VRP subsample (180), US data VRP subsample excluding the VRP (180), UK data (120), UK

data VRP subsample (120) and UK data VRP subsample excluding the VRP (120).

The second kind of estimation method, cumulative window, is similar to that of the rolling

window. The first model fitting is done with a window of equal length to that done with a rolling

window. The difference is then that for every month we step forward, the starting month is kept

constant whereas the end month is increased by one. Thus, the cumulative window grows as we

move forward in time.

We will now move on to describing the fitting process in more detail.

4.2 Models fitted

In this section, we will describe the theoretical foundations of our models as well as our practical

implementation of them. Before diving into the specific models though, we want to make some

general points.

First, our models can roughly be divided into three groups; benchmark models, penalized linear

models and non-linear models. The benchmark models are Hist and OLS. These are basic models

with no machine learning and no tuning. They are included for comparison.

The penalized linear models are; PLS, PCR, Lasso, Ridge, ElasticNet and SVM. Penalized linear

models work by adding what is called a regularization or penalty term to the original loss function

of the OLS model. This addition is made to counteract overfitting. Gu, Kelly, and Xiu (2020)

describe that the problem of overfitting increases with the number of independent variables used,

because it starts to fit more noise to the model. The idea behind the penalization term is that it
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will decrease the degree to which the regression model is fitted to noise, making it an important

addition to evaluate.

The remaining models are the non-linear ones; RF, KNN, NN and DL1. The purpose of testing

these kinds of models are to see if the ability to pick up more subtle and complex relationships in

the data can improve predictions.

Second, for all models except DL1 and Hist we use a process of iterative tuning of our models

implemented via the Caret package available for R (Kuhn, 2020). This means that for each predic-

tion we make, we refit our model from scratch and tune its hyperparameters. This is done using

time series cross validation in which the model is fitted to a continuous window corresponding to

80% of the training dataset and then deployed on the following twelve observations.3 This is then

repeated with a fixed size window as many times as the training data allows. The hyperparameters

that minimize root mean square error are then used.

Third, for all models except Hist, OLS, PLS and RF we preprocess the data by centering and

scaling it.

Fourth, when we deploy our models we of course always do it out-of-sample. The predictions

are of course made on the observation following the end of our estimation window.

We will now go over the models we use and describe their theoretical foundations and our

practical implementation.

4.2.1 OLS

The most basic model we use to predict index returns is OLS, ordinary least squares. It is a linear

regression on the form:

ŷ = β̂0 + β̂1 ∗ x1 + ...+ β̂k ∗ xk (22)

3Note, this is only in the tuning process. When we make our predictions they are always one month at a turn if
we predict monthly returns. They are always a twelve-month return if we predict annual returns.
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Where β̂k is the estimate of βk and the estimates are obtained by minimizing the sum of squared

residuals. That is, minimize the following expression:

n∑
i=1

(ŷi − yi)2 (23)

This is done for n observations of y (Woolridge, 2016, pp. 60–105).

In implementing OLS we use the base R package (R Core Team, 2021). Only one tuning

parameter exists for OLS, whether to use an intercept or not. We always use an intercept and thus

no tuning takes place.

4.2.2 PLS and PCR

Partial least squares, or PLS, is a dimension reduction method. It uses the independent variables

to create a new set of variables that are linear combinations of the original ones. It then fits a

linear model via least squares using these variables. PLS is a supervised learning method, which

means it takes advantage of knowing the target variable during the dimension reduction (James et

al., n.d., pp. 203–259).

Principal component regression, or PCR, reduces overfitting by constructing M principal com-

ponents, and then using least squares to fit a linear regression model with these components as

predictors. The components are derived using principal component analysis, or PCA, which is a

dimension reduction technique that seeks the components which makes the observations vary the

most. PCR is similar to PLS, but unlike PLS, PCR is an unsupervised method which means it does

not take the target variable into consideration when performing dimensionality reduction (James

et al., n.d., pp. 203–259, 373–413).

Both PLS and PCR have the same single tuning parameter, ncomp, deciding how many pre-

dictors to include when making predictions. We tune over all possible values for ncomp, from

including only one predictor to including all predictors. For both models we use the package “pls”
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in R (Mevik, Wehrens, and Liland, 2020).

4.2.3 Lasso, Ridge and ElasticNet

Lasso, ridge and elastic net are three algorithms that closely resemble each other, and we thus

discuss them together. Ridge regression penalizes the size of the regression coefficients. This

shrinks the coefficients which reduces the degree to which the model is fit to the noise. This is

especially true when the coefficients are highly correlated. Specifically, ridge regression models are

penalized for the sum of squared residuals (Hastie, Tibshirani, and Friedman, 2017, pp. 61–73).

Lasso, or least absolute shrinkage and selection operator, is similar to ridge. However, it differs

in that it penalizes the model for the sum of absolute residuals, rather than sum of squared residuals.

It also has the feature that it not only shrinks coefficients, but also sets some coefficients to zero.

Hence, it also works as a subset selector (Tibshirani, 1996).

Lasso has the drawback of being somewhat indifferent in the choice between two or more vari-

ables that are strongly correlated. Ridge, contrarily, has a tendency to shrink the coefficients of

correlated variables such that they converge towards each other (Hastie, Tibshirani, and Friedman,

2017, pp. 661–666). Zou and Hastie (2005) propose a combination of these two methods, the

elastic net. It tries to get the best out of both penalization methods without suffering from the

same drawbacks. This is done via the α term of the model which can take on a value from zero

to one. In the extremes, this would mean that elastic net is just ridge or lasso (Hastie, Tibshirani,

and Friedman, 2017, pp. 661–666).

In training these three models we use the Glmnet package available for R (Friedman, 2010).

This allows for two tuning parameters, lambda and alpha. As previously mentioned, alpha should

be constant for Ridge and Lasso. For these two we only tune over different lambdas; 0, 0.0001,

0.001, 0.01 and 0.1. For ElasticNet we also tune over different alphas; 0.05, 0.1, 0.35, 0.5, 0.65, 0.9,

0.95. In this case, all the interactions between different alphas and lambdas are tried.
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4.2.4 SVM

Support vector machines, or SVM, is a method that was originally used for classification problems.

It works by fitting the optimal hyperplane in the case when different classes cannot be separated

by a linear boundary. This method can be expanded upon to be applicable for regression. The

model then fits a hyperplane like in ordinary SVM and finds an error term ε. The hyperplane ±ε

essentially creates a boundary line, within which those values with a sufficiently small error are

used for a regression (Hastie, Tibshirani, and Friedman, 2017, pp. 423–438).

In implementing SVM we use the Kernlab package available for R (Karatzoglou et al., 2004).

The model only has one tuning parameter, the argument C. This is the cost of constraints violation

used in the Lagrange formulation. The default value is 1 and for feasibility reasons this is the only

value we use. No tuning thus takes place.

4.2.5 RF

Random forest, or RF, is a method that builds upon the idea of decision trees. There are two

types of decision trees, classification trees and regression trees. We use regression trees for our

predictions. A regression tree splits the data into branches based on the value of a certain variable,

and continues these splits until it reaches the end nodes, or leaves. The number given for each leaf

is then the average of the values that end up in that particular leaf. A drawback with decision trees

is that they suffer from high variance in their predictions. Bagging is a method of reducing this

variance, by averaging a number of observations. However, the gains from bagging are reduced if

the bagged trees are highly correlated. Random forest tries to mitigate this issue by “decorrelating”

the bagged trees. This is done by restricting each split to only consider a subset of the predictors,

which prevents the most important predictor from being highly overrepresented (James et al., n.d.,

pp. 303–332).

When implementing RF we use the package “randomForest” (Liaw and Wiener, 2002). RF only

has one tuning parameter, mtry which describes the number of variables to try at each split of the
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tree. We try three different values mtry and let Caret choose these for us. In addition, we have to

manually limit the number of trees to fit each time due to limited computing power. We set the

number of trees to 40 which should be enough considering the limited size of our dataset.

4.2.6 KNN

K-nearest-neighbors, or KNN, is based on the idea that the best prediction of yi is determined by

the values for y of the observations closest to i. In mathematical terms, closeness is determined by

the least Euclidean distance based on the predictor variables. The number K determines how many

of the closest values the algorithm should consider when making its prediction. It then averages

the y-values for the K nearest neighbors and uses that as its estimate for yi (Hastie, Tibshirani,

and Friedman, 2017, pp. 14–15).

In implementing KNN we use the base R package (R Core Team, 2021). KNN only has one

tuning parameter, K. This describes the number of closest neighbors to use for prediction. We try

five different values and let Caret choose these for us.

4.2.7 NN

Our neural network model, or NN, is a generic one-layer neural network. Shallow one hidden layer

networks can be seen as a special case of deep neural networks, but with just one hidden layer

(Poggio et al., 2017). The more hidden layers in a neural network, the deeper the network is. In

terms of applying deep learning for asset pricing, the model creates non-linear hidden factors in the

hidden layers, and uses these factors, as well as the base variables, to minimize the loss function

(Feng, He, and Polson, 2018).

In implementing NN we use the package “nnet” (Venables and Ripley, 2002). This allows for

two tuning parameters, size and decay. Size determines the number of neurons in the single layer

network and decay determines the rate at which the network decays in between. Once again we let
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Caret choose three values for each of these and then tune over all their interactions.

We manually have to specify the number of maximum iterations and maximum number of

weights. Once again, this is for computational reasons. We set them to 50 and 500 respectively.

4.2.8 DL1

Our deep learning model, or DL1, is the model in which we have applied the largest degree of

manual tuning. Taking inspiration from Feng, He, and Polson (2018), we build a three hidden layer

deep neural network model with 32 neurons in the first hidden layer, 16 neurons in the second

hidden layer, and 8 neurons in the third hidden layer. Like Feng, He and Polson, we use the

Stochastic Gradient Descent algorithm (SGD) to minimize the loss function of our variables and

factors. However, unlike theirs, our deep learning model is not built as a Long-Short-Term-Memory

(LSTM) model.4

SGD is the most efficient algorithm for training artificial neural networks, and uses gradients, or

vectors of partial derivatives of the target function with respect to the input variables, in order to

minimize the loss function. These gradients are calculated via a method called back-propagation,

which is an automatic differentiation algorithm that calculates the gradient of a loss function

(Brownlee, n.d.). The simplest way to visualize this is to imagine that back-propagation calculates

the multidimensional direction to take a step, and SGD decides the length of the step and takes it.

In terms of hyperparameters for the DL1 model, we manually tune the learning rate, epochs,

momentum and decay. The learning rate hyperparameter is rather intuitive, it is a measure of

how fast a model learns from the data, or in technical terms, how fast the model is adapted to the

problem and converges towards a solution. An epoch or training epoch is one run of the model

through the entire training dataset. More epochs mean that the model run through and train on

the data more times. A higher epoch count typically tends to be paired with a lower learning rate,

4LSTM provides a way for a neural network to remove irrelevant information from past time steps and add
relevant information from the current time step (Feng, He, and Polson, 2018).
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and vice versa (Hastie, Tibshirani, and Friedman, 2017, pp. 389–415).

A common issue with using gradient descent to minimize the error function for a given learning

objective is that the minimum can end up in a narrow valley. In those cases, following the gradient

direction can cause large oscillations in the search process. One way to counteract this is to

add a momentum term. Instead of simply following the current calculated gradient, the use of

momentum adds a portion of the previous gradient direction and calculates a weighted average of

these two terms. The learning rate is commonly tuned in conjunction with the momentum, and

the tuning of these hyperparameters is typically done by trial and error or a random search. The

optimal hyperparameters are dependent on the task at hand, and therefore there is no one general

approach to handle the tuning of the hyperparameters (Rojas, 1996, pp. 186–187).

Decay, or weight decay, is a method similar to ridge but for neural networks. It aims to reduce

overfitting by adding a penalization term. A larger decay value corresponds to a larger penalization

(Hastie, Tibshirani, and Friedman, 2017, pp. 389–415).

Our DL model is not fitted using our usual Caret approach. Instead, we use Keras (Allaire and

Chollet, 2021) and Tensorflow (Allaire and Tang, 2021). This means that we have to manually

choose our hyperparameters. The parameters are set to a learning rate of 0.125, a momentum of

0, decay of 0.1 and number of epochs of 125. Even though the hyperparameters are not iteratively

tuned, we still retrain the model for each prediction.

4.2.9 Hist

This model simply predicts that the return in a given period will be equal to the historical arithmetic

average so far. It is used as a benchmark.
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4.3 Performance measures

When measuring the performance of our models we do it in primarily three ways. The root mean

square error, out-of-sample R2 and Sharpe ratio. Below we explain each of these in turn.

4.3.1 Root mean square error

Root mean square error, or RMSE, is a performance metric that describes the out-of-sample pre-

diction errors of the model compared to the observed value. We use the following approach when

calculating it (Hyndman and Koehler, 2006):

RMSE =

√√√√ 1
T

T∑
t=1

( ̂log.ex.rett − log.ex.rett)2 (24)

In this equation log.ex.ret is the target variable and T is the number of observations.

The root mean square error, or RMSE, can be thought of as the average deviation of predictions

from the actual value.

4.3.2 Out-of-sample R2

This performance metric describes the accuracy of our models compared to a benchmark of historical

returns. A value below zero means the model performs worse than the historical average and a

value above zero means it is better than the historical average. It can never be larger than one.

We use the following approach when calculating it (Feng, He, and Polson, 2018):

OOSR2 = 1−
∑T

t=1(log.ex.rett − ̂log.ex.rett)2∑T
t=1(log.ex.rett − log.ex.rett)2

(25)

In this equation log.ex.ret is the target variable and T is the number of observations.
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4.3.3 Returns

We use our predictions to form two kinds of portfolios in each setting. One portfolio is a long-

only strategy that invests when we predict positive excess returns and otherwise stays out of the

market. The other is a long-short strategy that also invests when we predict positive excess returns.

However, in the case of this portfolio we go short the excess return whenever we predict it to be

negative.

For monthly returns this approach is straight forward. Every month we make predictions

and the realized return for that month is dependent on the strategy. For annual returns it is

less straightforward however. In this case we still make predictions every month but from the

perspective of an investment strategy it would not make sense to predict annual returns but still

re-weight the portfolio every month. In this case we re-balance the portfolio once per year with our

first investment occasion being the first for which we have a prediction. We then hold the position

the strategy recommended for twelve months before rebalancing.

For the purpose of calculating Sharpe ratios, we use log returns. When computing cumulative

returns we use non-log returns.

4.3.4 Sharpe ratio

Sharpe ratio is a measure of risk-adjusted excess returns. The purpose is to offer a way of penalizing

portfolios that achieve high returns but that are risky. We use the following simple approach when

calculating it (Lo, 2002):

SR = rep

σp
(26)

In this equation rep is the arithmetic average of the log excess return of the portfolio and σp is the

volatility of the excess return of the portfolio.

This equation requires no adjustment when looking at annual returns but for monthly returns
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the numbers have to be annualized for a comparison to be possible. It is convention to quote Sharpe

ratios in annual terms rather than monthly. We use a simple way of annualizing returns per the

below:

SR =
√

12 ∗ rep

σp
(27)

This approach to annualization has been criticized by for instance Lo (2002). However, it is still

a widely used standard and even Lo points out that if the returns are not too high and roughly

independent and identically distributed, the standard approach works reasonably well. Lo further

argues that when the arithmetic average is used for calculating the average return, then log returns

should be used.

4.3.5 Diebold-Mariano test statistic

The Diebold-Mariano test statistic is a method used to evaluate whether the difference between

the prediction errors of two forecasts are statistically significant. The definition of this test involves

some tedious algebra outside the scope of this paper. We however want to briefly state that we

follow the definition laid out in the article in which the test was originally proposed (Diebold and

Mariano, 1995) and that our implementation uses the “forecast” package in R (Hyndman and

Khandakar, 2008).
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5 Main results

In this thesis we implement time series prediction for the S&P500 and FTSE100 indices and in

this section we present our findings. It is divided into four subsections. First, we present the

overall results. Second, we present some differences between results for the US and the UK and

their implications. Third, we present our results with respect to the addition of the variance risk

premium as a predictor. Fourth, we test the statistical significance of some of our predictions.

It is worth noting that the goal of this paper is prediction, not inference. We will thus not go

into depth concerning which variables give our models predictive power. Rather, we will focus on

the overall results as to whether prediction is possible at all.

For a more detailed and comprehensive overview of our results, please refer to the appendix.

5.1 Overall results

In this paper we use monthly data from the US and the UK to predict aggregate stock returns

on both a monthly and an annual basis. For the US we try to predict the return on the S&P500

index and for the UK we use the FTSE100 index. Using combinations of six different datasets, two

return horizons, two training methods and ten statistical algorithms, we make a total of 54 384

predictions. It is these predictions that our results are based on.

Our results confirm that aggregate stock returns are hard to predict. Out of a total of 132

attempts to predict monthly returns only 13 have a positive out-of-sample R2, meaning that the

predictions perform better than a benchmark consisting of the historical average.5 Furthermore,

only 64 of the long-only portfolios formed have a Sharpe ratio higher than a benchmark of a simple

buy-and-hold portfolio. The corresponding number when it comes to long-short portfolios is 36.

5In this context, an attempt refers to a combination of model, dataset, training method and return horizon. It
does not refer to individual predictions.
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Moreover, our results are in line with conventional wisdom in the sense that stock returns are

more predictable over longer horizons. Out of 132 attempts at predicting annual returns, fully

78 have an out-of-sample R2 above zero. In addition, 87 of the long-only portfolios formed have

a Sharpe ratio higher than a benchmark of a simple buy-and-hold portfolio. The corresponding

number when it comes to long-short portfolios is 81.

For comparison we provide the following table in which buying and holding the market portfolio

is provided as a benchmark. More complete results can be found in the appendix.

Table 1: Sharpe ratio of models, US full sample, rolling estimation

Measure Long-only portfolio Long-short portfolio
1. Annual
Median 0.401 0.418
P25 0.346 0.214
P75 0.602 0.563
Market 0.379 0.379

2. Monthly
Median 0.411 0.335
P25 0.401 0.187
P75 0.441 0.361
Market 0.430 0.430

a Table is based on the full US sample with rolling
estimation. The results are based on eleven models
and ’Median’, ’P25’ and ’P75’ indicates the perfor-
mance of the median model, the model in the 25
percentile and the model in the 75th percentile re-
spectively.

b The long-only strategy buys the market portfolio
when positive or zero return is predicted and is oth-
erwise not invested. The long-short strategy buys
when positive or zero return is predicted and oth-
erwise it shorts the market, i.e., generates the neg-
ative value of the realized excess return. Strategies
based on annual prediction re-evaluates once per
year, those based on monthly returns do it every
month. Excess returns are returns in excess of the
risk-free rate.

1 Row panel ’1’ is based on predicting annual returns.
2 Row panel ’2’ is based on predicting monthly re-
turns.

That stock returns are hard to predict does of course not mean that it is impossible to find

examples of models that perform well. For instance, using US data, annual return prediction and
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cumulative estimation, our random forest performs well.
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Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 1

However, there is always the risk of these outperformers being a consequence of “data mining.”

In the course of writing this thesis we have noticed that some models are sensitive to minor adjust-

ments. One example is our neural network. It is the top performer when it comes to predicting

monthly returns with our dataset “US data, VRP subsample” if we use a rolling estimation win-

dow. However, it barely beats the market if we use a cumulative estimation window. This is also

contrary to intuition, if anything it should be the other way around since more data is usually seen

as warranting better predictions.
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Excess returns are returns in excess of the risk−free rate.

Figure 2
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Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 3

There are several possible explanations for this result. In the particular case of Neural Networks,

a contributing factor is that these kinds of models feature a lot of randomness. Small adjustments

in the initial assumptions of the model, coupled with the inherit randomness of its components,

give rise to volatile results. The performance of this model should thus be viewed with caution.

Furthermore, even disregarding the randomness of some models, there is always the risk of

spurious results. In this paper we make use of many models over many different settings and it

would be surprising if we did not find some that outperformed more naive and simple methods.
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However, even considering this, some generalizations seem to be possible. Overall, Ridge seems

to be our best model with regard to predicting monthly returns.6 Over 132 different set ups it

has an average root mean square error of 0.04. Furthermore it has an average out-of-sample R2 of

-0.042. With a long-only investment strategy it has an average Sharpe ratio of 0.59. For a long-

short investment strategy, the corresponding number is 0.55. For comparison, the median numbers

over all set ups and models are 0.043, -0.099, 0.53 and 0.42.

When looking at the results for the annual return predictions, the top performers change. There,

the best model is RF. Over 132 different set ups it has an average root mean square error of 0.094.

Furthermore it has an average out-of-sample R2 of 0.59. With a long-only investment strategy

it has an average Sharpe ratio of 0.79. For a long-short investment strategy, the corresponding

number is also 0.79. For comparison, the median numbers over all set ups and models are 0.14,

0.073, 0.78 and 0.59.

6There is no obvious way to determine which model is the “best.” In this case we have chosen the algorithm that
has the best average ranking across the metrics root mean square error, out-of-sample R2, long-only Sharpe ratio and
long-short Sharpe ratio, over all different set ups.

37



Table 2: Average performance of top three models and benchmarks

RANK MODEL RMSE OOSR2 SR_LO SR_LS
1. Monthly

1 Ridge 0.040 -0.042 0.588 0.554
2 ElasticNet 0.040 -0.037 0.489 0.390
3 Lasso 0.039 -0.019 0.457 0.291

NA Median model 0.043 -0.099 0.526 0.423
NA Hist 0.039 0.000 0.506 0.367
NA Market NA NA 0.520 0.520

2. Annual
1 RF 0.094 0.593 0.788 0.794
2 KNN 0.108 0.467 0.782 0.803
3 NN 0.113 0.390 0.775 0.735

NA Median model 0.136 0.073 0.780 0.592
NA Hist 0.147 0.000 0.427 0.270
NA Market NA NA 0.469 0.469

1 Row panel ’1’ is based on predicting monthly returns.
2 Row panel ’2’ is based on predicting annual returns.
* The long-only strategy buys the market portfolio when posi-
tive or zero return is predicted and is otherwise not invested.
The long-short strategy buys when positive or zero return is
predicted and otherwise it shorts the market, i.e., generates
the negative value of the realized excess return. Strategies
based on annual prediction re-evaluates once per year, those
based on monthly returns do it every month. Excess returns
are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample
R-squared ; SR_LO = Sharpe ratio of long only portfolio ;
SR_LS Sharpe ratio of long-short portfolio

The results in the table above provides another interesting insight. It appears to be the case

that linear models perform better than non-linear models when predicting monthly returns, and

vice versa for annual returns. It is not clear why this is the case, but further investigation may be

warranted.

5.2 US data versus UK data

When considering whether any results are spurious, it is interesting to examine whether results are

replicable in another country. If that is the case, there is some support for the notion that returns

are actually predictable. If they are not, it would point towards the results being a consequence of

happenstance.
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For instance, in our case, an interesting result is that about as many attempts are successful in

terms of having positive out-of-sample R2 on an annual basis for both the UK and the US, 40 out

of 66 in the US and 38 out of 66 in the UK.

However, this does not mean that all is well. It is worrying that the performance of different

models varies quite a lot between the two countries. However, this may be a consequence of different

sample periods and some differences in available variables. Nonetheless, further investigation is

warranted.

Table 3: Average performance of different models by country

MODEL RMSE_UK RMSE_US OOSR2_UK OOSR2_US SR_LO_UK SR_LO_US SR_LS_UK SR_LS_US
1. Annual
OLS 0.139 0.162 -0.211 0.066 0.735 0.579 0.775 0.291
PLS 0.126 0.169 0.012 -0.034 0.602 0.694 0.612 0.494
Lasso 0.135 0.167 -0.140 -0.006 0.525 0.473 0.214 0.354
Ridge 0.115 0.157 0.174 0.116 0.723 0.726 0.751 0.548
ElasticNet 0.124 0.162 0.045 0.054 0.700 0.511 0.610 0.415
PCR 0.120 0.155 0.094 0.135 0.725 0.739 0.755 0.582
SVM 0.130 0.175 -0.060 -0.095 0.735 0.667 0.775 0.483
KNN 0.087 0.129 0.518 0.416 0.719 0.845 0.829 0.776
RF 0.082 0.106 0.579 0.607 0.671 0.905 0.751 0.837
NN 0.100 0.126 0.367 0.413 0.703 0.848 0.732 0.738
DL1 0.190 0.262 -1.387 -1.439 0.612 0.404 0.351 0.132
Hist 0.126 0.169 0.000 0.000 0.500 0.353 0.187 0.353
Market 0.125 0.181 0.018 -0.145 0.586 0.353 0.586 0.353

2. Monthly
OLS 0.041 0.044 -0.226 -0.131 0.574 0.625 0.560 0.530
PLS 0.039 0.043 -0.103 -0.099 0.435 0.565 0.248 0.408
Lasso 0.038 0.041 -0.046 0.007 0.408 0.506 0.105 0.478
Ridge 0.038 0.041 -0.084 -0.001 0.535 0.642 0.494 0.615
ElasticNet 0.038 0.041 -0.076 0.002 0.424 0.554 0.247 0.533
PCR 0.039 0.043 -0.113 -0.089 0.482 0.567 0.392 0.437
SVM 0.041 0.046 -0.255 -0.259 0.618 0.653 0.640 0.576
KNN 0.038 0.042 -0.081 -0.042 0.392 0.666 0.182 0.525
RF 0.039 0.043 -0.098 -0.114 0.505 0.535 0.358 0.321
NN 0.039 0.045 -0.119 -0.169 0.544 0.637 0.505 0.546
DL1 0.214 0.155 -35.220 -14.932 0.429 0.289 -0.049 -0.135
Hist 0.037 0.041 0.000 0.000 0.505 0.508 0.226 0.508
Market 0.037 0.042 -0.001 -0.016 0.532 0.508 0.532 0.508

1 Row panel ’1’ is based on predicting annual returns.
2 Row panel ’2’ is based on predicting monthly returns.
* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise not invested.
The long-short strategy buys when positive or zero return is predicted and otherwise it shorts the market, i.e., generates the
negative value of the realized excess return. Strategies based on annual prediction re-evaluates once per year, those based on
monthly returns do it every month. Excess returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-only portfolio ; SR_LS
Sharpe ratio of long-short portfolio
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5.3 Addition of the variance risk premium

Even though inference is not the primary purpose of our paper, one variable in particular is of some

interest. That is the variance risk premium. Remember, the variance risk premium describes the

difference between the volatility implied by option prices and the actual realized volatility.

Our thinking goes that this should improve predictability, especially in the short run. This

because patterns of clustered volatility have historically been observed in conjunction with market

crashes. The notion that stock market ups tend to be long and flat whereas market downs tend to

be short and steep.

We find scant evidence that the variance risk premium increases overall performance. Out of

88 attempts, the out-of-sample R2 increased in only 47 cases. However, out of these cases, fully 27

was when we predicted monthly returns.

5.4 Robustness of results

Some of our models achieve a superior performance compared to that of benchmark methods such

as the historical average. In order to get a sense of whether these results are spurious we perform a

robustness check using the Diebold-Mariano test statistic. We only perform this test for predictions

that use the full US sample.
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Table 4: Performance and robustness with US data, full sample

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.DM B.RMSE B.OOSR2 B.DM
1. Rolling
OLS 0.044 -0.055 -1.42 0.168 -0.083 -1.45
PLS 0.044 -0.065 -2.11** 0.174 -0.156 -2.69***
Lasso 0.043 0.001 0.12 0.160 0.019 1.64
Ridge 0.043 -0.015 -0.81 0.157 0.052 1.3
ElasticNet 0.043 -0.003 -0.34 0.157 0.052 3.17***
PCR 0.044 -0.026 -1.08 0.161 0.010 0.25
SVM 0.045 -0.079 -2.4** 0.186 -0.330 -4.24***
KNN 0.044 -0.053 -1.96* 0.124 0.409 5.97***
RF 0.045 -0.107 -3.11*** 0.104 0.587 8.24***
NN 0.045 -0.084 -2.12** 0.134 0.316 3.98***
DL1 0.088 -3.227 -6.35*** 0.237 -1.147 -9.97***

2. Cumulative
OLS 0.045 -0.078 -1.78* 0.179 -0.230 -3.98***
PLS 0.044 -0.058 -1.49 0.187 -0.343 -5.53***
Lasso 0.043 -0.011 -1.66* 0.166 -0.056 -3.37***
Ridge 0.043 0.003 0.24 0.169 -0.089 -2.36**
ElasticNet 0.043 -0.005 -0.38 0.165 -0.047 -2.53**
PCR 0.043 -0.020 -0.74 0.179 -0.222 -3.93***
SVM 0.044 -0.032 -0.88 0.171 -0.125 -2.64***
KNN 0.044 -0.042 -1.35 0.133 0.326 4.69***
RF 0.045 -0.116 -2.24** 0.107 0.564 7.96***
NN 0.052 -0.480 -1.5 0.171 -0.125 -1.43
DL1 0.131 -8.293 -13.98*** 0.293 -2.278 -9.6***

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling
estimation window of 600 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a
cumulative estimation window of minimum 600 months.

* Robustness is checked via the Diebold-Mariano test statistic (DM). It tests
whether the prediction errors of a model are sginficantly different from those
generated when using the historical average. Significane levels are; * (10%), **
(5%) and *** (1%).

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared

It becomes clear that what positive results we have on a monthly basis are probably a conse-

quence of pure chance. No model with a performance better than that of the historical average

shows significance.

When it comes to annual predictions, most models show significance. Crucially this is true for

most of the models that outperform the historical average. This indicates that our positive results

with regard to annual prediction are robust.
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6 Conclusion

In this paper we examine whether total returns in excess of the risk-free rate, on the S&P500 and

FTSE100 indices, are predictable using time series prediction. We have virtually no success in

predicting monthly returns. However, we do have some success in predicting annual returns.

Fully 78 out of our 132 attempts at annual return prediction have a positive out-of-sample R2.

Furthermore, we find that these this translates to economic gains. We find that in 87 cases, long-

only portfolios formed based on our models have a Sharpe ratio higher than a simple buy-and-hold

portfolio.

We achieve our best result when using US data from 1926 to 2019, to predict annual returns

using the random forest algorithm and a cumulative estimation window. We find that if we use

this model to form a long-short portfolio we have a Sharpe ratio of 0.996. This set up also has

an out-of-sample R2 of 0.564. We use a Diebold-Mariano test to conclude that this performance,

relative to benchmark predictions equal to the historical mean, is significant on the 1% level.

Overall, our results are somewhat in line with previous research. We find that stock returns are

hard to predict, easier to predict over longer horizons than short ones and that machine learning

methods can improve upon simpler methods for prediction.

We think it would be beneficial to pursue further research into the methods of deep learning.

Our review of previous research shows that these models often are the best performing ones. Yet,

that is not the case in our study. This discrepancy is most likely a result of insufficient tuning of

hyperparameters.

We would find it interesting to see how a successful deep learning algorithm, along the lines of for

instance Feng, He, and Polson (2018), would perform if used to implement our trading strategies.

It would be interesting to see if it could outperform the market in terms of Sharpe ratio when it

comes to monthly predictions, and whether it could improve upon already good Sharpe ratios of

other machine learning methods when it comes to annual prediction.
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8 Appendix

This appendix contains a more detailed and comprehensive version of our results, it has three
subsections. First, the accuracy of our predictions. Second, the accuracy of the direction of our
predictions. Third, plots illustrating the cumulative excess returns of different models.

8.1 Appendix A

This section contains tables describing the accuracy of our predictions.
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Table 5: Performance with UK data, full sample

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.045 -0.217 0.537 0.581 0.162 -0.160 0.608 0.694
PLS 0.045 -0.189 0.476 0.464 0.150 0.009 0.195 0.191
Lasso 0.043 -0.098 0.328 0.106 0.165 -0.208 0.540 0.270
Ridge 0.044 -0.145 0.443 0.405 0.140 0.134 0.608 0.694
ElasticNet 0.044 -0.138 0.355 0.191 0.157 -0.093 0.540 0.270
PCR 0.044 -0.162 0.424 0.364 0.151 -0.005 0.614 0.705
SVM 0.048 -0.356 0.516 0.592 0.161 -0.145 0.608 0.694
KNN 0.043 -0.080 0.328 0.229 0.104 0.519 0.243 0.285
RF 0.043 -0.069 0.354 0.217 0.093 0.616 0.195 0.191
NN 0.046 -0.251 0.327 0.179 0.122 0.339 0.191 0.184
DL1 0.361 -75.896 0.310 -0.188 0.172 -0.300 0.530 0.489
Hist 0.041 0.000 0.499 0.304 0.151 0.000 0.426 0.147
Market NA NA 0.375 0.375 NA NA 0.198 0.198

2. Cumulative
OLS 0.045 -0.181 0.628 0.757 0.180 -0.439 0.608 0.694
PLS 0.044 -0.123 0.388 0.312 0.173 -0.327 0.111 0.015
Lasso 0.043 -0.081 0.269 -0.042 0.179 -0.429 0.313 0.045
Ridge 0.043 -0.089 0.501 0.515 0.153 -0.047 0.608 0.694
ElasticNet 0.043 -0.072 0.165 -0.137 0.171 -0.304 0.540 0.270
PCR 0.043 -0.109 0.252 0.107 0.161 -0.151 0.614 0.705
SVM 0.049 -0.401 0.312 0.185 0.172 -0.315 0.608 0.694
KNN 0.043 -0.073 0.255 0.106 0.106 0.502 0.198 0.198
RF 0.044 -0.115 0.422 0.249 0.107 0.489 0.240 0.278
NN 0.044 -0.128 0.527 0.594 0.130 0.250 0.527 0.536
DL1 0.201 -22.814 0.052 -0.317 0.353 -4.525 0.596 0.247
Hist 0.041 0.000 0.460 0.134 0.150 0.000 0.313 0.045
Market NA NA 0.375 0.375 NA NA 0.198 0.198

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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Table 6: Performance with UK data, VRP subsample

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.039 -0.273 0.542 0.436 0.111 0.011 0.798 0.816
PLS 0.035 -0.064 0.452 0.161 0.096 0.262 0.780 0.780
Lasso 0.036 -0.072 0.442 0.190 0.113 -0.022 0.644 0.381
Ridge 0.036 -0.071 0.549 0.475 0.095 0.289 0.780 0.780
ElasticNet 0.036 -0.092 0.533 0.430 0.101 0.187 0.780 0.780
PCR 0.037 -0.175 0.502 0.356 0.092 0.331 0.780 0.780
SVM 0.037 -0.159 0.870 0.984 0.100 0.198 0.798 0.816
KNN 0.036 -0.075 0.460 0.237 0.079 0.500 0.969 1.123
RF 0.037 -0.150 0.453 0.213 0.072 0.591 0.798 0.816
NN 0.036 -0.112 0.616 0.593 0.074 0.564 0.932 1.073
DL1 0.141 -15.893 0.888 0.179 0.142 -0.615 0.373 -0.092
Hist 0.034 0.000 0.545 0.360 0.112 0.000 0.628 0.361
Market NA NA 0.610 0.610 NA NA 0.780 0.780

2. Cumulative
OLS 0.039 -0.237 0.585 0.555 0.133 -0.324 0.798 0.816
PLS 0.037 -0.124 0.230 -0.203 0.122 -0.118 0.969 1.123
Lasso 0.035 -0.002 0.450 0.040 0.120 -0.078 0.503 0.104
Ridge 0.036 -0.066 0.588 0.558 0.104 0.195 0.780 0.780
ElasticNet 0.035 -0.033 0.482 0.294 0.105 0.165 0.780 0.780
PCR 0.036 -0.072 0.589 0.565 0.113 0.050 0.780 0.780
SVM 0.038 -0.197 0.613 0.611 0.123 -0.138 0.798 0.816
KNN 0.035 -0.043 0.457 0.201 0.080 0.523 0.969 1.123
RF 0.035 -0.038 0.647 0.576 0.071 0.620 0.932 1.073
NN 0.036 -0.082 0.529 0.423 0.109 0.103 0.994 1.185
DL1 0.262 -56.103 0.317 -0.286 0.135 -0.359 0.958 0.861
Hist 0.035 0.000 0.491 0.101 0.115 0.000 0.503 0.104
Market NA NA 0.610 0.610 NA NA 0.780 0.780

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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Table 7: Performance with UK data, VRP subsample excluding the VRP

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.038 -0.238 0.564 0.480 0.111 0.015 0.798 0.816
PLS 0.036 -0.079 0.545 0.385 0.094 0.302 0.780 0.780
Lasso 0.035 -0.031 0.512 0.298 0.113 -0.022 0.644 0.381
Ridge 0.036 -0.073 0.564 0.504 0.095 0.287 0.780 0.780
ElasticNet 0.036 -0.100 0.533 0.430 0.103 0.156 0.780 0.780
PCR 0.036 -0.115 0.541 0.409 0.092 0.322 0.780 0.780
SVM 0.038 -0.215 0.768 0.815 0.101 0.186 0.798 0.816
KNN 0.037 -0.131 0.441 0.200 0.077 0.523 0.969 1.123
RF 0.036 -0.117 0.548 0.411 0.074 0.568 0.932 1.073
NN 0.036 -0.113 0.613 0.574 0.082 0.466 0.932 1.073
DL1 0.149 -17.713 0.563 0.493 0.176 -1.465 0.710 0.496
Hist 0.034 0.000 0.545 0.360 0.112 0.000 0.628 0.361
Market NA NA 0.610 0.610 NA NA 0.780 0.780

2. Cumulative
OLS 0.038 -0.212 0.585 0.555 0.135 -0.370 0.798 0.816
PLS 0.035 -0.042 0.517 0.371 0.119 -0.055 0.780 0.780
Lasso 0.035 0.006 0.450 0.040 0.120 -0.084 0.503 0.104
Ridge 0.036 -0.060 0.563 0.504 0.104 0.184 0.780 0.780
ElasticNet 0.035 -0.021 0.474 0.274 0.106 0.159 0.780 0.780
PCR 0.035 -0.043 0.586 0.554 0.115 0.016 0.780 0.780
SVM 0.038 -0.203 0.631 0.649 0.124 -0.146 0.798 0.816
KNN 0.036 -0.085 0.410 0.117 0.078 0.543 0.969 1.123
RF 0.036 -0.101 0.604 0.485 0.074 0.586 0.932 1.073
NN 0.035 -0.025 0.648 0.670 0.083 0.478 0.644 0.338
DL1 0.170 -22.903 0.442 -0.176 0.166 -1.057 0.503 0.104
Hist 0.035 0.000 0.491 0.101 0.115 0.000 0.503 0.104
Market NA NA 0.610 0.610 NA NA 0.780 0.780

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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Table 8: Performance with US data, full sample

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.044 -0.055 0.411 0.176 0.168 -0.083 0.329 0.211
PLS 0.044 -0.065 0.368 0.107 0.174 -0.156 0.354 0.217
Lasso 0.043 0.001 0.426 0.374 0.160 0.019 0.408 0.432
Ridge 0.043 -0.015 0.410 0.335 0.157 0.052 0.398 0.359
ElasticNet 0.043 -0.003 0.456 0.429 0.157 0.052 0.401 0.418
PCR 0.044 -0.026 0.413 0.342 0.161 0.010 0.550 0.627
SVM 0.045 -0.079 0.465 0.348 0.186 -0.330 0.298 0.152
KNN 0.044 -0.053 0.515 0.423 0.124 0.409 0.677 0.587
RF 0.045 -0.107 0.402 0.198 0.104 0.587 0.865 0.874
NN 0.045 -0.084 0.400 0.218 0.134 0.316 0.653 0.539
DL1 0.088 -3.227 0.114 -0.266 0.237 -1.147 0.338 0.049
Hist 0.043 0.000 0.430 0.430 0.162 0.000 0.379 0.379
Market NA NA 0.430 0.430 NA NA 0.379 0.379

2. Cumulative
OLS 0.045 -0.078 0.458 0.216 0.179 -0.230 0.304 0.165
PLS 0.044 -0.058 0.448 0.151 0.187 -0.343 0.293 0.144
Lasso 0.043 -0.011 0.370 0.271 0.166 -0.056 0.351 0.318
Ridge 0.043 0.003 0.500 0.400 0.169 -0.089 0.323 0.205
ElasticNet 0.043 -0.005 0.404 0.306 0.165 -0.047 0.351 0.318
PCR 0.043 -0.020 0.406 0.167 0.179 -0.222 0.368 0.261
SVM 0.044 -0.032 0.533 0.373 0.171 -0.125 0.316 0.228
KNN 0.044 -0.042 0.555 0.475 0.133 0.326 0.676 0.578
RF 0.045 -0.116 0.525 0.321 0.107 0.564 0.962 0.996
NN 0.052 -0.480 0.484 0.323 0.171 -0.125 0.523 0.291
DL1 0.131 -8.293 0.474 0.241 0.293 -2.278 0.496 0.199
Hist 0.043 0.000 0.430 0.430 0.162 0.000 0.379 0.379
Market NA NA 0.430 0.430 NA NA 0.379 0.379

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
600 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 600 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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Table 9: Performance with US data, VRP subsample

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.043 -0.139 0.752 0.740 0.150 0.273 0.725 0.454
PLS 0.043 -0.156 0.718 0.763 0.158 0.189 0.961 0.940
Lasso 0.040 0.034 0.567 0.575 0.145 0.316 0.841 0.702
Ridge 0.040 0.011 0.718 0.696 0.143 0.341 1.019 1.015
ElasticNet 0.040 0.002 0.524 0.471 0.138 0.383 0.961 0.940
PCR 0.044 -0.197 0.716 0.660 0.141 0.354 0.961 0.940
SVM 0.044 -0.193 0.831 0.802 0.157 0.198 0.841 0.702
KNN 0.040 0.001 0.777 0.563 0.125 0.491 0.961 0.940
RF 0.042 -0.071 0.522 0.343 0.107 0.631 1.019 1.015
NN 0.041 -0.021 0.831 0.844 0.105 0.643 1.019 1.015
DL1 0.141 -11.221 0.559 0.147 0.238 -0.838 0.808 0.492
Hist 0.040 0.000 0.546 0.546 0.176 0.000 0.340 0.340
Market NA NA 0.546 0.546 NA NA 0.340 0.340

2. Cumulative
OLS 0.043 -0.131 0.659 0.588 0.168 0.016 0.740 0.345
PLS 0.041 -0.054 0.879 0.855 0.201 -0.398 0.852 0.555
Lasso 0.040 0.005 0.517 0.473 0.199 -0.376 0.250 0.130
Ridge 0.040 0.010 0.736 0.741 0.174 -0.051 0.852 0.555
ElasticNet 0.040 0.000 0.659 0.645 0.188 -0.232 0.250 0.130
PCR 0.042 -0.104 0.656 0.512 0.171 -0.012 0.852 0.555
SVM 0.043 -0.141 0.832 0.793 0.199 -0.377 0.852 0.555
KNN 0.040 -0.011 1.012 0.957 0.136 0.356 0.836 0.673
RF 0.043 -0.126 0.644 0.416 0.108 0.596 0.805 0.632
NN 0.042 -0.105 0.724 0.651 0.116 0.531 0.852 0.555
DL1 0.252 -38.402 -0.048 -0.621 0.228 -0.814 0.425 0.070
Hist 0.040 0.000 0.546 0.546 0.170 0.000 0.340 0.340
Market NA NA 0.546 0.546 NA NA 0.340 0.340

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
180 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 180 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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Table 10: Performance with US data, VRP subsample excluding the VRP

A. Monthly B. Annual
MODEL A.RMSE A.OOSR2 A.SR_LO A.SR_LS B.RMSE B.OOSR2 B.SR_LO B.SR_LS
1. Rolling
OLS 0.043 -0.159 0.866 0.948 0.144 0.334 0.633 0.225
PLS 0.043 -0.133 0.592 0.459 0.131 0.441 0.852 0.555
Lasso 0.040 0.021 0.649 0.726 0.141 0.359 0.739 0.408
Ridge 0.040 0.012 0.829 0.900 0.134 0.422 0.909 0.597
ElasticNet 0.040 0.032 0.653 0.734 0.136 0.402 0.852 0.555
PCR 0.042 -0.076 0.596 0.442 0.125 0.498 0.852 0.555
SVM 0.050 -0.509 0.587 0.504 0.141 0.358 0.841 0.702
KNN 0.042 -0.060 0.627 0.434 0.124 0.502 0.961 0.940
RF 0.043 -0.118 0.486 0.175 0.104 0.652 0.891 0.754
NN 0.043 -0.130 0.745 0.716 0.117 0.558 1.019 1.015
DL1 0.157 -14.114 0.422 -0.068 0.307 -2.052 0.103 -0.150
Hist 0.040 0.000 0.546 0.546 0.176 0.000 0.340 0.340
Market NA NA 0.546 0.546 NA NA 0.340 0.340

2. Cumulative
OLS 0.044 -0.223 0.602 0.514 0.162 0.086 0.740 0.345
PLS 0.043 -0.131 0.385 0.114 0.164 0.061 0.852 0.555
Lasso 0.040 -0.006 0.503 0.447 0.193 -0.301 0.250 0.130
Ridge 0.041 -0.025 0.659 0.618 0.168 0.020 0.852 0.555
ElasticNet 0.040 -0.013 0.627 0.615 0.188 -0.232 0.250 0.130
PCR 0.042 -0.108 0.613 0.501 0.153 0.182 0.852 0.555
SVM 0.051 -0.597 0.669 0.634 0.193 -0.297 0.852 0.555
KNN 0.042 -0.085 0.508 0.298 0.130 0.412 0.961 0.940
RF 0.043 -0.144 0.633 0.471 0.106 0.613 0.891 0.754
NN 0.044 -0.195 0.639 0.525 0.113 0.554 1.019 1.015
DL1 0.157 -14.334 0.213 -0.241 0.269 -1.507 0.253 0.134
Hist 0.040 0.000 0.546 0.546 0.170 0.000 0.340 0.340
Market NA NA 0.546 0.546 NA NA 0.340 0.340

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
180 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 180 months.

* The long-only strategy buys the market portfolio when positive or zero return is predicted and is otherwise
not invested. The long-short strategy buys when positive or zero return is predicted and otherwise it
shorts the market, i.e., generates the negative value of the realized excess return. Strategies based on
annual prediction re-evaluates once per year, those based on monthly returns do it every month. Excess
returns are returns in excess of the risk-free rate.

† RMSE = root mean square error ; OOSR2 = out-of-sample R-squared ; SR_LO = Sharpe ratio of long-
only portfolio ; SR_LS Sharpe ratio of long-short portfolio
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8.2 Appendix B

This section contains tables describing the accuracy of the direction our predictions.

Table 11: Prediction direction performance with UK data, full sample

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.60 0.87 0.22 0.13 0.78 0.77 0.94 0.38 0.06 0.62
PLS 0.59 0.92 0.14 0.08 0.86 0.76 0.95 0.31 0.05 0.69
Lasso 0.58 0.77 0.32 0.23 0.68 0.68 0.86 0.24 0.14 0.76
Ridge 0.58 0.89 0.14 0.11 0.86 0.75 0.95 0.26 0.05 0.74
ElasticNet 0.57 0.84 0.19 0.16 0.81 0.72 0.93 0.21 0.07 0.79
PCR 0.59 0.89 0.17 0.11 0.83 0.73 0.93 0.26 0.07 0.74
SVM 0.63 0.89 0.25 0.11 0.75 0.77 0.93 0.38 0.07 0.62
KNN 0.56 0.83 0.17 0.17 0.83 0.80 0.94 0.45 0.06 0.55
RF 0.56 0.78 0.24 0.22 0.76 0.85 0.95 0.60 0.05 0.40
NN 0.59 0.87 0.20 0.13 0.80 0.79 0.93 0.45 0.07 0.55
DL1 0.45 0.12 0.92 0.88 0.08 0.52 0.40 0.81 0.60 0.19
Hist 0.60 0.78 0.34 0.22 0.66 0.58 0.74 0.21 0.26 0.79
Market 0.58 1.00 0.00 0.00 1.00 0.70 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.62 0.94 0.17 0.06 0.83 0.74 0.92 0.31 0.08 0.69
PLS 0.58 0.95 0.07 0.05 0.93 0.67 0.89 0.14 0.11 0.86
Lasso 0.55 0.61 0.46 0.39 0.54 0.54 0.62 0.33 0.38 0.67
Ridge 0.60 0.93 0.14 0.07 0.86 0.73 0.95 0.21 0.05 0.79
ElasticNet 0.56 0.73 0.31 0.27 0.69 0.68 0.89 0.17 0.11 0.83
PCR 0.56 0.93 0.03 0.07 0.97 0.73 0.96 0.17 0.04 0.83
SVM 0.58 0.92 0.12 0.08 0.88 0.73 0.89 0.36 0.11 0.64
KNN 0.51 0.77 0.14 0.23 0.86 0.80 0.90 0.55 0.10 0.45
RF 0.58 0.69 0.42 0.31 0.58 0.82 0.93 0.55 0.07 0.45
NN 0.60 0.93 0.14 0.07 0.86 0.78 0.88 0.55 0.12 0.45
DL1 0.44 0.34 0.58 0.66 0.42 0.57 0.68 0.31 0.32 0.69
Hist 0.55 0.61 0.46 0.39 0.54 0.51 0.59 0.33 0.41 0.67
Market 0.58 1.00 0.00 0.00 1.00 0.70 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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Table 12: Prediction direction performance with UK data, VRP subsample

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.58 0.88 0.13 0.12 0.87 0.77 0.98 0.29 0.02 0.71
PLS 0.58 0.88 0.13 0.12 0.87 0.76 1.00 0.17 0.00 0.83
Lasso 0.59 0.88 0.15 0.12 0.85 0.70 0.95 0.09 0.05 0.91
Ridge 0.59 0.94 0.04 0.06 0.96 0.73 0.98 0.14 0.02 0.86
ElasticNet 0.59 0.96 0.02 0.04 0.98 0.72 1.00 0.06 0.00 0.94
PCR 0.60 0.90 0.13 0.10 0.87 0.72 0.99 0.09 0.01 0.91
SVM 0.66 0.92 0.26 0.08 0.74 0.76 0.96 0.26 0.04 0.74
KNN 0.54 0.79 0.15 0.21 0.85 0.76 0.94 0.34 0.06 0.66
RF 0.55 0.72 0.28 0.28 0.72 0.80 0.93 0.49 0.07 0.51
NN 0.62 0.93 0.15 0.07 0.85 0.79 0.90 0.51 0.10 0.49
DL1 0.52 0.36 0.77 0.64 0.23 0.56 0.77 0.06 0.23 0.94
Hist 0.61 0.90 0.17 0.10 0.83 0.64 0.88 0.06 0.12 0.94
Market 0.61 1.00 0.00 0.00 1.00 0.71 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.60 0.99 0.00 0.01 1.00 0.73 0.96 0.17 0.04 0.83
PLS 0.54 0.83 0.09 0.17 0.91 0.66 0.87 0.17 0.13 0.83
Lasso 0.54 0.67 0.34 0.33 0.66 0.61 0.79 0.17 0.21 0.83
Ridge 0.61 0.97 0.04 0.03 0.96 0.72 1.00 0.06 0.00 0.94
ElasticNet 0.60 0.94 0.06 0.06 0.94 0.71 1.00 0.00 0.00 1.00
PCR 0.60 0.97 0.02 0.03 0.98 0.71 1.00 0.03 0.00 0.97
SVM 0.61 0.99 0.02 0.01 0.98 0.73 0.95 0.20 0.05 0.80
KNN 0.54 0.72 0.26 0.28 0.74 0.75 0.90 0.37 0.10 0.63
RF 0.62 0.83 0.30 0.17 0.70 0.83 0.98 0.49 0.02 0.51
NN 0.60 0.94 0.06 0.06 0.94 0.76 0.90 0.43 0.10 0.57
DL1 0.48 0.31 0.74 0.69 0.26 0.58 0.71 0.26 0.29 0.74
Hist 0.55 0.69 0.32 0.31 0.68 0.52 0.65 0.20 0.35 0.80
Market 0.61 1.00 0.00 0.00 1.00 0.71 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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Table 13: Prediction direction performance with UK data, VRP subsample
excluding the VRP

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.59 0.89 0.13 0.11 0.87 0.76 0.98 0.26 0.02 0.74
PLS 0.60 0.93 0.09 0.07 0.91 0.76 0.99 0.20 0.01 0.80
Lasso 0.60 0.88 0.17 0.12 0.83 0.70 0.95 0.09 0.05 0.91
Ridge 0.60 0.94 0.06 0.06 0.94 0.72 0.98 0.11 0.02 0.89
ElasticNet 0.59 0.96 0.02 0.04 0.98 0.72 1.00 0.06 0.00 0.94
PCR 0.60 0.89 0.15 0.11 0.85 0.71 0.96 0.11 0.04 0.89
SVM 0.64 0.90 0.23 0.10 0.77 0.76 0.96 0.26 0.04 0.74
KNN 0.55 0.83 0.13 0.17 0.87 0.77 0.94 0.37 0.06 0.63
RF 0.57 0.82 0.19 0.18 0.81 0.82 0.95 0.49 0.05 0.51
NN 0.62 0.92 0.17 0.08 0.83 0.81 0.94 0.49 0.06 0.51
DL1 0.61 0.93 0.11 0.07 0.89 0.69 0.74 0.57 0.26 0.43
Hist 0.61 0.90 0.17 0.10 0.83 0.64 0.88 0.06 0.12 0.94
Market 0.61 1.00 0.00 0.00 1.00 0.71 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.60 0.99 0.00 0.01 1.00 0.73 0.96 0.17 0.04 0.83
PLS 0.59 0.96 0.02 0.04 0.98 0.64 0.88 0.06 0.12 0.94
Lasso 0.54 0.67 0.34 0.33 0.66 0.61 0.79 0.17 0.21 0.83
Ridge 0.60 0.96 0.04 0.04 0.96 0.70 0.99 0.00 0.01 1.00
ElasticNet 0.60 0.93 0.09 0.07 0.91 0.71 1.00 0.00 0.00 1.00
PCR 0.60 0.97 0.02 0.03 0.98 0.71 0.99 0.03 0.01 0.97
SVM 0.61 1.00 0.02 0.00 0.98 0.73 0.95 0.20 0.05 0.80
KNN 0.52 0.78 0.13 0.22 0.87 0.76 0.90 0.43 0.10 0.57
RF 0.59 0.82 0.23 0.18 0.77 0.84 0.98 0.51 0.02 0.49
NN 0.63 0.97 0.11 0.03 0.89 0.81 0.93 0.51 0.07 0.49
DL1 0.43 0.25 0.70 0.75 0.30 0.65 0.83 0.20 0.17 0.80
Hist 0.55 0.69 0.32 0.31 0.68 0.52 0.65 0.20 0.35 0.80
Market 0.61 1.00 0.00 0.00 1.00 0.71 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
120 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 120 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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Table 14: Prediction direction performance with US data, full sample

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.52 0.62 0.36 0.38 0.64 0.69 0.77 0.42 0.23 0.58
PLS 0.51 0.62 0.34 0.38 0.66 0.72 0.79 0.49 0.21 0.51
Lasso 0.57 0.89 0.07 0.11 0.93 0.77 0.95 0.17 0.05 0.83
Ridge 0.59 0.92 0.06 0.08 0.94 0.77 0.91 0.27 0.09 0.73
ElasticNet 0.58 0.90 0.07 0.10 0.93 0.79 1.00 0.08 0.00 0.92
PCR 0.59 0.86 0.14 0.14 0.86 0.78 0.90 0.34 0.10 0.66
SVM 0.57 0.75 0.27 0.25 0.73 0.69 0.79 0.33 0.21 0.67
KNN 0.60 0.79 0.29 0.21 0.71 0.80 0.89 0.50 0.11 0.50
RF 0.54 0.67 0.33 0.33 0.67 0.86 0.92 0.66 0.08 0.34
NN 0.53 0.69 0.29 0.31 0.71 0.79 0.83 0.65 0.17 0.35
DL1 0.46 0.41 0.54 0.59 0.46 0.37 0.32 0.56 0.68 0.44
Hist 0.61 1.00 0.00 0.00 1.00 0.78 1.00 0.00 0.00 1.00
Market 0.61 1.00 0.00 0.00 1.00 0.78 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.54 0.61 0.45 0.39 0.55 0.67 0.74 0.44 0.26 0.56
PLS 0.50 0.50 0.49 0.50 0.51 0.63 0.73 0.28 0.27 0.72
Lasso 0.58 0.88 0.12 0.12 0.88 0.71 0.88 0.12 0.12 0.88
Ridge 0.57 0.82 0.18 0.18 0.82 0.66 0.77 0.29 0.23 0.71
ElasticNet 0.57 0.85 0.13 0.15 0.87 0.70 0.87 0.12 0.13 0.88
PCR 0.53 0.62 0.39 0.38 0.61 0.62 0.74 0.23 0.26 0.77
SVM 0.58 0.74 0.32 0.26 0.68 0.73 0.86 0.30 0.14 0.70
KNN 0.60 0.79 0.31 0.21 0.69 0.79 0.89 0.45 0.11 0.55
RF 0.53 0.64 0.36 0.36 0.64 0.87 0.94 0.65 0.06 0.35
NN 0.55 0.68 0.36 0.32 0.64 0.66 0.69 0.58 0.31 0.42
DL1 0.51 0.54 0.46 0.46 0.54 0.52 0.50 0.59 0.50 0.41
Hist 0.61 1.00 0.00 0.00 1.00 0.78 1.00 0.00 0.00 1.00
Market 0.61 1.00 0.00 0.00 1.00 0.78 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
600 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 600 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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Table 15: Prediction direction performance with US data, VRP subsample

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.66 0.87 0.25 0.13 0.75 0.77 0.84 0.44 0.16 0.56
PLS 0.68 0.87 0.30 0.13 0.70 0.89 0.97 0.44 0.03 0.56
Lasso 0.65 0.93 0.08 0.07 0.92 0.85 0.94 0.41 0.06 0.59
Ridge 0.65 0.88 0.20 0.12 0.80 0.83 0.91 0.44 0.09 0.56
ElasticNet 0.65 0.94 0.08 0.06 0.92 0.89 0.99 0.41 0.01 0.59
PCR 0.65 0.86 0.25 0.14 0.75 0.87 0.96 0.44 0.04 0.56
SVM 0.68 0.92 0.20 0.08 0.80 0.82 0.89 0.44 0.11 0.56
KNN 0.65 0.84 0.27 0.16 0.73 0.84 0.92 0.44 0.08 0.56
RF 0.59 0.76 0.27 0.24 0.73 0.87 0.91 0.63 0.09 0.37
NN 0.65 0.84 0.28 0.16 0.72 0.88 0.91 0.74 0.09 0.26
DL1 0.53 0.58 0.42 0.42 0.58 0.65 0.70 0.41 0.30 0.59
Hist 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00
Market 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.64 0.87 0.18 0.13 0.82 0.80 0.87 0.44 0.13 0.56
PLS 0.63 0.77 0.35 0.23 0.65 0.81 0.90 0.37 0.10 0.63
Lasso 0.66 0.98 0.03 0.02 0.97 0.80 0.94 0.07 0.06 0.93
Ridge 0.66 0.92 0.17 0.08 0.83 0.82 0.89 0.44 0.11 0.56
ElasticNet 0.65 0.93 0.10 0.07 0.90 0.82 0.94 0.19 0.06 0.81
PCR 0.62 0.87 0.13 0.13 0.87 0.85 0.94 0.37 0.06 0.63
SVM 0.67 0.91 0.20 0.09 0.80 0.84 0.92 0.44 0.08 0.56
KNN 0.69 0.86 0.35 0.14 0.65 0.83 0.91 0.44 0.09 0.56
RF 0.60 0.74 0.32 0.26 0.68 0.87 0.93 0.59 0.07 0.41
NN 0.64 0.84 0.23 0.16 0.77 0.86 0.89 0.70 0.11 0.30
DL1 0.47 0.55 0.33 0.45 0.67 0.46 0.44 0.52 0.56 0.48
Hist 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00
Market 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
180 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 180 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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Table 16: Prediction direction performance with US data, VRP subsample excluding
the VRP

A. Monthly B. Annual
MODEL A.ACC A.TPR A.TNR A.FNR A.FPR B.ACC B.TPR B.TNR B.FNR B.FPR
1. Rolling
OLS 0.69 0.89 0.28 0.11 0.72 0.79 0.86 0.44 0.14 0.56
PLS 0.63 0.86 0.18 0.14 0.82 0.89 0.97 0.44 0.03 0.56
Lasso 0.69 0.97 0.12 0.03 0.88 0.86 0.94 0.44 0.06 0.56
Ridge 0.68 0.90 0.23 0.10 0.77 0.83 0.90 0.48 0.10 0.52
ElasticNet 0.69 0.98 0.10 0.02 0.90 0.89 0.97 0.44 0.03 0.56
PCR 0.63 0.84 0.20 0.16 0.80 0.89 0.98 0.44 0.02 0.56
SVM 0.63 0.88 0.13 0.12 0.87 0.85 0.93 0.44 0.07 0.56
KNN 0.63 0.81 0.28 0.19 0.72 0.87 0.94 0.48 0.06 0.52
RF 0.57 0.73 0.25 0.27 0.75 0.87 0.91 0.63 0.09 0.37
NN 0.66 0.86 0.28 0.14 0.72 0.84 0.89 0.63 0.11 0.37
DL1 0.46 0.41 0.55 0.59 0.45 0.60 0.62 0.48 0.38 0.52
Hist 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00
Market 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00

2. Cumulative
OLS 0.65 0.90 0.15 0.10 0.85 0.81 0.89 0.44 0.11 0.56
PLS 0.61 0.90 0.05 0.10 0.95 0.85 0.94 0.37 0.06 0.63
Lasso 0.65 0.98 0.00 0.02 1.00 0.79 0.94 0.00 0.06 1.00
Ridge 0.64 0.92 0.10 0.08 0.90 0.84 0.92 0.41 0.08 0.59
ElasticNet 0.66 0.97 0.05 0.03 0.95 0.81 0.94 0.15 0.06 0.85
PCR 0.64 0.91 0.12 0.09 0.88 0.87 0.96 0.41 0.04 0.59
SVM 0.67 0.92 0.17 0.08 0.83 0.85 0.93 0.44 0.07 0.56
KNN 0.60 0.79 0.22 0.21 0.78 0.84 0.92 0.44 0.08 0.56
RF 0.63 0.82 0.25 0.18 0.75 0.89 0.94 0.59 0.06 0.41
NN 0.64 0.87 0.20 0.13 0.80 0.86 0.89 0.70 0.11 0.30
DL1 0.53 0.56 0.47 0.44 0.53 0.70 0.81 0.11 0.19 0.89
Hist 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00
Market 0.66 1.00 0.00 0.00 1.00 0.84 1.00 0.00 0.00 1.00

a Column panel ’A’ is based on one month returns predicted every month.
b Column panel ’B’ is based on twelve-month returns predicted every month.
1 Row panel ’1’ is based on models refitted with tuning every month using a rolling estimation window of
180 months.

2 Row panel ’2’ is based on models refitted with tuning every month using a cumulative estimation window
of minimum 180 months.

* ACC = accuracy ; TPR = true positive rate ; TNR = true negative rate ; FPR = false positive rate ; FNR
= false negative rate
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8.3 Appendix C

This section contains plots illustrating the cumulative excess returns of different models.
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UK data, full sample, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 4
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UK data, full sample, cumulative estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.
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UK data, VRP subsample, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 6
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Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 7
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UK data, VRP subsample excluding the VRP, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 8
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UK data, VRP subsample excluding the VRP, cumulative estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.
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US data, full sample, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 10
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US data, full sample, cumulative estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 11
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US data, VRP subsample, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 12
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US data, VRP subsample, cumulative estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 13
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Ridge ElasticNet RF NN Market

US data, VRP subsample excluding the VRP, rolling estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 14
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Ridge ElasticNet RF NN Market

US data, VRP subsample excluding the VRP, cumulative estimation window

Cumulative return in excess of the risk−free rate of selected methods

The models with the best average ranking over root mean square error, out−of−sample R−squared, long−only Sharpe
ratio and long−short Sharpe ratio are displayed. The base value for all strategies is set to one and develops with
the excess return that results from the strategy. The long−only strategy buys the market portfolio when positive or
zero return is predicted and is otherwise not invested. The long−short strategy buys when positive or zero return
is predicted and otherwise it shorts the market, i.e., generates the negative value of the realized excess return.
Strategies based on annual prediction re−evaluates once per year, those based on monthly returns do it every month.
Excess returns are returns in excess of the risk−free rate.

Figure 15
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