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1 Introduction

The outbreak of the Covid-19 pandemic has not only led to a worldwide health crisis, but
has also quickly turned into an economic crisis. Containment measures have resulted in
a slowdown of economic activity around the globe and public expenditure has spiked
as many governments needed to provide substantial rescue packages to sustain their
economy and the health sector. According to the International Monetary Fund (2021b),
global economic growth in 2020 declined by approximately 3.5 percent, while global
debt rose to almost 100 percent of GDP (International Monetary Fund 2021a).

These developments have inevitably raised concerns about the sustainability of sovereign
debt and the risk of default, especially for emerging economies which are generally more
susceptible to global risk. According to the OECD (2020), in the first five months of
2020, debt issuance in emerging economies has exceeded the long-time average for the
same period and the share of short-term debt has increased. In addition, the number of
sovereign credit rating downgrades during the first five months of 2020 was almost as
high as the annual number of downgrades in the record years 2016 and 2017.

Understanding the driving forces behind sovereign default is therefore crucial in order
to make informed decisions about the design of financial contracts and the regulation of
sovereign debt restructuring. Various empirical studies1 have shown that global factors,
such as fluctuations in the world interest rate and changes in investors’ risk aversion,
explain a large share of the variations in sovereign credit spreads. Motivated by these
findings, this paper aims at evaluating the impact of two factors, fluctuations in the
world interest rate and risk aversion of the investors, on the sovereign bond spread and
the default incentives of an emerging economy. While these factors have been analyzed
separately within the framework of a strategic sovereign default model, this paper is,
to the best of my knowledge, the first to build a model that features both time-varying
risk-free rates and risk-averse lenders. Since the world interest rate not only affects the
sovereign’s borrowing costs directly, but also through its impact on investors’ investment
decisions, I contribute to the existing literature on sovereign default by incorporating this
important transmission channel of fluctuations in the risk-free rate.

The basic structure of my model follows the benchmark model of strategic sovereign de-
fault as in Eaton & Gersovitz (1981) and Arellano (2008). At the core of these models lies
the assumption that debt repayment is a matter of willingness rather than ability. That
is, even if a country is able to repay its debt, it might still decide to default if the asso-
ciated gains outweigh the costs. In contrast to the standard sovereign default literature,
which assumes that the economy borrows from international, risk-neutral investors, I
follow Lizarazo (2013) in assuming that investors exhibit decreasing absolute risk aver-
sion (DARA preferences). This assumption allows for wealth effects on the side of the
investors, which, if strong enough, might drive the borrowing country to the edge of
a default. Specifically, a negative wealth shock affects an investor’s risk-tolerance, such
that she requires a higher risk premium even if the default risk is unchanged. This, in

1See, e.g., Longstaff et al. (2011), Garcia-Herrero & Ortiz (2005) and Csonto & Ivaschenko (2013).
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turn, increases the economy’s borrowing costs, thereby decreasing the value of repay-
ment and increasing the probability of default. This increased default probability implies
a negative expected wealth shock for the investor, which again affects her stochastic dis-
count factor and, therefore, the bond price. Hence, the introduction of risk-averse lenders
allows me to model the impact of investors’ characteristics and global factors on borrow-
ing costs and default incentives through the channel of the lender’s stochastic discount
factor, which cannot be captured by models with risk-neutral investors.

In order to analyze the impact of the world interest rate and the importance of the
stochastic discount factor channel, I extend Lizarazo (2013)’s model by introducing a
time-varying risk-free rate. In a strategic default model with risk-neutral lenders, a
change in the risk-free rate has only a direct effect on the price of the risky bond. In a
model with risk-averse lenders, however, two opposing effects—a wealth and a substitu-
tion effect—determine the impact of a change in the risk-free rate on the bond price.

The main findings of this paper are twofold. First, I corroborate the claim made by
Lizarazo (2013) that the integration of risk-averse investors enables to generate higher
mean interest rate spreads without artificially inflating the default frequency. In addi-
tion, I show that this result is not bound to the assumption that the risky bond constitutes
a large share of the investor’s income. Second, I find that the importance of the time-
varying risk-free rate is rather small in my model. This would suggest that fluctuations
in the world interest rate play only a minor role in the determination of interest rate
spreads and default incentives. However, it is crucial that this result is viewed within
the context of the framework presented here. For instance, allowing for long-term debt
or endogenizing the investor’s endowment might allow for more pronounced effects of
the world interest rate on the sovereign bond price and the default incentives.

The remainder of the paper is structured as follows. Relevant findings of the academic
literature on sovereign default and shocks to the world interest rate are discussed in Sec-
tion 2 and Section 3 describes the model set-up and the main implications of the model.
Section 4 discusses the numerical implementation of the model before proceeding with
a comparative statics analysis and a discussion of the dynamics surrounding a typical
default episode. Finally, Section 5 concludes by summarizing the main findings and
potential extensions.
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2 Literature Review

Most sovereign default models in the tradition of Eaton & Gersovitz (1981), as pro-
moted by Arellano (2008) and Aguiar & Gopinath (2006), assume that the government
borrows from risk-neutral investors, thereby ignoring the impact of investors’ charac-
teristics on borrowing costs. While the effects of investors’ financial performance and
risk aversion have been studied in various empirical papers (e.g., Longstaff et al. (2011),
Garcia-Herrero & Ortiz (2005)), there are only a few sovereign default papers that in-
clude risk-averse investors.

As pointed out by Lizarazo (2013), standard sovereign default models with risk-neutral
investors typically fail to reconcile the observed default frequency with the high spreads
paid by emerging economies. In order to provide a framework that is better suited
to capture the stylized facts of sovereign default, she introduces investors with DARA
preferences into an otherwise standard sovereign default model. Lizarazo (2013) shows
that this assumption better accounts for the sovereign spread dynamics observed in the
data as it gives rise to excess risk premia, which vary with both the investors’ wealth
and their degree of risk aversion.

Following the approach first introduced by Lizarazo (2013), several authors have in-
tegrated risk-averse lenders in strategic sovereign default models, focusing mainly on
the contagion effect that arises through the wealth channel. Park (2014), for instance,
extends the model by Lizarazo (2013) by introducing financial frictions arising from col-
lateral constraints imposed on the common lender, where a default not only reduces the
investor’s portfolio value but also the collateral value. Thus, the negative effect of a de-
fault on other countries’ bond prices is amplified, since credit constrained investors will
ask for an additional liquidity premium. As a consequence, countries face higher bor-
rowing costs and default might become attractive even for countries with sound funda-
mentals. In contrast, Arellano et al. (2017) extend the framework proposed by Lizarazo
(2013) to a multi-country model with debt renegotiation. This allows accounting for
both the pricing kernel channel and the renegotiation channel of contagion and better
captures the co-movements in sovereign spreads observed in the data.

De Ferra & Mallucci (2020) examine default contagion from a normative point of view
by analyzing cross-country bailouts as well as a central planner version of their model.
In line with the previous literature, they find that unanticipated bailouts are welfare-
improving, while anticipated ones lead to overborrowing and a higher default frequency,
resulting in an overall welfare loss.

Borri & Verdelhan (2011) highlight the importance of risk-averse investors in explaining
risk-premia dynamics and sovereign default. They introduce risk-averse lenders with
external habit preferences into a sovereign default model à la Eaton & Gersovitz (1981)
by assuming that lenders’ consumption growth follows a stochastic process. A direct
consequence of this modelling choice is that the risk-free rate is time-varying, as it is
completely pinned down by the stochastic discount factor of the representative investor.
Since investors are assumed to have constant relative risk aversion (CRRA preferences),
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shocks to their consumption growth directly translate into lower bond prices, thereby
pushing the borrowing costs of the emerging economy. The authors show that the effect
of risk aversion on risk premia is highest if the borrowers and lenders’ business cycles
are positively correlated, i.e., when bad times in the emerging economy coincide with
bad times for the investor.

In contrast to Borri & Verdelhan (2011), the model presented in this thesis endogenizes
the decision-making process of the investor in order to explicitly capture the effect of
world interest rate shocks on the pricing kernel. The impact of global factors, such as ex-
ternal interest rates on emerging economies’ business cycles and sovereign bond spreads,
in particular, has been documented by a large body of empirical research. Longstaff
et al. (2011), for instance, find that global market factors such as global risk premia can
account for a large fraction of variation in sovereign credit spreads. Similarly, Csonto &
Ivaschenko (2013) estimate the short- and long-run effects of both domestic and global
factors and find that, in the short-run, spreads are mainly driven by global factors, but
that the sensitivity to global developments depends largely on the country’s fundamen-
tals.

Uribe & Yue (2006) estimate the effect of US interest rate shocks on emerging economies’
business cycles both empirically and by means of a neoclassical growth model. Their
results suggest that shocks to the US interest rate can account for 20 percent of variations
in domestic output, with the country spread being the most important transmission
channel of these shocks. Finally, González-Rozada & Yeyati (2008) find that high yield
spreads for developed economies, which they use as proxy for global risk aversion, and
the US Treasury rate together account for over 30 percent of the variation in sovereign
spreads of emerging economies.

Despite this strong consensus on the prominent role of world interest rates in driving
sovereign bond spreads and default incentives, only a few models in the sovereign de-
fault literature account for shocks to the risk-free rate or other global factors. Most
importantly, these factors have so far not been analyzed in the context of a sovereign
default model that allows for risk-averse investors. Thus, this paper contributes to the
existing literature on sovereign default and the role of global factors in determining
default incentives by uniquely incorporating both time-varying risk-free rates and risk-
averse lenders in a model of endogenous sovereign default.

Within the context of a standard sovereign default model with risk-neutral lenders and
debt renegotiation, Guimaraes (2011) compares the impact of output and world interest
rate fluctuations on default incentives. In contrast to output shocks, fluctuations in the
risk-free rate only matter as long as countries have access to financial markets, implying
a much higher differential effect of interest rate shocks on the incentive compatible debt
level. Thus, Guimaraes (2011) argues that such shocks may be a more important driver
of sovereign default than shocks to productivity or output.

Almeida et al. (2019) examine the default incentives generated by regime switching in-
terest rates in the specific context of the Volcker shock and its role in the Mexican default,
in 1982. Contrary to the widespread narrative that the Volcker shock was a driving force
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behind the Mexican default, they find that the risk-free rate played no significant role in
the Mexican default decision. However, as pointed out by the authors, their framework
with risk-neutral investors does not fully capture the effect of interest rate shocks on the
pricing kernel and is therefore ill-suited for performing counterfactual analyses.

Finally, Johri et al. (2020) incorporate a variable risk-free rate in a model of endogenous
sovereign default with long term debt and risk-averse lenders. Similar to Borri & Verdel-
han (2011) they integrate risk aversion without endogenizing the investors’ decision-
making problem, and model the stochastic discount factor by means of an ad-hoc func-
tion that depends on both the domestic endowment and the world interest rate. In line
with previous empirical work, they find that the emerging economy’s risk premium is
increasing not only in the level of the risk-free rate but also in its volatility, and that these
effects are more pronounced in low income and high debt states.

This paper uniquely combines these two strands of the literature by analyzing a sovereign
debt model that endogenizes the decision-making process of risk-averse investors and
simultaneously allows for time-varying world interest rates. I thereby aim to close the
gap between these two branches of the academic literature and to provide a insight on
the effect of world interest rate shocks on the pricing kernel and decisions of the investor
and, thereby, on default incentives of emerging economies.
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3 The Model

The model economy consists of a small open economy and a large, but finite number of
identical, international investors.

The country is populated by identical, risk-averse households and a benevolent gov-
ernment. The economy’s endowment follows a stochastic process, i.e., each period, the
economy obtains endowment yt P Y. In order to smooth domestic consumption, the
government can issue debt, bt+1, on the international financial market.

Due to the lack of a commitment technology, the government can, in each period, decide
whether to repay or to default on its entire debt, i.e., default is a binary decision captured
by dt:

dt =

#

0 if repayment
1 if default.

In case the country defaults on its debt, it is excluded from financial markets for an
unknown number of periods. That is, in each period, it might regain access to financial
markets with a constant probability, in which case it starts over with a clean slate. While
being in financial autarky, the country also incurs direct default costs in the form of
output losses. As long as the country is in financial autarky, demand and supply of its
bonds are zero, i.e., Bt+1 = bt+1 = 0.

International investors are assumed to be risk-averse and to receive a constant endow-
ment, yL. They aim to smooth consumption by trading in both a risk-free asset and
the risky asset provided by the small open economy. Since the investors know about
the economy’s option to default, they demand a risk premium over the risk-free rate
that compensates them for the default risk. The risk-free rate, r f

t , is time-variant and
assumed to follow a Markov process with transition function f (r f

t+1 |r
f
t ). For simplicity,

I assume that the risk-free rate can only take on one of two values, i.e., r f
t P tr

f
H, r f

Lu @t.
In addition, I assume that the process features a certain degree of persistence, i.e.,
f (r f

i |r
f
i ) ą f (r f

j |r
f
i ), @i, j P tH, Lu.

The timing of the model is as follows: in each period, the state of the risk-free rate as
well as initial endowments are realized and each agent chooses its optimal action plan,
given the current endowment, risk-free rate, investor’s wealth, Wt, and outstanding debt,
which together define the current state of the world. That is, I define the state vector
st = (yt, r f

t , Wt, bt) as the vector of exogenous and endogenous aggregate state variables.2

Note that once output and the risk-free rate have been realized, the random element of
that period is removed.

The government observes the pricing schedule at which the investor would be willing
to purchase bonds and decides whether to default or not. If the government decides to

2yt and r f
t are exogenous state variables, while Wt and bt are endogenous state variables.
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default, the investor is not repaid and the small open economy is excluded from financial
markets. In this case, the outstanding debt is set to zero. If the government decides not
to default, it repays its debt and issues new debt, which is priced according to the pricing
schedule.

By contrast, if the small open economy is already in autarky, it cannot engage in trading
in the financial market. Thus, the country’s consumption equals exactly its autarky-
endowment, while the international investors can still borrow or lend at the risk-free
rate.

3.1 The Borrower

Households in the borrowing country are assumed to be risk-averse and have prefer-
ences over consumption

E0

8
ÿ

t=0

βtu(ct),

where 0 ă β ă 1 is the subjective discount factor and ct is consumption in period t.

The per-period utility function, u(¨), is assumed to be twice differentiable and strictly
increasing and strictly concave in consumption, ct. To ensure the existence of an interior
solution, it is further assumed that the utility function u(¨) satisfies the Inada conditions.
Hence,

Bu(¨)
Bc

ą 0 ą
B2u(¨)
Bc2 ,

lim
cÑ0

Bu(¨)
Bc

= 8 and lim
cÑ8

Bu(¨)
Bc

= 0

In any period t, the country has outstanding debt, bt, and the government chooses the
optimal consumption plan as well as bond issuance, bt+1, in order to maximize domes-
tic households’ expected utility. Bonds are assumed to be non-contingent, one-period
discount bonds, which are traded at price qt(st, bt+1) and pay a face value of one in the
next period.

The proceedings of the debt contracts are completely transferred to the households in a
lump-sum fashion. In addition, households receive a stochastic endowment of the con-
sumption good, yt P Y, where yt is assumed to follow a Markov process with transition
function f (yt+1|yt) and compact support Y = [Y

¯
, Ȳ].

Additionally, the government can decide to default in each period, in which case the
repayment rate is 1´ dt = 0. Default is possible in each period as long as the country
has outstanding debt on which it can default, i.e., as long as bt ą 0. As a consequence
of the default, the country is in bad credit standing and, therefore, excluded from any
trading in financial markets.
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The country can, however, regain access to financial markets, where the probability of
reentry is constant across time and given by θ. As long as it is in financial autarky, the
country also suffers from a direct output loss, which is a function of current endowment
and is represented by the loss function L(yt).

3.1.1 Autarky

If the country is in autarky, it can neither borrow nor save and, thus, consumption equals
its endowment net of default costs. In this case, the resource constraint of the small open
economy is given by

cA
t = yA

t ,

where yA
t = yt ´ L(yt), i.e, the current endowment minus the output loss.

As shown by Bulow & Rogoff (1989), the no-lending assumption is crucial to sustain an
equilibrium with non-zero debt in a purely reputational model. While the model pre-
sented here does include direct default costs in addition to reputational costs, I maintain
the assumption of complete financial autarky as it is standard in the literature.

Using recursive formulation, the Bellman equation in case of autarky is thus given by

VA(s) = u(yA) + βθE[VR(s1)] + β(1´ θ)E[VA(s1)], (1)

where VA(s) = VA(yA, r f , W, 0) and VR(s) = VR(y, r f , W, 0) are the borrower’s value
functions in case of autarky and reentry, respectively. Note that if the country regains
access to financial markets, its outstanding debt is zero.

3.1.2 Market access

If the borrower has access to financial markets, it decides whether to default or not
and, in case of repayment, on the optimal consumption and bond issuance. Hence, the
optimal default decision solves

V(s) = max
dPt0,1u

(1´ d)VC(s) + dVA(s),

where VC is the continuation value, i.e.,

VC(s) = max
c,b1

u(c) + βE[V(s1)] s.t. c = y + qb1 ´ b (2)

and VA(s) = VA(y, r f , W, b) corresponds to the value function in case of default, as
described in section 3.1.1, but differs in terms of the state vector.3

3In contrast to the autarky-case, if the government is defaulting in the current period, outstanding debt
is non-zero, at the beginning of the period.
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If debt is repaid, i.e., d = 0, the optimality condition for consumption and borrowing is
given by the usual Euler equation

q =
βE[uc(c1)(1´ d1)]

uc(c)
(3)

3.2 International Lenders

The representative international investor is assumed to be risk-averse with DARA pref-
erences over consumption cL,t @t and to obtain a constant, exogenous endowment yL.
She takes prices of the risky bond and the risk-free asset, qt and q f

t , as given and chooses
consumption as well as risky and risk-free asset holdings, Bt+1 and B f

t+1, to maximize
utility

E0

8
ÿ

t=0

βt
Lu(cL,t).

Hence, at the beginning of each period, the investor’s wealth is given by the sum of asset
holdings:

Wt = Bt + B f
t . (4)

The investor’s wealth at the beginning of each period characterizes the current state. Her
realized wealth depends, however, on the default decision of the government. That is,
if the government decides to default, the lender is not repaid and her realized wealth
equals:

Wt ´ Bt = B f
t .

Thus, the investor’s per-period budget constraint is given by:

cL,t =

#

yL + Wt ´ qtBt+1 ´ q f
t B f

t+1 if repayment,
yL + B f

t ´ q f
t B f

t+1 if default.

Using the definition of investor’s wealth in equation (4), the budget constraint can be
rewritten in terms of wealth:

cL,t =

#

yL + Wt ´ qtBt+1 ´ q f
t (Wt+1 ´ Bt+1) if repayment,

yL + B f
t ´ q f

t Wt+1 if default.
(5)

In addition, the investor faces an additional constraint in form of a lower bound on total
wealth, as to prevent Ponzi schemes, i.e., Wt+1 ě W @t. This lower bound is given by the
natural borrowing limit, i.e.:

W = ´
yL(1 + r f

H)

r f
H

.
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Note that W depends on the lowest possible realization of the risk-free rate, r f
H, since the

natural borrowing limit has to hold with probability one. That is, the natural borrowing
limit represents the maximum amount the investor would be able to repay with certainty,
starting from today if she were not to consume (or, for that matter, save) anymore for the
rest of her life-time.

Following Lizarazo (2013), I assume that the investor can both borrow and lend at the
risk-free rate, but can only take a long position in risky bonds. Hence, in equilibrium we
have:

Bt+1 =

#

bt+1 if bt+1 ě 0,
0 if bt+1 ă 0.

3.2.1 Autarky

As long as the borrowing country is in financial autarky, investors can only trade in
risk-free bonds. However, in each period, the borrower can regain market access with
probability θ, which is taken into account by the investor. Hence, the investor’s value
function is

VA
L (s) = max

tcL,B f 1u
u(cL) + βLθE[VL(s1)] + βL(1´ θ)E[VA

L (s1)]

s.t. cL = yL + B f
´ q f B f 1,

where VL is the investor’s value function if the borrowing country has good credit stand-
ing as defined in section 3.2.2 and VA

L (s) = VA
L (y, r f , W, 0) is her autarky-value function.

Hence, the investor’s optimality condition is given by

q f = E
[

βL
ucL(c

1
L)

ucL(cL)

]
= E[m], (6)

where m = βL
ucL (c

1
L)

ucL (cL)
is the lender’s stochastic discount factor.

3.2.2 Market access

If the borrowing economy has access to financial markets, the investor’s value function
is:

VL(s) = (1´ d)VC
L (s) + dVA

L (s),

where her value function in the case of a current default, VA
L (s) = VA

L (y, r f , W, b), cor-
responds to the value function in case of the borrower being in financial autarky, but
differs in terms of the state vector. That is, in contrast to the autarky case, outstand-
ing debt at the beginning of the period is non-zero, and represents the loss the investor
incurs in case of default.
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If the borrower repays instead, the investor’s continuation value, VC
L , is:

VC
L (s) = max

tcL,B f 1,B1u
u(cL) + βLE[VL(s1)]

s.t. cL = yL + W ´ qB1 ´ q f B f 1.

Hence, investors know about the possibility of a default and take this risk into account
when making their optimal decision.

This gives the following pricing equations:

q f = E
[

βL
ucL(c

1
L)

ucL(cL)

]
= E[m], (7)

q = E
[

βL
ucL(c

1
L)(1´ d1)

ucL(cL)

]
= E[m(1´ d1)]. (8)

In contrast to the Euler equation for the risk-free asset, the expected marginal utility of
consumption is adjusted for the probability of default.

3.3 Recursive Equilibrium

As it is standard in the literature on strategic sovereign defaults, I focus on recursive
Markov perfect equilibria. That is, the equilibrium is characterized as a subgame perfect
equilibrium in which the agents’ strategies are Markov strategies, i.e., all agents’ actions
depend only on the state variables of the current period instead of the entire history.
This equilibrium concept is employed since models without commitment suffer from a
time-inconsistency problem. For instance, the option to default is welfare-decreasing for
the borrower as the default risk increases its borrowing costs. Hence, ex-ante it would
be optimal for the borrower to commit to repay its debt. Ex-post, however, repayment
might no longer be optimal. The lack of a commitment technology, thus, results in
time-inconsistent policies. Since Markov perfect equilibria are subgame perfect, they are
constructed by backward induction, where each agent takes future optimal decisions as
given and current optimal decisions depend only on the current state.

Definition 1. A recursive Markov equilibrium for this model, given the exogenous state
variables, y and r f , consists of

(i) the borrower’s policy functions for consumption, borrowing and default, tc(s), b1(s), d(s)u,

(ii) the investor’s policy functions for consumption and asset holdings,
 

cL(s), B1(s), B f 1(s)
(

,

(iii) the pricing function for the risky asset, q(s, b1)

such that:

1. Taking as given the bond price function, q(s, b1), as well as the representative in-
vestor’s policy, the borrowing country’s consumption, c(s), satisfies the resource
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constraint and the policy functions for borrowing and default, b1(s) and d(s), solve
the economy’s optimization problem.

2. Taking as given the bond price function, q(s, b1), as well as the government’s policy,
the investor’s investment policy functions, B1(s) and B f 1(s), solve her optimization
problem and her consumption, cL(s), satisfies her budget constraint.

3. Bond prices, q(s, b1), are consistent with default probabilities and with the in-
vestor’s and the borrower’s optimality condition and clear the bond market

b1(s) = B1(s).

3.4 The Default Set

The default set represents the subset of endowments and risk-free rates for which de-
fault is optimal, for a given level of outstanding debt. As is standard in the sovereign
default literature (see, e.g., Eaton & Gersovitz (1981), Arellano (2008)), I assume that the
government repays in case it is indifferent between the two options. That is, since the
government retains the option to default in the next period, its best response is not to
default, whenever it is indifferent. Hence, default is optimal (d = 1) if and only if:

VC(s) ă VA(s) ðñ

u(y + qb1 ´ b) + βE[V(s1)] ă u(yA) + βθE[VR(s1)] + β(1´ θ)E[VA(s1)]. (9)

Thus, the default decision depends only on the current state of the world. The default
set, for a certain level of outstanding debt, b, can therefore be defined as the set of pairs
(y, r f ), for which, given the level of investor’s wealth, the value of default is higher than
the value of repayment.

Definition 2 (Default and repayment sets). For a certain level of debt, the default set is
the set of pairs (y, r f ) for which, given the level of investor’s wealth, the value of default
is higher than the value of repayment:

D(b | W) = t(y, r f ) P Yˆ tr f
L, r f

Hu : VC(s) ă VA(s) | Wu (10)

Likewise, the repayment set consists of the pairs (y, r f ), for which, for a certain level of
debt and given the investor’s wealth, repayment is optimal:

R(b | W) =„ D(b | W) = t(y, r f ) P Yˆ tr f
L, r f

Hu : VC(s) ě VA(s) | Wu. (11)

Hence, for any given debt and wealth choice, the probability of a default in the next
period is then given by the probability that the next period’s endowment and risk-free
rate lie within the default set.4 Thus, equilibrium default probabilities, δ(b1, s), are given

4Due to the assumption that the stochastic processes of the endowment and the risk-free rate are
independent, we have P((y1, r f 1)|(y, r f )) = f (y1|y) f (r f 1|r f ).
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by:

δ(b1, s) = E[d1(b1, s)] =
ż

D(b1|W1(s))
f (y1|y) f (r f 1

|r f )dy1dr f 1. (12)

Since the government can only default if it has outstanding debt, it follows immediately
that the default set is empty if the government’s debt position is zero or negative, i.e.,
@b ď 0 : D(b | W) = H. Thus, if the government chooses b1 ď 0, the default probability
is zero, i.e., δ(b1 ď 0, s) = 0.

As illustrated by equation (5), the investor’s problem in case of repayment can be rewrit-
ten in terms of investor’s total wealth. Hence, outstanding debt only affects the investor
and, thus, the pricing equation, if there is default. Therefore, the following standard
result from models with risk-neutral investors still holds in models with risk-averse in-
vestors:5

Proposition 1. Given y, r f , W, the default set is increasing in outstanding debt, b:

@b1
ď b2, D(b1

| W) Ď D(b2
| W)

This result follows from the fact that the value of repayment is decreasing in outstanding
debt, since, all else equal, a higher outstanding debt implies lower consumption. By con-
trast, the value of default is unaffected by the size of debt that is defaulted upon. Hence,
the higher the level of outstanding debt, the more attractive is default as compared to
repayment.

Since default can only be optimal if outstanding debt is positive, it follows that there
must exist a debt level b(W) ě 0, for which the default set is empty, irrespective of
the output and risk-free rate realizations. Likewise, since both y and r f have compact
support, there exists a level of outstanding debt, b̄(W) ě 0 that is high enough so that
default is optimal for any possible realization of output and the risk-free rate. Moreover,
Proposition 1 implies that 0 ď b ď b̄. I can thus define the supremum and infimum of
the default set as follows:

Definition 3. For a given level of wealth, W, let b denote the maximum level of debt, for
which repayment is optimal, for all output and risk-free rate realizations. Likewise, for
a given level of wealth, W, let b̄(W) denote the minimum level of debt, for which it is
always optimal to default.

b(W) = suptb : D(b|W) = Hu,

b̄(W)(W) = inftb : D(b|W) = Yˆ tr f
H, r f

Luu,

where 0 ď b ď b̄.

As shown by Lizarazo (2013), the borrower’s default decision depends on both the in-
vestor’s degree of risk aversion and her total wealth. Since the investor is assumed to

5The proof is identical to the one in risk-neutral models, see, e.g., Arellano (2008).
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exhibit decreasing absolute risk aversion, her willingness to take on risk is increasing in
wealth. Hence, given y, r f , b, if the investor accepts a debt contract b1 with total wealth
W1, then she will also accept the same contract with total wealth W2 ě W1. Thus, the
wealthier the investor is, the easier it is for the borrower to roll-over debt. It follows that,
given y, r f , b, if default is optimal for W2, then it is also optimal for W1. A similar line
of reasoning explains the relation between the default set and the investor’s degree of
risk aversion. For all states s, the more risk-averse the investor is, the higher the return
she will ask as compensation for investing in the risky bond, or, equivalently, the lower
the price she is willing to pay. As can directly be inferred from equation (9), the value of
repayment is increasing in the bond price. Hence, all else equal, the more risk-averse the
investor is, the lower the value of repayment, implying that the default set is increasing
in the investor’s degree of risk aversion. Proposition 2 summarizes this:6

Proposition 2. The default set is decreasing in W and increasing in σL, where σL denotes the
investor’s risk aversion parameter.

@W1
ď W2, D(b | W2) Ď D(b | W1),

@σ1
L ď σ2

L, D(b | W, σ1
L) Ď D(b | W, σ2

L).

3.5 The Pricing Equation

Using the definition of the covariance, the pricing equation for the risky asset, as given
by equation (8), can be decomposed as follows

q = E[m]E[(1´ d1)] + Cov(m, (1´ d1))

= q f (1´ δ) + Cov(m, (1´ d1))

= q f (1´ δ) +
βL

uc(cL)
Cov(uc(c1L), (1´ d1)) (13)

= qRN + φ, (14)

where δ denotes the default probability as defined in section 3.4, qRN = q f (1´ δ) cor-
responds to the risk-neutral price and φ = βL

uc(cL)
Cov(uc(c1L), (1´ d1)) is an excess risk-

premium.

Hence, the price of the risky bond can be decomposed into two components: the price a
risk-neutral investor would require, i.e., the price of the risk-free bond adjusted for the
probability of default, and an excess risk premium, which depends on the covariance of
the stochastic discount factor and the repayment rate.

As illustrated by Lizarazo (2013), this ’excess’ risk premium is non-positive such that
the price accepted by a risk-averse lender is lower than the price a risk-neutral lender
would be prepared to pay. To see this, note that the subjective discount factor, β, and the

6For a proof, see Lizarazo (2013).
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marginal utility of consumption are positive while the covariance between the stochastic
discount factor and the repayment rate is non-positive:

Remark. If δ = 1 or δ = 0, the expected repayment rate is a constant, implying Cov(m, (1´
d1)) = 0 such that q = 0 and q = q f , respectively. For 0 ă δ ă 1, we have that

c1CL = [c1L|1´ d1 = 1] ą [cL|1´ d1 = 0] = c1AL , (15)

which implies that uc(cL)
1 is decreasing in the repayment rate due to diminishing marginal

utility. Hence, the stochastic discount factor is decreasing in the repayment rate implying
a negative covariance.

Intuitively, since consumption is increasing in the repayment rate, the ceteris paribus re-
sult of a higher repayment rate and, thus, higher returns, is an increase in consumption.
Hence, the risky bond allows for little consumption smoothing, implying that prices
need to be lower to incentivize the investor to purchase the bond.

The non-positivity of the covariance implies that the government bonds trade at a dis-
count compared to a bond that is priced by a risk-neutral investor:

0 ď q ď qRN
ď q f .

3.5.1 Tight borrowing constraints

Since I assume that the investor’s utility function satisfies the Inada condition, it is never
optimal for the investor to borrow up to her natural borrowing limit, implying that, in
equilibrium, the natural borrowing limit never binds.

By contrast, if the investor faces additional constraints on her borrowing ability, these
borrowing constraints might very well be binding. Thus, I now consider the case of
an ad-hoc borrowing constraint, W, that is tighter than the one imposed by the natural
borrowing limit, i.e.:

(1´ d1)B1 + B f 1
ě W ą W =

´yL(1 + r f
H)

r f
H

.

If this borrowing constraint binds, the Kuhn-Tucker conditions imply the following Euler
equations:

q f = E
[

βL
ucL(c

1
L)

ucL(cL)

]
+

µ

ucL(cL)
, (16)

q = E
[

βL
ucL(c

1
L)(1´ d1)

ucL(cL)

]
+

µE[(1´ d1)]
ucL(cL)

, (17)

where µ is the Lagrange multiplier on the borrowing constraint. That is, when the
borrowing constraint binds, the investor is prevented from borrowing as much as she
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would like. Hence, in the case of a binding borrowing constraint, she consumes less
today than without the borrowing constraint, implying that we have:

q f ucL(cL) = E [βLucL(c
1
L)] + µ ě E [βLucL(c

1
L)] ùñ µ ě 0.

The spread between the bond price and the price for the risk-free asset is then:

q f
´ q = E

[
βL

ucL(c
1
L)

ucL(cL)

]
´ E

[
βL

ucL(c
1
L)(1´ d1)

ucL(cL)

]
+

µδ

ucL(cL)

ě E
[

βL
ucL(c

1
L)

ucL(cL)

]
´ E

[
βL

ucL(c
1
L)(1´ d1)

ucL(cL)

]
.

Hence, if the investor’s borrowing ability is constrained, the bond spread is at least as
high as in the case without binding borrowing constraint. The intuition behind this is
that the investor needs to account for the probability of a default when choosing her
optimal wealth policy.

3.5.2 The effect of the risk-free rate

For illustrative purposes, assume that the investor’s utility function is given by

u(c) =
c1´σ ´ 1

1´ σ
,

where 0 ă σ ‰ 1 is the risk aversion parameter. The effect of an increase in the risk-free
price, i.e., a decrease in the risk-free rate, on the bond price is then as follows:

Bq
Bq f = βLE

[(
cL

c1L

)σ (
σ(1´ d1)

(
1
cL

BcL

Bq f ´
1
c1L

Bc1L
Bq f

)
+
B(1´ d1)
Bq f

)]
. (18)

For the Euler equation with respect to the risk-free asset (equation (7)) to hold, next
period’s expected marginal utility has to increase relative to current marginal utility.
Hence, we know that: (

1
cL

BcL

Bq f ´
1
c1L

Bc1L
Bq f

)
ą 0.

That is, if the probability of repayment, E[1´ d1] = 1´ δ(b1, s), is non-decreasing in the
risk-free price, then the bond price would be increasing in the risk-free price. However, if
the repayment probability declines as the risk-free price rises, then the bond price might
fall for some states. Whether the default probability increases or falls in the risk-free
price depends on the income and substitution effect of the change in the risk-free rate
on the side of the investor.

As stated in Proposition 2, the default set and, thus, the default probability are decreas-
ing in the investor’s wealth. For investors with a long position in the risk-free asset, an
increase in the risk-free price, i.e., a decrease in the risk-free rate, decreases the marginal
utility of saving one more unit. Viewed in isolation, this would crowd out savings, i.e.,
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reduce the investor’s wealth level, and, by Proposition 2, lead to a higher default proba-
bility. While this income effect weighs down on the repayment probability, there exists,
however, also a substitution effect, which, on its own, would improve the borrower’s
position. That is, when the risk-free price increases, the risky bond becomes a more at-
tractive savings alternative, as it provides higher returns, thus facilitating the borrower’s
access to new funds. Hence, whether the repayment probability shrinks or not, depends
on which of these two effects weighs stronger.

Using equation (18), the change in the bond price spread can be characterized as follows:

B(q f ´ q)
Bq f = 1´

Bq
Bq f = 1´ βLE

[(
cL

c1L

)σ (
σ(1´ d1)

(
1
cL

BcL

Bq f ´
1
c1L

Bc1L
Bq f

)
+
B(1´ d1)
Bq f

)]
Hence, also the change in the spread is determined by the relative strenghts of the
substitution and the wealth effect.

In contrast to a model with a constant risk-free rate, the model presented here allows for
a risk-free price that might change in every period. The assumed persistence of the risk-
free rate process implies that the analysis in this section applies to both versions, since it
is more likely to end up in the same risk-free rate state in the next period. However, when
forming expectations, the agents need to adjust for the small but positive probability of
a change in the risk-free rate such that the effects of a price change will be of different
magnitude in models with a constant risk-free rate as compared to the current model.
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4 Quantitative Analysis

4.1 Calibration

4.1.1 Functional forms

When solving the model numerically, I assume that both the investor and the household
have CRRA preferences, represented by the following utility functions7

u(c) =
c1´σ ´ 1

1´ σ
, 0 ă σ ‰ 1

and

u(cL) =
c1´σL

L ´ 1
1´ σL

, 0 ă σL ‰ 1.

The emerging economy’s endowment is assumed to follow a log-normal AR(1) process

log yt = ρy log yt´1 + εy,t, (19)

with E[εy,t] = 0 and E[ε2
y,t] = η2

y. Following Uribe & Yue (2006), I model the stochastic
process of the risk-free rate as a normally distributed AR(1) process, i.e.,

R̂ f
t = ρrR̂ f

t´1 + εr,t, (20)

where E[εr,t] = 0 and E[ε2
r,t] = η2

r and R̂ f
t =

log (1+r f
t )

1+r˚ denotes log-deviations from the
mean interest rate over the estimated period.

The functional form of the output loss is taken from Chatterjee & Eyigungor (2012) and
is specified as follows:

L(y) = maxt0, d0y + d1y2
u, d1 ě 0.

While the reputational cost of market exclusion would be sufficient on its own to prevent
the borrower from defaulting in all states, the assumption of additional output costs is
required to sustain a mean debt to GDP ratio that is in line with the data. As shown
by Aguiar & Gopinath (2006), the welfare costs of income fluctuations are limited, such
that, in bad income states, the threat of market exclusion and the implied loss of means
to smooth consumption are not strong enough to disincentivize default even for low
levels of debt. Thus, in default models that only rely on reputational costs, the debt level
that can be sustained in equilibrium is substantially lower than in models that feature
an additional direct cost.

The asymmetric form of the cost function implies that the output cost as a fraction of out-
put is increasing in output such that default is more painful in high-income states than in

7Note that, with a positive risk aversion parameter, the utility function satisfies the assumption of
decreasing absolute risk aversion.
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low-income states. This assumption is meant to capture the following dynamics: when
output is high, an asymmetric loss function implies higher default costs, which lower the
value of default. Since output is assumed to follow an AR(1) process, output is expected
to remain high in the following periods, implying a low default probability. This, in
turn, results in low borrowing costs, which induce the government to overborrow. In the
case of a negative output shock, default becomes less costly and the default probability
and risk-premium increase, which makes default even more attractive. That is, an asym-
metric loss function intensifies the counter-cyclical nature of sovereign spreads. Since
borrowing is relatively cheap in good states, the government increases its borrowing in
these states, which leads to higher equilibrium debt levels and default frequency. By
contrast, with a proportional loss function, the sovereign spread varies less across the
state space, implying that the borrower would have to be much more impatient in order
to overborrow to a similar extent as in the case with an asymmetric loss function. Hence,
a proportional loss function would require a higher degree of impatience on the part of
the borrower, in order to sustain reasonable debt levels and default frequencies.

4.1.2 Parameter values

As it is standard in the literature, I use the 3-Month US T-bill rate as proxy for the
nominal risk-free rate. Following Neumeyer & Perri (2005), I obtain a proxy for the real
risk-free rate by subtracting expected inflation, which is proxied for by the average per-
centage change in the GDP deflator over the previous four quarters.8 The OLS estimates
for the autoregressive process given by equation (20) are ρr = 0.9214, ηr = 0.0033. Fi-
nally, as proposed by Johri et al. (2020), I set the average risk-free rate to r˚ = 0.01, which
is a standard value in the sovereign default literature.

The investor’s constant endowment is normalized to yL = 1. Lizarazo (2013) highlights
the importance of this parameter in generating sensible results. If the constant endow-
ment is too low, the risk of default might cause the lender not to invest in states in
which a default would otherwise result in negative consumption. However, a high en-
dowment implies that the risky asset only constitutes a small fraction of the investor’s
total income (yL + W), implying that the effect of the risky bond on the investor’s bud-
get constraint becomes negligible as the endowment increases. While Lizarazo (2013),
therefore, chooses an endowment level that equals only 1 percent of the small open
economy’s mean endowment, this assumption seems to be at odds with reality. Thus, I
set the investor’s constant endowment equal to the mean endowment of the borrowing
country. This assumption is motivated by the fact that there exists a substantial income
differential between advanced and emerging economies. In addition, the investor’s en-
dowment can be viewed as the net position in other assets. Since investors tend to hold
highly diversified portfolios, it seems reasonable to assume that their holdings in other
assets constitute a non-negligible fraction of their total portfolio.

The second parameter that determines the borrower’s impact on the investor’s portfolio

8Data for the US T-bill rate and the GDP deflator for the time period from 1960 to 2020 were obtained
from the St. Louis Fed’s FRED database.
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is the borrowing limit. While the borrowing limit in the theoretical section corresponds
to the natural borrowing limit, I deviate from this definition by assuming an ad-hoc
borrowing limit (as discussed in section 3.5.1) equal to W = ´5. The reason for this
assumption is based on computational considerations. Given the values of the mean
risk-free rate and the investor’s endowment, the natural borrowing limit would be W =

´yL(1 + r f
H)/r f

H « 76. Since I refrain from extrapolating outside the grid, the inclusion
of the natural borrowing limit in the wealth grid would have resulted in a very sparse
grid. In order to avoid this, I therefore resort to the assumption of an ad-hoc borrowing
limit. While a borrowing limit lower (in absolute terms) than the natural borrowing
limit could, for instance, arise due to collateral requirements, the borrowing limit in
this analysis is completely exogenous. Although this is a rather ad-hoc assumption, it is
deemed a necessary one, in order to allow for a certain degree of accuracy in the results.9

The investor’s discount factor is taken from Lizarazo (2013) and is set to βL = 0.98, which
is in line with discount factor values chosen for advanced economies in the business
cycle literature, while still allowing for a stationary asset distribution, which requires
βL(1 + r˚) ă 1. Finally, the risk aversion parameter is set to σL = 2, a standard value in
the literature.

The remaining parameters, i.e., the ones concerning the small open economy, are taken
from Uribe & Schmitt-Grohé (2017), who employ a standard sovereign default model
with risk-neutral investors and a constant risk-free rate. This choice is motivated by
the fact that this paper does not aim at drawing quantitative predictions, but to analyze
the potential strengths and weaknesses of the proposed framework. That is, the main
focus of this paper is to analyze whether the integration of risk-averse investors and
a time-varying risk-free rate has the potential to outperform its counterpart with risk-
neutral lenders and a constant risk-free rate, in particular in the context of breaking the
misalignment between the mean interest rate spread and the default frequency that is
inherent to the standard model. Thus, relying on parameter values from a standard
model enables to evaluate the performance of my model in direct comparison with a
model which is missing my main ingredients, i.e., risk-averse lenders and a variable
risk-free rate.

The unconditional mean of output is normalized to one and the persistence term and
standard deviation of the autoregressive process for GDP as estimated by Uribe &
Schmitt-Grohé (2017) are ρy = 0.9317 and ηy = 0.037 and were obtained using quar-
terly detrended GDP of Argentina for the period from 1983-2001.

Following Uribe & Schmitt-Grohé (2017), I take the value for the probability of reentry
from Chatterjee & Eyigungor (2012), i.e., θ = 0.0385, which corresponds to an average
exclusion period of 6.5 years or 26 quarters. As shown by Tomz & Wright (2013), the
length of default episodes10 approximately follows an exponential distribution, which

9See section 3.5.1 for details on the implications of this assumption on the equilibrium conditions.
10When measuring the length of default episodes, the authors adopt the definition by S&P and consider

a default to have ended when ”no further near-term resolution of creditors’ claims is likely” (Beers &
Chambers 2006, p.22).
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motivates the assumption that the reentry probability is constant over time. The risk
aversion parameter for the borrowing country is set to σ = 2, i.e., domestic households
and international investors are assumed to be equally risk-averse.

Lastly, the discount factor is β = 0.8511 and the cost parameters for the output loss
function are set to d0 = ´0.35 and d1 = 0.4403. Uribe & Schmitt-Grohé (2017) choose
these values to match an average annual debt to GDP ratio of 15 percent, an average
annual output loss while being in autarky of 7 percent, and a default frequency of 2.6
times per century.

The parameter values are summarized in Table 1.

Investor

Parameter Value Definition Source
yL 1 Endowment Normalized
W -5 Borrowing Limit /
βL 0.98 Discount Factor Lizarazo (2013)
σL 2 Risk Aversion Standard value
r˚ 0.01 Average Risk-free Rate Johri et al. (2020)
ρr 0.9214 Persistence term - Risk-free Rate Data
ηr 0.0033 Standard Deviation - Risk-free Rate Data

Borrower

Parameter Value Definition Source
y 1 Expected Value - Endowment Normalized
ρy 0.9317 Persistence term - Endowment Uribe & Schmitt-Grohé (2017)
ηy 0.037 Standard Deviation - Endowment Uribe & Schmitt-Grohé (2017)
β 0.85 Discount Factor Uribe & Schmitt-Grohé (2017)
σ 2 Risk Aversion Standard value
θ 0.0385 Probability of reentry Uribe & Schmitt-Grohé (2017)
d0 -0.35 Default Cost Parameter Uribe & Schmitt-Grohé (2017)
d1 0.4403 Default Cost Parameter Uribe & Schmitt-Grohé (2017)

Table 1: Parameters

11The borrower’s discount factor is lower than in standard RBC models without default, but lies within
the range of values typically used in the default literature. This low value of β, which implies that the
borrower is relatively impatient, is necessary to generate a sensible default frequency.
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4.2 Comparative Statics

This section discusses the comparative statics analysis of the pricing functions before
proceeding with a study of the dynamics around a typical default episode, in section
4.3. The solution algorithm for the model is described in detail in appendix A.

Figure 1: Bond price schedule for high and low risk-free rate and output states.

Figure 1 shows the bond price as a function of next period’s debt level. As in standard
strategic default models, the bond price is decreasing in b1, since the bond price depends
negatively on the default probability, which, in turn, is increasing in b1. By contrast,
the prices are increasing in output such that, for a given level of new debt, prices are
higher in a high output state than in a low output state. As described in section 4.1.1, the
asymmetric form of the loss function implies that default is more costly in high output
states, such that default is less likely if output is higher. Due to the highly persistent
output process, if output is high in the current period, it is expected to be high in the
next period as well, which makes debt repayment more likely and, thus, leads to higher
bond prices. Finally, comparing the left and the right panel in Figure 1 indicates that the
realization of the risk-free rate has only a negligible effect on the relation between the
bond price and the output realization. This would suggest that the risk-free rate leaves
the default probabilities largely unaffected.

Figure 2 conveys a similar picture. The relation between the bond price and the in-
vestor’s total wealth also does not differ substantially across the two risk-free rate states.
In general, the bond price tends to be somewhat higher for higher wealth levels, which
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Figure 2: Bond price schedule for high and low risk-free rate and wealth states.

is in line with Proposition 2. Finally, Figure 3 shows the effect of the risk-free rate on
the bond price in more detail and confirms that the current realization of the risk-free
rate has only a negligible effect on the bond price as a function of the other state vari-
ables, apart from minor spike in the price difference around a debt level of 0.6, which
underscores the fact that a higher risk-free rate increases the country’s borrowing costs
and, thus, deteriorates the sustainability of its debt. This becomes even more apparent
when comparing the two price functions for new debt levels between 0.8 and 0.9, where
we register a rather substantial difference in prices. This difference is easily understood
when examining Figure 4, which plots the borrower’s value of the option to repay or
default, V(s), as a function of outstanding debt, for both risk-free rate states and mean
wealth and output levels. Due to the option to default, the value functions exhibit the
typical kink at the debt threshold that separates the default region from the repayment
region. For levels below this threshold, the value of repayment exceeds the value of
default, but it is decreasing in the amount of outstanding debt. While there are again
only small differences in the value functions across the two risk-free rate states, this gap
widens as the debt threshold is approached. In general, the value of repayment is higher
for a lower risk-free rate such that the debt threshold in the low risk-free rate state is
located at a higher level of outstanding debt. All else equal, a lower risk-free rate, i.e., a
higher risk-free price, translates into lower borrowing costs, thereby alleviating the debt
roll-over. Since the autarky value function is unaffected by the risk-free rate, once default
is optimal for both risk-free rate states, the two value functions perfectly coincide. Note
that the discussed gap between the debt threshold in low and high risk-free rate states

23



Figure 3: Bond price schedule for high and low risk-free rate states.

Figure 4: Borrower’s value function for high and low risk-free rate states.

corresponds to the gap in bond prices illustrated by Figure 3. That is, let b˚(r f
L) and

b˚(r f
H) be the debt thresholds associated with a low and high risk-free rate, respectively,

and note that b˚(r f
H) ă b˚(r f

L). Assume that the government chooses to issue new debt
equal to b˚(r f

H). Since the risk-free rate process is persistent, the probability of default is
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Figure 5: Default probability as function of output and new debt.

then higher for the high risk-free rate realization, implying that the bond price is lower.
As shown by Figure 5, these differences are however very subtle such that, given output,
investor’s wealth and new borrowing, the default probability is virtually the same across
the two risk-free rate states.

This analysis suggests that the current risk-free rate does not have a strong effect on the
bond price and the default incentives of the borrowing countries. Given the parameter-
ization of the model, especially the small difference between the high and low risk-free
rate and the high constant endowment of the investor, this is not very surprising. In
general, the investor is relatively rich and there are no uncertainties concerning her con-
stant endowment. Therefore, her total income is not subject to large fluctuations, which
reduces the sensitivity of her optimal decisions to the relatively small changes in the
risk-free rate.
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4.3 Dynamics of Default Episodes

I simulate the model for one million periods12 and then extract sub-samples containing
a default event, where each sub-sample consists of 25 periods, 12 periods before and
12 periods after the default event.13 For each of the variables considered, I then take
the median across these sub-samples to compute the dynamics around a typical default
episode. In order to put the results of my model into context, I first illustrate the dy-
namics in a standard sovereign default model, which is identical to the one presented by
Arellano (2008), i.e., investors are risk-neutral and the risk-free rate is constant. I then
move on to present the key dynamics of my model, where investors are risk-averse and
the risk-free rate is time-varying.

4.3.1 Risk-neutral investors and constant risk-free rate

Note: ỹt = yt under continuation and ỹt = yA
t under autarky or current default.

Figure 6: Borrower (standard model).

12The simulation actually spans 1.1 million periods, where the first 100,000 periods are treated as burn-in
periods and, thus, excluded from any further analysis.

13Note that all sub-samples, where the borrower does not have market access in all 12 periods preceding
a default, are excluded.
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In the case of perfectly competitive, risk-neutral investors, the price for the risky asset,
qRN(b1), is simply given by the zero-profit condition

qRN(b1) =
1´ δ

1 + r f = (1´ δ)q f ,

where δ = δ(b1, s) is the default probability as defined in equation (12) with a transi-
tion probability for the risk-free rate equal to one, since the current scenario assumes a
constant risk-free rate. That is, in the risk-neutral case, the bond price is such that the
expected return on the risky asset equals the risk-free rate. Hence, in contrast to the
risk-averse model, there is no excess risk premium (see Figure 7).

Figure 7: Risk premia (standard model).

Figures 6 and 7 illustrate the main dynamics of the model prior to a default in period 0.
In response to a small variation in the borrower’s output, which does not significantly
affect the default probability and the risk-premium, the government, at first, reduces
consumption, while leaving the debt level largely unchanged.

By contrast, a more pronounced decline in output triggers an increase in the default
probability and, thus, in the risk premium. As a result, borrowing becomes more costly,
incentivizing the government to further decrease the level of both outstanding debt and
consumption in response to the output shock. Even though this leads to an improvement
of the trade balance, these measures do not suffice to stabilize the default probability. The
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reason for this lies in the nature of the output process. Due to the assumed persistence
of the output process, output is expected to remain low, making a default event more
likely. As output continues to fall, the decrease in debt does not suffice to counteract the
effect of the sustained decline in output on the default probability. The risk premium
rises sharply, making the debt roll-over even more costly and reducing the value of
repayment, until default becomes the government’s best response. After the default, the
small open economy finds itself in autarky and cannot issue new debt until it regains
access to financial markets. As long as the economy is in autarky, it incurs a direct
default cost, i.e., ỹt = yA

t ă yt, and completely consumes its autarky endowment.

4.3.2 Risk-averse investors and variable risk-free rate

As discussed in the theoretical section, introducing a risk-averse lender implies that the
default decision not only depends on the level of outstanding debt but also on the in-
vestor’s wealth and risk aversion. That is, the investor is reluctant to take on risk and,
therefore, demands a risk premium that exceeds the one required by a risk-neutral in-
vestor. Consequently, the overall risk premium a country has to pay can be decomposed
into a risk-neutral risk premium and an excess risk premium.

Figure 8: Borrower (full model).

Due to the assumption of decreasing absolute risk aversion, this excess risk premium
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is higher for lower levels of the investor’s wealth. Hence, all else equal, the poorer the
investor, the higher are the borrowing costs for the small open economy for debt levels
that exceed the maximum level of safe debt. In addition, my model allows for a time-
varying risk-free rate. As discussed in section 3.5.2, changes in the risk-free rate affect
the lender’s pricing kernel and may result in both a wealth and substitution effect.

Figures 8 and 9 summarize the dynamics surrounding a typical default episode. The
main dynamics on the borrower’s side are very similar to the ones described in the
risk-neutral version. However, in contrast to the risk-neutral version, the investor now
explicitly chooses her optimal policy. Except for the two periods directly surrounding
the default period, the investor keeps her wealth level relatively stable and close to her
borrowing limit. This implies that the investor’s optimal portfolio choice consists of a
short position in the risk-free asset and a long-position in the risky asset, where the
former is substantially larger, in absolute terms, than the latter.

Figure 9: Risk premia and the Investor (full model).

In response to a decrease in the risk-free rate, the investor slightly increases her con-
sumption level, while keeping her wealth level unchanged. As illustrated by Figure 8,
the government is reducing its debt, which implies that the unchanged wealth level is
the result of a portfolio reallocation towards the risk-free asset, i.e., the investor borrows
more such that her consumption increases slightly. Since the investor faces lower bor-
rowing costs, she can afford higher consumption in the current and in the next period,
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i.e., she experiences a positive wealth effect.

As mentioned in section 4.1.2, the investor is assumed to be relatively rich and to have
a constant endowment that is almost twice as high as the median debt level prior to a
typical default episode. Put differently, in the case of a default, the investor typically
risks a loss corresponding to half of her endowment. Therefore, her optimal choices
regarding consumption and investment are not very sensitive to small variations in the
default risk. This does by no means imply that the investor does not require an excess
risk-premium, but simply that this excess risk-premium is not very responsive, as long
as the default probability remains low.

Recall from section 3.5 that the excess risk-premium is proportional to the covariance be-
tween next period’s marginal utility of consumption and next period’s default. That is,
the relatively low exposure of the investor to the default risk paired with a relatively low
default probability result in a low and relatively stable covariance and, therefore, excess
risk-premium. This is also illustrated by the two middle panels in Figure 9, which show
that both the risk-neutral part of the risk-premium and the excess risk-premium react
only modestly to the increased default probability. However, the risk-neutral part of the
risk-premium reacts stronger than the excess risk-premium due to the low sensitivity of
the covariance discussed above. As a consequence of some minor output shocks, the de-
fault probability keeps increasing and so does the risk-premium. The borrowing country
keeps decreasing its consumption level and also adjusts its borrowing downwards but
is not able to stabilize the default probability. Despite this steady increase in the default
probability, the investor only slightly increases her net asset holdings by decreasing her
borrowing in the risk-free asset. In the period prior to the default, the downward trend
of the output increases the default risk and the risk premia sharply. This sharp increase
in the government’s borrowing costs paired with a substantial fall in output in period 0,
causes the government to default. The investor’s consumption falls on impact by almost
forty percent of the investor’s endowment. The wealth level drops to its borrowing limit
and remains stable at this lower bound, since she no longer needs to hedge against a
potential default. That is, following the default event, the government is excluded from
financial markets and the investor borrows as much as she can by means of the risk-free
asset.

4.3.3 Business cycle statistics

The main results of the two simulations are summarized in table 2. Since the parameters
for the borrower are taken from Uribe & Schmitt-Grohé (2017) (USG), I also include the
data moments and simulated moments presented by these authors as means of compar-
ison. As indicated by the simulation results, the mean debt-to-GDP ratio, the default
frequency and the mean spread obtained in the simulation of the standard model are
relatively close to the ones obtained by Uribe & Schmitt-Grohé (2017). It is reasonable to
expect that the results deviate despite having used the same parameters. As shown by
Hatchondo et al. (2010), the numerical solutions of sovereign default models tend to be
more accurate for larger grid sizes and also depend on the solution methods employed.
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Source Default freq. E[d/Y] E[r´ r˚] σ(r´ r˚) ρ(r´ r˚, y) ρ(r´ r˚, tb/y)
Data (USG) 2.7 58.0 7.4 2.9 -0.64 0.72

USG 2.7 59.0 3.5 3.2 -0.54 0.81

Stand. model 2.8 59.4 3.8 4.1 -0.48 0.61

Full model 1.0 47.9 3.9 5.4 -0.25 0.51

Table 2: Simulation results

In contrast to Uribe & Schmitt-Grohé (2017), this paper uses a much smaller debt and
output grid, due to the computational intensity of the full model. While the lower debt
grid size is compensated for by employing linear interpolation between the grid points,
this is not the case for the output grid, explaining the discrepancy of the results for the
standard model.

By contrast, the business cycle moments obtained by simulating the full model deviate
substantially from the risk-free version and do not match, e.g., the default frequency and
the mean debt-to-GDP ratio from the data. The reason for this lies in the fact that the
parameter values for the borrower were chosen to match these moments in a framework
with risk-neutral investors and a constant risk-free rate.

For these reasons, it was to be expected that these parameter values would not generate
results that match the data moments well. Nonetheless, table 2 shows that my model
achieves a spread similar to the one obtained in the risk-neutral version with a much
lower high default frequency. Models with risk-neutral investors tend to either over-
estimate the default frequency or underestimate the interest rate spread. While both
the mean spread and the default frequency obtained by simulating the full model are
lower than in the data, this shows that a model with risk-averse lenders is indeed able
to overcome this misalignment.

However, I refrain from attributing this result to the time-varying risk-free rate. As has
been shown in the comparative statics analysis and was further elaborated in section
4.3.2, changes in the risk-free rate have only a negligible effect on the risk-premium and
the default incentives. This result is, however, not generalizable but relies strongly on
the parameterization of the model. While a higher degree of risk-aversion on the part of
the investor would affect the excess risk-premium, the negligible effect of a risk-free rate
shock is predominantly owed to the high and constant endowment of the investor. That
is, since the investor is comparatively rich and the share of the government bond in her
overall portfolio is small, the investor does not respond strongly to small changes in the
default probability. Hence, the stochastic discount factor channel and, thus, the impact
of a shock to the risk-free rate on the bond prices is dampened. Since the covariance
between the investor’s future consumption and the expected repayment rate is relatively
insensitive to changes in the risk-free rate, the main variation in the risk-premium in
response to a risk-free rate shock is owed to its risk-neutral part. Thus, the impact
of a time-varying risk-free rate on the bond price will not differ significantly from the
one found in models with risk-neutral investors. This is in line with the findings of
Almeida et al. (2019), who argue that the effect of a regime-switching risk-free rate on
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the bond price crucially depends on the stochastic discount factor channel. They show
that, in models with risk-neutral investors and short-term debt, bond prices and default
incentives are unaffected even by large variations in the risk-free rate. This highlights
the importance of the stochastic discount factor channel, which, as shown in this paper,
strongly relies on the investor’s exposure to sovereign default. Thus, different results
might be obtained by reducing the investor’s endowment, in order to allow the risky
asset to assume a larger share in the investor’s portfolio and total income. However, this
approach was not deemed appropriate, since, as outlined in section 4.1.2, the assumption
of a relatively poor international investor with an under-diversified portfolio is at odds
with what we observe in reality. Instead, a valuable extension of my model would
be to endogenize the investor’s income completely, e.g., by means of a multi-country
framework. This would induce larger fluctuations in the investor’s portfolio value and,
thus, allow to overcome the limitations that arise from a constant endowment.

32



5 Conclusion

This paper examines the intertwined effect of a time-varying world interest rate and the
pricing kernel of risk-averse investors on sovereign bond spreads and default incentives.
In particular, in response to a shock to the world interest rate both a substitution and
a wealth effect on the part of the lender arise, which together determine the extent to
which such a shock is transmitted to the borrowing country. In order to study this effect,
I include both risk-averse investors and a time-varying risk-free rate in an otherwise
standard sovereign default framework and simulate the model using parameter values
from a model with risk-neutral investors and a constant risk-free rate. This allows me to
directly compare my results to the ones obtained in a standard sovereign default model.
That is, the purpose of this paper is not to deliver quantitative predictions but to evaluate
the performance of a sovereign default model, when allowing for a variable risk-free rate
and risk-averse investors.

I find that the assumption of risk aversion and the resulting excess risk-premium allows
to generate higher spreads while maintaining a reasonable default frequency. Hence, I
confirm the result obtained by Lizarazo (2013), who states that allowing for risk-averse
investors is crucial in obtaining a default frequency and interest rate spreads that are in
line with the data. While Lizarazo (2013) assumes that the sovereign bond constitutes
a large share of the investor’s income, my results suggest that the potential to generate
higher spreads without inflating the default frequency is not bound to this assumption.
That is, even when the investor’s income from other asset holdings, as proxied by the
lender’s constant endowment, is substantially larger than her bond holdings, her risk
aversion leads still to higher spreads than with risk-neutral pricing.

However, although closer to the reality, endowing the investor with a higher income
implies that the investor is less sensitive to an increasing default risk and to variations in
the risk-free price. In particular, my results suggest that the fluctuations in the risk-free
rate have only minor effects on the investor and, therefore, on the borrowing country.
Since the investor is relatively rich and the variation of the risk-free rate is rather low,
this finding is deemed to be pertinent to the parameter values chosen in this paper.
Nonetheless, since advanced economies tend to be wealthier than emerging economies,
there is no justification for assuming that the international investor is much poorer than
domestic households in an emerging economy.

A valuable extension of my analysis would therefore be a framework that endogenizes
the investor’s endowment, for instance, by means of a multi-country setting. Thereby,
changes in the world interest rate would affect the entirety of the investor’s income and
expose her to a higher degree of uncertainty, which is likely to intensify the impact
of both the default risk and risk-free rate fluctuations on the investor’s decisions. In
addition, allowing for debt contracts with longer maturity might also be essential to
fully capture the effect of the world interest rate on the borrowing country.
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A Solution Algorithm

The model is solved numerically over a discretized state space. Following Park (2014), I
solve the investor’s problem by means of Euler equation iteration and the government’s
problem using Value Function Iteration. In both cases, I employ linear interpolation
methods to allow for choices that lie between the grid points.

1. Discretize the state space.
The state space is represented by the state variables y, r f , W, b. The stochastic
process of the risk-free rate is approximated by a two-state Markov chain using
the method proposed by Tauchen & Hussey (1991) and the endowment process of
the small open economy, y, is approximated by a 50-node Markov chain.
Outstanding debt is approximated by an equally spaced grid consisting of 50

possible values, while investor’s wealth is approximated by an evenly spaced grid
with 15 nodes.

2. Conjecture initial guesses for the policy functions, b1,(0)(s), d(0)(s), W(0)(s), and
value functions, V(0)(s), VA,(0), VC,(0), VR,(0), V(0)

L , as well as the bond price
function q(0)(b1, s) and equilibrium bond prices qE,(0)(s).

3. Taking the borrower’s policy functions, b1,(´i) and d(´i)(s), and equilibrium prices,
qE,(´i)(s), as given, solve the investor’s problem, assuming equilibrium in
financial markets, i.e.,

B1,(´i) =

#

b1,(´i) if b1,(´i) ě 0
0 if b1,(´i) ă 0

.

A detailed description of the algorithm for the investor’s problem is found in
section A.1 below.

4. Solve for the pricing function q(b1(i), s)i for all possible debt choices.
While the policy functions in step 3 were derived for a given borrowing policy of
the government, b1(´i), the pricing function is a function of all possible debt
choices. Hence, I need to find the investor’s optimal wealth decision (and, thereby,
marginal utility) as a function of all possible debt choices.

(a) Assume that the borrowing constraint does not bind. Then, taking b1,(´i),
d(´i)(s), and the pricing function from the previous iteration, q(´i)(b1, s) as
given and using the optimal consumption policy function obtained in the
investor’s sub-routine,cG,(i)

L , I solve for optimal wealth in case of repayment
as a function of all possible debt choices, WG1,(i)(b1, s) by solving the
non-linear equation

q f ucL(yL +W ´ q f WG1(j)(b1, s)´ (qE(´i)(s)´ q f )b1(s))´ βLE
[
ucL(c

G1(´j)
L )

]
= 0,

which is derived from equation (7).14

14Refer to section A.1 for more details.
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(b) Check whether the borrowing constraint binds, i.e., verify if

q f ucL(yL + W ´W ´ (qE(´i)(s)´ q f )b1(s)) ě βLE
[
ucL(c

G1(´j)
L )|WG1,(j) = W

]
.

For those states, in which the borrowing constraint binds, set WG1,(j) = W.

(c) Compute the multiplier, µ, on the borrowing constraint using equation (16).

(d) Since the policy functions are stationary, I can find optimal consumption in
the next period, cG1,(i)

L (s1) by interpolating cG,(i)
L for WG1(j)(b1, s).

(e) Finally, the pricing function is obtained by solving the non-linear equation

q(i)(b1, s)ucL(yL + W ´ q f WG1(j)(b1(´i), s)´ (q(i)(b1, s)´ q f )b1(´i)(s))´ m̃ = 0,

where I define m̃ as the sum of µ(1´ δ) and the discounted expected
marginal utility of consumption, if there is repayment in the next period.15

m̃ = µ(1´ δ) + βLE[ucL(c
G1,(i)
L (s1))(1´ d1(b1, s))]

= µ(1´ δ) +

ż

D(b1|WG1(j)(b1,s))
ucL(c

G1,(i)
L (s1)) f (y1|y) f (r f 1

|r f ) dy1dr f 1

5. Solve for the borrower’s value function in case of default, VA,(i), as given by
equation (1).16

6. Taking the investor’s optimal wealth policy as given, solve for the borrower’s
value function, VC,(i), and optimal borrowing policy, b1,(i), under continuation
using equation (2).
I solve for b1,(i) continuously by interpolating the consumption function and the
expected value function and use the optimal policy obtained via grid search as
initial guesses.

7. Derive the optimal default decision.
The optimal default decision is found by comparing the borrower’s value of
default, i.e.,

d(i) =

#

0 if VC,(i) ě VA,(i)

1 else
.

8. Determine the borrower’s value of being in good standing at the beginning of the
period as V(i)(s) = maxtVC,(i), VA,(i)u

9. Use the optimal borrowing policy to find the equilibrium bond price:
qE,(i)(s) = q(i)(b1(i), s)

15That is, when taking expectations, I only consider the probability of endowment and risk-free rate
realizations that place the economy within the repayment set.

16Since the borrower is excluded from financial markets upon default, there is no consumption or
borrowing choice to make.
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10. Verify if policy and value functions have converged.
If

||qE,(i)(s)´ qE,(´i)(s)|| ă ε

||b1(i)(s)´ b1(´i)
|| ă ε

||W1(i)(s)´W1(´i)
|| ă ε

||V(i)(s)´V(´i)
|| ă ε,

stop. Otherwise, update the guesses for value functions and marginal utility and
repeat steps 3-10 until convergence is achieved.

A.1 Sub-routine: Investor’s optimization problem

In each iteration of the main loop, the sub-routine for the investor’s problem is called.
This optimization problem is solved, taking the borrower’s policy functions from the
previous iteration of the main loop, b1,(´i), d(´i)(s), and equilibrium prices, qE,(´i)(s), as
given. Hence, the investor’s problem can be treated as a separate problem that is solved
repeatedly with different values for b1,(´i) and qE,(´i)(s), which, for the purpose of this
sub-routine, can be thought of as parameters. In order to ease notation and to avoid
confusion of the iteration superscripts of the main loop and the sub-routine, I replace
the superscripts referring to the main loop by a star.

1. Conjecture an initial guess for the investor’s consumption policy function for the
two cases of good and bad financial standing at the beginning of the period, i.e.,
cG,(0)

L (s) and cB,(0)
L (s).

2. Since B1,(´i) = B1˚ is taken as given, finding optimal investment in the risk-free
asset, B f 1˚(s), boils down to determining optimal total wealth, W1˚(s). The
optimal wealth policy has to be determined for three cases: repayment, current
default and autarky. In all three cases, I exploit the fact that policy functions are
stationary and solve for the optimal wealth policies continuously by interpolating
the corresponding consumption functions, cG1(´j)

L and cB1(´j)
L , to obtain next

period’s consumption.

(a) Use the Euler equation (7), to solve for the optimal wealth policies in the cases
of repayment, current default and autarky, i.e., WC1(j)(s), WD1(j)(s) and
WA1(j)(s) under the assumption that the borrowing constraint does not bind.
The Euler equations for the different scenarios are as follows: Repayment:

q f ucL(yL + W ´ q f WG1(j)(s)´ (qE˚(s)´ q f )B1˚(s))´ βLE
[
ucL(c

G1(´j)
L )

]
= 0.

(21)
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Current default:

q f ucL(yL + (W ´ b)´ q f WD1(j)(s))´ βLE
[
ucL(c

B1(´j)
L )

]
= 0. (22)

Autarky:

q f ucL(yL + W ´ q f WD1(j)(s))´ βLE
[
ucL(c

B1(´j)
L )

]
= 0 (23)

(b) For all three scenarios, check whether the borrowing constraints binds. That
is, verify whether

q f ucL(yL + W ´ q f W ´ (qE˚(s)´ q f )B1˚(s)) ě βLE
[
ucL(c

G1(´j)
L )|W1 = W

]
For those states, in which the borrowing constraint binds, set Wx,1,(j) = W,
@x P tC, D, Au.

3. Using the optimal wealth policy for the three different cases, update consumption
in the cases of good and bad standing at the beginning of the period as

cG,(j)
L (s) = (1´ d(s))[yL + W ´ q f WC1(j)(s)´ (qE˚(s)´ q f )B1˚(s)]

+ d(s)[yL + (W ´ B)´ q f WD1(j)(s)]

cB,(j)
L (s) = θ[yL + W ´ q f WC1(j)(s)´ (qE˚(s)´ q f )B1˚(s)]

+ (1´ θ)[yL + W ´ q f WA1(j)(s)]

4. Verify convergence of the consumption policy functions.
If

||cG,(j)
L (s)´ cG,(j´1)

L (s)|| ă ε

||cB,(j)
L (s)´ cB,(j´1)

L (s)|| ă ε,

stop. Otherwise, update the guesses for the consumption policy and repeat steps
2-4 until convergence is achieved.
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