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1. Introduction 

Purpose 
In macroeconomics, one of the most often asked and fundamental questions is: “what causes 

economic growth?” Why do average incomes vary so much between countries? How can we 

explain why some countries are rich, and some poor? What causes some economies to grow rapidly, 

and some not at all? 

 

Among the most influential models explain growth in terms of a country’s endowment of total 

factor productivity, capital and labor (Solow, 1956). Since its debut in the 1950s this model has 

been expanded and developed in a number of important directions (Swan, 1956). Other influential 

models distinguish between intangible ideas and tangible objects, and their relative importance for 

explaining growth (Romer, 1990). 

 

The Solow-Swan and Romer models all proceed from macroeconomic assumptions about 

production. Other models make more explicit assumptions about the connection between growth 

and microeconomic behavior regarding consumption (Ramsey, 1928). These, as well, have seen 

important extensions made during the 20th century (Cass, 1965). General theories of economic 

growth have developed and are extensive, yet they often lack the broader empirical basis on which 

assumptions can be asserted (Jones, 2016). Further, they are often open-ended in the sense that 

one model does not logically deny the existence of other possible explanations of economic growth, 

making it nearly impossible to create complete empirical models based on the theories. Although 

there have been a multitude of empirical examinations on the determinants and drivers of economic 

growth, particularly with the advent of more sophisticated statistical methods and better quality of 

economic data in the late 20st century (Panhans and Singleton, 2015), the empirical approaches 

often fall short due to the lack of quality data and possibility to assess irregular, nonlinear or noisy 

real world data. In summary, the empirical exploration of the determinants of economic growth 

have not been as successful as its more theoretical counterpart. 

 

Re-visiting one of the most essential topics in economics, we aim to contribute to the empirical 

approaches for economic growth through a data-driven approach, applying novel state-of-the-art 

machine learning algorithms on a broad set of societal indicators to investigate the possible causes 

and correlates of economic growth.  
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Current state of knowledge  

Economic growth since the 1950s – A snapshot 
For much of the history of the world, real GDP growth across the world was negligible by present-

day standards. Real growth rates were not always positive, and when they were, seldom above 0.5% 

annually (Maddison, 2021). After industrialization took off in the 18th and 19th centuries, growth 

rates did as well. More than two centuries later, the countries of Europe continue growing at a brisk 

pace. 

 

 
Figure 1. Real GDP per capita for the five most populous countries currently in the European 

Union, from 1950 until 2017. Layout from OurWorldInData. 

Empirical investigation of economic growth 
The literature on the empirical determinants of economic growth is vast, with cross-country 

comparisons yielding more than 140 indicators that could explain long run economic growth 

(Moral-Benito, 2012). Traditional neoliberal theories usually utilized single-country comparisons 

when trying to determine the drivers of economic growth. Rising to prominence with the seminal 

work of Islam in the early 1990s, panel data sets that distinguish the country-specific determinants 
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of economic growth became the standard mode within the area of empirical economics, and were 

used to evaluate various patterns and theories such as the convergence theory (Islam, 1995).  

 

One of the most significant contributors to the field, Barro examined country growth rates using 

ordinary least squares linear regression based on panel data sets with a relatively small number of 

explanatory variables, including logarithmized per capita GDP, male upper-level schooling, the 

inverse of life expectancy at age one, logarithmized total fertility rate, government consumption 

ratio, change in terms of trade, investment ratio and the inflation rate. The linear model also 

included a number of subjective indices as variables in the form of rule of law, democracy, and 

openness. Based purely on data availability, 87 countries were sampled on the above variables 

averaged across 10-year intervals. Particularly interesting, Barro found evidence of a conditional 

convergence of economic growth rates between countries that were dependent on the starting state 

of the economy. Further, the panel regression showed that given a certain GDP per capita and 

human capital, economic growth seemed to depend positively on the rule of law and the investment 

ratio and negatively on the fertility rate, the ratio of government consumption to GDP, and the 

inflation rate (Barro, 2003).  

 

In a similar fashion, Gallup et al. argued with the help of a cross country regression on a panel data 

set (combined with a new approach to incorporate transport costs into growth theory) with a broad 

range of explanatory variables that geography determines economic growth through various 

channels (Gallup, Sachs and Mellinger, 1998). Similarly, Acemoglu et al. used a panel data set and 

traditional regression methods to determine that democracy causes economic growth (Acemoglu 

et al., 2019). A different kind of topic is explanatory variables that have effect only after a certain 

time-lag. For example, increasing education expenditure can have an effect on growth, but only 

after a certain number of years (Chandra and Islamia, 2010). 

 

The work of Barro, Gallup and Acemoglu and their colleagues follows a tradition within cross-

country analysis that utilizes only a few selected variables, with the hope of establishing a significant 

relationship between economic growth and the variables of interest. Levine and Renelt showed 

already in 1992 that such an approach is highly sensitive to the explanatory variables chosen, and 

that there were essentially no combination of explanatory variables that held up to rigorous 

sensitivity investigation (Levine and Renelt, 1992). Further, the panel data sets are composed of 

often modeled underlying data, and changes to the methods of collecting, aggregating or modeling 

data have grave effects on the results of regressions (Ciccone and Jarociński, 2010). 
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Aiming to amend the model-specificity problem, a separate approach gained momentum at the 

beginning of the 2000s which tried to implement Bayesian models that incorporate the a-priori 

expected uncertainty. Specifically, Sala-i-Martin et al. used Bayesian Averaging of Classical 

Estimates approach that formulated an estimate of the value of the determinant based on both 

traditional linear regression and weighted Bayesian models that incorporate the uncertainty of 

variable selection explicitly. Running through 67 possible explanatory variables for economic 

growth for 88 countries between the 1960-1996 they found 18 variables that were robustly 

associated with economic growth. These included primary schooling enrolment, the relative price 

of investment goods, initial level of income, regional dummies as well as some measures of human 

capital as well as the public consumption and public investment shares (Sala-i-Martin, Doppelhofer 

and Miller, 2004).  

 

More recently, Moral-Benito extended the Bayesian approach to formulate a Bayesian Averaging 

of Maximum Likelihood model which incorporate the uncertainty inherent in each possible 

configuration of explanatory variables as well as their underlying distributions, applying it on a set 

of 35 variables in 73 countries between 1960-2000. He concludes that the investment price, distance 

to major world cities and political rights hold up to be the most robust determinants of economic 

growth in the data set (Moral-Benito, 2012). Utilizing a similar Bayesian approach, Cuaresma et al. 

studied the possible determinants of economic growth in 255 European sub-national regions 

between 1995 and 2005 including 50 explanatory variables, finding presence of capital cities and a 

higher presence of educated workers in the labor force positively associated with economic growth 

(Cuaresma, Doppelhofer and Feldkircher, 2014).  

 

In the late 1990s, Durlauf and Quah surveyed the landscape of empirical economics, noting that 

progress had been made, however statistical methods that could account for nonlinearities and 

discontinuities remained uninvestigated and traditional methods would be unsuccessful in fully 

capturing the determinants of economic growth. Bayesian models notwithstanding, it seemed that 

traditional statistical methods and modes of investigation did not move the understanding of the 

empirical determinants of economic growth forward (Durlauf and Quah, 1998).  

Machine learning within empirical economics  
The use of machine learning methods to alleviate some of the obstacles within economic growth 

research begun already in the 1990s (Lee, White and Granger, 1993; Kuan and White, 1994; 

Swanson and White, 1997) however it has become an increasing focus of research in more recent 
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years (Varian, 2014; Athey and Imbens, 2019). The most important issues with standard parametric, 

linear or Bayesian methods that machine learning offers a possible solution to is the difficulty of 

handling discontinuities, nonlinear relationships and highly correlated independent variables when 

trying to decipher the empirical determinants of economic growth. 

 

Being based on methods that are not confined to the traditional rigid statistical assumptions, 

shifting the analysis from a pure hypothetical testing approach to a data driven or learning approach 

while utilizing a broader set of explanatory variables allows machine learning methods to discover 

new patterns and deliver new understandings of the determinants of economic growth 

(Mullainathan and Spiess, 2017; Coulombe et al., 2020). The problem with nonlinearity further 

seems to vary with the availability and quality of data, and is particularly prominent in developing 

countries, making the use of machine learning methods for understanding growth patterns in such 

countries especially interesting (Chuku, Simpasa and Oduor, 2019). The most obvious downsides 

to using machine learning is the difficulty of assessing statistical inference and providing sufficient 

interpretability for reproducibility, which have been crucial components of traditional 

econometrics.  

 

A few studies have applied machine learning approaches to investigate econometric and economic 

growth patterns. Some have taken a broader perspective, with datasets including several countries, 

while others have focused more on a limited set with only a single country and more parameters. 

For example, Sokolov-Mladenović et al. used machine learning to predict GDP growth rates based 

on data from Eurostat (for the 28 countries then in the EU) and five parameters: trade in services, 

exports of goods and services, imports of goods and services, trade, and merchandise trade. The 

study used two different machine learning methods, an artificial neural network with extreme 

learning method and an artificial neural network with back-propagation. The first network could 

forecast GDP growth rate with a root-mean square error (RMSE) of 0.4289 and a determination 

coefficient (R²) of 0.9884, while the second network produced a RMSE of 1.2883 and R² of 0.8949 

(Sokolov-Mladenović et al., 2016). Similarly, Milačić et al. also applied the same neural network 

methods to predict growth rates in Portugal, based on four parameters: agriculture, manufacturing, 

industry (including mining, construction, electricity), and services. Each parameter was measured 

by adding all outputs from the sector and subtracting intermediate inputs. In this narrower dataset, 

the prediction accuracy was given by an RMSE of 1.97 and R² of 0.73 for the first network and 

RMSE 2.81 and R² of 0.45 for the second network (Milačić et al., 2017). Cicceri et al. have used 

machine learning to forecast Italian recessions specifically. Their variables included the inflation 
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rate, the unemployment rate, industrial production, gross debt, stock market index, average interest 

rate at issuing for short term bonds, interest rate for long term bonds, balance of payments, final 

consumption aggregates, state budget and government deficit/surplus. The time period studied 

consisted of the first quarter of 1995 to the second quarter of 2019. The study utilized seven 

different regression estimation techniques: a autoregressive model, ordinary least squares 

regression, nonlinear autoregression models, nonlinear autoregressive with exogenous variables 

model, support vector regression machines, k-nearest neighbors, and boosted trees. The two 

machine learning methods, boosted trees and support vector regression machines, achieved an 

overall predictive accuracy of around 80%, whereas their proposed nonlinear autoregressive model 

with exogenous variables had a predictive accuracy of 87%. The results constitute a statistically 

significant improvement over the standard ordinary least squares regression, measured in terms of 

their mean-squared errors (Cicceri, Inserra and Limosani, 2020).  

 

Several studies have used machine learning methods to investigate various parameters that can have 

an indirect effect on economic growth. Using a support vector regression machines algorithm using 

a series of short-term rates (treasury bills) as well as long-term rates (bonds) from 1976 until 2011, 

together with the real GDP for the same period one study achieved a forecasting accuracy of 66.7% 

at predicting recessions (Gogas et al., 2015). One study forecasted inflation in the United States 

from 1984 to 2014 using a set of different methods, both traditional (e.g. autoregressive) as well as 

machine learning algorithms (e.g. artificial neural networks and support vector regression 

machines). It included four different inflation indicators as well as four different time horizons, for 

a total of 16 different conditions. The machine learning algorithms were better in seven of these 

conditions, and the traditional time series models were better in the other nine. The study 

concluded that support vector regression machines outperforms other models at predicting 

personal consumption expenditure inflation. The machine learning algorithms were particularly 

good the more volatile the underlying data series were (Ülke, Sahin and Subasi, 2018). Another 

study focused on tourism to China, a sector that accounts for 6.3% of the country’s GDP. The 

study used a kernel extreme learning machine to forecast the number of tourist arrivals using 

queries at the Google and Baidu search engines as input. It concluded that machine learning 

methods were superior to traditional methods, such as autoregressive integrated moving average 

with exogenous variables, the outperformance was both in terms of forecasting accuracy and 

robustness (Sun et al., 2019). A similar study again used Baidu search engine data, but instead with 

a least squares support vector regression machine model with gravitational search algorithm in 

order to make the calculations less time consuming (Xie, Qian and Wang, 2021). The new method 
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was more accurate than the traditional methods, with a root-mean square error one-fifth as high as 

that of the autoregressive integrated moving average with exogenous variables model. Another 

study investigated natural gas use in Istanbul. It contrasted three methods: multiple linear 

regression, artificial neural network, and support vector regression machines. The support vector 

regression machines algorithm was best in terms of mean absolute percentage error, with a value 

of 8.14 compared to 9.89 for artificial neural network and 18.7 for the multiple linear regression 

(Beyca et al., 2019). Another set of studies have looked into the possibility of machine learning 

algorithms for estimating the price of crude oil, succeeding to various degrees  (Gabralla, Jammazi 

and Abraham, 2013; Yu, Dai and Tang, 2016; Chen, He and Tso, 2017; An, Mikhaylov and 

Moiseev, 2019). 

 

Together, these examples demonstrate the breadth of the applicability of machine learning 

algorithms within empirical economics studying economic growth. Although machine learning 

algorithms have become a more prominent tool in the toolbox of econometrics, historic economic 

growth and its determinants remain surprisingly understudied. To our knowledge, no study of such 

focus has been published.  

2. Research questions 
To determine the most important empirical factors for long run growth through of state-of-the-art 

machine learning algorithms and investigate the possibility to predict historic economic growth. 

Specifically, to 

- Assess the applicability of support vector regression machines, gradient boosted decision 

trees and long-short neural networks for untangling complex non-linear associations 

within historic economic data.  

- Study the relative importance of different economical and societal features for historic 

economic growth. 

- Investigate the possibility of support vector regression machines, gradient boosted 

decision trees and long-short neural networks to predict historic economic growth. 

Limitations of scope 
In this analysis, we limit both the temporal and spatial aspects of the research question. First, we 

limit ourselves to a specific time period (1950-2019) primarily because this is the time period for 

which data from a range of explanatory empirical variables are available. Secondly, primarily due to 
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the data availability and quality aspects, we focus on European countries. Since the focus of the 

thesis is to investigate the applicability of machine learning algorithms and the empirical 

explanations of economic growth, we deem it beyond the scope to provide a more general in-depth 

mathematical or theoretical analysis of the feasibility of machine learning algorithms within 

empirical economics. Similarly, the traditional models and theories of economic growth are only 

touched upon lightly as we explore the empirical drivers of economic growth.  

3. Methods 
The investigation of the determinants of economic growth has a long history, however recent 

advancement in two areas have made it necessary to revisit the standard empirical explanation for 

economic growth. The first is the ever more detailed macroeconomic data available over a longer 

time horizon for many countries that were not available a decade ago. The second is the 

development of machine learning algorithms that can untangle complex non-linear relationships 

and function in non-parametric real-world settings. Overall, the methodological approach applied 

follows a data-driven machine learning approach, which tries to estimate relationships from raw 

data without a-priori assumptions or hypotheses that can hinder a broader analysis of a 

phenomenon.  

 

Given the research question, we first assume the problem as a standard regression scenario whereby 

the independent or explanatory variables provide the input for a function that is able to predict the 

actual GDP growth rate of each country. Hence, the primary evaluation criteria for the applied 

algorithms are the fit of the proposed function and which variables that are the most important for 

providing such a function. As a secondary additional analysis, holding all other things the equal, 

the algorithms are evaluated on how well the function can predict GDP growth rate on a set of 

previously unobserved data, which indicates the ability of the algorithm to predict future GDP 

growth rates. 

Data sample 
The advantage of machine learning methods is particularly notable for large datasets. For this paper, 

we would preferably have as many data points as possible. However, of the circa 200 countries in 

the world, many do not have accurate data available, at least not when going more than a decade 

back in time. The countries for which complete data is available also tend to be comparatively rich 

and well-developed. Further, the availability of data has to be weighed against the 
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representativeness of the sample of countries. Balancing the pros and cons, we have chosen to 

make the following tradeoff. We choose to limit the analysis geographically to the EU countries 

and the United Kingdom and temporally to the time period of 1950-2019. Specifically, available 

data were collected for each year and country (Austria, Belgium, Bulgaria, Croatia, Cyprus, the 

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 

Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, 

Slovenia, Spain, Sweden and the United Kingdom) during this period.  

Data sources and variables 
Combining the two most robust and rigorously compiled datasets, Penn World Tables version 10.0 

which is provided by the University of Groningen and the most recent edition of the World 

Development Indicators compiled by the World Bank, the dependent variable is the annual GDP 

growth rate while all other available variables were considered independent possible explanatory 

variables (Groningen Growth and Development Centre, 2021; World Bank, 2021). Our data also 

includes the Freedom House Index categorization of the countries’ respective status as “free”, 

“partly free” or “unfree”, (Freedom House, 2021) and the average number of years of schooling 

for the adult population (Barro, 2013; Lee, 2016). 

Data preparation 
In order to utilize the data for our purposes, the separate sources were combined into one single 

data file with a total of 1,490 independent variables. Independent variables similar to GDP growth 

rate and similarly redundant variables were excluded. Examples of redundant variables are the 

percentage of the population that is male and younger than five, which for the chosen countries is 

nearly identical to the percentage of the population that is female and younger than five. Missing 

values were prominent in the data set. To avoid bias, variables for which more than 50% of 

observations were missing were also excluded. This resulted in a final set of 56 independent 

variables (listed in the result section), onto which missing data was linearly interpolated and 

continuous variables were standardized to avoid independent variables with a large range to have 

a disproportionate large effect on the machine learning algorithms. For the primary evaluation 

criteria, algorithms were applied on the full dataset while for the evaluation of the projection 

possibility of the algorithms the dataset was divided into a training set containing 80% of the 

observations that are “seen” by the algorithms and a test set of 20% of the observations that are 

“unseen”. The Python script for the full data preparation is included in appendix A. 
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Statistical analysis 
An overview of three state-of-the-art used machine learning algorithms and their customization to 

the research question at hand are provided below, together with a description of a more traditional 

generalized linear model as well as a novel way to depict variable importance in the form of SHapley 

Additive exPlanations (SHAP) Values. 

Support Vector Regression Machines (SVRM) 
Originally developed for classification problems, Drucker et al. extended support vector machines 

to be able to perform regression (Drucker et al., 1997). In essence, Support Vector Regression 

Machines (SVRM) are a supervised form of machine learning algorithm that tries to find the 

function that minimizes the error (called epsilon) of the predicted regression solution. In the 

ordinary linear case, it is a convex optimization problem that tries to fit a function within the margin 

of a hyperplane. However, the algorithm is able to be applied in a nonlinear nonparametric setting 

through the use of different kernels that transform the support vectors into different dimensions 

and make it possible to analyze time series data (Müller et al., 1997). Concretely, a radial base kernel 

transforms each support vector into an indefinite number of dimensions to fit a function within a 

given epsilon/error. 

 

 

 

 

 
Figure 2. Illustration of finding an optimal hyperplane, from two to three dimensions.  
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Given training vectors 𝑥! ∈ 𝑅", 𝑖 = 1, . . . , 𝑛 and a vector 𝑦 ∈ 𝑅#, the SVRM method solves the 

following primal optimization problem: 

𝑚𝑖𝑛$,&,','∗
1
2
𝑤(𝑤 + 𝐶.(𝜁! + 𝜁!∗)	

#

!*1

 

subject to 

 𝑦! −𝑤(𝜙(𝑥!) − 𝑏 ≤ 𝜀 + 𝜁! , 

𝑤(𝜙(𝑥!) + 𝑏 − 𝑦! ≤ 𝜀 + 𝜁!∗, 

𝜁! , 𝜁!
∗ ≥ 0, 𝑖 = 1, . . . , 𝑛  

 

Here, the algorithm is penalizing samples whose prediction is at least 𝜀 away from their true target. 

These samples penalize the objective by 𝜁!or 𝜁!
∗ depending on whether their predictions lie above 

or below the 𝜀 tube (Pedregosa et al., 2011). 

 

For the radial base kernel used within the SVRM, the main parameter that needs to be taken into 

consideration is the designated epsilon, which is the tolerance for error in the function. A high 

epsilon results in an un-specific function, while too low epsilon results in over-fitting the function 

to the data and poor predictive performance. To promote reproducibility, the recommended 

standard value of epsilon = 0,1 was used. For other parameter specifications, a parameter search 

was conducted using a 4-fold cross validation to find the optimal parameter settings; these were 

thereafter used in the implementation of the SVRM. The code is available in appendix B.  

Gaussian Process Boosting (GPBoost) 

First illustrated and put forward by Breiman, in the original version of decision trees, each tree is 

built based on a bootstrap sample drawn randomly from the original dataset using a decreased gini 

impurity as the splitting criterion (Breiman, 2001). The gini impurity is in essence how often a 

variable is labeled wrong given a subset of the prediction. Within a regression setting, a decision 

tree takes a random set of the explanatory variables and tries to split the variables in the optimal 

space (minimizing the mean square error) in order to produce the most accurate suggestion for a 

predictive value. To reduce variance, a large number of decision trees are usually aggregated into a 

forest and the mean split criteria is used. 
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Figure 3. Simple example of a decision tree with two independent variables. In implementation, a 

random subset of variables at each split is considered and a large number of trees used.  

However, in its original form, decision trees cannot account for temporal changes, making it 

unsuitable for regression across time series. This can be solved by combining a boosting algorithm 

with decision trees as base learners which can automatically handle non-linearities, discontinuities 

and other nonparametric aspects (Elith, Leathwick and Hastie, 2008; Johnson and Zhang, 2013) 

combined with a mixed-model setting that allows for a longitudinal or panel data sets. 

Formally, Sigrist propose a mixed-effects model which we follow and can be described as 

y	=	F(X)+Zb+ε,	b∼N(0,Σ),	ε∼N(0,σ2In)	

where y = (y1,...,yn)T ∈ Rn is the response variable, F(X) ∈ Rn are the so-called fixed effects, b ∈ 

Rm are the random effects with covariance matrix Σ ∈ Rm×m, and ε = (ε1,...,εn)T ∈ Rn is an 

independent error term. Specifically, F(X) is the row-wise evaluation of a function F : Rp → R, i.e., 

F(X) = (F(X1),...,F(Xn))T , where Xi = (Xi1 ...,Xip)T ∈ Rp is the i-th row of X containing predictor 

variables for observation i, i = 1, . . . , n. The matrices X ∈ Rn×p and Z ∈ Rn×m are the fixed and 

random effects predictor variable matrices. Further, n denotes the number of data points, m denotes 

the dimension of the random effects b, and p denotes the number of independent variables in X 

(Sigrist, 2020).  

Developed by Sigrist the Gaussian Process Boosting algorithm (GPBoost) uses decision trees as a 

base learner for a nonlinear and nonparametric function F(X) together with a fixed effects 

component that are suitable for panel data. The algorithm learns at every time series step and 
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changes the designated function accordingly while being able to incorporate the fixed effects of 

panel data into the predicted regression value (Sigrist, 2020).  

For implementation purposes, one needs to specifically consider the number of boosting steps as 

well as the parameters for the base learners (e.g. decision trees). A standardized parameter search 

for the number of boosting steps and parameters was conducted using a 4-fold cross validation to 

find the optimal parameter settings; these were thereafter used in the implementation of the 

GPBoost algorithm. The code is available in appendix C.  

Long Short-Term Memory Recurrent Neural Networks (LSTM RNNs) 

Aimed to mirror what happens with information processing in human brains, a neural network 

consist of nodes that take input information, transform the signal into any type of non-linear 

function and then based on the weight of the information signal other nodes connected to the 

node until it reaches an output layer where the signal is transformed into a real value. It has become 

one of the most used machine learning algorithms due to its nonlinear and nonparametric nature, 

while having the major drawback of losing information across layers leading the algorithm to forget 

what happened early in a sequence (Albawi, Mohammed and Al-Zawi, 2018). This is referred to as 

the vanishing gradient problem with neural networks. 

 

Figure 4. The vanishing gradient problem with neural network learning on time series and 

illustrated, with only one input considered.  

This has been tried to be amended through the development of Long Short-Term Memory 

Recurrent Neural Networks (LSTM RNNs), which include a function within each node that takes 
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into consideration the past weighted functions. These developments have led to the LSTM RNNs 

being able to perform optimization and regression solutions to time series data where events in the 

far past might affect a later value.  

Figure 5. Schematic overview of a long-short term memory recurrent neural network 

Another drawback of the LSTM RNNs has traditionally been the lack of interpretability, with many 

hidden layers of nodes it has been statistically difficult to find exactly how a specific input variable 

affects the model. Given these two problems, Guo et al. showcased how LSTM RNNs are superior 

to other machine learning algorithms in accurately learning complex nonlinear and nonparametric 

regression problems while also adding variable importance as a measure of the relative contribution 

of the variable to the prediction (Guo, Lin and Antulov-Fantulin, 2019). The mathematical 

foundations of LSTM RNNs are complex and deemed out of scope for this thesis, for a more 

rigorous description we refer the reader to (Graves, 2012). 

For our implementation of the LSMT RNN, parameters were standardized through a 4-fold cross 

validation to find the optimal parameter settings to avoid additional complexity, and followed the 

practical application of the LSTM RNNs algorithm implemented by Guo et al. (Guo, Lin and 

Antulov-Fantulin, 2019). The code is available in appendix D. 

Generalized Additive Linear Models (GAMs) 

As the foremost generalization of the standard linear model approach, generalized additive linear 

models (GAMs) is a generalized linear model that relates a univariate response variable, Y, to 

predictor variables, xi. An exponential family distribution is specified for Y (for example normal, 

binomial or Poisson distributions) along with a link function g (for example the identity or log 



 15 

functions) relating the expected value of Y to the predictor variables via the following simple 

structure: 

𝐺(𝐸(𝑌)) 	= 𝛽0 	+ 	𝑓1(𝑥1) 	+	𝑓2(𝑥2) 	+	𝑓!(𝑥+)		 

The functions fi may be functions with a specified parametric form (for example a polynomial, or 

an un-penalized regression spline of a variable) or may be specified non-parametrically, or semi-

parametrically simply as smooth functions to be estimated by non-parametric means (Larsen, 

2015). 

The unique features of GAMs are that they are additive and relaxes the assumption of linearity 

between the dependent and independent variables makes for a much more flexible approach using 

splines. The splines are particularly useful as no a-priori transformation of variables are necessary 

for upholding traditional parametric assumptions, and they are formed by a set of base functions 

that does not interfere with the dependent variable. For a more detailed introduction to splines and 

their mathematical properties and GAMs we urge readers to consider (Hastie and Tibshirani, 1991).  

In contrast to machine learning algorithms, GAMs provide a significance level (P-value) of the 

independent variable contribution in a regression setting which allows for more traditional 

interpretation of the importance of individual variables. However these must be interpreted with 

caution as the P-values calculated do not take into account the uncertainty from the splines and 

smoothing estimate and therefore often underestimate the P-value (Hastie and Tibshirani, 1985). 

Therefore, no specific significance level was deemed arbitrarily significant in the analysis.  

For our purposes, a normal distribution of the underlying Y variable was assumed, and splines of 

continuous independent variables estimated by non-parametric means where the standard 

smoothing parameter of lambda = 0.6 used. Categorical independent variables were considered 

factor terms as per general uses. The code is available in appendix E.  

SHapley Additive exPlanations (SHAP) Values and Variable Importance 
Within machine learning there is usually a tradeoff between accuracy and interpretability. For 

instance, where a machine learning algorithm such as a SVRM might be more accurate in its 

prediction than a standard linear regression, it is almost impossible to untangle the individual effects 

of a variable in the neural network model. To overcome this difficulty or perceived tension, 

Lundberg and Lee have proposed a framework for interpreting predictions made by machine 

learning algorithms through SHapley Additive exPlanations (SHAP) Values (Lundberg and Lee, 

2017). Using a game-theory approach, the SHAP values show for each respective feature the 
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change in the expected model prediction based on the value of the feature. One can think about 

SHAP values in a simple way: a random set of feature values of an individual independent variable 

that are in a room make a prediction (holding all other independent variables equal), the change in 

the prediction when one more random variable from the set of independent variables comes into 

the room is the SHAP value.  

 

Specifically, the SHAP value is defined from a value function (val) of players in S, and is its 

contribution to the payout, weighted and summed over all possible feature value combinations 

𝜑,(𝑣𝑎𝑙) = .
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝! 	(𝑣𝑎𝑙(𝑆 ∪ {𝑥,}) − 𝑣𝑎𝑙(𝑆))
	

.⊆{11,...1"}\{1#}

 

 

where S is a subset of the features used in the model, x is the vector of feature values of the instance 

to be explained and p the number of features.  

 

s(val) is the prediction for feature values in set S that are marginalized over features that are not 

included in set S: 

𝑣𝑎𝑙1(𝑆) = V𝑓W(𝑥1, . . . , 𝑥")	𝑑	𝑃1∉. − 𝐸6(𝑓W(𝑋))
	

	
 

 

The SHAP values are computed through approximations of the original model based on a set of 

iterations of the data and the model, leading to a set of SHAP values for each feature which can be 

used to illustrate the feature usage and importance in the model (Molnar, 2021). 

 

Unfortunately, there are currently no practical applications for the computation of SHAP values 

for LSTM RNN and GAMs in any common statistical programming language, which is why SHAP 

values are only computed for the SVRM and GPBoost algorithms in our analysis. For the LSTM 

RNN algorithm standard variable importance in the form of decreased level of prediction when an 

independent variable is excluded from the input features is calculated, while the significant values 

for GAMs give an indication of which variables that significantly affect the regression solution as 

a more traditional statistical inference approach, complementing the variable importance measures. 
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4. Results 

Fit of the regression models  
The results for the first scenario (the traditional regression setting) are presented in table 1. This 

table gives the root-mean-square error (RMSE) and the mean absolute error (MAE) for the 

respective method, as output by the code. Since the underlying dataset is standard-normalized, the 

scale of the errors presented in the table is as well. 

 

Table 1. Model fit on the dataset 

Model RMSE MAE 

SVRM 0.1090 0.01189 

GPBoost 0.09516 0.009056 

LSTM RNN 0.1517 0.1094 

GAM 0.07625 0.005814 

 
We find that the GAM method has the lowest errors and hence the closest fit, and the LSTM 

model the highest errors. 

 

A chart visually illustrating the predictions from each respective model is in figure 6. One blip that 

can be clearly seen in our data comes from 2015. In that year, Ireland’s economic output grew by 

a colossal 26.3% in one year. In this particular case, the most important and plausible explanation 

is a one-off change in accounting rules affecting how Ireland handles corporate taxes for large 

multinational companies, rather than any lasting change in Ireland’s potential for long-term growth 

(OECD, 2016). 
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Figure 6a. The prediction of the SVRM, GPBoost and LSTM RNN model on the observed dataset 

versus the actual GDP growth. The vertical axis is the economic growth (logarithmized and 

normalized) and the horizontal axis is the time point. The blue line is the actual economic growth, 

the orange line is the predicted economic growth for LSTM RNN, red for SVRM, green for 

GPBoost and purple for GAM. 

 

Figure 6b. In order to more clearly illustrate the differences between the various methods visually, 

the values in figure 6a are here given again, this time for the first 100 observations only. 
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Variable importance  

The variable importance is our measure of the relative importance of the possible determinants of 

empirical historic economic growth. They are illustrated in figure 7, 8, 9 and 10 in two different 

ways. The first is mere the total variable importance, shown through the magnitude of impact on 

the algorithm by each variable and ranked from most important to least important by SHAP value 

estimation. The second is through the individual SHAP values and how each individual explanatory 

variable impact the model. For the LSTM RNN, figure 11 showcase the total variable importance 

and lastly, the significance of the variables in the GAM model is provided in figure 12 to indicate 

their significance in a more traditional linear sense.  
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Figure 7. The variables are listed according to their variable importance in the SVRM model. The 
most important variable is labor share of income. 
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Figure 8. The variables are presented with their SHAP value. For the labor share of income 
variable, for example, a high number is associated with a negative impact on growth. 
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Figure 9. The variables are listed according to their variable importance in the GPBoost model. 
The most important variable is the growth rate in the previous year. 
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Figure 10. The variables are presented with their SHAP value in the GPBoost model. For the 
“previous growth” variable, for example, a high number is associated with a positive impact on 
growth. 
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Figure 11. The variables are ranked according to their variable importance in the LSTM RNN 
model. 
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Figure 12. The significance probabilities of the independent variables in the GAM model. 
The significance probabilities are given in E notation (for example, “1.11e-16” means 

1.11 × 10716). Note that the bars show the inverse of the P-values (longer bars thus means lower 

p-values) and that the scale is logarithmic. Given the nature of the model care should be taken 

when interpreting these significance levels. 
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Predictive performance  
The three machine learning algorithms were applied on the training set to fit an appropriate 

regression model, and then each model tried to predict the economic growth of the test or “unseen” 

dataset.  

 

The results from our second scenario (models as a projection) are presented in table 3. It lists the 

RMSE and MAE for the respective method, showing that GPBoost algorithm has the lowest errors 

while SVRM has the highest. The predictions are illustrated in figure 12.  

 
Table 3. Model performance on test dataset 

Model RMSE MAE 

SVRM 0.1789 0.1369 

GPBoost 0.1465 0.02146 

LSTM RNN 0.1578 0.09284 

GAM 0.1648 0.09583 

 
 
 

 
Figure 12. The prediction values for the evaluation subset of the data is given by the diagram. The 

horizontal axis is the time point and the vertical axis is the corresponding normalized growth rate. 

The blue line is the true values from the “unseen” test data, the orange line is the prediction from 

the LSTM method, the green from the GPBoost method, the red from the SVRM method, and 

the purple line is from the GAM method. 
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5. Discussion 
In this thesis the possibility of using state-of-the-art machine learning algorithms to predict historic 

economic growth and determine the most important empirical factors for economic growth in such 

models are investigated. Given a limited dataset with only 28 European countries between the years 

of 1950-2019, we to various degrees successfully apply three machine learning algorithms, SVRM, 

GPBoost and LSTM RNN together with a generalized linear model to the dataset and develop 

predictive models. GPBoost produces a reasonable fit model and low RMSE that the SVRM and 

LSTM RNN cannot match. GAM seems to produce a more reliable fit of historical economic 

growth but is simultaneously underperforming when it comes to predicting growth. Intriguingly, 

the algorithms diverge quite heavily with regards to which variables are deemed most important to 

predict economic growth and in what way they inform the algorithms. Overall, the specific machine 

learning algorithms used in this analysis do not provide a convincing improvement over traditional 

methods.  

 

Comparison of algorithms 
The first, SVRM, had been among the best performing methods in several of the papers in our 

literature review. In our case, its performance was medium in the first scenario (with the entire 

dataset). In the second scenario, using “seen” data to predict “unseen” data, the performance of 

SVRM was the least accurate of all four methods. Due to the lack of possibility for intra-country 

comparison, the algorithm does not differentiate between the different countries but essentially 

treats all countries in the data set as one big country. This is a severe drawback which might explain 

the difference between its performance here and what we expected prior to running the algorithm 

and could possibly be amended through the use of a mixed model approach. 

 

The second algorithm, GPBoost, is theoretically sound as it allows for nonparametric and nonlinear 

panel data to be analyzed in a mixed effects fashion, thus isolating the intra-country differences 

from the inter-country differences. In the first scenario, GPBoost was the second-best method, 

while in the second scenario, it was the best of all four. The primary reason for the lack of detail in 

the results is most likely due to the low number of observations. For each country there were only 

a few decades of data, which makes it hard for the algorithm to learn a function that might 

accurately predict the economic growth of the remaining years. 
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Similarly, the third method, LSTM RNN, has previously been shown to provide accurate 

predictions in time series, but in instances where the sample size was vastly larger (on the order of 

several thousand observations). One explanation for its comparatively low accuracy here can thus 

be an insufficiently large number of observations in our dataset. It is also likely that the algorithm 

needs more tuning so that it is customized to an environment with a smaller dataset. In our first 

scenario, LSTM was by far the least accurate of our four methods. In the second scenario, its 

performance was mediocre. 

 

The fourth method, GAM, has the best performance of all four methods in the first scenario. In 

the second scenario, with predictions, its performance is mediocre and in par with the machine 

learning methods. In other words, it seems that the additive general linear buildup of the GAM is 

quite suitable for standard regressions or in scenarios when one would want to function to fit as 

closely as possible to a given data set, however this probably leads to a overfitting situation where 

the function perform bad on unobserved data. Overall however, it seems to be at least comparable 

with mathematically significantly more complex machine learning algorithms.  

Results compared with previous literature 
Ciccone & Jarociński had investigated determinants of growth by being agnostic about which 

variables matter for growth. They found that conclusions are highly sensitive to minor errors in 

measurement and to some degree vary across methods applied (Ciccone and Jarociński, 2010). The 

results from this analysis strengthens this caveat when trying to apply machine learning methods 

on these types of data sets.  

 

In our case, using machine learning methods yields results which diverge dramatically from one 

another in terms of what variables are most important for economic growth. For the SVRM 

algorithm, the five most important factors were labor’s share of income, life expectancy at birth, 

total greenhouse gas emissions, years of secondary education, and the death rate. For the GPBoost 

algorithm, the five most important variables were instead growth in the previous year, the year 

itself, mobile cellular subscriptions per 100 people, and life expectancy at birth. With the LSTM 

RNN algorithm, the most important variables are energy related methane emissions, the under-5 

mortality rate, the rural population as percentage of total population, and the amount of nitrous 

oxide emissions in the energy sector. While there was some overlap between these three, their 

divergence is notable. In part, the divergence might simply be explained by the different ways in 

which the machine learning methods function and the applied parameter tuning. However, more 
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importantly, the divergence indicates that if one had solely relied on a single machine learning 

method, it might have led us to conclusions with a relatively low prediction error, but lacking in 

robustness. A general tendency of the data was similar for the GAM model, with a range of 

variables significantly contributing to the additive model. The top-ranking variables in terms of 

variable importance significantly contributed to the GAM model, adding some evidence that the 

variables do seem to be determinants of economic growth in the European region.  

 

Comparing how the variables might be predicting economic growth through SHAP values for the 

SVRM and GPBoost models with the results from Barro, one can find the same signs of the effects 

(for example, a lower fertility rate is associated with higher growth), but not the same ranking in terms 

of which variables that might be most influential. As such, the way in which the algorithms use the 

explanatory variables to make predictions are in line with previous research even though the 

coefficient of rank differs.  

 

Looking further into our SHAP values yields some interesting results. Some of them are, at first 

glance, counterintuitive. For example, in the SVRM algorithm the higher the country's life 

expectancy at birth, the lower its growth rate. In cases like this, it seems the most natural 

explanation is growth convergence. That is, poorer countries (with lower life expectancy) grow 

faster because they are poor, not because their life expectancy is low (Islam, 1995). The latter is 

not, by itself, a causal determinant of growth. Another seemingly counterintuitive example in the 

SVRM model is the variable “Adjusted savings: education expenditure (% of GNI)”. The SHAP 

values indicate that whether this variable is high or low seems to have no unambiguous effect on 

growth in one clear direction. In this case it could be because the positive effect from increasing 

education expenditure only manifests itself after a certain time-lag (Chandra and Islamia, 2010) 

which we did not include as a variable in the dataset. 

 

Lastly, predicting economic growth, even with historical data, is notoriously hard (Coulombe et al., 

2020). The machine learning methods and variables included in this analysis does not provide a 

satisfactory prediction of the GDP growth, however it is hard to make a full judgment of the 

prediction since we did not include any type of benchmark prediction. It has been shown that 

machine learning methods can outperform standard GDP growth forecasts used by central banks 

(Yoon, 2021). In our case, it is possible that one would need more specified variable selection 

methods and adjusting parameters for the purpose of forecasting in order to get more reasonable 

predictions.  
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Limitations 
There are several limitations to this analysis, some of which have been touched upon previously. 

The most prominent is the availability of data. Despite what one might assume, we actually have 

rather few variables with comparable and quality data before 1990. Given this shortage, machine 

learning methods are essentially working with a too small sample size to fully recognize patterns 

and form reliable variable importance measures. The second one is the interpretability of the 

methods, as there are currently no fully integrated mathematical and practical application of SHAP 

Values for LSTM RNNs and ordinary linear models. Although we are rather certain that the 

variable importance would be the same for the LSTM RNNs if measured through SHAP Values, 

we cannot derive the individual variable SHAP values and compare with SVRM and GPBoost, 

which severely limits the possibility for a fair comparison. Lastly, tuning the machine learning 

parameters can heavily affect the fit of the function, predictive performance and variable 

importance measures. Selecting a standard value for critical parameters (for example epsilon) and 

through automating the process of parameter value selection through a 4-fold cross validation 

parameter search similar for the three algorithms, we hoped to strike a balance between 

reproducibility and accuracy.  

Future studies 
There are several potential venues for future research and issues that would benefit from further 

inquiry. With regards to the empirical aspects of this paper, focusing on a smaller region of 

countries for a longer period could perhaps allow the machine learning algorithms to be used to 

full advantage and would most probably result in different findings. An extension of machine 

learning algorithms that can work for smaller data sets more prevalent within empirical economics 

should be a high priority, since most methods falter with less than 100 observations. It would also 

be beneficial to include as a comparison a more time sensitive yet parametric method, such as an 

autoregressive model. The context specificity inherent in following a data-driven and machine 

learning approach is an advantage, but to what extent the results can be generalized beyond the 

studied data set should be carefully examined. Since it seems that economic relationships in low 

income countries or high economic growth countries follow an even more nonlinear and almost 

chaotic pattern, an application of machine learning in these settings to determine the factors for 

economic growth could yield important understandings and policy options. It has also become 

clear that machine learning is not a silver bullet which can be used on any type of data and in any 

way and produce extraordinary results, within empirical economics the theoretical and practical 

limitations of machine learning (and the extension of it - AI) should be further researched.  
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5. Conclusions 
The empirical investigation of the determinants of economic growth can be updated and revisited 

through the availability of state-of-the-art machine learning algorithms, however much work 

remains. In our analysis of 28 European countries between 1950-2019 they do not provide a 

compelling improvement over traditional methods. Specifically, we showcase that Support Vector 

Regression Machines, Gaussian Process Boosting and Long Short-Term Memory Neural Networks 

diverge in their prediction patterns and variable importance estimates, making it hard to make 

conclusions regarding the possible empirical determinants of economic growth. More data and 

research on a range of issues is needed before the full potential of machine learning within empirical 

economics can be harnessed.  
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7. Appendices 
 
In the following appendices the data preparation as well as the source code for the machine learning 
algorithms used are presented. 
 

Appendix A – Preparation of data (prescript.py) 
import csv 
import pandas as pd 
import numpy as np 
import time 
 
# add dummy variable that is 1 for those in training set and 0 for test set 
def add_training_set_variable(df,lander,fraction): 
    df['training_set']=0 
    for land in lander: 
        rader=list(df[df.countrycode==land].index) 
        test_rader=rader[0:int(fraction*len(rader))+1] 
        df.iloc[test_rader, df.columns.get_loc('training_set')]=1 
    return df 
 
for scenariotype in ['nordic','EU']: 
 
    print("==== [Scenario: "+scenariotype+ "] ====") 
 
    # set of countries to use 
 
    if scenariotype=='EU': 
        country_code = { 
            "Austria": "AUT", 
            "Belgium": "BEL", 
            "Bulgaria": "BGR", 
            "Cyprus": "CYP", 
            "Czech Republic": "CZE", 
            "Germany": "DEU", 
            "Denmark": "DNK", 
            "Spain": "ESP", 
            "Estonia": "EST", 
            "Finland": "FIN", 
            "France": "FRA", 
            "Greece": "GRC", 
            "Croatia": "HRV", 
            "Hungary": "HUN", 
            "Ireland": "IRL", 
            "Italy": "ITA", 
            "Lithuania": "LTU", 
            "Luxembourg": "LUX", 
            "Latvia": "LVA", 
            "Malta": "MLT", 
            "Netherlands": "NLD", 
            "Poland": "POL", 
            "Portugal": "PRT", 
            "Romania": "ROU", 
            "Slovakia": "SVK", 
            "Slovenia": "SVN", 
            "Sweden": "SWE" 
            } 
    if scenariotype=='nordic': 
        country_code = { 
            "Sweden": "SWE", 
            "Norway": "NOR", 
            "Denmark": "DNK", 
            "Finland": "FIN", 
            "Iceland": "ISL" 
            } 
 
    countries = sorted(country_code.values()) 
 
    # set of years to do 
 
    if scenariotype=='EU': 
        firstyear=1950 
        lastyear=2019 
    if scenariotype=='nordic': 
        firstyear=1950 
        lastyear=2019 
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    # missing values threshold (0.8 = 80 percent) 
    # remove columns from data whose share of values missing is higher than this 
 
    missing_values_threshold=0.5 
 
    # percentage training versus test 
 
    training_percentage=0.8 
 
    # create a main dataframe 
 
    df=pd.DataFrame() 
 
    numyears=len(range(firstyear,lastyear+1)) 
 
    for land in country_code.values(): 
        for year in range(firstyear,lastyear+1): 
            df=pd.concat([df,pd.DataFrame({"countrycode":[land],"year":[year]})]) 
 
    # Penn-World Tables from Excel to csv 
 
    print(time.ctime()+": Adding Penn-World Tables") 
    pwt100=pd.read_excel('indata/pwt100.xlsx', sheet_name=2) 
 
    # add gdp per capita, as well as growth 
 
    pwt100['rgdpe_per_capita']=pwt100['rgdpe']/pwt100['pop'] 
    pwt100['growth']=pwt100['rgdpe_per_capita'].pct_change() 
    pwt100['previous_growth']=pwt100['rgdpe_per_capita'].pct_change().shift(1) 
 
    df=pd.merge(df,pwt100,how="left",on=['countrycode','year']) 
 
    # WDI 
 
    print(time.ctime()+": Starting to parse WDIEXCEL now") 
    wdi_table=pd.read_excel('indata/WDIEXCEL.xlsx', sheet_name=0) 
    print(time.ctime()+": Finished parsing WDIEXCEL now") 
    wdi_indicators=wdi_table['Indicator Code'].unique() 
    land_df=pd.DataFrame() 
    list_df=[] 
    for land in countries: 
        print(time.ctime()+": [WDI] Adding country "+land) 
        wdi_df=wdi_table[wdi_table['Country Code'].isin([land])] 
        for year in range(firstyear,lastyear+1): 
            dict_df={"countrycode":[land],"year":[year]} 
            for indicator in wdi_indicators: 
                try: 
                    dict_df[indicator]=wdi_df.loc[wdi_df['Indicator Code'] == indicator][str(year)].values[0] 
                except: # except KeyError? 
                    dict_df[indicator]=np.nan 
            list_df.append(pd.DataFrame(dict_df)) 
    land_df=pd.concat(list_df, axis=0) 
    df=pd.merge(df,land_df,how="left",on=['countrycode','year']) 
 
    # drop WDI indicators with too many missing values 
    columns_to_be_kept = list(df.columns.values) 
    print(time.ctime()+": Number of columns before dropping: "+str(len(df.columns))) 
    for land in countries: 
        temp_df=df[df['countrycode'].isin([land])] 
        limitPer=missing_values_threshold*len(temp_df) 
        temp_df=temp_df.dropna(thresh=limitPer, axis=1) 
        columns_to_be_kept = sorted(set(columns_to_be_kept) & set(temp_df.columns.values), 
key=columns_to_be_kept.index) 
    df=df[columns_to_be_kept] 
    print(time.ctime()+": Number of columns after dropping: "+str(len(df.columns))) 
 
    # Average total years of schooling 
 
    schooling=pd.read_csv('indata/mean-years-of-schooling-long-run.csv', dtype={'Year':'int'}) 
    land_df=pd.DataFrame() 
    for land in country_code.values(): 
        school_df=schooling[schooling.Code.isin([land])] 
        for year in range(firstyear,lastyear+1): 
            try: 
                school_value=school_df[school_df.Year.isin([year])].values[0][3] 
                
land_df=pd.concat([land_df,pd.DataFrame({"countrycode":[land],"year":[year],"schooling":[school_value]})]) 
            except (IndexError, KeyError): 
                land_df=pd.concat([land_df,pd.DataFrame({"countrycode":[land],"year":[year],"schooling":[np.nan]})]) 
    df=pd.merge(df,land_df,how="left",on=['countrycode','year']) 
 
    # Freedom House 
 
    freedomhouse=pd.read_excel('indata/Country_and_Territory_Ratings_and_Statuses_FIW1973-2021.xlsx', sheet_name=1) 
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    freedomvalue = {"NF": 1, "PF": 2, "F": 3} 
    #land_df=pd.DataFrame() 
    list_df=[] 
    for land in country_code.keys(): 
        freedomhouse_df=freedomhouse.loc[freedomhouse['Survey Edition']==land] 
        for year in range(firstyear,lastyear+1): 
            dict_df={} 
            try: 
                if year<1982: # in order to handle the fact that both years 1981 and 1982 are in the same report 
                    rowindex = (year-1971)*3 
                else: 
                    rowindex = (year-1972)*3 
                freedomhouseindex=freedomvalue[freedomhouse.loc[freedomhouse['Survey 
Edition']==land].values[0][rowindex]] 
                
#land_df=pd.concat([land_df,pd.DataFrame({"countrycode":[country_code[land]],"year":[year],"freedomhouse":[freedomhou
seindex]})]) 
                dict_df={"countrycode":[country_code[land]],"year":[year],"freedomhouse":[freedomhouseindex]} 
            except: 
                
#land_df=pd.concat([land_df,pd.DataFrame({"countrycode":[country_code[land]],"year":[year],"freedomhouse":[np.nan]})]
) 
                dict_df={"countrycode":[country_code[land]],"year":[year],"freedomhouse":[np.nan]} 
            #print(dict_df) 
            list_df.append(pd.DataFrame(dict_df)) 
    land_df=pd.concat(list_df, axis=0) 
    df=pd.merge(df,land_df,how="left",on=['countrycode','year']) 
 
    # drop unnecessary variables 
 
    # first, remove specific list 
    df=df.drop([val for val in ["currency_unit", "country", "i_cig", "i_xm", "i_xr", "i_outlier",  "i_irr"] if val in 
list(df.columns)], axis=1) 
    # second, remove all that are "GDP per capita" 
    df=df.drop([s for s in list(df.columns) if "GDP.PCAP" in s], axis=1) 
    # third, remove the "IT.CEL.SETS" variable as the "IT.CEL.SETS.P2" is sufficient 
    df=df.drop([val for val in ["IT.CEL.SETS"] if val in list(df.columns)], axis=1) 
 
    df=add_training_set_variable(df,countries,training_percentage) # add dummy 
 
    for nopopulation in [False, True]: 
        # output raw data 
 
        pop_or_nopop = "" 
 
        if nopopulation: 
            pop_or_nopop = "_nopop" 
            df=df.drop([s for s in list(df.columns) if "SP.POP.TOTL" in s], axis=1) 
            df=df.drop([s for s in list(df.columns) if ("SP.POP" in s) and (".MA." in s)], axis=1) 
            df=df.drop([s for s in list(df.columns) if ("SP.POP" in s) and (".FE." in s)], axis=1) 
            print("=== [case: no population] ===") 
 
        print(time.ctime()+": Outputting raw data") 
        df.to_excel("output_"+scenariotype+"_raw"+pop_or_nopop+".xlsx") 
        df.to_csv("output_"+scenariotype+"_raw"+pop_or_nopop+".csv") 
 
        # output normalized raw data 
        df_normalized=df.copy() 
        # freedom house is often identical for all observations, thus standard deviation is zero, thus normalization 
is division by zero 
        no_variation_test = df.std()==0 
        for kolonn in df.columns: 
            try: 
                if no_variation_test[kolonn]: 
                    df_normalized=df_normalized.drop(columns=[kolonn]) # drop columns that show no variation 
            except KeyError: 
                continue 
 
        #column_names_to_not_normalize = ['countrycode', 'year', 'country', 'currency_unit', 'i_cig', 'i_xm', 'i_xr', 
'i_outlier', 'i_irr'] 
        column_names_to_not_normalize = ['countrycode', 'year', 'training_set'] 
        column_names_to_normalize = [x for x in list(df_normalized) if x not in column_names_to_not_normalize ] 
        x = df_normalized[column_names_to_normalize] 
        x_scaled = (x-x.mean())/x.std() 
        df_temp = pd.DataFrame(x_scaled, columns=column_names_to_normalize, index = df_normalized.index) 
        df_normalized[column_names_to_normalize] = df_temp 
 
        df_normalized=add_training_set_variable(df_normalized,countries,training_percentage) # add dummy 
 
        df_normalized.to_excel("output_"+scenariotype+"_raw_normalized"+pop_or_nopop+".xlsx") 
        df_normalized.to_csv("output_"+scenariotype+"_raw_normalized"+pop_or_nopop+".csv") 
 
        # output interpolated data 
 
        print(time.ctime()+": Outputting interpolated data") 
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        with pd.ExcelWriter("output_"+scenariotype+"_interpolated"+pop_or_nopop+".xlsx") as writer1, 
pd.ExcelWriter("output_"+scenariotype+"_interpolated_normalized"+pop_or_nopop+".xlsx") as writer2: 
            for interpol_method in ['linear']: # ['linear','quadratic','cubic','krogh'] 
 
                # output not yet normalized data 
                df_interpol = pd.DataFrame() 
                for land in country_code.values(): 
                    
df_interpol=pd.concat([df_interpol,df.loc[df['countrycode'].isin([land])].interpolate(method=interpol_method)]) 
                df_interpol=df_interpol.reset_index(drop=True) 
                df_interpol=add_training_set_variable(df_interpol,countries,training_percentage) # add dummy 
                df_interpol.to_excel(writer1,sheet_name=interpol_method) 
                df_interpol.to_csv("output_"+scenariotype+"_interpolated_"+interpol_method+pop_or_nopop+".csv") 
 
                # output normalized imputed data 
                df_normalized_interpol = pd.DataFrame() 
                for land in country_code.values(): 
                    
df_normalized_interpol=pd.concat([df_normalized_interpol,df_normalized.loc[df['countrycode'].isin([land])].interpolat
e(method=interpol_method)]) 
                df_normalized_interpol=df_normalized_interpol.reset_index(drop=True) 
                
df_normalized_interpol=add_training_set_variable(df_normalized_interpol,countries,training_percentage) # add dummy 
                df_normalized_interpol.to_excel(writer2,sheet_name=interpol_method) 
                
df_normalized_interpol.to_csv("output_"+scenariotype+"_interpolated_"+interpol_method+"_normalized"+pop_or_nopop+".cs
v") 
 
                # output without any N/A years 
                missing_years = list(df_interpol[df_interpol.isna().any(axis=1)]['year'].values) 
                for artal in missing_years: 
                    df_interpol=df_interpol[df_interpol.year != artal] 
                df_interpol=df_interpol.reset_index(drop=True) 
                df_interpol=add_training_set_variable(df_interpol,countries,training_percentage) # add dummy 
                df_interpol.to_excel(writer1,sheet_name=interpol_method+", no missing values") 
                
df_interpol.to_csv("output_"+scenariotype+"_interpolated_"+interpol_method+"_no_missing_values"+pop_or_nopop+".csv") 
 
                missing_years_normalized = 
list(df_normalized_interpol[df_normalized_interpol.isna().any(axis=1)]['year'].values) 
                for artal in missing_years_normalized: 
                    df_normalized_interpol=df_normalized_interpol[df_normalized_interpol.year != artal] 
                df_normalized_interpol=df_normalized_interpol.reset_index(drop=True) 
                
df_normalized_interpol=add_training_set_variable(df_normalized_interpol,countries,training_percentage) # add dummy 
                df_normalized_interpol.to_excel(writer2,sheet_name=interpol_method+", no missing") 
                
df_normalized_interpol.to_csv("output_"+scenariotype+"_interpolated_"+interpol_method+"_normalized_no_missing_values"
+pop_or_nopop+".csv") 
 
 

Appendix B – Support Vector Regression Machines (SVM.py) 
 
# Application of our dataset 80% model # 
 
 
# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import numpy as np 
import copy 
# %matplotlib inline 
 
 
 
#X = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values.csv") 
#X = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop.csv") 
X = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
 
 
X.head() 
 
X_final = X.dropna() 
 
print(X_final.head(10)) 
 
X = X_final.drop(['growth', "Unnamed: 0", "countrycode", "year"], axis = 1) 
y = X_final[['growth', 'training_set']] 
 
#X_shap = X.drop(['year'], axis = 1) 
 
print(y) 
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X_train1 = X.loc[X['training_set'] == 1] 
X_train = X_train1.drop(['training_set'], axis = 1) 
 
X_test1 = X.loc[X['training_set'] == 0] 
X_test = X_test1.drop(['training_set'], axis = 1) 
 
y_train1 = y.loc[y['training_set'] == 1] 
y_train = y_train1.drop(['training_set'], axis = 1) 
 
y_test1 = y.loc[y['training_set'] == 0] 
y_test = y_test1.drop(['training_set'], axis = 1) 
X_train 
 
# Create a SVM Regressor 
 
from sklearn import svm 
 
reg = svm.SVR(kernel='rbf', C=10, gamma=0.01, epsilon=0.1) 
 
reg.fit(X_train, y_train) 
 
y_pred = reg.predict(X_test) 
 
# Model Evaluation 
from sklearn import metrics 
 
print('MAE:',metrics.mean_absolute_error(y_test, y_pred)) 
print('MSE:',metrics.mean_squared_error(y_test, y_pred)) 
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 
 
import csv 
   
# exporting a list variable into the csv file 
input_variable = y_pred 
   
# Example.csv gets created in the current working directory  
with open('SVRM_y_pred.csv', 'w', newline = '') as csvfile: 
    my_writer = csv.writer(csvfile, delimiter = ' ') 
    my_writer.writerow(input_variable) 
 
# Variable importance 
 %pip install shap  
import shap as shap 
#on SHAPLEY values look here: https://docs.seldon.io/projects/alibi/en/stable/index.html 
 
explainer = shap.KernelExplainer(reg.predict, X_train) 
shap_values = explainer.shap_values(X_test, nsamples=100) 
 
shap.summary_plot(shap_values, max_display=56, features=X_test, feature_names=X.columns) 
 
shap.summary_plot(shap_values, max_display=56, features=X_test, feature_names=X.columns, plot_type='bar') 
 
"""# Application of our dataset all years model""" 
 
# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import numpy as np 
import copy 
# %matplotlib inline 
 
 
# Load data 
X = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
 
 
X.head() 
 
X_final = X.dropna() 
 
print(X_final.head(10)) 
 
X = X_final.drop(['growth', "Unnamed: 0", "countrycode", "training_set"], axis = 1) 
y = X_final[['growth']] 
print(y) 
 
from sklearn import svm 
 
# Create a SVM Regressor 
reg = svm.SVR(kernel='rbf', C=10, gamma=0.01, epsilon=0.1) 
 
from sklearn.model_selection import GridSearchCV 
svc = svm.SVR() 
clf = GridSearchCV(svc, param_grid = [{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}, 
 ]) 
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clf.fit(X, y) 
clf.best_params_ 
 
reg.fit(X, y) 
 
y_pred = reg.predict(X) 
 
import csv 
   
# exporting a list variable into the csv file 
input_variable = y_pred 
   
# Example.csv gets created in the current working directory  
with open('SVRM_y_pred_all2.csv', 'w', newline = '') as csvfile: 
    my_writer = csv.writer(csvfile, delimiter = ' ') 
    my_writer.writerow(input_variable) 
 
# Model Evaluation 
from sklearn import metrics 
 
print('R^2:',metrics.r2_score(y, y_pred)) 
print('Adjusted R^2:',1 - (1-metrics.r2_score(y, y_pred))*(len(y)-1)/(len(y)-X.shape[1]-1)) 
print('MAE:',metrics.mean_absolute_error(y, y_pred)) 
print('MSE:',metrics.mean_squared_error(y, y_pred)) 
print('RMSE:',np.sqrt(metrics.mean_squared_error(y, y_pred))) 
 
# Variable importance 
 
 
%pip install shap  
import shap as shap 
#on SHAPLEY values look here: https://docs.seldon.io/projects/alibi/en/stable/index.html 
 
explainer = shap.KernelExplainer(reg.predict, X) 
shap_values = explainer.shap_values(X, nsamples=100) 
 
# Create vector of correct names 
 
import pandas as pd 
import time 
 
wdi_table=pd.read_csv('namepairs.csv') 
wdi_table_names=wdi_table[["Indicator Code", 'Indicator Name']] 
wdi_table_names 
 
data = [["previous_growth", 'The GDP growth of the year before (annual %)'],  
        ["year", "Year"], 
        ["labsh", "Labor share of income (% of total)"], 
        ["schooling", "Average total years of schooling for adult population(years)"], 
        ["freedomhouse", "Freedome House Index"]] 
   
 
df = pd.DataFrame(data, columns=["Indicator Code", "Indicator Name"]) 
 
all_names=pd.concat([wdi_table_names,df]) 
 
wdi_dict=dict(all_names.values) 
 
names= X.columns 
new_names = [] 
for namn in names: 
  try: 
    new_names.append(wdi_dict[namn]) 
  except: 
    new_names.append(namn) 
 
# Make Shap plots 
 
shap.summary_plot(shap_values, max_display=57, features=X, feature_names=new_names) 
 
shap.summary_plot(shap_values, max_display=60, features=X, feature_names=new_names, plot_type='bar') 
 

Appendix C – Gaussian Process Boosting (GPBoost) (GPBoost.py) 
 
Application of our dataset 80% model 
 
 
# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import numpy as np 
import copy 
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%matplotlib inline 
%pip install gpboost 
import gpboost as gpb 
import sklearn.datasets as datasets 
import time 
import csv 
 
 
X_final = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
 
X_final.head() 
 
X = X_final.drop(['growth', "Unnamed: 0", "countrycode"], axis = 1) 
y = X_final[['growth', 'training_set']] 
 
group = X_final[['countrycode', 'training_set']] 
X_shap = X.drop(['year'], axis = 1) 
 
print(group) 
 
rows_in_table=185 
proportion = 0.8 
ntrain = int(proportion*rows_in_table) 
 
n = int(ntrain/proportion) # combined number of training and test data 
m = len(set(group))  # number of categories / levels for grouping variable 
 
# split train and test data 
y_train = y[0:ntrain] 
y_test = y[ntrain:n] 
X_train = X.iloc[0:ntrain,] 
X_test = X.iloc[ntrain:n,] 
group_train = group[0:ntrain] 
group_test = group[ntrain:n] 
 
X_train1 = X.loc[X['training_set'] == 1] 
X_train = X_train1.drop(['training_set'], axis = 1) 
 
X_test1 = X.loc[X['training_set'] == 0] 
X_test = X_test1.drop(['training_set'], axis = 1) 
 
y_train1 = y.loc[y['training_set'] == 1] 
y_train = y_train1.drop(['training_set'], axis = 1) 
 
y_test1 = y.loc[y['training_set'] == 0] 
y_test = y_test1.drop(['training_set'], axis = 1) 
 
group_train1 = group.loc[y['training_set'] == 1] 
group_train = group_train1.drop(['training_set'], axis = 1) 
 
group_test1 = group.loc[y['training_set'] == 0] 
group_test = group_test1.drop(['training_set'], axis = 1) 
 
# Define and train GPModel 
gp_model = gpb.GPModel(group_data=group_train) 
# create dataset for gpb.train function 
data_train = gpb.Dataset(X_train, y_train) 
# specify tree-boosting parameters as a dict 
params = { 'objective': 'regression_l2', 'learning_rate': 0.01, 
    'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } 
# train model 
bst = gpb.train(params=params, train_set=data_train, gp_model=gp_model, num_boost_round=1) 
gp_model.summary() # estimated covariance parameters 
 
# Make predictions 
pred = bst.predict(data=X_test, group_data_pred=group_test) 
y_pred = pred['fixed_effect'] + pred['random_effect_mean'] # sum predictions of fixed effect and random effect 
y_pred = y_pred.reshape(135,1) ## THIS IS SPECIFIC TO THE GIVEN NUMBER OF ROWS 
 
mae=np.mean((y_test - y_pred) ** 2) # root mean square error (RMSE) on test data.  
rmserr=np.sqrt(np.mean((y_test - y_pred) ** 2)) # root mean square error (RMSE) on test data.  
print('root mean square error is '+str(rmserr)) 
print('mean abseolute error is '+str(mae)) 
 
   
# exporting a list variable into the csv file 
import csv 
   
input_variable = y_pred 
   
# Example.csv gets created in the current working directory  
with open('GPBoost_y_pred.csv', 'w', newline = '') as csvfile: 
    my_writer = csv.writer(csvfile, delimiter = ' ') 
    my_writer.writerow(input_variable) 
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gp_model = gpb.GPModel(group_data=group_train) 
cvbst = gpb.cv(params=params, train_set=data_train, 
               gp_model=gp_model, use_gp_model_for_validation=False, 
               num_boost_round=100, early_stopping_rounds=5, 
               nfold=4, verbose_eval=True, show_stdv=False, seed=1) 
best_iter = np.argmin(cvbst['l2-mean']) 
print("Best number of iterations: " + str(best_iter)) 
# Best number of iterations: 72 
 
# SHAP Values 
 
# Commented out IPython magic to ensure Python compatibility. 
# %pip install shap  
import shap as shap 
#on SHAPLEY values look here: https://docs.seldon.io/projects/alibi/en/stable/index.html 
 
explainer = shap.Explainer(bst) 
shap_values = explainer(X_train) 
 
#Shap plots 
 
shap.summary_plot(shap_values, max_display=56, feature_names=X.columns) 
 
shap.summary_plot(shap_values, max_display=56, feature_names=X.columns, plot_type="bar") 
 
# Application of our dataset 100% model # 
 
# Load dataset 
 
# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import numpy as np 
import copy 
%matplotlib inline 
%pip install gpboost 
import gpboost as gpb 
import sklearn.datasets as datasets 
import time 
import csv 
 
X_final = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
 
X_final.head() 
 
X = X_final.drop(['growth', "Unnamed: 0", "countrycode", 'training_set'], axis = 1) 
y = X_final[['growth']] 
 
group = X_final[['countrycode']] 
print(group) 
 
# Define and train GPModel 
gp_model = gpb.GPModel(group_data=group) 
# create dataset for gpb.train function 
data_train = gpb.Dataset(X, y) 
# specify tree-boosting parameters as a dict 
params = { 'objective': 'regression_l2', 'learning_rate': 0.01, 
    'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } 
# train model 
bst = gpb.train(params=params, train_set=data_train, gp_model=gp_model, num_boost_round=2) 
gp_model.summary() # estimated covariance parameters 
 
# Make predictions 
pred = bst.predict(data=X, group_data_pred=group) 
y_pred = pred['fixed_effect'] + pred['random_effect_mean'] # sum predictions of fixed effect and random effect 
y_pred = y_pred.reshape(729,1) ## THIS IS SPECIFIC TO THE GIVEN NUMBER OF ROWS 
 
from sklearn import metrics 
 
print('R^2:',metrics.r2_score(y, y_pred)) 
print('Adjusted R^2:',1 - (1-metrics.r2_score(y, y_pred))*(len(y)-1)/(len(y)-X.shape[1]-1)) 
print('MAE:',metrics.mean_absolute_error(y, y_pred)) 
print('MSE:',metrics.mean_squared_error(y, y_pred)) 
print('RMSE:',np.sqrt(metrics.mean_squared_error(y, y_pred))) 
 
# exporting a list variable into the csv file 
import csv 
input_variable = y_pred 
   
# Example.csv gets created in the current working directory  
with open('GPBoost_y_pred.csv', 'w', newline = '') as csvfile: 
    my_writer = csv.writer(csvfile, delimiter = ' ') 
    my_writer.writerow(input_variable) 
 
# Parmeter search 
gp_model = gpb.GPModel(group_data=group) 
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cvbst = gpb.cv(params=params, train_set=data_train, 
               gp_model=gp_model, use_gp_model_for_validation=False, 
               num_boost_round=100, early_stopping_rounds=5, 
               nfold=4, verbose_eval=True, show_stdv=False, seed=1) 
best_iter = np.argmin(cvbst['l2-mean']) 
print("Best number of iterations: " + str(best_iter)) 
# Best number of iterations: 0 
 
# Shap values 
 
# Commented out IPython magic to ensure Python compatibility. 
# %pip install shap  
import shap as shap 
#on SHAPLEY values look here: https://docs.seldon.io/projects/alibi/en/stable/index.html 
 
explainer = shap.Explainer(bst) 
shap_values = explainer(X) 
 
# Correct names for plots 
 
import pandas as pd 
import time 
 
wdi_table=pd.read_csv('namepairs.csv') 
wdi_table_names=wdi_table[["Indicator Code", 'Indicator Name']] 
wdi_table_names 
 
data = [["previous_growth", 'The GDP growth of the year before (annual %)'],  
        ["year", "Year"], 
        ["labsh", "Labor share of income (% of total)"], 
        ["schooling", "Average total years of schooling for adult population(years)"], 
        ["freedomhouse", "Freedome House Index"]] 
 
df = pd.DataFrame(data, columns=["Indicator Code", "Indicator Name"]) 
 
all_names=pd.concat([wdi_table_names,df]) 
 
wdi_dict=dict(all_names.values) 
 
names= X.columns 
new_names = [] 
for namn in names: 
  try: 
    new_names.append(wdi_dict[namn]) 
  except: 
    new_names.append(namn) 
 
 # Shap plots 
shap.summary_plot(shap_values, max_display=60, feature_names=new_names) 
 
shap.summary_plot(shap_values, max_display=60, feature_names=new_names, plot_type="bar") 

 

Appendix D – Long Short-Term Memory Recurrent Neural Network 
(imvlstm.py) 
# too work on Google Colab, do following: 
# Step 1) under menu "runtime", choose row "change runtime". Set "GPU" to "on" 
# Step 2) upload file "networks.py" 
# Step 3) upload file "output_EU_interpolated_linear_normalized_no_missing_values_nopop.csv" 
# Step 4a) upload file "GPBoost_y_pred.csv" 
# Step 4b) upload file "SVRM_y_pred2.csv" 
# Step 4c) upload file "GAM_y_pred.csv" 
 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import csv 
 
# Networks.py from https://github.com/KurochkinAlexey/IMV_LSTM/blob/master/networks.py 
 
from networks import IMVTensorLSTM 
 
import torch 
from torch import nn 
from torch.utils.data import TensorDataset, DataLoader 
 
data = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop.csv") 
 
gpb_preds_list=[] 
with open('GPBoost_y_pred.csv', newline='') as csvfile: 
  csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|') 
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  for row in csv_reader: 
    for val in row: 
      gpb_preds_list.append(float(val.strip("[]"))) 
gpb_preds=np.array(gpb_preds_list) 
 
svrm_preds_list=[] 
with open('SVRM_y_pred2.csv', newline='') as csvfile: 
  csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|') 
  for row in csv_reader: 
    for val in row: 
      svrm_preds_list.append(float(val)) 
svrm_preds=np.array(svrm_preds_list) 
 
gam_preds_list=[] 
with open('GAM_y_pred.csv', newline='') as csvfile: 
  csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|') 
  for row in csv_reader: 
    for val in row: 
      gam_preds_list.append(float(val)) 
gam_preds=np.array(gam_preds_list) 
 
trainval_frac = 0.2 # decent: 0.75 
 
# remove unwanted columns from our data file 
#data.drop(['training_set'], axis=1, inplace=True) 
 
#cbwd = pd.get_dummies(data['cbwd']) 
#cbwd.columns = ["cbwd_{}".format(i) for i in range(cbwd.shape[1])] 
#data = pd.concat([data, cbwd], axis=1) 
 
#data.drop(['cbwd'], axis=1, inplace=True) 
 
depth = 10 
 
countryname = { 
  "AUT": "Austria", 
  "BEL": "Belgium", 
  "BGR": "Bulgaria", 
  "CYP": "Cyprus", 
  "CZE": "Czech Republic", 
  "DEU": "Germany", 
  "DNK": "Denmark", 
  "ESP": "Spain", 
  "EST": "Estonia", 
  "FIN": "Finland", 
  "FRA": "France", 
  "GRC": "Greece", 
  "HRV": "Croatia", 
  "HUN": "Hungary", 
  "IRL": "Ireland", 
  "ITA": "Italy", 
  "LTU": "Lithuania", 
  "LUX": "Luxembourg", 
  "LVA": "Latvia", 
  "MLT": "Malta", 
  "NLD": "Netherlands", 
  "POL": "Poland", 
  "PRT": "Portugal", 
  "ROU": "Romania", 
  "SVK": "Slovakia", 
  "SVN": "Slovenia", 
  "SWE": "Sweden" 
} 
countrynumber = { 
  "AUT": 1, 
  "BEL": 2, 
  "BGR": 3, 
  "CYP": 4, 
  "CZE": 5, 
  "DEU": 6, 
  "DNK": 7, 
  "ESP": 8, 
  "EST": 9, 
  "FIN": 10, 
  "FRA": 11, 
  "GRC": 12, 
  "HRV": 13, 
  "HUN": 14, 
  "IRL": 15, 
  "ITA": 16, 
  "LTU": 17, 
  "LUX": 18, 
  "LVA": 19, 
  "MLT": 20, 
  "NLD": 21, 
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  "POL": 22, 
  "PRT": 23, 
  "ROU": 24, 
  "SVK": 25, 
  "SVN": 26, 
  "SWE": 27 
} 
countries = data.countrycode.unique() 
 
### the line below creates dummy variables instead 
#data=pd.get_dummies(data, columns=["countrycode"], prefix=["country"]) 
### the line below changes countrycodes to numbers 
data.countrycode = [countrynumber[item] for item in data.countrycode]  
 
# [new] training versus values 
data_train = data.loc[data['training_set'] == 1] 
data_train.drop(['training_set'], axis=1, inplace=True) 
data_test = data.loc[data['training_set'] == 0] 
data_test.drop(['training_set'], axis=1, inplace=True) 
data.drop(['training_set'], axis=1, inplace=True) 
 
y = data['growth'].fillna(method='ffill').values 
data=data.drop(columns=['growth']) 
cols = list(data.columns[4:]) 
#cols.insert(0, 'countrycode') # add 'countrycode' as a variable 
 
X = np.zeros((len(data), depth, len(cols))) 
for i, name in enumerate(cols): 
    for j in range(depth): 
        X[:, j, i] = data[name].shift(depth - j - 1).fillna(method='bfill') 
 
train_bound = int(0.6*(len(data))) 
val_bound = int(0.8*(len(data))) 
 
X_train = X[:train_bound] 
X_val = X[train_bound:val_bound] 
X_test = X[val_bound:] 
y_train = y[:train_bound] 
y_val = y[train_bound:val_bound] 
y_test = y[val_bound:] 
 
# [new] X_test, X_train, and X_val 
X_trainval = np.zeros((len(data_train), depth, len(cols))) 
for i, name in enumerate(cols): 
    for j in range(depth): 
        X_trainval[:, j, i] = data_train[name].shift(depth - j - 1).fillna(method='bfill') 
X_train = X_trainval[:int(trainval_frac*len(X_trainval))] 
X_val = X_trainval[int(trainval_frac*len(X_trainval)):] 
X_test = np.zeros((len(data_test), depth, len(cols))) 
for i, name in enumerate(cols): 
    for j in range(depth): 
        X_test[:, j, i] = data_test[name].shift(depth - j - 1).fillna(method='bfill') 
 
# [new] y_test, y_train, and y_val 
y_trainval = data_train['growth'].fillna(method='ffill').values 
y_train = y_trainval[:int(trainval_frac*len(y_trainval))] 
y_val = y_trainval[int(trainval_frac*len(y_trainval)):] 
y_test = data_test['growth'].fillna(method='ffill').values 
 
X_train_min, X_train_max = X_train.min(axis=0), X_train.max(axis=0) 
y_train_min, y_train_max = y_train.min(axis=0), y_train.max(axis=0) 
 
X_train = (X_train - X_train_min)/(X_train_max - X_train_min + 1e-9) 
X_val = (X_val - X_train_min)/(X_train_max - X_train_min + 1e-9) 
X_test = (X_test - X_train_min)/(X_train_max - X_train_min + 1e-9) 
y_train = (y_train - y_train_min)/(y_train_max - y_train_min +1e-9) 
y_val = (y_val - y_train_min)/(y_train_max - y_train_min + 1e-9) 
y_test = (y_test - y_train_min)/(y_train_max - y_train_min + 1e-9) 
 
X_train_t = torch.Tensor(X_train) 
X_val_t = torch.Tensor(X_val) 
X_test_t = torch.Tensor(X_test) 
y_train_t = torch.Tensor(y_train) 
y_val_t = torch.Tensor(y_val) 
y_test_t = torch.Tensor(y_test) 
 
train_loader = DataLoader(TensorDataset(X_train_t, y_train_t), batch_size=64, shuffle=True) 
val_loader = DataLoader(TensorDataset(X_val_t, y_val_t), batch_size=64, shuffle=False) 
test_loader = DataLoader(TensorDataset(X_test_t, y_test_t), batch_size=64, shuffle=False) 
 
model = IMVTensorLSTM(X_train_t.shape[2], 1, 128).cuda() 
 
opt = torch.optim.Adam(model.parameters(), lr=0.001) 
 
epoch_scheduler = torch.optim.lr_scheduler.StepLR(opt, 20, gamma=0.9) 
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from sklearn.metrics import mean_squared_error, mean_absolute_error 
 
epochs = 1000 
loss = nn.MSELoss() 
patience = 35 # originally 35, proper value 1000 
min_val_loss = 9999 
counter = 0 
for i in range(epochs): 
    mse_train = 0 
    for batch_x, batch_y in train_loader: 
        batch_x = batch_x.cuda() 
        batch_y = batch_y.cuda() 
        opt.zero_grad() 
        y_pred, alphas, betas = model(batch_x) 
        y_pred = y_pred.squeeze(1) 
        l = loss(y_pred, batch_y) 
        l.backward() 
        mse_train += l.item()*batch_x.shape[0] 
        opt.step() 
    epoch_scheduler.step() 
    with torch.no_grad(): 
        mse_val = 0 
        preds = [] 
        true = [] 
        for batch_x, batch_y in val_loader: 
            batch_x = batch_x.cuda() 
            batch_y = batch_y.cuda() 
            output, alphas, betas = model(batch_x) 
            output = output.squeeze(1) 
            preds.append(output.detach().cpu().numpy()) 
            true.append(batch_y.detach().cpu().numpy()) 
            mse_val += loss(output, batch_y).item()*batch_x.shape[0] 
    preds = np.concatenate(preds) 
    true = np.concatenate(true) 
     
    if min_val_loss > mse_val**0.5: 
        min_val_loss = mse_val**0.5 
        print("Saving...") 
        torch.save(model.state_dict(), "imv_tensor_lstm_pm25.pt") 
        counter = 0 
    else:  
        counter += 1 
     
    if counter == patience: 
        break 
    print("Iter: ", i, "train: ", (mse_train/len(X_train_t))**0.5, "val: ", (mse_val/len(X_val_t))**0.5) 
    if(i % 10 == 0): 
        preds = preds*(y_train_max - y_train_min) + y_train_min 
        true = true*(y_train_max - y_train_min) + y_train_min 
        mse = mean_squared_error(true, preds) 
        mae = mean_absolute_error(true, preds) 
        print("lr: ", opt.param_groups[0]["lr"]) 
        print("mse: ", mse, "mae: ", mae) 
        plt.figure(figsize=(20, 10)) 
        plt.plot(true) 
        plt.plot(preds) 
        plt.show() 
 
model.load_state_dict(torch.load("imv_tensor_lstm_pm25.pt")) 
 
with torch.no_grad(): 
    mse_val = 0 
    preds = [] 
    true = [] 
    alphas = [] 
    betas = [] 
    for batch_x, batch_y in test_loader: 
        batch_x = batch_x.cuda() 
        batch_y = batch_y.cuda() 
        output, a, b = model(batch_x) 
        output = output.squeeze(1) 
        preds.append(output.detach().cpu().numpy()) 
        true.append(batch_y.detach().cpu().numpy()) 
        alphas.append(a.detach().cpu().numpy()) 
        betas.append(b.detach().cpu().numpy()) 
        mse_val += loss(output, batch_y).item()*batch_x.shape[0] 
preds = np.concatenate(preds) 
true = np.concatenate(true) 
 
preds = preds*(y_train_max - y_train_min) + y_train_min 
true = true*(y_train_max - y_train_min) + y_train_min 
 
mse = mean_squared_error(true, preds) 
mae = mean_absolute_error(true, preds) 
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mse, mae 
 
plt.figure(figsize=(20, 10)) 
plt.plot(true) 
plt.plot(preds) 
plt.plot(gpb_preds) # GPB 
plt.plot(svrm_preds) # SVRM 
plt.plot(gam_preds) # SVRM 
plt.legend(['true', 'lstm_preds', 'gpb_preds', 'svrm_preds', 'gam_preds']) 
plt.show() 
 
alphas = np.concatenate(alphas) 
betas = np.concatenate(betas) 
 
alphas = alphas.mean(axis=0) 
betas = betas.mean(axis=0) 
 
alphas = alphas[..., 0] 
betas = betas[..., 0] 
 
alphas = alphas.transpose(1, 0) 
 
fig, ax = plt.subplots(figsize=(20, 20)) 
im = ax.imshow(alphas) 
ax.set_xticks(np.arange(X_train_t.shape[1])) 
ax.set_yticks(np.arange(len(cols))) 
ax.set_xticklabels(["t-"+str(i) for i in np.arange(X_train_t.shape[1], -1, -1)]) 
ax.set_yticklabels(list(cols)) 
for i in range(len(cols)): 
    for j in range(X_train_t.shape[1]): 
        text = ax.text(j, i, round(alphas[i, j], 3), 
                       ha="center", va="center", color="w") 
ax.set_title("Importance of features and timesteps") 
#fig.tight_layout() 
plt.show() 
 
plt.figure(figsize=(20, 20)) 
plt.title("Feature importance") 
plt.barh(range(len(cols)), betas) 
plt.yticks(ticks=range(len(cols)), labels=cols, rotation=90) 
 
plt.figure(figsize=(20, 10)) 
plt.plot(true) 
plt.plot(preds) 
plt.plot(gpb_preds) # GPB 
plt.plot(svrm_preds) # SVRM 
plt.plot(gam_preds) # SVRM 
plt.legend(['true', 'lstm_preds', 'gpb_preds', 'svrm_preds', 'gam_preds']) 
plt.text(0, 1.1, 'LSTM:\nRMSE = '+str(mse**0.5)+'\nMAE = '+str(mae)) 
plt.show() 
 
plt.figure(figsize=(20, 10)) 
plt.plot(true) 
plt.plot(preds) 
plt.plot(gpb_preds) # GPB 
plt.plot(svrm_preds) # SVRM 
plt.plot(gam_preds) # SVRM 
plt.legend(['true', 'lstm_preds', 'gpb_preds', 'svrm_preds', 'gam_preds']) 
plt.xlabel('observation (time point)') 
plt.ylabel('normalized logarithmized real GDP growth rate') 
#plt.text(0, 1.1, 'LSTM:\nRMSE = '+str(mse**0.5)+'\nMAE = '+str(mae)) 
plt.show() 
 
wdi_table=pd.read_csv('namepairs.csv') 
 
wdi_dict=dict(wdi_table[['Indicator Code','Indicator Name']].values) 
 
wdi_dict['schooling']='Number of years of schooling' 
wdi_dict['labsh']='Labour share of income' 
wdi_dict['freedomhouse']='Freedom House index' 
 
unsorted_list = [(importance, feature) for feature, importance in  
                  zip(cols, betas)] 
sorted_list = sorted(unsorted_list) 
 
features_sorted = [] 
importance_sorted = [] 
 
for i in sorted_list: 
    try: 
      features_sorted += [wdi_dict[i[1]]] 
    except: 
      features_sorted += [i[1]] 
    importance_sorted += [i[0]] 
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plt.show() 
plt.figure(figsize=(10, 20)) 
 
plt.title("Feature importance", fontsize=15) 
plt.xlabel("Importance", fontsize=13) 
 
plt.barh(range(len(importance_sorted)), importance_sorted, color="blue", edgecolor='blue') 
plt.yticks(range(len(importance_sorted)), features_sorted); 
 
for rad in sorted_list[::-1]: 
  print(rad[1]) 
 
print(len(y_train)) 
print(len(y_val)) 
print(len(y_test)) 
print(str(len(y_train)+len(y_val)+len(y_test))) 
 
for rad in sorted_list[::-1]: 
  print(rad[1]) 

Appendix E – Generalized Additive Linear Model (GAM.py) 
 # Application of dataset 100% # 

# Commented out IPython magic to ensure Python compatibility. 
# %pip install pygam 
# %pip install pandas matplotlib 

# Commented out IPython magic to ensure Python compatibility. 
import pandas as pd 
import numpy as np 
import copy 

# %matplotlib inline 

X_final = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
X_final.head() 
X = X_final.drop(['growth', "Unnamed: 0", "training_set"], axis = 1) 
y = X_final[['growth']] 
X 

from sklearn.preprocessing import OrdinalEncoder 
ord_enc = OrdinalEncoder() 
X["countrycode"] = ord_enc.fit_transform(X[["countrycode"]]) 
X 

X = X.to_numpy() 
y = y.to_numpy() 

from pygam import LinearGAM, s, f 

gam = LinearGAM(f(0) + f(1) + s(2) + s(3) + s(4) + s(5) + s(6) + s(7) + s(8) + s(9) + s(10) + s(11) + s(12) + s(13) + 
s(14)  + s(15) + s(16) + s(17) + s(18) + s(19) + s(20) + s(21) + s(22) + s(23) + s(24) + s(25) + s(26) + s(27) + 
s(28) + s(29) + s(30) + s(31) + s(32) + s(33) + s(34) + s(35) + s(36) + s(37) + s(38) + s(39) + s(40) + s(41) + s(42) 
+ s(43) + s(44) + s(45) + s(46) + s(47) + s(48) + s(49) + s(50) + s(51) + s(52) + s(53) + s(54) + s(55) + f(56) + 
f(57) 
).fit(X, y) 

gam.summary() 

y_pred = gam.predict(X) 

from sklearn import metrics 

print('R^2:',metrics.r2_score(y, y_pred)) 

print('Adjusted R^2:',1 - (1-metrics.r2_score(y, y_pred))*(len(y)-1)/(len(y)-X.shape[1]-1)) 

print('MAE:',metrics.mean_absolute_error(y, y_pred)) 

print('MSE:',metrics.mean_squared_error(y, y_pred)) 

print('RMSE:',np.sqrt(metrics.mean_squared_error(y, y_pred))) 

 

import csv 
# exporting a list variable into the csv file 
input_variable = y_pred 
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# Example.csv gets created in the current working directory  

with open('GAM_y_pred_all.csv', 'w', newline = '') as csvfile: 

    my_writer = csv.writer(csvfile, delimiter = ' ') 

    my_writer.writerow(input_variable) 

# Application of dataset 80% # 

%pip install pygam 
%pip install pandas matplotlib 

import pandas as pd 
import numpy as np 
import copy 
%matplotlib inline 

X_final = pd.read_csv("output_EU_interpolated_linear_normalized_no_missing_values_nopop-2.csv") 
X_final.head() 

X = X_final.drop(['growth', "Unnamed: 0"], axis = 1) 
y = X_final[['growth', 'training_set']] 

from sklearn.preprocessing import OrdinalEncoder 

ord_enc = OrdinalEncoder() 
X["countrycode"] = ord_enc.fit_transform(X[["countrycode"]]) 
X 

X_train1 = X.loc[X['training_set'] == 1] 
X_train = X_train1.drop(['training_set'], axis = 1) 
X_test1 = X.loc[X['training_set'] == 0] 
X_test = X_test1.drop(['training_set'], axis = 1) 

y_train1 = y.loc[y['training_set'] == 1] 
y_train = y_train1.drop(['training_set'], axis = 1) 

y_test1 = y.loc[y['training_set'] == 0] 
y_test = y_test1.drop(['training_set'], axis = 1) 

X_train = X_train.to_numpy() 
y_train = y_train.to_numpy() 

from pygam import LinearGAM, s, f 

gam = LinearGAM(f(0) + f(1) + s(2) + s(3) + s(4) + s(5) + s(6) + s(7) + s(8) + s(9) + s(10) + s(11) + s(12) + s(13) + 
s(14) + s(15) + s(16) + s(17) + s(18) + s(19) + s(20) + s(21) + s(22) + s(23) + s(24) + s(25) + s(26) + s(27) + s(28) 
+ s(29) + s(30) + s(31) + s(32) + s(33) + s(34) + s(35) + s(36) + s(37) + s(38) + s(39) + s(40) + s(41) + s(42) + 
s(43) + s(44) + s(45) + s(46) + s(47) + s(48) + s(49) + s(50) + s(51) + s(52) + s(53) + s(54) + s(55) + f(56) + f(57) 

).fit(X_train, y_train) 

gam.summary() 

y_pred = gam.predict(X_test) 
from sklearn import metrics 
print('MAE:',metrics.mean_absolute_error(y_test, y_pred)) 
print('MSE:',metrics.mean_squared_error(y_test, y_pred)) 
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

import csv 
# exporting a list variable into the csv file 
input_variable = y_pred 
# Example.csv gets created in the current working directory  

with open('GAM_y_pred.csv', 'w', newline = '') as csvfile: 

    my_writer = csv.writer(csvfile, delimiter = ' ') 

    my_writer.writerow(input_variable) 


