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Abstract

This paper aims to build a prediction model using machine learning (ML) algorithms to
offer decision support for private equity investors - limited partners (LPs) in their fund
selection process. Past literature has studied a range of factors that appear to drive
the performance of private equity funds; some of these factors are known to LPs during
fundraising such as targeted fund size, management experience, fund specialization level,
state of the industry, and the overall economy. We tap into the predictive power of these
factors by using them to train a range of supervised machine learning models in a binary
classification setting that predicts the probability of a fund exceeding a predetermined
performance threshold. We use the Public Market Equivalent measure developed by
Kaplan and Schoar (2005) to construct our target variable which takes the value 1, if the
fund has a PME greater than one, and takes the value 0, otherwise. Our models are based
on a sample of 1058 Buyout (BO) funds and 659 Venture Capital (VC) funds sourced
from Preqin. Our analysis shows some degree of performance predictability in both VC
and BO funds with the top models reaching an accuracy of 69% for BO funds and 61%
for VC funds. We also test the predictions of two of the models, Logistic Regression
and Linear Discriminant Analysis (LDA) against a näıve investment strategy which also
showed favorable results.
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Chapter 1

Introduction

Since the turn of the century, the Private Equity (PE) market has seen an exponen-

tial boom in funding, primarily from institutional investors like pension and endowment

funds who are increasing re-allocating their portfolios towards alternative assets. This

significant rise in PE investment can be attributed to the consistent out-performance of

the industry as a whole relative to the public market as evidenced in recent studies by

Robinson & Sensoy (2013a), Harris et al. (2015) [4], and Higson & Stucke (2012)[13].

However, it is important to note that the difference in performance between top and bot-

tom quartile funds in each vintage year has been significant (See figure 1.1) – averaging

around 13.15% between 2000 to 2016. With the global PE market reaching an all-time-

high of $6.5 trillion assets under management (AUM) in 2019 - an increase of 170% since

2010 - and the number of active PE firms more than doubling (McKinsey 2020) [22], this

top-bottom quartile performance gap has widened further. This considerably increases

the cost of a bad selection for limited partners (LPs) and puts pressure on their reliance

on the traditional methods of investment selection that are time consuming and highly

dependent on human judgement. This opens doors for exploring whether new tools like

artificial intelligence (AI), which is making significant inroads in various avenues of the

financial industry, could prove to be a complementary tool for LPs in their fund selection

process as well.

While PE firms have historically been slow to incorporate new digital tools into the

decision-making process and relied primarily on investor relations for deal making, the

last few years have seen a wave of change as the industry reaches maturity and the

competition among fund manager stiffens. According to Bain’s private equity report

2021 [2], many PE firms have already gone digital by employing AI, big data, and web-

based analytics for making smarter and faster decisions about their portfolio companies

5



Figure 1.1: Private equity Net IRRs by Vintage Year (Source: Preqin)

and prospects. The need for incorporating digital aid into firm’s due diligence process is

becoming essential for the industry players to stay on top. One such example of leveraging

AI is seen in the Swedish venture capital firm EQT Ventures’s new AI-driven software

called Motherbrain which the firm claims to have used for selecting more than 30% of

their investment deals [8]. In this paper, we focus on exploring AI’s applicability in the

private equity industry from an investor’s standpoint – that is the limited partners.

While historically many LPs simply invested in fund managers of previous top- quar-

tile funds owing to the conventional wisdom of performance persistence in PE funds, a

recent survey by eVestment (2017) [7] showed that only 19% of buyout funds raised after

2001 that were a successor to a top quartile performer repeated their performance. A

similar study conducted by McKinsey (2017) [6] also supported this claim, observing a

steady decline in top-quartile persistency in more recent vintages. This begs the question

- what factors apart from past-fund performance are driving the returns on these funds

and are any of them known to investors during the selection process?

While the ultimate performance of a fund is undoubtedly influenced by the decisions

and conditions the manager faces during various stages of the fund’s life cycle; empirical

evidence suggests that at least some of these performance drivers are known to potential

investors (LPs) at the time of fundraising. These include fund-specific characteristics

like: the targeted fund size, management experience, financial and geographical scope,

and macroeconomics factors like: interest rates, business cycles, level of competition and

the overall state of the economy. We aim to tap into the predictive power of these variables
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by taking a cross-sectional approach to predicting fund performance. These predictors

have been chosen based on past literature on PE fund performance drivers and their

availability. Our model is set up to follow a binary classification problem which aims to

predict the likelihood of a fund beating a predetermined performance threshold. We use

the Public Market Equivalent (PME) measure developed by Kaplan-Schoar [15] for con-

structing our target variable which takes the value 1, if the fund has a PME greater than

one and 0, otherwise. A majority of our data, including the fund level cash-flows used for

calculating our PME values, is sourced from Preqin’s private equity database accessed via

Wharton Research Data Services (WRDS). Given the nature of our problem, we focus on

models known to work well with classification problems such as Logistic Regression with

L1 and L2 penalty, Discriminant Analysis with Linear and Quadratic decision functions,

Support Vector Machines, K-Nearest Neighbours and Neural Network. To the best of our

knowledge, this is one of the first studies that applies machine learning into predicting

private equity fund performance. We further address these three sub-questions during

our study:

(1) Which models perform the best with our given data-set and why? Is the accuracy

derived from advanced machine learning models significantly higher than the basic mod-

els?

(2) How accurate are these predictions overall and how do they fare when tested

against näıve investment strategies?

(3) What features are driving the predictive power of our top performing models? Are

they in line with the empirical evidence observed for them in past research?

Our analysis presents promising results for machine learning as a complementary tool

in LPs’ due diligence process. The top models for buyout funds – Logistic Regression,

Linear Discriminant Analysis (LDA) and Support Vector Classifier (SVC) showed an

overall accuracy of 69%, while the leading venture capital model K-Nearest Neighbour

(KNN) showed a 61% accuracy. As for our predictors, most of them matched their
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empirical findings, at least to the extent of the direction of their impact. However, some

of them failed to exhibit a significant effect on fund performance. Some of the key drivers

that stood out for BO included the level of PE activity in the year of fundraising measured

by the number of PE funds raised that year, the prevailing yield on 10 Year Treasury

Bonds and the targeted fund size. For VC funds, specialization in an industry presented

to be a key driver of performance.

Thesis Outline

This thesis is broadly divided into seven chapters. In Chapter 2 (Related Literature),

we discuss the past literature on our topic, summarize their key findings and outline

the gaps we are aiming to address. In Chapter 3 (Theoretical Background), we pro-

vide the essential background readers require on private equity markets and machine

learning. In Chapter 4 (Data and Features), we give a description of our final sample

of funds, followed by a detailed outline of how our target and predictor variables were

sourced, cleaned, and compiled. In Chapter 5 (Methodology), we provide the outline

of our study’s methodology that includes - description and characteristics of the vari-

ous machine learning methods used in our analysis along with how we apply and cross

verify these modelling techniques in practice. We also discuss evaluation metrics used

for comparing the different models. In Chapter 6 (Analysis and Results), we present

the results and comparative statistics from our calibrated models. We then benchmark

the top predicted funds by two of our ML models against a naive investment strategy.

We conclude the chapter by discussing the key features driving our results. Finally, in

Chapter 7 (Conclusion), we summarize our main finding, discuss the limitation to our

study and offer suggestions on how future research can improve in this area.
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Chapter 2

Related Literature

This chapter discusses the past last literature related to our study. We have broadly

divided the chapter into two subsections: The first talks about the literature related to

private equity, in particular the empirical findings on what factors drive the returns of

PE funds. The second, relates to the various areas of finance where machine learning

has been applied and tested in the past. We conclude by pointing out the gaps in the

interaction of these two literatures and how we aim to use the findings of our study to

reduce this gap.

2.1 Private Equity

The conventional wisdom that “performance persistency” exists in the private equity

(PE) industry has previously driven many LPs to top-quartile fund managers and shy

away from new, untested funds. Early academic research that focused on buyout funds

(BO) and venture capital (VC) raised in the 1980s and 1990s document strong evidence

for this persistency (Kaplan and Schoar 2005 [15], Robinson et al 2016 [27]). Subsequent

studies were conducted to investigate whether persistency weakened post – 2000 as the

industry matured. Harris et al 2020 [11] looked into this question and found evidence

to support the conventional wisdom for both pre and post 2000 funds. However, they

also noted that since the capital raising period for a follow-up fund occurs about midway

through the life of a GP’s current fund, only an interim performance evaluation of the

current fund is available to the investors which is based on the cash-flows occurred until

that date and an estimated net asset value (NAV) of the unrealized investments. They

found little or no evidence of performance persistency in BO funds when the information

the LP actually has during fundraising– the interim and not the final performance of the
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previous fund – was looked into. A rationale for this is offered by Jenkinson et al. (2013)

[14] and Brown et al. (2019) [3] who study the interaction between interim valuations of

current funds and subsequent fundraising. They show that while on average the fund’s

net asset values (NAVs) are conservatively reported, their valuations shoot up when the

fundraising period of the follow-up fund (usually 3 to 5 years into the current fund)

approaches.

A range of studies have been conducted that investigate factors that drive private

equity apart from past fund performance. Some of these factors have inconsistent em-

pirical findings between authors, further motivating us to explore their true relationship

and predictive power. In our study, we focus only the firm-specific characteristics and

macroeconomic variables that are available to LPs at the time of fundraising. Gottschalg

et al.(2004) [25] and Kaplan and Schoar (2005)[15] were one of the first studies to explore

features like fund size and management experience as potential drivers of fund perfor-

mance. They observed a concave relationship for fund size and fund returns, implying the

existence of an optimal fund size in terms of performance, beyond which the fund might

start showing diseconomies of scale. They also conclude that more experienced GPs tend

to raise better performing funds. Roggi et al. 2019[28] confirms these findings for fund

size, however they suggest a convex relationship between experience and fund perfor-

mance. Lossen (2006) [20] explored the impact of diversification in terms of financing

stages, industries, and countries, on the fund’s performance. His findings suggested that

the return of a PE fund declines with diversification across financing stages and increases

with diversification across industries. Aigner et al. (2008) [1] looked into the relationship

between fund performance and firm-specific factors like: financing stage, experience of

GPs, industry sector and certain exogenous factors such as: GDP growth, interest rate

levels and the public markets environment. We provide a more detailed account of the

empirical finding for each of our predictor variables in the Data and Features chapter.

2.2 Machine Learning in Finance

The exponential increase in availability of data and more affordable computing power

has allowed technologies like artificial intelligence (AI) to flourish in the field of finance
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research, particularly in the case its subsets machine learning (ML) who’s models are

known to perform well on noisy data-sets, which is a typical feature of financial data.

One of the first references of ML in finance can be found in (Hawley et al 1990) [12] , who

presents the applicability of neural networks as a tool for financial decision-making. Since

then, ML has made significant inroads into the financial literature with research covering

areas like bankruptcy prediction (Olmeda and Fernandez 1997 [23] , Zhao et. al. 2014

[30] ), consumer credit risk modelling (Khandani, Kim Lo, 2010 [18]), understanding the

default recovery rates (Cheng et al 2018) [5]; modelling investor sentiment (Renault 2017)

[26] etc. In additional to these areas, research related to financial forecasting using ML

has seen a boom in recent years, particularly in the case of cross-sectional stock market

prediction (Kelly et al. 2019 [17], Gu et al. 2020 [10], Kozak et al. 2020 [19], Freyberger

et al. 2020 [9]).

While many private equity players, particularly VC funds, are rapidly integrating

their businesses with AI and machine learning, academic studies relating to this domain

are still sparse. This is largely due to the difficulty in obtaining reliable and sufficiently

large data-sets in PE in the past, given its reliance on voluntary reporting of data by

LPs and GPs. However, commercial data-set providers like Pitchbook and Preqin which

specialize in alternative asset classes like PE, are paving the way for machine learning

driven research in these untested markets.
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Chapter 3

Theoretical Background

3.1 Private Equity

Private Equity (PE) funds are investment houses that raises capital to invest in port-

folios of non- publicly traded companies. This could be either a direct investment in a

private company or buying out a public company and taking it private. Depending on

their investment style, the equity stake they hold in these portfolio companies can range

anywhere between 10% to 100%, with the aim to resell their share at a higher value

on a future date. Two key investment styles in PE, which are also the two we will be

focusing on in our study, are Leveraged Buyout (BO) and Venture Capital (VC).

BO funds usually takes a controlling interest (50% to 100% equity) in mature companies

and create value through active governance, operational improvements, and financial en-

gineering. They typically finance their acquisitions though a significant portion of debt

(60 to 90 percent of total capital) which gives them the name - leveraged buyout (Kaplan

and Stromberg 2009) [16]. On the other hand, VC funds typically take minority stakes

(around 20% to 50%) in start-ups and young companies that they believe have long-term

growth potential.

3.1.1 Industry Structure

There are two key players involved in a private equity fund – general partners (GPs) and

limited partners (LPs). The GPs are the managers of the fund – usually a PE firm -

and are responsible for sourcing, acquiring, and managing the investments. The LPs are

the fund’s capital providers and are not actively involved in the day-to-day workings of

the fund. They are usually either high net worth individuals or institutional investors
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such as endowments, pension funds, sovereign wealth funds and insurance companies.

The compensation structure for GPs has two main components – first a fixed annual

management fee calculated as a percentage of committed capital (usually 2% but can

range from 1.5 – 2.5 %). Second a variable interest - called the “carried interest” - that is

paid as a percentage of the fund’s profits (approx. 20 %) after the initial capital invested

by the LPs is returned back. Additionally, there are some GPs that charge deal and

monitoring fees to the companies in which they invest (Kaplan & Stromberg 2009) [16].

A more detailed analysis of the PE fee structure can be found in Robinson Sensoy (2012).

These funds are formed as partnerships or limited liability companies, with a fixed

life span between 10 – 12 years. The initial four to five years are the “Investment Period”

where the GPs invest the committed capital into companies, followed by the “Liquidation

Period” where they exit their position from these companies and return the capital plus

profits to the LPs. The exit strategies involve either a secondary buyout - reselling the

company to another PE fund, a strategic buyer – selling to an industry competitor or an

Initial Public Offer (IPO).

3.1.2 Measures of Performance

Traditional Methods

The Internal Rate of Return (IRR) has been the leading performance metric for comparing

funds in the PE industry. Mathematically, it is defined as the discount rate that makes

the net present value (NPV) of the investment equal to zero. The calculation is based on

the fund’s cash flows as well as the net asset value (NAV) at the time of the calculation

if the fund is not liquidated. The draw-downs or “calls” are the negative cashflows while

the distributions paid back to the LPs in the form of capital gains or dividends are the

positive cashflows. It is a useful measure for comparing fund of the same vintage year

since its calculation accounts for the issue of irregular timing and size of cash-flows present

in this asset class. There are two different types of IRRs used in the industry: (1) The

Gross IRR which is the return the fund makes on its investment before deducting fund

expenses, management fee and carried interest. (2) The Net IRR that is the return the

fund’s LPs make net of all fees, interest, and expenses.
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Despite it being the metric of choice in the industry, the reliability of this method has

long been a point of discussion between industry specialists and academics alike due to

some of its obvious pitfalls. Some of these include: (1) It assumes the distributions to the

LPs are reinvested at the same rate of return as the fund’s IRR at exit, which can over

or understate the actual performance. (2) It does not take into account the scale of the

investments. Thus, comparing investments with significantly different contributed capital

can result in misleadingly high IRRs for smaller projects, even though the absolute gain

(in terms of cash) is low. (3) It favours funds that have early exits even if their long-term

performance does not match up to these early wins. A more detailed discussion about the

pitfalls of IRR for the private equity industry can be found in Phalippou and Gottschalg

(2009) [24].

One way of reducing IRR’s pitfalls is by using other methods such as Money Multi-

pliers1 in parallel. These primarily include – DPI, RVPI and Net Multiple.

DPI (Distributions to Paid-in) is the proportion of the called-up capital that has been

distributed or returned back to LPs.

DPI (%) =
Total LP Distribution

Total LP Contribution
× 100

RVPI (Residual Value to Paid-in) represents the amount at which an asset could be

acquired or sold in a transaction between willing parties. This amount excludes any

carry/performance fees earned by the GP and is shown as a percentage of total LP

Contributions.

RV PI (%) =
Unrealised V alue of Fund

Total LP Contribution
× 100

The Net Multiple is the ratio between the total value that the LP has derived from

their investment – that is the distributed cash and securities plus the value of the LP’s

remaining interest in the partnership – and its total cash investment in the partnership.

1All definitions and formulas for money multipliers are taken directly from Preqin’s Glossary to keep
in line with the reported figures we use from their database.
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This shows the scale of the return from an investment, which is not reflected in the IRR.

Computationally, it is the sum of the DPI plus RVPI, expressed as a multiple:

Net Multiple =
Distribution (%) + V alue (%)

Total LP Contributions

It is important to note that while IRR and cash multiples collectively form a useful set

of performance evaluators, they are still an absolute measure of performance. Given the

operational differences in private equity market relative to other asset classes, their IRRs

and multiples are not directly comparable. Moreover, they cannot be used for comparing

funds raised in different vintage years as they do not control for factors that causes market

wide movements.

Public Market Equivalent (PME)

Public Market Equivalents or PMEs are an alternative set of performance measures de-

veloped to benchmark the performance of a private equity fund against a public market

index – for example in our analysis the S&P 500. The illiquid nature and irregular tim-

ing of cash flow make it difficult to compare private and public funds directly. Thus,

the development of PME provides a more meaningful, “apples to apples” comparison for

investors to compare different asset classes.

The fundamental idea in all PME methods is to calculate what the value of the fund’s

cash flows would be if they were invested in a stock market index instead. The capital

calls are treated as money being invested into a stock index while the distributions to

the LPs are taken as selling the stock market index shares. So in essence, it shows the

market-adjusted multiple of invested capital (Harris et al. 2020)[11]. The first irritation

of this measure was developed by Austin M. Long and Craig J. Nickels [21] in 1996

called the Long-Nickels PME. There have been many versions of it since then with minor

adjustments aimed at overcoming the initial shortcomings. For our analysis, we use the

version introduced by Kaplan and Schoar (2005) [15] called the Kaplan-Schoar PME or

KS-PME. We explain the process of computing PME using this method in detail in the

Data and Features section.
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3.2 Machine Learning

The term Machine Learning (ML) was coined by Arthur Samuel in 1959 as a field of

study that gives computers the ability to learn without being explicitly programmed. It

is an approach to analyze data, and thereafter build and adapt models based on the same

data such that the model is able to make a better prediction on unknown data. Despite

ML being as a branch of computer science since late 60s and 70s, it has only recently

found resurgence with advancement in technologies and recused computing cost.

Broadly, ML is classified into two categories: Supervised learning and Unsupervised

learning, with additional subsets such as Semi-supervised and Reinforcement learning.

We focus on the supervised machine learning models in our analysis.

Mathematically speaking, for an unknown relation or mapping function or the ground

truth, we model it as

Y = f(x) + ε ...(1)

where ′f ′ is unknown, and ′ε′ is the irreducible error. Now, we can never know the

unknown population function ′f ′, but we can estimate it by fitting a model as below

Ŷ = f̂(x) ...(2)

And, if we assume that ′f ′ is linear then we can write (2) as

Ŷ = β̂0 + β̂1X1 + ...+ β̂pXp

where β̂0, β̂1, ..β̂p are estimates of the for the true co-efficients.

The task of an analyst is to find the best estimates of the co-efficients by fitting several

models and checking against some selected metric as per the business use case, for instance

it can be R2 in a regression setting or F1-Score in the classification setting. It must be

noted that the accuracy of the estimates is related to the reducible error as it in our hand

to find the best fitting f̂(x). We compute confidence interval in order to determine how

close Ŷ will be to the true f(x) but because of ′ε′ , the noise or the unexpected error, the
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Prediction interval will always be greater than the confidence interval.

To summarize, ML is learning the function f that maps input variables X to output

variable y. An algorithm learns this target mapping function from a training data. Dif-

ferent algorithms make different assumptions about the form of the function. Therefore,

if we assume or simplify the function to a known form (closed form or fixed structure)

then we call it as a Parametric method as discussed above. Linear models such as Lin-

ear regression, Logistic regression, and Support Vector Machines are typical examples of

parametric methods. Similarly,if we don not make strong assumptions about the form

of the mapping function then we land into the non-parametric world of methods. Non-

parametric does not mean that they will not have parameters, but rather that the com-

plexity of the model will grow with the increasing amount of training data so the number

of parameters will grow proportionally. The typical examples are K-Nearest Neighbours

(KNN) and Decision Trees.

3.2.1 Bias-Variance Trade Off

Bias of a statistical model is the estimation error between the actual value and the

predicted value due to generalization whereas Variance of a statistical method refers to

the amount by which f̂ would change(variability of the model prediction) if we estimated

it using a different training data set. For example, assuming a non-linear true model as

linear will introduce high bias in the prediction for the unknown samples. A model is

defined as flexible if it can fit into as many data points as possible. The trade off emanates

from the flexibility of the model that is higher the flexibility higher the variance, and lower

the Bias, that is a complex model. Similarly, simpler the model, higher the bias, and lower

the variance. It is important to mention that such bias-variance trade off is controlled by

hyper-parameters of the model such as λ in Logistic regression and C in Support Vector

classifier, which are further elaborated in the Modeling section.Briefly, Under fitting can

be understood as training error close to test error, i.e. High bias; Over fitting as low

training error but with high variance.
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Chapter 4

Data and Features

The quality of the data goes a long way in dictating how accurate a prediction can be. The

reliability of the data provider, the frequency of data being reported, and the time-interval

of the data were few of the questions we kept in mind before opting for our data source.

We start this section by offering some descriptive statistics about our sample funds and

summarize their historical performance. This is followed by a detailed description on how

we sourced, cleaned, and compiled our final target and predictor variables along with the

motivation behind each selection.

Our analysis primarily uses data sourced from Preqin – a commercial financial data

and information provider on alternative asset markets. They collect majority of their

data by putting in direct Freedom of Information Act (FOIA) requests to LPs and GPs

for voluntarily making their information public which they complement with public filings

and industry-recognized news sources. As of 2015, their data is sourced 38% from LPs,

59% from GPs and about 3% from public filings (Brown et al, 2015) [4].

4.1 Data Description

Our final dataset consists of 1717 funds – out of which 1058 are Buyout funds (BO) and

659 are Venture Capital (VC) funds. They range between vintage years1 1980 to 2016.

We excluded any funds that were raised post vintage year 2016 to allow for only though

funds who have completed the bulk of their investment period. Furthermore, we removed

any BO fund with committed capital below $15 Million and any VC fund with commit-

ted capital below $10 Million, to only keep economically relevant funds in the dataset.

A majority of funds in our sample are US based - around 85%, followed by mostly Euro-

1In our analysis, a vintage year is defined as the year in which the fund made its first investment
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pean funds (10%). They collectively amount to a committed capital of 1.97 Trillion USD.

Table 4.1 presents some basic statistics of our sample. BO funds show an average

fund size of $1149 Million relative to VC funds who raise relatively smaller funds aver-

aging at $326 Million. The distribution of fund size is heavily right skewed for both BO

VC funds. On average, about 95% of the committed capital was called for each fund,

indicating that the fund size estimated at the time of fundraising is representative of the

amount of capital ultimately invested in companies by the fund.

Table 4.1: Descriptive Statistics

All Funds Buyout (BO) Venture Capital (VC)

Average Fund Size ($M) 1148.81 1661.1 326.3
Median Fund Size ($M) 425 725.2 232

(2113.9) (2548.8) (345.4)

Average Net IRR (%) 12.7 13.9 10.8
(23.7) (13.1) (34.4)

Average PME 1.18 1.20 1.15
Median PME 1.09 1.14 0.95

(0.88) (0.45) (1.30)

Average Net Multiple 1.67 1.67 1.70
Average DPI (%) 121.7 121.4 122.3

Average RVPI (%) 45.24 43.97 47.27
Average Called % 94.7 93.6 96.4

No of Funds 1, 717 1, 058 659

*All values in parenthesis are standard errors

It is important to note that a majority of funds included in our analysis (over 80%)

were raised during or after vintage 2000 which leaves our sample with a significant portion

of closed funds (71%) relative to liquidated funds (29%) – see figure 3.1. This raises the

concern about how reliable GP reported interim numbers are - in particular the Net Asset

Values (NAVs) we use for calculating our target variable. While there is a possibility of

NAVs manipulation by GPs to attract investors for successive funds, empirical evidence
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suggests that these interim numbers are often conservatively reported relative to the final

cash-flows and could be understated by as much as by 35% throughout the life of the

fund (Jenkinson et al, 2013) [14]. The exception to this is the period when follow-on

funds are being raised, usually around 3 to 5 years into the current fund’s life, where

valuations are often inflated to impress investors. These manipulations however, seldom

go unnoticed by LPs and are taken as a negative signal (Brown 2019) [3]. Consequently,

top-performing funds with an established tack record find little incentive in overstating

their numbers, even during fund raising periods, given the risk of losing out on investors

and tarnishing their reputation. Furthermore, the mark-to-market accounting standards

- FAS 157 that came into force in 2006 requires PE funds to report thier balance sheet

assets at a fair-value, thus further improving the accuracy of reported NAVs.

Figure 4.1: Distribution of Closed and Liquidated Funds

4.2 Data Selection

In this section we describe how we sourced and constructed our target and predictor

variables, along with the motivation behind each selection.

4.2.1 Target Variable

Our model is calibrated as a binary classification problem, where the aim is to determine

the probability of a fund exceeding a predetermined performance threshold. The target

variable takes the value 1, if the fund exceeds this threshold and 0 if they do not.
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As discussed in the Theoretical Background section – while Internal Rate of Return

(IRR) has been the performance measure of choice for the PE industry, we restrain from

using it as our performance metric due to its well know limitations and its inability

to capture changes in macroeconomics conditions – thereby not allowing for comparison

between funds from with returns from different time periods. A solution for incorporating

macroeconomics changes is by using IRR as a metric to rank funds of each vintage year

into “quartiles” and then looking at the top quartile2 funds in each vintage as our target.

However, this still does not resolve the inherent limitation of IRR as a performance

measure we discussed in earlier sections, thus we will be using a Public Market Equivalent

(PME) method instead for constructing our target variable.

PME is steadily becoming a standard practice in the LP’s due diligence process.

According to a survey conducted by eVestment [7] in 2017 – 81% of respondents said

they carry out PME analysis while 53% said they were expecting to increase their use of

it. While there is no industry standard among the PME methodologies- with each having

their own negatives and positives, the most popular choice among investors according to

eVestment’s survey was the Kaplan-Schoar PME (KS -PME), with 63% respondents using

it. Sorensen and Jagannathan (2013) [29] provide a rigorous justification for the KS PME

where they conclude that the measure holds valid regardless of the risk of PE investments

provided the LPs have a log- utility preference3. We will be using KS PME as our method

of choice for constructing the target variable.

Kaplan-Schoar PME

The KS PME is wealth measure that gives a ratio of gains to costs from the investment.

A ratio of 1.2 would suggests that the fund, on average, outperformed the benchmark

index by 20% – hence the LP benefited from investing in the fund relative to a similar

investment they would have made in the public market. Conversely, if the ratio was 0.8,

then the fund has under-performed on average relative to the market and the LP would

have been better off investing in the stock index.

The calculation for the KS PME is as follows: At a given date n, a future value (FV)

2Top 25% funds
3That is investors are risk averse
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is calculated for all the distributions and calls of the fund as follows:

Future V alue (FV ) = Cash F lowt ×
V alue of the Stock Index at time n

V alue of the Stock Index at the time t

for all t ∈ (0, n)

For liquidated funds, n is the date when the fund is dissolved while for closed funds it

is the date of the last reported NAV. The ratio is calculated as the sum of the FV of

distributions plus the NAV at evaluation date n divided by the sum of the FV of calls.

PME =

∑
FV (Distributions) + NAV n∑

FV (Calls)

For liquidated funds, the NAV is equal to 0, while for closed funds the NAV is calculated

by taking the present value of the expected future cash flows.

Target Construction

For the fund level cash-flows, we use Preqin’s Private Capital Cash Flow database -

(CASHFLOW). Our target variable is constructed to take the value 1, if the fund had

a PME greater than or equal to one, and takes the value 0 if the PME is less than one.

Our motivation behind this threshold is that it would split the funds into groups that on

average “beat the market” – thus making it a good investment for LPs - and those that

do not. One key issue with any PME method is that the calculated values are sensitive to

the benchmark index being chosen. To minimize the effect of this drawback, we calculate

our PME values using two benchmark indices - S&P 500 index as our primary index

(obtained from CRSP via WRDS) and Russell 3000 for robustness-check (obtained

from Yahoo Finance). The binary nature of our target variable also minimizes this issue

as long as the PME values from the two indices are not drastically different around the

performance threshold of PME = 1. We observe that only 19 out of the 1717 funds show

different values for their target variable and only 21 funds have an absolute difference in

22



PME greater than 0.1 between the SP 500 and Russell 3000. Hence, we believe that the

PME values calculated using SP 500 are robust and we use those to construct our target

variable.

4.2.2 Predictor Variables

Past research on performance drivers for PE funds have focused on liner and polynomial

relationships. Our selected set of predictor variables builds on these empirical finding,

many of whom show discordance of opinions among authors. We discuss these finding in

four categories of variables below:

Fund Size: The past literature on the relationship between fund size and fund per-

formance has been fairly divergent. Kaplan and Schoar (2005) [15] and Gottschalg et al.

(2004) [24] observed a concave relationship between the variables, suggesting that beyond

a certain level, an increase in fund size would not give an additional advantage to the

fund in terms of performance and might even start affecting it negatively (diseconomies

of scale). A subsequent study by Phalippou and Zollo (2005) [25] found evidence that

support only a positive but not concave relationship between the two variable, while

Lossen (2006) [20] and Aigner (2008) [1] suggest that the relationship might actually

be negative. A more recent study by Roggi (2019) [28] however supports Kaplan and

Gottschalg’s findings of a concave relationship for both BO and VC funds. He suggests

that this concave relationship could be interpreted as returns for small business being af-

fected by their low bargaining power and high operating leverage while large funds suffer

from dis-economies of scale, caused by the acceptance of less profitable investments, as

well as agency and communication costs. Our variable: Final Size USD

Management Experience: Kaplan and Schoar (2005)[15] and Aigner (2008) [1]

both observe that experienced GP tend to have a positive influence on the performance

of a fund. However, according to the findings by Roggi (2019) [28] the positive effect

of experience on performance only comes into play at very high sequence numbers for

both BO VC funds – thus forming a convex relationship between experience and fund
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performance. Two measure commonly used to proxy for management experience are:

(1) Firm’s Age - how long the GP has been in business or (2) Fund Sequence - the

chronological number of the fund raised by the GP. We include both these measure in

our analysis using variables - Firm Age, Fund Number Overall, Fund Number Series

Specialization: There have been mixed evidence on whether specialization in a

particular industry, financing stage (seed stage investing to mature companies) or coun-

try/geography positively affect the returns for PE funds. The supporters of the spe-

cialization hypothesis argue that a more focused PE firm would be in a better position

to support its portfolio company as they understand the competition, technology, and

market specific developments better. Lossen (2006) [20] explored the effect of all three

of these specializations that suggested that while the return of a PE fund declines with

diversification across financing stages, it increases with diversification across industries

- indicating that the additional investment opportunities in new industries potentially

outweighs the cost of industry diversification. He found no evidence for diversification

across countries impacting the PE fund’s returns. We believe the effects could be different

now, given the significant growth in the PE industry across industries and geographies

since this study was conducted. We use the following variables to explore these effects:

Geographic Scope Diversified, Industry Diversified, VC Specialized

Macroeconomic Environment: The condition of the global economy and the PE

industry at the time of fundraising plays a critical role in the overall performance of the

fund. Aigner (2008) [1] interestingly observed a negative effect of Vintage year GDP

and MSCI World Index growth on fund performance, suggesting that good economic

conditions during the initial fund years potentially increase the prices for investment,

thus lowering the overall return of the fund. He also found a negative effect of inter-

est rate levels on return, which make intuitive sense especially for buyout funds who

raised a sizeable portion of their investment capital using debt. We include all three

of these parameters for the fund-raising year4 in our analysis. For capturing the con-

4In our analysis, we are approximate the “Fund Raising Year” to be the year preceding the fund’s
vintage year. Hence, if the fund has a vintage year of 1990, we assume the fundraising took place in 1989
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dition and prospects of the PE industry during fundraising, we are including the num-

ber of and percentage increase in new PE funds raised during the year prior to a PE

fund’s vintage. Our Variables: GDP yoy, TR 10yrs, yoy MSCI, Funds Raised Last Year,

Pcent Increase Funds Last Year

We additionally include variables that takes into account the location of fund raising

(US vs Europe) and the geographic focus of the fund (US, Europe or Asia). While

the relationship between the fund’s performance and the factors listed above can differ

depending on the fund’s geographic focus and scope, our limited data set which is heavily

skewed towards US based funds, and might be unable to capture these effects properly.

However, the growing number of non-US based funds in the recent years urges us to still

explore the effects of these variables. The complete list our predictor variables and their

respective sources can be found in the Appendix A.2.

4.3 Data Processing

After having selected our target and predictor variables, the next step is to prepare the

data for the modelling and analysis. This involves removing missing values, grouping and

cleaning variables, and scaling the numerical features. We use the words - ”features” and

”predictors” interchanging in our analysis.

We started with a 3,278 PE funds reported in Preqin’s FUNDHISTORICPERFOR-

MANCE database which was reduced to a sample of 1717 funds after removing the

following: (1) All funds with missing values for Net IRR or PME (2) All fund type that

did not fit into the category of Buyout (BO) or Venture Capital (VC) funds - for exam-

ple fund of funds, (3) Any fund with a vintage year post 2016 (4) Any BO fund with

committed capital below $15 Million and any VC fund with committed capital below $10

Million. (5) Finally, any fund that did not have data on our selected set of predictors.

4.3.1 Categorical Variables

Most algorithms work with numerical data types in a feature vector. So, for a categorical

variable in our data-set like ”Fund Geography” that can take three possible values ”EU”,
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”USA” and ”ASIA” we need to transform them into three separate vector represented as

EU = [1, 0, 0]

USA = [0, 1, 0]

ASIA = [0, 0, 1]

In addition to the above strategy, we have also employed our own custom one-hot

encoding function that takes top ’x’ number of labels for which one wants to hot en-

code, keeping rest as others. For instance categorical variable Fund Type takes values

such as Buyout, Venture, Funds of Funds, Early stage, Growth, Secondaries, Balanced,

Expansion/Late stage up to 14 different categories in the raw data-set. We chose to one-

hot encode it into Buyout and Venture cap dataset. This method is optimum for cases

in which there are several categories with diminishing numerical representation. This

method also helps avoid including noise into the data.

4.3.2 Feature Scaling

The next step in data processing involves normalizing the features to improve the effi-

ciency of the models. With a few exceptions, ML algorithms do not perform well when

its numerical features have different scales. While feature scaling is not a requirement

for running all ML models, its application leads to faster convergence thus increasing the

speed of learning and saving on computation expense. Additionally, scaling avoids the

problem of numerical overflow while working with very small or very larger numbers as

with their increasing values one needs more space to store it. There are two common

methods used for resolving this issue: Rescaling and Standardization.

Rescaling (min-max scaling)

It is one of the simplest ways to normalizing numerical vectors that converts the feature

into a standard range of values, typically in the interval [−1, 1] or [0, 1]. This involves

subtracting by the minimum value from the observed value and then divided it by the

difference between the maximum and minimum value.
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x̄(j) =
x(j) −min(j)

max(j) −min(j)

where min(j) and max(j) are the minimum and maximum values of the feature j

respectively.

Standardization

Standardization (z-score normalization) is the procedure in which feature values are re-

scaled into a standard normal distribution. This is done by subtracting the mean value

(so standardized values always have a zero mean) from the observation, and then divide

it by the standard deviation - so that the resulting distribution has unit variance. Unlike

min-max scaling, standardization does not bound values to a specific range, which may be

a problem for some algorithms (e.g., neural networks often expect an input value ranging

from 0 to 1). However, standardization is much less affected by outliers.

x̂(j) =
x(j) − µ(j)

σ(j)

where µ(j) and σ(j) are the mean (the average of the feature) and standard-deviation

of feature j respectively.

The decision of which of the two methods is more suitable would depend on the feature

and data-set in question. Standardization is usually preferred if the value of the feature

takes a distribution that is close to a normal distribution or if the feature has outliers,

since normalization would squeeze the outliers into a very small range.
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Chapter 5

Methodology

5.1 Data Sampling

5.1.1 Train- Test Split

Once the data set is ready and annotated, the first set in any supervised machine learning

(ML) algorithm is to divide the data into three subsets: Training set, Validation set, and

Test set. The training set takes the bulk of the observations as it is used to build the

model. The other two sets, often called holdout sets, are used to get an ”out-of-sample”

performance of the model. The is no defined optimal split percentage for ML, however,

in general practice for smaller data like ours, the typical division is set at 70% training,

15% validation and 15% test. In practice, the focus of the analysis falls on the results

obtained on test set, since the goal of any machine learning model is to accurately predict

values for new data - that is data not used to train the model.

Figure 5.1: Data Sampling

5.1.2 Cross-Validation

It is a type of re-sampling method that involves repeatedly drawing samples from a

training set and refitting the model to each of the samples in order to obtain additional

information about the fitted model. Through this continuous process the model perfor-

mance is assessed. So, we hold out a few samples or a fold in the training data, train our
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model on the rest of the data and then validate on the hold out set. Cross-validation can

be further divided into Leave-p-out cross-validation and k-fold cross validation.

We have used k-fold cross validation in our analysis that splits the data into k folds

to validate the model on fold while training the model on the k - 1 remaining folds, for

k times.

Figure 5.2: Cross validation

The error is then averaged over the k-folds.

CV(k) =
1

k

k∑
i=1

I(yi 6= ŷi)

where I is an indicator variable

I(yi 6= ŷi) =


1 if yi 6= ŷi .......(3)

0 if yi = ŷi

Please note that the above loss function is also called Zero-One (0-1) loss function in

which 1’s become indicators for misclassified items. For instance,if we get two 1’s from

the function after evaluating 10 new samples, then the accuracy of the model is 80%.

Furthermore, we have used stratified k-fold cross validation that splits the data such

that the proportion between classes that is 1,0/PME>=1, PME<1 are the same in each

fold as they are in the whole dataset.

5.2 Machine Learning Models

5.2.1 General Framework

We start by defining the problem in matrix form, and then elaborating further depending

on how each model deals with it. The general structure is to define the objective function
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and then introduce parameterization penalties where ever necessary. Our aim for the

rest of this chapter is to provide an in-depth description of each models so the reader

does not require consulting any outside resource. We, however, do not elaborated on the

computational techniques as its implementation can vary from one library to another.

Suppose we have a list of n training examples in the form:

{(x(i), y(i))}ni=1

where x(i) is a vector of all the feature values(excluding the label) of the ith instance

in the dataset, and y(i) is its label(that is the target for the same instance).

X is a (nXp) matrix that denotes the space of input values , X ∈ RnXp that contains

all the feature values (excluding labels) of all instance 1 : n.

X =



(
x(1)
)T(

x(2)
)T
.

.

.(
x(n)
)T


...(4)

with ′n′ as the number of observations(rows), and ′p′ as the number of features/Predictors(columns).

y(i) is the output label that can be continuous or categorical. In our case is it cat-

egorical variable as our problem falls under the binary classification task, y(i) ∈ {0, 1}.

However, in general Y is the space of output values and is represented as
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Y =



(
y(1)
)

(
y(2)
)

.

.

.(
y(n)
)


...(5)

Each row of theX, (nXp) matrix is also referred to as feature vector of ′p′ dimensions

that is we define it as {(x(i) ∈ Rp and always represent it as a column vector in isolation.

We represent each element in a feature vector as xij where ′i′ maps from 1 : n and j

maps from 1 : p.

5.2.2 Logistic Regression

Linear classifiers are set of models in which the decision boundary is a linear function

of the input, unlike linear regression models, where the output ŷ is a linear function of

the features. As per the dimensions of the feature space, it can be a Line, Plane or a

Hyper-plane. In a p dimensional space, a hyper-plane is a flat affine subspace of p − 1

dimensions. For instance for two predictors or features x1 and x2, a hyper-plane will be of

one-dimension that is a line. The aim is to find fit the hyper-plane into the training data

such that the division is optimal, and our prediction is maximised for new unseen sample.

To perform any supervised learning algorithm, we must decide on how to represent the

hypothesis h that maps from X 7→ Y from (3) and (4) so that h(x) is a good predictor for

the corresponding value of y. In linear regression we approximate y as a linear function

of x, so that we can write

hθ(x) = θ0 + θ1x1 + θ2x2
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where θ′is are the parameters(weights) parametrizing the space of linear functions

mapping from X to Y . We also assume x0 = 1 so that we can represent the hypothesis

as

hθ(x) =

p∑
i=0

θixi = θTx ...(6)

where p is the number of features(predictor variables) excluding x0.

However, for a binary response with a 0/1 output as define in our case, the hypothesis

function behaves poorly as some of the estimates from a linear regression might fall

outside the [0,1] interval making them hard to interpret. Logistic regression solves this

problem by not modelling Y directly but instead modeling the probability that Y belongs

to a particular category.

This is done by tweaking the hypothesis function of the linear regression through a

logistic function (also called sigmoid function) so that we write our new hypothesis as

hθ(x) = g(θTx) =
1

1 + e−θT x
...(7)

where

g(z) =
1

1 + e−z
...(8)

Figure 5.3: Sigmoid Function
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Notice fig 5.5 as z approaches infinity g(z) tends towards 1, and as z approaches

negative infinity g(z) tends towards 0, an ideal case to bound z between 0 and 1. Hence,

hθ(x) is also bounded between 0 and 1. Furthermore, say for threshold g(z) = 0.5, we

can say

Predict 1, if θTx ≥ 0→ hθ(x) > 0.5

Predict 0, if θTx ≤ 0→ hθ(x) < 0.5

Given the training data set, we want to learn the parameters θ that makes hθ(x) as

close as possible to y. Formally, this function that measures for each value θ′s, how close

the h(x(i))’s are to the corresponding y(i) is called as cost function.

J(θ) =
1

n

n∑
i=1

Cost(hθ(x
(i)), y(i)) ...(9)

where

Cost(hθ(x
(i)), y(i)) =


−log(hθ(x

(i))) if y(i) = 1 ...(10)

−log(1− hθ(x(i))) if y(i) = 0

The intuition behind equation (10) is that Cost = 0 , if the true value y(i) = 1,

and through our hypothesis we predicted hθ(x
(i)) = 1, on the other hand the Cost =

−log(hθ(x
(i))), a very large value, if we predicted incorrectly i.e. hθ(x

(i)) = 0.

We can also say that as our prediction tends towards the incorrect zone, the cost

increases and the above case can be represented as hθ(x
(i)) 7→ 0, Cost 7→ ∞

Similarly, if the true value is y(i) = 0, and we predicted hθ(x
(i)) = 1, the cost will be

−log(1− hθ(x(i)))) and zero for correct prediction.

The probabilistic view captures the same intuition that is cost will be zero if hθ(x
(i)) =

0, P (y = 1|x; θ) = 0 read as (probability of y=1 given x ; parametrized by theta) however
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Figure 5.4: Logistic Regression Cost Function

as the probability will approach 1, the function will penalize with a very large cost.

The above cost function can be defined from statistics using the principle of maximum

likelihood estimation, which is an idea in statistics for how to efficiently find parameters’

data for different models. We will not delve further as it is out of scope.

Equation (10) can also be written compactly as

Cost(hθ(x
(i)), y(i)) = −y(i).log(hθ(x

(i)))− (1− y(i)).log(1− hθ(x(i))) ...(11)

Now, if we sum the individual cost for our n samples then we define our objective

function(also called as Loss function). Many authors use the terms Loss, Cost, Error,

and Objective functions interchangeably. To clarify, we use Cost function for one training

example and Loss or Objective function for the average of the cost function across all the

examples.

Logistic regression loss function

J(θ) = − 1

n
[
n∑
i=1

y(i).log(hθ(x
(i))) + (1− y(i)).log(1− hθ(x(i)))] ...(12)

Optimization: To fit the parameters θs we minimize the loss function through a

gradient descent algorithm, which is a technique that basically finds the value of θs at

which the loss function is minimum.

minθJ(θ)
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There are several other optimization algorithms for finding θs such as Conjugate gra-

dient, BGFS, and L-GBFS. We have only tried implementing gradient descent. Standard

available libraries bring the options of using other algorithms as well.

Gradient descent is based on the following rule

θj := θj − α
∂

∂θj
J(θ) ...(13)

where α is the learning hyper-parameter provided by the analyst. It takes partial

derivative of J with respect to θ (the slope of J), and updates θ via each iteration with

a selected learning rate α until the Gradient Descent has converged.

As discussed earlier if we have too many features, the learned hypothesis hθ(x) may

fit very well on the training data set by minimizing the loss function J(θ) but fail to have

a good out of sample performance. This problem is defined as Overfitting, resulting in

a complex with a low bias but high variance. To tackle overfitting, one can employ the

following three methods - Subset Selection, Shrinkage methods and Principal component

analysis. In our analysis, we have employed the shrinkage method.

Subset Selection: It is an approach that involves identifying a subset. We can do

this by reducing the number of features - i.e. manually selecting a few that we believe is

related to the response. The ideal candidate(metric) for numerical features is the Pearson

correlation Coefficient. It must be noted that Pearson correlation coefficient cannot work

on categorical variables, therefore, one has to hot encode the categorical variables before

finding the correlations amongst the features. A few papers also suggest to use Cramer’s

V in place of Pearson coefficient for better visualization of the correlation among the

categorical variables.

Step-wise Selection: To safely select features that have high correlation with the

target variable we can use with one of the two set-ups in Step-wise Selection namely For-

ward step-wise selection and Backward step-wise selection. In forward step-wise selection

we begin with a model containing no predictors, and then keep on adding predictors

one-at-time, until all the predictors are in the model. At each step we add a feature that
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gives the highest additional improvement against some metric say Precision in our case

or OLS in regression. Contrarily, in Backward selection, we start with all predictors and

iteratively remove the least useful predictor, one at a time. Please note that we have not

applied any Sub-selection procedure in choosing the number of predictors.

Shrinkage Method : Unlike subset selection, in which we choose a few variables

among all p variables, in the Shrinkage method, we constrain or regularize the co-efficient

estimates towards zero. To do this we add penalty terms in our loss function. So equation

(12) becomes

in case of Ridge (also called l2 norm regularization)

J(θ) = − 1

n
[
n∑
i=1

y(i).log(hθ(x
(i))) + (1− y(i)).log(1− hθ(x(i)))] +

λ

2n

p∑
j=1

θ2j ...(14)

and in case of Lasso (also called l1 norm regularization)

J(θ) = − 1

n
[
n∑
i=1

y(i).log(hθ(x
(i))) + (1− y(i)).log(1− hθ(x(i)))] +

λ

2n

p∑
j=1

| θj | ...(15)

where λ ≥ 0 is called as the tuning parameter. When λ is 0 then the penalty term has

no effect, however as it approaches ∞ then the impact grows, so that the coefficients or

the θj’s approach zero. Notice that if we use a very high value of λ then we shrink all the

co-efficients to zero thereby shrinking the model to its intercept. Lasso penalty,like ridge,

also shrinks the coefficient estimates towards zero, however, it has the effect of forcing a

few of the parameters to be exactly zero. This entails that Lasso penalty also performs

variable selection as done by the class of methods in Subset selection.

The third type of regularizer is called Elastic Net that uses both l1-norm and l2-

norm regularization in some sort of trade off manner controlled by the hyper-parameter

ρ. The elastic net penalty is represented as
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J(θ) = − 1

n
[
n∑
i=1

y(i).log(hθ(x
(i)))+(1−y(i)).log(1−hθ(x(i)))]+

λ

2n

p∑
j=1

[ρθ2j+(1−ρ). | θj |] ...(16)

We demonstrate the effect on the precision by using k-fold cross-validation and regu-

larization in our logistic regression model.

5.2.3 Discriminant Analysis

Discriminant analysis encompasses methods that can be used either for Classification or

dimensionality reduction. Since, our topic at hand is binary classification, we will not

deal with the dimensionality reduction aspect of it. Broadly, it can be divided into Linear

Discriminant analysis (LDA), Quadratic discriminant analysis (QDA) and a compromise

between two, that is called as Regularized Discriminant Analysis. Our focus is only on the

application of LDA and QDA, and chart out how these algorithms perform in comparison

to the logistic regression and the Bayesian error rate (that is the minimum classification

error rate).

logistic regression involves direct modelling of the input space to the output space

using the logistic(sigmoid) function and is represented as Pr(Y = k|X = x; θ). This

representation is basically finding the probability of the output label Y to be in a class

k given the predictors X and parametrized by θ. We can also call say that the model is

the conditional distribution of the response Y given the predictors X.

The alternative approach and less direct approach to estimate such probabilities is by

using the Bayes’ theorem. So, we model the distribution of the predictors X separately

in each of the response classes Y , and then use Bayes’ theorem to find the probability.

We are not using the Bayes’ classification algorithm but a brief introduction to the

theorem is warranted as both LDA and QDA are based on it. Bayes’ theorem states that

Like others, LDA is also a supervised learning technique, that classifies with a linear

decision boundary, generated by fitting class conditional densities and using Bayes’ rule.

The model assumes that X = (X1, X2, ..., Xp) is drawn from a multi-variate Gaussian

distribution with a class specific mean vector and a common co-variance matrix.
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For p-dimensional random variable X (as the number of predictors is ’p’) with a

multi-variate Gaussian distribution, we represent X ∼ N(µk,
∑

), where µk is the class

specific vector and
∑

is the co-variance matrix common to all classes.

The discriminant function for LDA takes a linear form is defined as

δk(x) = xT
∑

−1µk −
1

2
µTk
∑

−1µk + logπk

It is important to note here that despite assuming that random samples are drawn

from multi-variate Gaussian distribution, we still need to estimate parameters µ1, µ2, ...µk

and π1, π2, ...πk for each class k ∈ 1, 2, ..K.

Similarly, QDA also assumes that observations from each class are drawn from a

Gaussian distribution, however, unlike LDA, QDA assumes that each class has its own

co-variance matrix. Therefore an observation of kth class is represented asX ∼ N(µk,
∑

k),

where
∑

k is a co-variance matrix of the kth class.

The discriminant function in QDA takes a quadratic form and is represented as

δk(x) = −1

2
(x− µk)T .

∑
−1
k (x− µk)−

1

2
log |

∑
k | +logπk

The other difference between LDA and QDA also emanates from the bias-variance

trade off. For ’p’ predictors, estimating a co-variance matrix means estimating p(p+1)
2

pa-

rameters that is the case in LDA, however, in QDA when we assume different co-variance

matrix for each class then we have to estimate k.p(p+1)
2

parameters. So, LDA with fewer

parameters is a much less flexible classifier than QDA, and so has lower variance, i.e.

higher bias in case the same co-variance matrix assumption doesn’t fit the actual(ground

truth) distribution.
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Overall, LDA tends to perform better than QDA when we have fewer training ob-

servations as reducing variance is important. For data sets with large training data set,

QDA is recommended.

5.2.4 Support Vector Classifier

Support Vector Classifier(SVC) is another linear classifier that we have tried on our data

and bears some parallels with the logistic regression. Support Vector Machine(SVM) is

an extension of SVC that uses a kernel trick for non-linear class boundaries. SVC is also

sometimes called as SVM without kernels or Linear SVM.

As discussed in the logistic regression that tries to fit the best decision boundary for

the classification problem, SVM also tries to fit a separating hyper-plane that separates

the training observations perfectly according to their class labels. Now, if our data is

linearly separable then we can have infinite numbers of hyper-planes. However, out

of this infinite possibilities if we choose a hyper-plane that not only separates the two

classes(say our case of binary classification) but also stays away from the closest training

instances as possible. In other words one can think it as fitting the widest possible

street or slab(represented by parallel lines) between the classes. The middle line of this

widest street or slab is called as maximal margin hyper-plane(also known as optimal

separating hyper-plane). Maximal margin hyper-plane is the separating hyper-plane for

which the margin is largest.

The training instances or examples that lie on the two parallel dashed lines are called

as Support vectors as they are represented in p dimension space. Notice in fig 5.5 that

adding more examples off the street/slab will not effect the decision boundary at all, as

the decision boundary is based only on the support vectors.

The equation of such a hyper-plane can be defined as θTx = 0 and we segregate

classes that is predict 1 if θTx > 0, otherwise 0. So we are fitting our model to find our

parameters θs such that it gives the best prediction or say the best linear classification.

We define the hypothesis of the SVM as
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Figure 5.5: SVM image display

hθ(x) =


1 if θTx .......(17)

0 otherwise

SVM uses hinge loss as its cost function. The intuition is that the cost will be zero if

actual value y(i) is 1, and our prediction θTx ≥ 1. The cost increases as the value of the

θTx becomes less than 1.

Similarly, the cost will be zero if the actual output y(i) is 0, and we predicted θTx ≤ −1.

Cost will increase if our prediction becomes greater than -1.

One can notice that SVM punishes both incorrect prediction as well as those that are

within the street/slab. We can also conclude that θx = 1 and θx = −1 are the equations

of the boundaries that hold the support vectors. This also means the SVM’s decision

boundary doesn’t depends on non support-vectors, if we change or remove them - the

total value of the cost function won’t change.

We can write the cost function using the hinge loss function.

Cost(hθ(x
(i)), y(i)) =


max(0, 1− θTx) if y(i) = 1 ...(18)

max(0, 1 + θTx) if y(i) = 0
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SVC objective function

J(θ) = C[
n∑
i=1

y(i).max(0, 1− θTx) + (1− y(i)).max(0, 1 + θTx)] +
1

2n

p∑
j=1

θ2j ...(19)

where C is the tuning parameter that plays a similar role to 1
λ
. To reiterate, both

C and λ prioritize how much we care about optimize fit term and regularized term.

The observant reader will notice that we have added the ridge regularization penalty in

equation (19). C determines the severity of the violations to the margin(and to the hyper-

plane) that we can tolerate as the value of C is provided by the analyst. For increasing

value of C, the width of the street/slab decreases, and this is only possible when we have

clear separability of the two classes. In other words narrow margin means rare violation,

highly fitting model, low bias and high variance. As C decreases, the margin(width of

the street) becomes large and we become more tolerant towards incorrect classifications.

In other words broader margin means more violations, less fitting model, high bias and

low variance.

We observe that linear SVM and Logistic regression behave similarly with comparable

Precision values as the logistic loss and hinge loss are comparable. However, if we change

our SVM objective function to tackle non-linear decision boundaries then we can see

marginal improvement.

5.2.5 K-Nearest Neighbours

Parametric methods such as logistic regression assumes a linear function form for the

model, and sometimes suffers from the strong assumptions about the form of f(X). If

the assumption itself is far from the ground truth then such models will perform badly.

In contrast, non-parametric methods such as KNN do not assume parametric from of

f(X) rather classify by estimating the conditional distribution of Y given X, and alloting

it to the class with the highest estimated probability.
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Figure 5.6: Nearest Neighbour

Given a positive integer k and a test observation x0, the KNN classifier first identi-

fies the k points in the training data that are closest to x0, represented as No. It then

estimates the conditional probability for class j as the function of points in No whose

response values equal j.

Pr(Y = j|X = x0) =
1

k

∑
i∈No

I(yi = j) ...(21)

Finally, KNN applies Bayes rule and classifies the test observation x0 to the class

with the largest probability. The choice of K has a drastic effect on the KNN classifier

obtained. That is as K grows, the method becomes less flexible and produces a decision

boundary that is close to linear, a low-variance and high-bias classifier

5.2.6 Multi-layer Perceptron Model

Multi-layer perceptron model learns a non-linear function f : Rp 7→ Ro that maps from

p dimensional feature space to an output space depending on the desired problem at

hand. For examples, output space O will be 1 for a regression task and 2 for binary

classification, that is our case. The first layer of the model is called as the input layers

and is represented as

{xj : |x1, x2, ..xp}

Each neuron or unit in the hidden layer transforms the values from the previous layer
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Figure 5.7: Neural Network

with a weighted linear summation represented as

w1x1 + w2x2 + ...+ wpxp

where w1, w2, ...wp are the weights. This is transformation is then followed by a non-linear

activation function g(.) such as TanH, RELU and Sigmoid function. It is important to

note different activation functions and how they differentiate among themselves. Addi-

tionally, the choice of an activation function is the discretion of the researcher. Finally

the output layer receives the values from the last hidden layer and transforms them into

output values.

5.3 Comparison Measures

After having defined the set of models we are using in our analysis, the next step is to

select the metrics we are going to use to compare them. The chosen analytical approach

depends on the business dynamics or the business use-case at hand. For any classification

problem, the default method is to start with the analysis of the confusion matrix.

5.3.1 Precision, Accuracy & Recall

The two most frequently used metrics to assess any classification model are Precision

and Recall. Precision is the ratio of correct positive predictions to the overall number of
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positive predictions, whereas Recall is the ratio of correct positive predictions to the over-

all number of positive examples in the dataset. A typical confusion matrix is represented

as follows.

Figure 5.8: Confusion Matrix

Formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Almost always, in practice, we have to choose between a high precision or a high recall.

It is usually impossible to have both. In our hypothesis, in which we want to maximize

cases with PME greater than 1, Precision is more important than recall. Precision will

return the proportion of correct use cases in the list of all returned use cases. In other

words, a precision of 80% means that out of 100, our investment will be precise only in

80 of them, with rest going as False Positives. On the other hand, Recall is the ratio of

relevant use cases to the total number of relevant use cases that could have been returned.
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So, a recall of 45% means that our investment thesis will be correct only for 45 out of

100 investment cases that we are going to do in any case because we predicted in total

100 cases as Positive i.e. with PME >= 1.

So, having higher precision means that we will have higher proportion of correct in-

vestment cases i.e. we are avoiding mistakes by detecting use cases with less than 1 as

legitimate, however we are ready to tolerate lower recall with some use cases that we will

be not investing. Higher precision means less loss as we will invest in all use cases that

we have predicted PME>1. Bottom line is that we would tolerate False positive less than

False negatives. False negatives can be high after all we are not going to invest in those

cases.

Overall, the ideal situation for a confusion matrix should be that our prediction is

only divided into True Positives and True Negatives. Practically, such case is impossible,

and we have to choose between False Negatives and False Positive, that is selecting one

that is going to hurt less. Is it higher False Positive or lower Precision or is it higher

False Negative or lower Recall that is going to hurt depends on the business case at hand.

In our case, it is lower Precision that will hurt LPs investment thesis as LP can tolerate

lower recall by loosing a few investments.

5.3.2 AUC - ROC Curve

The other metric that we employed for model comparison is AUC (Area Under the

Curve) in a ROC (Receiver Operating Characteristics) graph. A ROC curve is a graph-

ical plot that summarizes the trade-off between the true positive rate (Recall) and false

positive rate for a predictive model at different probability thresholds, thus representing

the capability of the classifier in distinguishing the the two classes. To compare models,

AUC is used to summarizes the performance of each classifier into a single measure by

calculating the area under the ROC curve. The bigger the area under the curve, the

better is the classifier. The metric was borrowed from the signal detection theory but has

now has gained importance in several fields including machine learning - particularly in
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the case of classification problems.

Sometimes, the ROC curve is also defined in terms of Specificity and Sensitivity. Note

that - Sensitivity, Recall and True positive rate are all different names for the same ratio.

To set some context for a reader familiar with the terms used in other domains, we provide

few related formulas.

• Sensitivity = True positive rate = Recall = TP/(TP+FN))

• Specificity = True negative rate = selectivity = TN/(FP+TN)

• 1 – Specificity = False Positive rate = FP/(FP+TN))
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Chapter 6

Analysis and Results

We start this chapter by comparing our calibrated models first though their levels of

”out of sample1” accuracy and precision and then complementing the numbers using the

AUC-ROC curve values. Given the differentiated investment style of Buyout and Venture

Capital funds, we ran separate models for each fund type. We then benchmark the top

predictions of two of our models - Logistic and LDA, against a naive investment strategy.

We conclude this chapter by offering some insights into the features driving the predictive

power of these models and compare these findings to past research.

6.1 Model Comparison

The confusion matrix for all the models in this section are based on a probability threshold

of 0.5, which means that if the estimates probability of a fund beating the performance

threshold (PME > 1) is over 50%, then the target would take the value 1 and if they

probability is lower than 50%, then the target would take the value 0. In practice, we

can adjust this threshold anywhere between 0 and 1 depending on the level of certainty

the user is looking for.

Based on the accuracy numbers presented in Table 6.1, we observe that Logistic, LDA

and SVM show the most promising results for buyout (BO) funds with a top accuracy of

69%. The leveled performance of these three models can be attributed to the similarity

in their underlying framework that tries to fit a linear decision boundary among the

observations. This further suggests that the relationships between variables is possibility

linear for BO funds. The level of precision is similar across all models at this probability

threshold. On the other hand, for venture capital (VC) funds the nearest neighbor (KNN)

1Out of Sample refers to the values we get for the ”test” set
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Table 6.1: Summary of Model Performance (Out of Sample)

and neural network (MLP) outperform the more basic models both in terms of accuracy

(60%) and precision (58%) . Our preliminary analysis of the ROC curves in figure 6.1,

follow suit with our results from the accuracy comparison with the Logistic and LDA

models performing the best for BO. Results differ slightly for VC funds, where only QDA

seems to perform poorly relative to the other models. Over-all, none of our models have

an AUC below 0.5, reflecting at least some superiority in predicting results over random

selection.

(a) Buyout (b) Venture Cap

Figure 6.1: AUC - ROC Comparison

6.2 Näıve vs Machine Learning Strategy

To get a real-world estimate of the quality of our predictions, we compare a set of per-

formance measures (Net IRR, Net Multiple and PME) for a portfolio of funds that our

model predicts is most likely to beat the market - that is cross the PME threshold of 1,

against a portfolio of funds proposed by a näıve investment strategy. We use the Logistic
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and LDA models for both BO and VC funds to produced two portfolios of funds as the

machine learning benchmark. These are the top 10% funds out of the test sample that

have the highest probability of beating the performance threshold (PME > 1). As for

the “näıve strategy” – we invest in the biggest funds in the sample by choosing the top

10% funds by committed capital - going by a strategy of targeting funds by size. For

simplicity, we assume that equal amount of capital is invested in each fund for all three

strategies.

Tables 6.2 & 6.3 present the performance of each portfolio of funds in terms of average

Net IRR, average Net Multiple and average PME along with their corresponding standard

deviations. For BO funds, where the portfolio size is 26 funds, we observe that the näıve

strategy portfolio performs better than our models in terms of net IRR but has a lower net

multiple and PME. A possible explanation for this could be that our models are calibrated

for filleting out funds based on PME and not Net IRR. For VC funds, where each portfolio

has 16 funds, both of our ML models outperform the näıve strategy portfolio in terms of

net IRR and multiple and are only marginally lower in terms of average PME. It is also

interesting to note that stand deviation of the ML portfolios are lower than the näıve

strategy portfolio particularly in the case of Net IRR, indicating consistency in portfolio

returns.

Table 6.2: Portfolio Performance Summary (BO)

Model Avg Net IRR stdev Avg Net Multiple stdev Avg PME stdev

Logistic 13.12 11.10 1.70 0.44 1.21 0.35
LDA 13.83 10.11 1.73 0.41 1.24 0.32

Naive Stratergy (Size) 14.97 9.49 1.57 0.28 1.13 0.18

Table 6.3: Portfolio Performance Summary (VC)

Model Avg Net IRR stdev Avg Net Multiple stdev Avg PME stdev

Logistic 11.68 10.32 1.53 0.60 1.03 0.36
LDA 9.98 10.95 1.51 0.65 1.00 0.42

Naive Stratergy (Size) 8.61 15.26 1.43 0.65 1.13 0.44
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6.3 Analysis of Predictors

While the primary aim of most prediction models like ours is to focus on the quality of

the forecasts - be it in terms of accuracy or precision; being able to interpret the factors

driving these results is also necessary to validate and improve on our work. The more

advanced models like neutral network are often considered “black boxes” and are criticized

for their superior predictability coming at the cost of interpretability. Interestingly, for

our data the more basic models like logistic regression are performing almost at par, if not

better than advanced models such as neural networks, potentially owing to the limited

size sample. We take a closer look at results from our logistic regression and summarize

our findings for the variables that are driving the model’s predictive power, comparing

them to empirical findings wherever possible. For avoiding the results to be skewed by

the sample split we do for the training and test set, we train the model using 99% of the

BO and VC funds samples.

Figure 6.2: Coefficients of Predictors (BO & VC)

Consistent with the findings of Kaplan and Schoar (2005) and Gottschalg et al. (2004),

our logistic model also observes a concave relationship between fund size and fund per-
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formance for both BO and VC funds - that is a positive coefficient for fund size but a

negative one for its squared term. The effect is stronger on BO funds, which is justified

by the higher variance we observe in their targeted fund size. The management expe-

rience measured in terms of firm’s age (how long the GP has been in business and the

fund’s sequence number (the chronological number of the fund raised by the GP) shows

differentiated results. The firm age at the time of fund raising shows a positive effect on

fund performance for both fund types. The fund’s (overall) sequence number on perfor-

mance however seems to have a positive effect only at very high sequence numbers for

both VC and BO funds, in line with Roggi et al (2019)’s findings of a convex relationship

between fund sequence number and performance. Interestingly, the fund series number

shows a concave relationship instead, which could suggest that initial funds of a spinoff

series perform well. We also observed marginal increase in the Accuracy and Precision

after adding macro-economic variables such as the US GDP y-o-y growth and 10-year

US treasury bond rate during the fundraising year, with opposing coefficients for BO and

VC funds. High treasury bond yields during the time of fundraising shows a negative ef-

fect on BO fund performance which is understandable given their heavy reliance on debt

financing. Industry specialization seems to be a key performance driver for VC funds,

going against the finding of Lossen et al (2006) [20] however, BO fund returns still show

some degree of benefit from diversifying across industries.
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Chapter 7

Conclusion

In this chapter, we summarize the findings of our study and address the research questions

we presented in the introduction chapter. We further discuss the limitations we faced

in our research and offer recommendations on how future studies can improve on our

findings.

7.1 Conclusion

Out study aimed to train a range of machine learning models into a binary classification

setting aimed at determining the likelihood of a fund exceeding a pre-determined perfor-

mance threshold using a set of parameters available to LPs during the fundraising year.

Our target variable is constructed using the Kaplan-Schoar PME and takes the value 1,

if the fund exceed the PME value of one, and takes the value 0 if the PME is less than

one. Our predictor variables consisted of a mix of fund specific features like - targeted

fund size, management experience, industry and geographical specialization; as well as

indicators of the macroeconomic environment at the time of investment selection such as:

the fundraising year’s GDP growth rate, MSCI World Index growth, current volume of

funds raised and prevailing interest rates.

The results presented especially for the buyout (BO) funds make a convincing case for

the ability of machine learning models in predicting the fund performance with the top

models showing an accuracy of 69%, while the highest accuracy achieved for VC funds

was 61% . Our findings show encouraging signs of machine learning’s applicability for

complementing limited partner’s due diligence process. At the highest level, the best per-

forming models for BO funds were Logistic Regression, Linear Discriminant Analysis and

Support Vector Machines, clearly outlining the prevalence of the linear decision bound-
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aries for our datasets. Shallow learning clearly outperformed deep learning - a result,

which is atypical from other research areas, which we attribute to dearth of data. This

was also one of the reasons we were unable to experiment too much with advance models

like neural networks by adjusting the number of neurons and trying different activation

functions. For VC funds, the non-parametric model – KNN showed the best results in

terms of accuracy suggesting a more non-linear relationship between the variables.

The growing volume of PE funds demands a tool that could skim through hundreds of

options simultaneously and allow LPs to focus only a subset of “quality funds” that offers

the highest probability of success. Thus, employing AI and machine learning models like

ours could be a highly complementary tool for LPs in their investment decision process.

7.2 Limitation & Future Research

While relying on past fund performance alone is a sub-optimal method for judging subse-

quent fund’s performance, it could be an important variable when fitted alongside other

predictors and explored through machine learning models. Due to the limitations of our

data-set, a measure for past fund performance is missing from our model. It would be

interesting to see if the addition of this variable in future studies could make a signif-

icant improvement to our model’s predictive power. Another potential issue we face is

the use of a large portion of non-liquidated funds in our analysis, which could lead to

misleading results if the NAVs we use for calculating our PME values are biased due

to the self-reporting by GPs. While we take several steps to correct for this issue, our

dataset could still be affected by this problem. Training models with primarily liquidated

funds could lead to more reliable results. Furthermore, our study only applies a small

subset of information available to LPs during fundraising. It would be interesting to see

if adding proprietary level data into the analysis would make a significant improvement

in our results.
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[14] Tim Jenkinson, Miguel Sousa, and Rüdiger Stucke. “How Fair are the Valuations

of Private Equity Funds?” In: SSRN Electronic Journal (Mar. 2013). issn: 1556-

5068. doi: 10.2139/ssrn.2229547. url: https://papers.ssrn.com/abstract=

2229547.

[15] Steven N. Kaplan and Antoinette Schoar. “Private equity performance: Returns,

persistence, and capital flows”. In: Journal of Finance 60.4 (2005), pp. 1791–1823.

issn: 00221082. doi: 10.1111/j.1540-6261.2005.00780.x.
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Appendix A

A.1 Summary Statistics (Vintage Year)

Table A.1: Buyout Funds

Vintage Year Number of Funds Average Size ($M) Average Net IRR(%) Average MOIC Average PME

1980 1 60 32.1 11.87 3.84
1981 0 - - - -
1982 0 - - - -
1983 0 - - - -
1984 0 - - - -
1985 2 589 10.72 1.96 1.14
1986 1 59 34.4 2.94 1.67
1987 5 321.6 23.24 4.19 1.95
1988 4 322.25 15.92 2.01 1.26
1989 3 268.19 20.11 2.51 1.48
1990 4 281 21.94 2.62 1.41
1991 3 356 23.47 2.64 1.27
1992 6 108.25 12.79 2.07 1.12
1993 8 422.46 28.08 2.57 1.42
1994 16 464.64 23 2.06 1.32
1995 15 714.86 10.9 1.44 1.03
1996 21 376.11 12.62 1.65 1.26
1997 23 1021.02 6.83 1.43 1.3
1998 39 1054.24 8.89 1.59 1.5
1999 32 1053.6 7.59 1.51 1.38
2000 36 1591.74 16.05 1.95 1.69
2001 23 1124.85 23.24 1.84 1.5
2002 25 1114.7 20.11 1.88 1.44
2003 17 1616.8 12.95 1.71 1.38
2004 30 1191.08 9.4 1.67 1.35
2005 62 1667.45 10.62 1.61 1.22
2006 80 2919.73 6.83 1.57 1.11
2007 80 2454.18 9.66 1.59 0.99
2008 72 2501.49 13.58 1.78 1.04
2009 37 1353.34 15.76 1.81 1.13
2010 46 754.69 12.85 1.71 1.09
2011 59 1652.15 12.97 1.57 1.04
2012 70 1557.51 17.44 1.67 1.2
2013 74 1290.26 16.13 1.5 1.15
2014 71 1884.72 18.03 1.46 1.19
2015 70 2080.83 17.06 1.32 1.12
2016 23 2954.45 21.52 1.31 1.09
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Table A.2: Venture Capital Funds

Vintage Year Number of Funds Average Size ($M) Average Net IRR(%) Average MOIC Average PME

1980 0 - - - -
1981 0 - - - -
1982 1 54.8 8.4 1.74 0.72
1983 0 - - - -
1984 2 52.5 9.27 1.78 0.89
1985 1 64.7 19.87 2.9 1.6
1986 1 42.7 8.2 1.38 0.79
1987 4 213.07 13.24 2.29 1.22
1988 0 - - - -
1989 3 66 12.38 1.88 0.98
1990 7 111.44 17.07 2.15 1.16
1991 3 149.94 36.22 2.83 1.61
1992 8 114.76 30.49 3.8 1.9
1993 8 110.08 35.22 3.76 1.9
1994 9 119.44 36.9 6.21 3.01
1995 11 157.09 51.88 4.38 2.61
1996 16 183.05 37.27 3.36 2.42
1997 16 140.91 31.34 1.91 1.63
1998 27 250.46 20.91 1.69 1.6
1999 35 378.9 -2.48 0.81 0.78
2000 75 413.57 -3.24 0.94 0.77
2001 40 477.82 1.96 1.28 0.98
2002 24 279.22 -1.13 1.02 0.75
2003 18 252.99 0.35 1.15 0.82
2004 24 234.5 -0.78 1.49 1.06
2005 33 277.23 1.88 1.45 0.95
2006 44 466.26 2.41 1.35 0.83
2007 49 270.45 10.69 1.98 1.21
2008 40 398.29 8.12 1.85 0.99
2009 16 283.76 13.52 1.69 1.05
2010 18 310.71 13.21 1.78 1.13
2011 26 360.24 18.99 2.09 1.37
2012 18 429.33 12.26 1.65 1.16
2013 22 360.43 17.14 1.57 1.24
2014 26 313.71 31.34 1.64 1.27
2015 27 451.41 14.72 1.32 1.11
2016 7 191.56 22.05 1.43 1.11

Note: Here we present summary statistic on fund size and performance for our sample of 1058

Buyout (BO) 659 Venture Capital (VC) funds segregated by vintage year which is defined as year when

the fund made its first capital call from the LPs. The PME is constructed using the method presented

by Kaplan and Schoar (2005). The data is sourced from Preqin’s private equity data based accessed via

WRDS. The last reported value for cash flows and NAVs was 30th June 2019.
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A.2 List of Predictors

Note: Here we present list of raw variables used to train our models, their numerical type and

respective data sources. We also included squared terms for Fund Size USD, Fund Number Overall

and Fund Number Series in our models to capture the potential concave/convex relationships observed

between them and fund performance in past literature.
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A.3 Statistics and Distributions: Predictor Variables

(a) Fund Size($M) - BO (b) Fund Size($M) - VC

(c) Fund Number Overall - BO (d) Fund Number Overall - VC

(e) Fund Number Series - BO (f) Fund Number Series - VC
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(a) Firm Age -BO (b) Firm Age - VC

(c) Geographical Diversification -BO (d) Geographical Diversification - VC

(e) Industry Diversification - BO (f) Industry Diversification - VC

(g) Fund Focus - BO (h) Fund Focus - VC
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Table A.3: Predictor Statistics: BO Funds

GDP yoy TR 10yrs yoy MSCI Funds Raised Last Year Pcent Increase Funds Last Year

Minimum -1.790 1.800 -42.080 3 -0.370
Maximum 11.730 12.460 39.110 2, 266 0.910

Mean 4.640 4.160 8.740 956.310 0.180
Median 4.610 4.270 9.550 1, 058 0.190
Stdev 1.910 1.600 15.700 481.140 0.230

Skewness -1.400 0.720 -1.190 0.130 -0.150
Kurtosis 3.580 1 1.960 -0.210 0.230

Table A.4: Predictor Statistics: VC Funds

GDP yoy TR 10yrs yoy MSCI Funds Raised Last Year Pcent Increase Funds Last Year

Minimum -1.790 1.800 -42.080 16 -0.370
Maximum 12.240 13.920 39.110 2, 266 0.910

Mean 5.090 4.800 9.630 790.990 0.200
Median 5.660 4.800 12.840 764 0.220
Stdev 1.770 1.620 16.450 448.570 0.240

Skewness -1.500 0.630 -0.970 0.500 -0.060
Kurtosis 4.590 2.290 0.790 0.050 0.230
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Appendix B

B.1 Hyper-Parameter Analysis

Here we discuss how change in hyper-parameters impacts the accuracy of our results.

Overall, no one method can dominate in every scenario and each method’s applicability depends

on the unknown decision function of the data-set. Generally speaking, if the true decision boundary is

linear,then models like Linear Discriminant Analysis and Logistic Regression tend to perform well. When

the boundaries are moderately non-linear, Quadratic Discriminant Analysis may give better results. And

as the decision boundary gets complicated with additional non-linearity, non-parametric approaches such

as KNN can perform well. For instance, we have used n = 5, the number for nearest neighbours for

plotting the graphs. However, if we investigate the change the accuracy level by changing the number

of the nearest neighbours from 1 to 50 then we see how in BO data-set the accuracy reaches a peak and

then flattens out, whereas it drops after reaching the peak in the VC data-set. Such demonstration are

typical cases in many data science problems.

We first employed the nearest neighbour algorithm to test how non-parametric techniques fare com-

pared to our other models. KNN is a non-parametric method and therefore no assumptions are required

to be made with respect to its decision boundary. Generally, KNN performs better than linear models

when the decision boundary is non-linear. The case we do not observe in BO funds but is somewhat

visible in VC funds.

(a) Buyout (b) Venture Cap

Figure B.1: KNN Comparison

Coming to the analysis of the Support Vector Classifier model, we demonstrate in the plot B.2 the
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training scores and validation scores of an SVM (non-linear) for different values of the kernel parameter

gamma. We perform this analysis to re-establish that even non-linear kernels did not improve our

accuracy for the model. Both the training score and the validation score are low, representing under-

fitting. A moderate value of gamma will result in high values for both scores, i.e. the classifier is

performing fairly well. However, if the gamma is too high, the classifier will over-fit resulting in a good

training score but a poor validation score. We can only observe slight over-fitting in both the data-sets

when the orange curve (Training score) is higher than the blue curve (Cross-validation score).

(a) Buyout (b) Venture Cap

Figure B.2: SVM Validation Curves

(a) Buyout (b) Venture Cap

Figure B.3: SVC Regularization Curves

Similarly we have also varied ”C” i.e. the Regularization parameter to find the behaviour of SVC

and Logistic models. Please note that the strength of the regularization is inversely proportional to C. In

a sense, the ”C” parameter indicates to the SVM optimization the degree to which misclassifying needs

to be avoided in each training example. Hence, for large values of ”C”, the optimization will choose a

smaller-margin hyperplane if it does a better job in getting all the training points classified correctly.

Conversely, a very small value of ”C” will cause the optimizer to look for a larger-margin separating

hyperplane, even if that hyperplane misclassifies more points. For very tiny values of C, one usually
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gets misclassified examples, often even if the training data is linearly separable. We observe that after

a particular level of ”C”, the accuracy flattens out demonstrating the usage of regularization up to a

particular value and checking for overfitting.

Similarly, the plots in B.4 demonstrates the change in model accuracy for Logistic Regression with

respect to changing L2 regularization parameter.

(a) Buyout (b) Venture Cap

Figure B.4: Log. Regression Regularization Curves

The basic neural network model we employed also matches the performance of the Logistic and Linear

Discriminant Analysis for VC, and could have performed better given a larger data-set. We use neural

network model only to extent of comparison with our other parametric and non-parametric methods as

discussed before, since the variance for these advanced models can be very high when dealing with small

data-sets like ours.
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B.2 Correlation Graphs

Figure B.5: Correlation graph - Buyout

Figure B.6: Correlation graph - Venture Cap
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B.3 Model Accuracy and Precision

(a) Buyout (b) Venture Cap

Figure B.7: Accuracy Comparison

(a) Buyout (b) Venture Cap

Figure B.8: Precision Comparison
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B.4 AUC-ROC Curves

(a) LR Buyout (b) LR VC

Figure B.9: LR Cross-Validation

(a) LDA Buyout (b) LDA VC

Figure B.10: LDA Cross-Validation

(a) QDA Buyout (b) QDA VC

Figure B.11: QDA Cross-Validation
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(a) SVC Buyout (b) SVC VC

Figure B.12: SVC Cross-Validation

(a) KNN Buyout (b) KNN VC

Figure B.13: KNN Cross-Validation

(a) MLP Buyout (b) MLP VC

Figure B.14: MLP Cross-Validation

Note: We have employed both cross-validation and stratification to find the mean AUC (Area under

the Curve) for each model. We employed a 6-fold cross-validation for our analysis. Usually, the number

for folds is higher if we have large data-sets. The grey area around the mean shows how each model runs

and evaluates after each fold while gradually converging towards the mean.

70


