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Myth busted: Stock return anomalies revisited: Dissecting cross-sectional return 
predictability in accounting-based anomalies 

Abstract: 

Research has uncovered over 450 anomaly factors that exhibit stock return predictability. 
However, after anomalies are published and studied in successive literature, the return 
predictability often seems to attenuate or disappear. This raises the question of whether 
return predictability existed in the past, but have been arbitraged away, or whether published 
anomalies simply is an artifact of p-hacking. Using out-of-sample analysis, we study 21 
eminent accounting-based stock return anomalies and show that a majority of the cross-
sectional return predictability can be attributed to p-hacking.   
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1. Introduction 
1.1 Background and Relevance  
A stock market anomaly is return predictability that is inconsistent with asset pricing models 
such as the Capital Asset Pricing Model (CAPM) or the Fama and French three factor 
model, implying an opportunity to earn anomalous stock returns. However, after anomalies 
are published and studied in successive literature, anomalies often seem to attenuate or 
disappear after their original sample. In finance research, competition for top journal 
space incentivizes p-hacking among researchers, which can cause reported results to exhibit 
low replicability in the future (Harvey et al., 2016). In a meta-study published in 2018, Hou 
et al. (2020) compiled the bulk of the published anomalies literature in finance and 
accounting by replicating 452 anomaly variables with a sample period from 1967 to 2016 and 
found that most anomalies failed to generate significant results. Mclean & Pontiff 
(2015) and Linnainmaa et al. (2018) performed meta-studies with separation between in-
sample and out-of-sample time periods, and found that anomalies have significantly lower 
performance outside their original sample periods. This raises the question of whether return 
predictability existed in the past, but have been arbitraged away, or whether published 
anomalies simply is an artifact of p-hacking. To investigate the persistence and the 
mechanisms behind stock market anomalies, we replicate 21 eminent published accounting-
based anomalies in four separate sample periods: Pre-sample, In-sample, Post-sample and 
also a Pre-publication period. These sub-sample periods allow us to discern the explanation 
for the existence of cross-sectional return predictability in anomalies, with the aim of 
determining whether published stock market anomalies has emerged due to p-
hacking. Our study finds that 16 out of 21 anomalies have significant returns in the in-
sample period, while only 2 out of 21 anomalies have significant returns in the post-sample 
period. Furthermore, after analyzing the results from our other sample periods and our z-
score distribution, we conclude that a majority of the return predictability in our observed 
anomalies can be attributed to p-hacking.  
  
Null hypothesis significance testing (NHST) is used for statistical inference 
in empirical finance. When an anomalous return has a p-value below the significance level of 
0.05 it is usually interpreted as not being a statistical fluke. However, as shown by Gelman & 
Loken (2013), p-values are biased and many results identified may actually be due to 
chance. Inherently, there is a problem of multiple testing when multiple statistical tests are 
performed on the same dataset. Since hundreds of anomaly factors have been tested and not 
published, some significant factors are also bound to arise due to chance error. P-hacking 
disregards the multiple comparisons problem by performing many statistical tests on the data 
and cherry-picking significant results. Hence, academic journals contribute to p-
hacking through their focus on publishing studies with significant results. However, the 
performance of anomalies identified through p-hacking are driven by sample error, and 
accordingly the return predictability does not hold up in out-of-sample tests. Out-of-sample 
denotes any sample period outside the original sample period. Therefore, performing out-of-
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sample tests is a means of determining whether there is an indication of p-hacking in our 
observed accounting-based anomalies.  
  
Our study is closely related to Linnainmaa et al. (2018), who replicate 36 accounting-based 
anomalies using Pre-sample, In-sample and Post-sample data. In-sample denotes the sample 
period in the original study, while Pre-sample and Post-sample denotes the sample periods 
before and after the original sample period, respectively. The sample frames allow them to 
discern between three competing explanations for the existence of anomalies based 
on: unmodeled risk, mispricing and p-hacking. If return predictability in a published study 
results solely from p-hacking, the predictability should disappear out-of-
sample. Linnainmaa et al. (2018) find that the average returns and sharpe ratios of most 
anomalies decrease out-of-sample, while correlation among anomalies and volatilities 
increase. However, as found by McLean & Pontiff (2015), stock market anomalies are also 
less anomalous after being published, due to investors learning about mispricing from 
academic publications. Accordingly, this mechanism is a competing explanation for lower 
anomaly performance in the post-sample period. Therefore, we compute a pre-publication 
sample period in addition to the pre-sample and post-sample period, which denotes the 
period after the original sample period, but before the publication date of the study. 
This enables us further distinguish between mispricing and p-hacking effects by gauging 
anomaly performance in the period before the post-publication effects occurs.  
  
The aim of a replication study is not to perfectly replicate the findings in each of the original 
papers. As mentioned by Mclean & Pontiff (2015), a replication that follows every 
detail would be impossible since CRSP data changes over time and papers often omit details 
about precise calculations. Rather, we implement the original definitions of the 
anomalies but use our own statistical testing framework, where the method or parameters in 
the replication procedure might differ from the original studies, to see if the hypothesis 
brought forth in the original paper holds. Our replication procedure is kept constant 
throughout all anomalies (see “methodology”). This also entails that anomalies which remain 
significant in our study in addition to the original study hold higher robustness, even if the 
anomaly turns out to be significant only in the in-sample period.  
  
Furthermore, Brodeur et al. (2016) use a z-score plot to investigate the level of p-hacking and 
publication-bias in economics journals, where they plot the distribution of reported z-
score from over 21,000 tests in a histogram. Their results indicate that there is an unnatural 
dip of reported z-scores right before significance at the 0.05 level. This can be an 
indication that tests that have shown close to significant results have been altered until they 
show a significant result. We construct a z-score plot similar to that of Brodeur et 
al. (2016) to investigate the z-score distribution of accounting-based anomalies. This allows 
us to gauge the level of p-hacking through other means than sub-period analysis as done by 
meta-studies such as Linnainmaa et al. (2018) and Mclean & Pontiff (2015) whose inferences 
were made from studying pre-sample, post-sample or post-publication sample periods. The 
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implications of the observed distribution is discussed by comparing with the distribution 
that would theoretically emerge absent p-hacking or publication bias.  
  
1.2 Research Question  
Our research aims to determine whether accounting-based return anomalies are persistent 
outside their original sample periods, and to examine the explanations for cross-sectional 
return predictability in the observed anomalies. Specifically, our study investigates 
whether the existence of published accounting-based anomalies can be attributed to p-
hacking.  
  
Therefore, our main research question is:  
  
Is the cross-sectional return predictability in published accounting-based anomalies a result 
of p-hacking?  
  
1.3 Literature Review and Contribution  
Linnainmaa et.al. (2018) conduct a meta-study on a similar set of 36 accounting-based 
anomalies with pre-sample, in-sample and post-sample data. In addition to the sample 
periods of Linnainmaa et al., we add a pre-publication sample period in line with 
Mclean & Pontiff (2015) which allows us to further discern between competing explanations 
for the emergence of the anomalies. Furthermore, Linnainmaa et al. (2018) implement 
portfolio sorts with double sorted portfolios on size and the anomaly variable itself. We 
instead opt for a univariate sort, similar to Hou et al. (2020), based solely on the anomaly 
factor in order to focus on the performance in isolation. Finally, our paper adds to the post-
sample period of Linnainmaa et al. (2018) since a longer post-sample period has accumulated 
since the implementation of their tests.  
  
Hou et al. (2020) conducted a similar large scale replication with 452 anomaly variables, 
using univariate portfolio sort (and cross-sectional regressions). However, all anomalies were 
replicated with a sample period between 1967-2016 without sub-period analysis. 
Consequently, post-publication attenuation of anomaly performance could explain the 
failure to clear the 1.96 hurdle in the authors’ replications. With their replication method, 
Hou et.al. found that 65% of the anomalies could not clear the single test hurdle of the 
absolute t-value of 1.96. Our contribution to Hou et al.’s study is therefore that we are able 
to discuss the competing explanations for the anomalies through out-of-sample analysis.  
  
McLean & Pontiff (2015)’s meta study of 97 factors compare the predictor’s return in-
sample, post-publication and out-of-sample but pre-publication (which we simply call pre-
publication in our study). They find that portfolio returns are 26% lower in the period after 
the original sample but before publication, which serves as an upper bound estimate of data 
mining effects. In the post-publication sample, they find that returns are 58% lower, and 
therefore attribute 32%(58% - 26%) to publication informed trading, i.e. that investors learn 
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about mispricing from academic publications and trade accordingly. Our study includes a 
pre-sample period in addition to the sample periods of McLean & Pontiff (201)5, which 
allows for further analysis of anomaly performance before the original sample period.  
  
Our paper presents an additional analysis to further distinguish p-hacking from other 
competing explanations for declining anomaly performance. To gauge the publication bias 
and p-hacking, we look at the distribution of test statistics, as both publication bias (file 
drawer effect) and p-hacking induce certain patterns on the distribution of test-statistics and 
p-values (Harvey et al., 2016). Similar to Brodeur et al.(2016), we plot the z-scores found in 
the original studies to investigate whether the distribution show indications of p-
hacking. This allows us to determine the extent of p-hacking through other means than out-
of-sample analysis as done by Linnainmaa et al. (2018) and Mclean & Pontiff (2015).  
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2. Theory  
This section provides the theoretical and mathematical framework of the asset pricing models 
that were used in the study, as well as the theoretical explanation for cross-sectional return 
anomalies. Additionally, it describes the statistical background of hypothesis tests and its 
implications.   
  
Before we summarize and replicate asset price anomalies we here present the pricing models 
to which they are compared. An anomaly is simply an empirical observation where a 
systematic return can be observed that cannot be explained by standard asset pricing models. 
To judge whether an anomaly exist we thus first have to present the benchmark towards 
which they are identified.  
  
1.1 Asset Pricing Models  
We perform regressions against CAPM and Fama-French three-factor model (FF3) when 
computing the alpha of anomalies.  
  
CAPM:  
The capital asset pricing model sets out to price securities by risk and time value of money. 
  

𝐸𝑅# = 𝑅% + 𝛽#(𝐸𝑅) − 𝑅%)  
where  

𝐸𝑅#= 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑟𝑒𝑡𝑢𝑟𝑛	𝑜𝑓	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 
𝑅%= 𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒	𝑟𝑎𝑡𝑒 

𝛽# = 𝑏𝑒𝑡𝑎	𝑜𝑓	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 
 ?𝐸𝑅) − 𝑅%@ = 𝑚𝑎𝑟𝑘𝑒𝑡	𝑟𝑖𝑠𝑘	𝑝𝑟𝑒𝑚𝑖𝑢𝑚  

 
The 𝑅𝑓, risk- free rate, component accounts for the time value of money, while the  
𝐸𝑅−𝑅𝑓, market risk, component accounts for the risk of the asset. The β Beta represents 
the riskiness of the stock in relation to the market. In this way, the asset’s volatility is taken 
into consideration in the pricing.   
  
Fama and French Three Factor Model  
The Fama and French Three Factor model is an extension to the Capital Asset Pricing model 
that adds size and value risk factors (Fama & French, 1992).   
 

𝐸𝑅# = 𝑅% + 𝛽()𝐸𝑅* − 𝑅%, + 𝛽-(𝑆𝑀𝐵) + 𝛽3(𝐻𝑀𝐿) 
where  
 

𝐸𝑅#= 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑟𝑒𝑡𝑢𝑟𝑛	𝑜𝑓	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 
𝑅%= 𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒	𝑟𝑎𝑡𝑒 

𝛽A,C,D = 𝑓𝑎𝑐𝑡𝑜𝑟	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
?𝐸𝑅) − 𝑅%@ = 𝑚𝑎𝑟𝑘𝑒𝑡	𝑟𝑖𝑠𝑘	𝑝𝑟𝑒𝑚𝑖𝑢𝑚  



7 

𝑆𝑀𝐵 = 𝑠𝑖𝑧𝑒	𝑝𝑟𝑒𝑚𝑖𝑢𝑚(𝑠𝑚𝑎𝑙𝑙	𝑚𝑖𝑛𝑢𝑠	𝑏𝑖𝑔) 
𝐻𝑀𝐿 = 𝑣𝑎𝑙𝑢𝑒	𝑝𝑟𝑒𝑚𝑖𝑢𝑚(ℎ𝑖𝑔ℎ	𝑚𝑖𝑛𝑢𝑠	𝑙𝑜𝑤) 

  

Through their research, Fama and French found that small-cap stocks and high book-to-
market value stocks tend to outperform markets. By adding these factors to the CAPM, their 
three-factor model is able to explain 90% of diversification in portfolio returns, compared to 
CAPM’s 70% (Fama & French, 1992). Apart from excess return on the market, which is also 
a factor in the CAPM, the three-factor model also contains the factors size of firm and book-
to-market. The SMB factor accounts for the high returns from the small-cap firms, and the 
HML factor accounts for the high returns generated by stocks with a high book-to-market 
value.   
  
1.2 Explanations for Cross Sectional Return-anomalies   
Three main hypotheses are often mentioned as the cause for the existence of cross-sectional 
return anomalies (Linnainmaa, 2018). The first is unmodeled risk, which states that the 
anomalies come as an effect of the multidimensionality of stocks that cannot be reduced into 
a simple model, thus leading to misspecification. For instance, an anomaly might compensate 
for risk that CAPM or FF3 fails to account for. If return predictability exists as compensation 
for risk, the predictability should be persistent over time.   
The implication that comes with this hypothesis is that the sample period should be 
irrelevant to the return predictability, as long as structural shifts in the risks that matter to 
investors do not occur. However, the past century has seen notable changes in cross-sections 
of corporate characteristics, meaning that a shift in significance of the anomaly may be a 
result of the shift in the underlying risk that drives the anomaly (Linnainmaa, 2018). This 
means that the choice of sample periods could matter if we have a non-diverse distribution of 
original sample periods.  
  
The second hypothesis for why anomalies occur is mispricing. Mispricing exist due to the 
limits of arbitrage (Shleifer & Vishny, 1997), as well as investor irrationality 
(Linnainmaa, 2018). These factors cause asset prices to deviate from the price given by an 
asset pricing model. Over the past century, however, the possibility to exploit this arbitrage in 
mispricing has become easier (French, 2008). This is a result of both decreasing trading costs 
(Hasbrouck, 2009) and increased information availability due to digitalization and improved 
computing power. Mclean & Pontiff (2015) show that if return predictability reflects 
mispricing, publication will lead to investors learning about the mispricing, which will cause 
return predictability to decay. However, trading frictions will prevent anomalies to disappear 
completely.   
  
The final hypothesis is p-hacking (data-snooping or data-mining), which would imply that 
the anomalies are significant by chance, also known as a type 1 error. Further explanation of 
hypothesis tests is presented in the following section.  
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1.3 Publication Bias, p-hacking, and hypothesis testing  
Research can be considered more or less attractive based on whether or not it reports 
significant results (Szucks & Ionnaides, 2017). Fanelli (2013) finds that articles that are 
published with insignificant findings get fewer citations than those with significant findings. 
Hence, academic journals have a stronger incentive to publish articles that report significant 
findings. This is known as publication bias. P-hacking is broadly defined as the action of 
manipulating data in order to report statistically significant findings. Because of academic 
journals’ preference for publishing articles which display statistically significant 
results, researchers find that when their research doesn’t produce sub 0.05 p-values, a 
statistically significant result, it can be in their favor to strategically select or analyze in such a 
way that they get lower p-values.  This can be based on decisions such as what data to 
include, what measures to study, and which interactions to measure etc. (Gelman & 
Loken, 2013). When using a 0.05 significance level in hypothesis testing, there is a 
5% chance of finding a significant result when there is in fact not one. Although there are 
many forms of p-hacking, the form of p-hacking which is a common issue in cross-sectional 
literature is where published factors are actually drawn from multiple unpublished tests 
without accounting for multiple testing. Harvey (2017) illustrates in an empirical example 
that given a large enough choice set, dozens of long-short strategies based on the first three 
letters of stock tickers have significant t-statistics, which is an example of how p-hacking can 
work.  

 
Type I and Type II errors in NHST 

   
Decision 

  
  𝐹𝑎𝑖𝑙	𝑡𝑜	𝑟𝑒𝑗𝑒𝑐𝑡	𝐻Q 𝑅𝑒𝑗𝑒𝑐𝑡	𝐻Q 

𝐻Q(𝑡𝑟𝑢𝑒)  Correct decision  Type I error (𝛼 𝑒𝑟𝑟𝑜𝑟) 
  

𝐻Q(𝑓𝑎𝑙𝑠𝑒) Type II error (𝛽 𝑒𝑟𝑟𝑜𝑟) 
  

Correct decision  

Figure 1 demonstrates the possible outcomes in NHST based on the decision to fail to reject or reject 𝐻6 and whether or not 
𝐻6 is true. 
 
The value α represents the probability of a false rejection of the null hypothesis, also known 
as a type 1 error. Although this value is low, usually at 5%, it grows with the number of tests 
performed (Bickel & Docksum 1977). Due to the absence of a requirement for researchers to 
report all of their performed tests in their published work, there is no way to ensure that the 
significant results that appear from a study aren't a result of the performance of simply 
enough hypothesis tests.  
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1.4 Multiple testing adjustments  
Another method of validating anomalies which are found through excessive data-mining or 
p-hacking in cross sectional research is to implement statistical adjustments that accounts for 
multiple testing. This method is an alternative validation method to out-of-sample testing 
presented previously. To account for multiple testing, the statistical literature often control 
for measures such as family-wise error rate (FWER) and false discovery rate (FDR). FWER is 
the probability of at least one type I error. FDP measures the expected proportion of false 
discoveries among all discoveries. There are many other measures or techniques which can be 
seen as extensions of the two aforementioned measures (Harvey et al., 2016).  
  
Many statistical adjustment methods have been developed to control for both FWER and 
FDP. Harvey et al. (2016) use three different adjustments in their paper: 
Bonferroni’s adjustment, Holm’s adjustment and Benjamini, Hochberg 
and Yekutieli’s adjustment (BHY). Since these multiple testing adjustments are all dependent 
upon the number of tests carried out, one needs to address the issue within cross 
sectional stock returns research - that some anomaly factors that are tested but are not made 
available to the public. Factors that have been tried and found insignificant are often 
discarded. Based on a simulation framework, Harvey et al. (2016) estimate that 71% of all 
tried factors are missing. The authors then establish a general t-statistic cutoff of 3.0 as a 
recommended cutoff for newly discovered anomaly factors. However, they mention that not 
necessarily all factors should be evaluated based on this cutoff. For instance, factors which are 
developed through theoretical principles should reasonably have a lower cutoff than a factor 
discovered through simply empirical testing. Nevertheless, we will use the 3.0 threshold to re-
evaluate our anomalies as an additional computation to test our conclusions against.  
  
  
  

  
  
  
  
  
  
  
 

 
 

  
 
 



10 

3. Data and Methodology  
3.1 Defining factor anomalies  
We replicate 21 accounting-based anomalies whose factors can be further subcategorized into 
growth and investment, earnings quality, profitability and valuation. Table 1 lists these 
factors, along with their authors, original sample period, and the formula used to calculate 
the particular factor. (See “appendix” for a description of each anomaly).  
 

Anomalies  

 
Table 1 lists the individual anomalies that are replicated in our study. Column 1 lists each anomaly factor. Column 2 lists the 
author along with the year that their article was published. Column 3 lists the sample period in which the anomaly factor 
was tested in the original study. Column 4 lists the formula used in our study for each anomaly.  
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3.2 Data Sources  
We obtain annual accounting data from the Compustat database, which provides bias-free 
coverage from 1963. Prior to 1963, there is a significantly sparser coverage for selected 
successful firms, since Compustat was established in 1962 and only backfilled information 
for selected firms. Therefore, we collected annual accounting data from 1963 - 2020 for all 
firms listed on NYSE, AMEX and NASDAQ. For the same period and stock universe, we 
collected stock returns data from CRSP. We also take delisting returns data from CRSP. 
Monthly Fama French factors and risk-free returns were obtained from Kenneth French’s 
website. We only include common stocks (share codes 10 and 11). Unless stated otherwise in 
the original studies, rows with missing values (for variables used to construct the anomaly 
factors) are removed.   
  
When studying the distribution of test statistics to identify p-hacking, the method used is 
similar to that of Brodeur et al. (2016), in which we aim to collect test-statistics that represent 
key hypotheses. T-statistics are collected from the original studies of the articles replicated 
by Linnainmaa (2018) and are solely from tables. T-statistics are collected from 22 original 
studies that find accounting-based anomalies. The scores collected are solely from tables and 
are recorded exactly as they are presented, i.e. we do not round up or down. Both negative 
and positive t-statistics are collected but are adjusted to their absolute value. Since the sample 
sizes in these studies are so large, we find that the conversion from t-statistics to z-scores 
results in such a minimal change that is too small to make a difference in the plot, we simply 
report the t-statistics as z-scores.  
  
3.3 Sample Periods  
We analyze the following sample periods encompassed by our data:  

 
Sample Period Illustration 

 

 
Figure 2 illustrates the sample periods used in out study on a timeline. 
  
In-sample: the sample period used in the original study. This is computed for all anomalies.  
  
Post-sample: the sample period occurring after the original sample period. This is computed 
for all anomalies.  
  
Pre-sample: the sample period occurring before the original sample period. This sample 
period is computed for 9 anomalies with more than 7 years of pre-sample data (e.g. firms 
with original sample periods starting in 1964 will not have enough pre-sample data). We 
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implement this criterion to ensure that we have a sufficient sample size, since COMPUSTAT 
has lower data coverage for earlier years (lower amount of firms have sufficient accounting 
data).  
  
Pre-publication out of sample: the sample period occurring between the end of the 
original sample period and the publishing of the article. This time frame usually spans 
between 2-6 years. This is computed for all anomalies. In this paper, we simply call this 
period “pre-publication”.  
  
We also present a distribution of our sample periods for each anomaly. Later in this paper, we 
refer to this figure when discussing sample selection sensitivity.  
  

 
Figure 3. Plots the distribution of the original sample periods of each anomaly. The pre-publication sample period is not 
plotted in this graph, since it consists of the first 2-6 years in the post-sample period.  
  
  
3.4 Methodology  
To re-evaluate return anomalies we compute anomaly variables using the same formulas as 
the original studies. The definition of each anomaly is held constant throughout all sample 
periods to make the results comparable.  
  
To evaluate the predictive power of an anomaly we use a portfolio sort approach, with stocks 
being sorted into annual quintiles (five portfolios) based on the anomaly variable. The 
quintile portfolios are then used to construct anomaly factors through high-minus-low 
approach. Thus, the return of the anomaly factor is the return of the highest quintile minus 
the return of the lowest quintile. The high and low labels are chosen based on the original 
study, where the stocks in the high portfolio earn higher returns than those in the low 
portfolios.  
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In computing the accounting-based anomalies and subsequent returns, we make the 
conventional assumption that accounting data is available six months after the fiscal year end 
date. We construct our stock anomalies with annual rebalancing at the end of June. In other 
words, stocks are sorted into portfolios in June year t with accounting information from the 
fiscal year that ended in year t - 1.   
  
When forming portfolios, many studies use equal-weighted returns. However, we chose to 
compute value-weighted returns. Value weighted returns reflect the wealth effect 
experienced by investors (Fama, 1998). Furthermore, and more importantly, value-weighted 
returns help to control for microcaps. Microcaps account for about 60% of the total number 
of stocks, but only make up for 3% of the aggregate market capitalization of the NYSE-Amex-
NASDAQ universe (Fama & French, 2008). High transaction costs cause anomalies present 
in microcaps to be less exploitable. Therefore, value-weighted returns is a more representative 
measure than equal-weighted returns.   
  
The value weighted average monthly returns of each anomaly factor for each sub-period (in-
sample,  post-sample, pre-sample or pre-publication) are then tested against the null-
hypothesis of zero return in a two-sided t-test. The anomaly factors are also regressed against 
CAPM and Fama French 3 factors to compute Alphas and corresponding t-statistics.  
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4. Results  
4.1 Individual Anomalies  
Table 2 presents the average monthly percentage return, as well as the CAPM and Fama-
French 3-factor alphas. The average return, alphas and corresponding t-statistics is reported 
for the in-, post-, and pre-publication samples, as well as the pre- sample where applicable.   
  

Average Returns, CAPM Alpha and FF3 Alpha for Individual Anomalies 
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Table 2 displays average monthly returns, CAPM Alpha and FF3 Alpha, and their respective t-statistics for 
individual anomalies. Asterisks after the t-statistics indicate the p-values: * = P < 0.05, ** = P< 
0.01, *** = P<0.001.  
  
In-sample, we find that 16 out of 21 anomaly factors earn returns that are statistically 
significant at the 5% level. 18 anomaly factors also have significant CAPM alphas, and 16 
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have significant three-factor model alphas. For some anomalies, such as Change in asset 
turnover or ROE, the difference in significance between returns and either CAPM alphas or 
three-factor model alphas are large compared to other anomalies. This has to do with how an 
anomaly covaries with the market and the FF3 factors. Linnainmaa (2018) explains that an 
anomaly that covaries negatively with the market and FF3 factors might exhibit low returns 
but considerably higher alphas, for instance.  
  
In the post-sample period, only 2 out of 21 anomalies have significant returns at the 5% level. 
5 anomalies have significant CAPM alphas, and 5 also have significant three-factor model 
alphas. Thus, we see a markedly weaker performance of anomalies in the post-sample period.  
  
We compute pre-sample returns and alphas for 9 anomalies with more than 10 years of 
available pre-sample data, and also pre-publication returns and alphas for all anomalies. We 
find that 5 out of 9 anomalies have significant returns pre-sample. Furthermore, 5 and 7 have 
significant CAPM and three-factor model alphas in the pre-sample period respectively. In the 
pre-publication sample, only 2 out of 21 anomalies have significant returns, 3 have 
significant CAPM alphas, and 6 have significant three-factor model alphas. However, 
especially for the pre-sample and pre-publication periods, the statistical power for any one 
anomaly is limited due to the smaller sample size. Therefore, it is also preferable to look at the 
aggregate of all anomalies and compute averages, as in the section below (see “4.2 Average 
Anomalies”).  
  
Table 3 summarizes our results for individual anomalies:   
 

Table 3. The table shows the count of significant average returns, CAPM Alphas and FF3 Alphas by sample 
period. For In-sample, Post-sample and Pre-publication we computed t-statistics for all 21 anomalies. Pre-
sample t-statistics are computed for 9 anomalies.  
  
4.2 Average Anomalies  
In this section we show results for the average of all observed anomalies. Average return, 
CAPM Alpha and FF3 Alpha averages are computed for each sample period.  
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Figure 4 plots the average return, CAPM Alpha and FF3 Alpha by sample period.  
  
  

 
Figure 5 plots the t-statistics of average return, CAPM Alpha and FF3 Alpha by sample period.  
  
Figure 4 shows that the average anomaly factor earns a monthly return of 0.51% during the 
in-sample period. In the post-sample period, the return decreases to 0.15% per month, while 
the pre-sample period indicates a slightly higher return of 0.32%. In the pre-publication 
sample we also see a significant depletion of returns, with 0.24% in monthly return. The 
anomalies also show a similar relationship in CAPM Alpha, with an in-sample CAPM Alpha 
of 0.70 and notably lower alphas in out-of-sample periods, with a post-sample alpha of 0.14. 
For FF3 Alpha, the pre-sample period exhibits a slightly higher alpha than the in-sample 
period.  
  
In addition to the alpha, volatility should be taken into consideration when determining the 
attractiveness of an anomaly as an investment. Although our out-of-sample anomaly factor 
returns are lower, a decrease in volatility could counteract this. Sharpe ratio takes volatility 
into consideration through dividing an anomaly factor’s average return by its volatility 
(standard deviation of returns). Figure 6 shows average sharpe ratios by sample period.  
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Figure 6. Average sharpe ratio by sample period. We have annualized the monthly sharpe ratios by multiplying 
with √12 
  
We see that the average sharpe ratio is clearly higher in-sample than out-of-sample, which 
further strengthens our findings that out-of-sample anomaly factor performance is lower 
than in-sample. The figure also indicates a declining trend between pre-sample, pre-
publication and post-sample periods.  
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It is also interesting to look at t-statistics grouped by anomaly category to investigate 
whether certain anomaly categories perform better.  
  

 Table 4. Average return, CAPM Alpha and FF3 Alpha t-statistics by anomaly category and sample period.  
  
Table 4 shows us that different anomaly categories perform better with regards to 
alphas or average returns. Profitability anomalies have lower performance than other 
categories with regards to average return, but still exhibit competitive CAPM Alpha and FF3 
Alpha in most sample periods. Also, valuation anomalies have significantly lower FF3 Alpha 
compared to other anomalies in all periods except pre-sample. Later in this study, we will 
provide plausible explanations for these results. 
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6. Discussion 

6.1 Competing explanations for the emergence of anomalies  
Unmodeled risk   
If the cross-sectional return predictability in anomalies is an effect of unmodeled risk, risk 
that is not accounted for by risk models such as CAPM or the three-factor model, then we 
expect the effect to be similar across time periods. That is, if return predictability exists as 
compensation for risk, the predictability should be persistent over time, as with the factors of 
CAPM or FF3 for instance. However, as mentioned previously, there is still the possibility 
that structural shifts in the risks that matter to investors cause the anomalies to perform 
differently across time periods.   
   
Consider the case where all anomalies have the same in-sample periods (also pre- and post-
sample), then changing markets conditions or investor behavior during a specific time period 
could possibly explain changes in return predictability throughout our sample periods. For 
instance, macroeconomic events or other events could create a structural break which 
coincides with the shift between In- and Post- sample periods, which causes anomaly 
performance to decline Post-sample. However, this would be mitigated by a diverse 
distribution of original sample periods (or In-sample periods), since a time specific change 
will not only be present in one type of sample period. In our sample period distribution 
graph, we see that although several anomalies have original sample periods starting in the 
1960s, there are also many anomalies which start at significantly later time frames. 
Additionally, anomalies with longer sample periods are less sensitive to structural shifts 
occurring during that period. Therefore, we judge that our conclusions are not particularly 
sensitive to changes in market conditions during a specific period. Hence, the unmodeled risk 
hypothesis is a weak explanation for the non-persistent anomaly performance throughout 
our sample periods.  
   
Mispricing   
Under the mispricing hypothesis, the publication of an anomaly paper should cause 
sophisticated investors to learn about the mispricing and trade against it. Therefore, the 
cross-sectional return predictability should disappear or decay after publication. Accordingly, 
this is consistent with lower anomaly performance in the post-sample period. However, this 
does not explain the attenuation of anomaly returns between the in-sample period and pre-
publication period which is a sample period before the publication date. Hence, mispricing 
alone cannot explain the decay of anomaly performance in the post-sample period. On the 
other hand, one should take into consideration that the release of research as working papers 
could contribute to informed trading before the publication date, which we will discuss 
later.   
   
Similar to Mclean & Pontiff we estimate an upper bound for the mispricing effect. In this 
case, the performance decline between pre-publication and post-sample is attributed to 
mispricing effects. As presented in our average anomaly results, we find that anomaly returns 
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are 52.3% lower in the pre-publication sample compared to in-sample, in relative terms. Also, 
anomaly returns are 70.8% lower in the post-sample relative to the in-sample period. An 
upper bound estimate of the mispricing effect is therefore a 18.48% decline of in-sample 
returns (70.8% - 52.3%).   
   
A part of the mispricing hypothesis also involves declining limits to arbitrage, implying that 
restrictions that prevent investors from exploiting mispricing opportunities are decreasing, 
which causes mispricing to be less prevalent over time. Therefore this theory is consistent 
with declining performance throughout the sample periods in chronological order: pre-
sample, in-sample, pre-publication and post-sample. Evidently, our results implies that 
mispricing cannot explain our pre-sample performance which is lower than the in-sample 
performance. However, we do see a declining performance between the pre-sample, pre-
publication and post-sample with regards to average returns, CAPM alpha but also Sharpe-
ratio. This trend of declining performance is consistent with declining limits to arbitrage.   
   
Mclean & Pontiff(2015) discusses the possibility that publication of academic research has 
no effect on return predictability, but that the decline in performance between the pre-
publication and post-sample is explained by time trends such as declining limits to arbitrage. 
For instance, declining anomaly returns post-sample may simply be explained by lower 
trading costs and increase in hedge funds in later time periods. In order to investigate the 
possibility that their results reflect time effects and not a publication effect, the authors 
conduct regressions with a time variable. However, they find that the post-publication 
coefficient is still statistically significant, implying that publication of academic research does 
have a significant effect on the decay of anomaly returns.   
   
P-hacking   
P-hacking suggests that significant anomalies emerge by chance due to testing of multiple 
anomalies. The process of p-hacking involves testing numerous hypotheses using the same 
data set. Under the p-hacking hypothesis, the in-sample performance of anomalies are unique 
to that period and become insignificant out-of-sample. Therefore, our findings are consistent 
with p-hacking, where in-sample performance is markedly higher than out-of-sample 
performance.   
   
As previously computed for mispricing, we can discuss an upper bound estimate of the p-
hacking effect. The lower performance during the pre-publication period occurs before the 
publication date, so publication-informed trading (exploitation of mispricing) cannot 
explain the performance decrease between the pre-publication and the in-sample period. 
However, as previously mentioned, declining limits to arbitrage can explain lower anomaly 
returns throughout the sample periods in chronological order. Therefore, declining limits to 
arbitrage could play a part in the attenuation of anomaly performance between the in-sample 
and pre-publication periods. Nevertheless, it is unlikely for the entire decline of 52.3% to be 
explained by declining limits to arbitrage. Therefore, assuming that declining limits to 
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arbitrage have a minor effect on the decay of anomaly returns, a 52.3% depletion of in-sample 
returns is still an upper bound estimate of p-hacking effects. Note that this is an upper bound 
estimate, since research is often released as working papers sophisticated traders might be 
aware of the mispricing before publication, as mentioned by Mclean & Pontiff (2015). Some 
traders are likely to learn about the predictor before publication and cause the decay in the 
pre-publication period to be larger than the actual decay from p-hacking.   
   
To further investigate the extend of p-hacking in the original articles that Linnainmaa (2018) 
replicate (from which we select our anomalies that we replicate), we also collect and plot the 
z-scores that 22 of those articles present in their tables, similar to the process of Brodeur et al. 
(2016) (as described under “data sources”).   
   

   
Figure 7 displays the distribution of z-scores presented in the articles replicated by Linnainmaa (2018). For full reference list see 
“Appendix”. Bin-widths of 0.1 and a black line as a marker for a z-score of 1.96 (significance at the 0.05 level) as well as z-score of 2.2 
(maximum).    
   
The distribution of the z-scores is presented in as a histogram in figure 4. We see a presence of 
a maximum at roughly 2.2, which represents a p-value of under 0.05. Another observation is 
the denser distribution on the right hand side of the z = 1.96 level than the left hand side. 
There is somewhat of a steep drop off of the density line on the left hand side, as opposed to a 
nearly flat line up until z = 3 . After that we see a natural decrease in tests before leveling off.    
   
From our plotted distribution, we see that the density line shares some similar characteristics 
to those exhibited by the plots displayed by Brodeur et al. (2016). They report a distribution 
with a camel-back shaped hump, with a maximum slightly above 2, but also a local minimum 
at z = 1.5 (p-value of 0.12). By the nature of tests, the distribution would decrease for higher 
z-values. This fact brings interest to our maximum at 2.2, which is similar to the maximum 
reported by Brodeur et al (2016); however, this could also be a result of selective reporting of 
the significant tests. We fail to see the clear camel-back shaped hump, where there is a dip in 
the distribution right before the level 1.96, that Brodeur et al. find and attribute to p-
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hacking. However, we find a slight indentation at around the same location as Brodeur et 
al.(2016) find their local minimum. This discrepancy between their dip and our 
indentation could be explained in the much fewer number of articles, and therewith tests, 
that we used in our distribution (our 22 compared to their 642). All in all, it is hard to make 
the claim that the original articles were subject to p-hacking only through the inferences from 
our histogram. However, pieced together with the results in our replication study, it gives 
ground to believe that this could be the case.  
  
6.2 Multiple-testing adjustment as an alternative to out-of-sample validation  
Harvey et al. suggests the usage of a test statistic cutoff of 3.00 instead of the conventional 
1.96 cutoff for a two-sided test at 5% significance. An unadjusted t statistic of 3.00 on a two-
sided hypothesis test would roughly equate a p-value of 0.002. This can be compared to the 
0.005 p-value proposed by Benjamin et al. (2017), as a better threshold for statistical 
significance. Anomalies which clear the 3.00 hurdle are regarded as significant despite the 
presence of multiple testing in anomalies literature, and this statistically motivated cutoff also 
serves as a mitigation against this form of p-hacking. Thus, to verify the robustness of an 
anomaly against p-hacking, implementing a multiple-testing t-statistics cutoff is an 
alternative to out-of-sample testing.  
  
We find that only 6 out of 21 anomalies have in-sample average returns t-statistics that clear 
the 3.00 hurdle. However, to investigate multiple-testing adjustments as an alternative to out-
of-sample validation we are also interested in whether the anomalies that are significant at 
3.00 are the same anomalies that proved to be significant out-of-sample. Theoretically, 
clearing Harvey et al. (2016)’s multiple-testing cutoff should imply that an anomaly is 
regarded as significant despite the presence of data-snooping, and therefore that anomaly 
should not only be an in-sample phenomenon. To examine whether out-of-sample 
significance coincides with clearing the 3.0 hurdle in-sample, we present a comparison in 
Table 5. The table compares the results of out-of-sample validation and implementing a 
multiple testing t-statistic cutoff. One column specifies whether an anomaly is significant in-
sample at the 3.00 cutoff, and the other column specify whether the same anomaly is 
significant in any of the out-of-sample periods (pre-sample, pre-publication, post-sample) at 
the conventional cutoff of 1.96.  
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Out-of-sample significance vs. statistical adjustments 

 
Table 5. “In-sample t-value > 3” shows which anomalies clear the 3.00 test statistic cutoff for average returns, where “Yes” 
indicates that an anomaly has average return t-statistic of more than 3.00. “Out-of-sample significance” denotes significance 
in any of the out-of-sample periods (Pre-sample, Pre-publication and Post-sample) and “Yes” indicates that an anomaly has a 
t-statistic above the conventional 1.96 level in any of the three out-of-sample periods. In “Intersection”, anomalies for which 
both out-of-sample and multiple-testing cutoff yield the same conclusion are marked with “X”.  
  
We find that only 13 out of 21 anomalies coincide with respect to the two different 
validation methods. Therefore, a considerable amount of anomalies are “robust” with regards 
to one approach but not the other. Concludingly, the multiple testing adjustment is not a 
substitute for out-of-sample tests. Additionally, more conclusions can be derived from out-
of-sample tests due to the time-period analysis, which cannot be conducted through 
multiple-testing adjustments.  
  
6.3 Analyzing anomaly performance  
 In our results, we pointed out that different anomaly types have different characteristics 
with regards to average returns and alphas. Here, we provide plausible explanations for the 
observed results. Profitable firms tend to be larger, less volatile and more liquid, which also 
implies that profitability anomalies which go long on these firms will have returns of lower 
magnitude while being more stable. This is an explanation for the low average return, but still 
significant CAPM and FF3 alpha of profitability anomalies. Valuation based anomalies seem 
to produce lower FF3 alpha than other anomalies overall. This can be explained by the fact 
that value risk premium is accounted for by the three factor model. Thus, the return 
predictability in valuation based anomalies are already explained by the book-to-market 
factor in FF3. This also explains why the book-to-market anomaly itself has negative alpha 
throughout all sample periods. Furthermore, some anomalies seem to be more persistent than 
others, which can be attributed to limits to arbitrage such as trading frictions. 
Anomalies with lower arbitrage costs will suffer from larger performance decay. Chu et al 
(2020) show that anomalies such as gross profitability, asset growth, investments to assets, 
return on assets, net operating assets and accruals are largely driven by mispricing due to 
limits to arbitrage. 
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7. Concluding remarks  
 7.1 Conclusion  
 Our out-of-sample tests, z-score distribution and also tests based on multiple testing 
adjustments all point to that part of the existing anomalies literature can be attributed to p-
hacking. Compared to Mclean & Pontiff (2015), we have a higher upper bound estimate for 
p-hacking effects, and a smaller effect from publication informed trading. Also, we find that 
only 6 of 21 anomalies clear the multiple testing t-statistic cutoff of 3.0 suggested by Harvey 
et al. Thus, we conclude that a majority of published accounting-based anomalies 
are probably false discoveries. Our study supports the idea that p-hacking and publication 
bias in the field of cross-section of stock returns is a major issue. Papers that support the idea 
that p-hacking and publication bias is dominant include Harvey et al. (2016) and Hou et 
al. (2017), and Linnainmaa & Roberts (2018), while papers like Mclean & 
Pontiff (2015) find that this is a relatively minor issue.   
It is worth addressing that we do not assign the entire anomaly “factor zoo” to p-
hacking either. To shed light on the limitations of p-hacking as an explanation, Chen 
(2019) conduct a thought experiment and argues that it would take 15 million years to find 
the 316 factors in the Harvey, Liu & Zhu (2016) through purely p-hacking. To conclude, we 
attribute part of the cross-sectional return predictability in accounting-based stock anomalies 
to p-hacking.  
  
7.2 Directions for Future Research  
It is valuable to study a larger set of anomalies to enhance the statistical power of the 
conclusions drawn from this study. Also, further investigation of the differences in 
computation methods between the original studies and our study would be interesting to 
pinpoint why some anomalies fail to replicate. It would be valuable to study anomalies 
through other analyses that investigate p-hacking or publication bias. An example of this 
would be using the method brought forth by Andrews & Kasy(2019) which estimates 
publication bias through meta-studies.   
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Appendix  

  
Anomalies  
This section of the appendix will define the anomalies brought forth in section 3.2. The 
order of the anomalies corresponds to that in table 1. We also list the study that first used the 
variable to explain the cross-section of stock returns and the year the study was published.  
  
Growth and Investment  
Abnormal capital investment is defined as capital expenditures scaled by revenues, scaled 
by the average of this ratio over the previous three years  
Titman et al. (2004) measure the predictive power of abnormal capital investment using 
return data from July 1973 through June 1996.  
  
Asset growth is defined as the percentage change in total assets  
Cooper et al. (2008) examine the predictive power of asset growth using return data from 
July 1968 to June 2003.  
  
Growth in inventory is defined as the change in inventory divided by the average total 
assets  
Thomas and Zhang (2002) use growth in inventory to predict stock returns using return data 
from 1970 to 1997.  
  
Growth in sales minus inventory is the difference between sales growth and inventory 
growth. Sales growth is the increase in sales over its average value over the previous two years, 
all scaled by the average value over the previous two years; inventory growth is the increase in 
inventory over its average value over the previous two years, all scaled by the average value 
over the previous two years  
Abarbanell and Bushee (1998) use growth in sales minus inventory to predict returns from 
1974 through 1993.  
  
Investment growth rate is the percentage change in capital expenditures  
Xing (2008) uses investment growth rate to construct an investment factor using return data 
from 1964 to 2003.  
  
Investment-to-assets ratio is defined as the change in the net value of plant, property, and 
equipment plus the change in inventory, all scaled by lagged total assets  
Lyandres et al. (2008) use the investment-to-assets ratio to predict returns from January 1970 
through December 2005  
  
Investment-to-capital ratio is defined as the ratio of capital expenditures to the lagged net 
value of plant, property, and equipmen  
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Xing (2008) uses the investment-to-capital ratio to predict stock returns using return data 
from 1964 to 2003.  
  
Sustainable growth is defined as the percentage change in the book value of equity  
Lockwood and Prombutr (2010) use return data from July 1964 through June 2007 to 
measure the predictive power of sustainable growth.  
  
Earnings Quality  
Accruals is the noncash component of earnings divided by the average total assets  
Sloan (1996) uses data from 1962 to 1991 to examine the predictive power of accruals.  
  
Net operating assets represent the cumulative difference between operating income and 
free cash flow, scaled by lagged total assets  
Hirshleifer et al. (2004) form trading strategies based on net operating assets using data from 
July 1964 through December 2002.  
  
Net working capital changes is another measure of accruals  
Soliman (2008) uses net working capital changes to predict stock returns using return data 
from 1984 to 2002  
  
Profitability  
Change in asset turnover is defined as the annual change in asset turnover, where asset 
turnover is revenue divided by total assets  
Soliman (2008) uses the change in asset turnover to predict returns between 1984 and 2002  
  
Gross profitability is defined as the revenue minus cost of goods sold, all divided by total 
assets  
Novy-Marx (2013) examines the predictive power of gross profitability using return data 
from July 1963 through December 2010  
  
Operating profitability is defined as the revenue minus cost of goods sold, SG&A, and 
interest, all divided by book value of equity   
Fama and French (2015) construct a profitability factor based on operating profitability 
using return data from July 1963 through December 2013  
  
Profit margin is defined as the earnings before interest and taxes, divided by sale  
Soliman (2008) uses profit margin to predict returns using return data from 1984 to 2002.  
  
Return on assets is defined as the earnings before extraordinary items, divided by total 
assets  
Haugen and Baker (1996) use return on assets to predict returns between 1979 and 1993  
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Return on equity is defined as the earnings before extraordinary items, divided by the book 
value of equity  
Haugen and Baker (1996) use return on equity to predict returns between 1979 and 1993  
  
Valuation  
Book-to-market ratio is defined as the book value of equity divided by the December 
market value of equity  
Fama and French (1992) use book-to-market ratio to predict returns using return data from 
July 1963 through December 1990  
  
Cash flow-to-price ratio is defined as the income before extraordinary items plus 
depreciation, all scaled by the December market value of equity  
Lakonishok et al. (1994) use the cash flow-to-price ratio in tests that use return data from 
May 1968 through April 1990  
  
Enterprise multiple is a value measure used by practitioners  
Loughran and Wellman (2011) compare the predictive power of enterprise multiple to that 
of book-to-market using return data from July 1963 through December 2009  
  
Sales-to-price ratio is defined as total sales divided by December market value of equity  
Barbee et al. (1996) compare the predictive power of sales-to-price to those of book-to-
market and debt-to-equity ratio using return data from 1979 through 1991  
  
Z-score histogram  
In this section we will list the articles from which we collected the data to create our 
histogram plot.   
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This section provides supplementary figures. 
  
  

Figure 8: Average Return t-statistics by sample period  
  

  
Figure 8 plots the t-statistics of average monthly returns by sample period and anomaly. 
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Figure 9: Capital asset pricing model alpha t-statistics by sample period 
  

  
Figure 9 plots the t-statistics of CAPM Alpha by sample period and anomaly.  
 

Figure 10: Fama-French three factor model alpha t-statistics by sample period  
  

  
Figure 10 plots the t-statistics of FF3 Alpha by sample period and anomaly.  
 


