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Introduction 
 

Hasbrouck (2017) describes how markets have changed. At the end of the last century, 
financial markets started to become computerized and trading that had previously taken 
place on physical trading floors on exchanges moved over to electronic trading. Today 
the era of floor trading is over, and most markets are electronic. O’Hara (2015) calls this 
the new “high frequency world”, where he defines High-Frequency Trading (HFT) as 
computer- and strategy-based trading performed at very high execution speeds. There is 
an ongoing arms race in the HFT industry. Firms invest billions just to gain an edge and 
beat competitors by just a few milliseconds according to Budish et al. (2015).  

 

Due to its inherent demand for speed, HFT must employ trading algorithms, which are 
essentially computer programs provided with predetermined schedules for order 
execution. According to Aldridge (2013), the best HFT systems perform extensive 
analysis and simulation of different transaction-relevant characteristics, such as trading 
costs, based on high-frequency, tick-by-tick data. Intuitively, accurate quantitative 
models of transaction costs are of great importance to finance professionals.  

 

O’Hara (1995) defines market microstructure as the analysis of how specific trading 
mechanisms affect the price formation process, while Harris (2002) explains it as: “the 
branch of financial economics that investigates trading and the organization of 
markets.” Centralized regulation, digitalized clearing systems and stock exchange 
requirements can affect these trading mechanisms and can thus constitute explanatory 
factors in the study of market microstructure.  

 

Within market microstructure, a more recent theory called market microstructure 
invariance has been postulated by Albert S. Kyle and Anna A. Obizhaeva. The 
definition of market microstructure invariance is based on the intuition that financial 
markets transfer risk in business time, and Kyle and Obizhaeva (2016) define it as: “the 
hypotheses that the distribution of risk transfers (‘bets’) and transaction costs are 
constant across assets when measured per unit of business time”. Andersen et al. (2018) 
and Kyle et al. (2016) define bets as risk transfers and meta-orders, executed through 
trades (alternatively a series of trades), and as part of a more long-run strategy for 
profiting on market development. The major benefit of this new invariance theory is 
that it can render accurate predictions of different quantities in market microstructure by 
using empirically observable variables in financial markets, such as returns variance, 
price and trade volume. However, for the market microstructure invariance theory to 
hold, the invariance relation(s) must hold empirically across all assets and time periods.  

 

As a manifestation of its usefulness, several of Kyle and Obizhaeva’s postulated 
invariance assumptions and hypotheses have already been proven empirically. For 
instance, Kyle and Obizhaeva (2017) and Kyle and Obizhaeva (2019) introduce scaling 
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laws with important implications for two transaction cost components. Kyle and 
Obizhaeva (2017) confirm for Russian and US stocks that there exists a proportional 
relationship between relative bid-ask spread costs and an illiquidity measure, where the 
latter is proportional to the cube root of return variance to dollar volume. Secondly, 
Kyle and Obizhaeva (2019) derive a market impact model and find it superior to 
conventional wisdom in predicting price declines. 

 

Given this promising new research, we want to test whether the proposed relationship 
between the relative bid-ask spread and illiquidity, as well as the market impact model 
holds for the Swedish stock market. In light of the increased demand for precise 
transaction cost models in HFT, we are particularly interested to investigate if the bid-
ask spread model holds in intraday and high-frequency settings. Our first research 
question is: 

 

Is the relative size of the bid-ask spread proportional to illiquidity, the latter 
defined as the cube root of the ratio of return variance to SEK volume, for 

Swedish stocks on a high frequency? 

 

We answer this question by using HFT data spanning the time period between 20101 
and 2020, gathered on a millisecond frequency and then aggregated on a five-minute 
level. Since we obtain tick-by-tick data,2 this involves processing roughly 375 million 
rows of data. As a proxy for the Swedish stock market, we use OMXS30 index 
constituents.  

 

Interestingly, we find that the proportional relationship between the relative bid-ask 
spread and illiquidity statistically holds for the full time period, although it only holds 
for one year on a standalone basis. This result provides us with the insight that the 
transaction cost model holds for several stock markets with different market structures, 
as well for extremely high frequencies. Prima facie, this should facilitate valuable 
benchmarks for HFT models, since this concerns a quantifiable market microstructure 
relationship based on empirically observable variables. The quantitative nature of this 
relationship makes it suitable for processing by a computerized algorithm. 

 

Our second research question concerns whether an invariance-implied market impact 
formula renders more accurate predictions of price declines during the Great 
Coronavirus Crash of 20203 than conventional wisdom does. Here we compare the 
predictive power of the invariance model to conventional wisdom, as outlined by Kyle 

 
1 2010-02-08. 

2 Tick-by-tick data shows every trade that occurs. 
3 Coy (2020). 
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and Obizhaeva (2019), on a more recent stock market crash. In this regard we 
specifically answer the research question: 

 

Is invariance theory better to predict price declines during the Great Coronavirus 
Crash of 2020 than conventional wisdom?  

 

We obtain millisecond trading data for OMXS30 index futures and stocks for 2019 and 
the spring of 2020. Since we only have one crash, we, similar to Kyle and Obizhaeva 
(2019), do not achieve statistically valid results in regard to this question, but this was 
not our initial intention either. However, we manage to prove that the invariance-
implied market impact model generates predictions much closer in magnitude to actual 
price declines during the Great Coronavirus Crash of 2020, as compared to conventional 
wisdom.  

 

The remaining paper is structured as follows. Section 1 defines fundamental concepts in 
market microstructure invariance to help the reader better grasp the content of this 
thesis. Section 2 touches upon previous research most adjacent to our research questions 
and illustrates our sources of inspiration as well as our contribution. Section 3 provides 
the theoretical market microstructure invariance framework which our research is based 
on. Section 4 formally postulates our empirical hypotheses, research design and the 
epistemological and theoretical motivation behind these. Section 5 describes our data 
and empirical variables; section 6 presents our empirical findings and lastly section 7 
gives our concluding remarks.  
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1. Fundamental Concepts 
 

Due to the inherent complexity and quantitative nature of the research area of market 
microstructure invariance, we here attach a brief explanation of a few central concepts. 
Understanding of these concepts are vital in the further reading of this thesis, and the 
explanation of these therefore deserves its own section.  

 

Market Microstructure Invariance 

Market microstructure invariance is the name of a theory or a set of theories within the 
research field market microstructure. Market microstructure is concerned with analysis 
of dynamics and mechanisms of the price formation process, see Zovko (2008). In 
general, market microstructure invariance is a theory hypothesizing that different 
relationships between these trading mechanisms and components of the price formation 
process are invariant across assets and time when certain transformations are made, see 
Kyle et al. (2016). These transformations are further elaborated below, but they 
essentially imply that one must adjust for security-specific risk transfer intensity by 
transforming calendar time to business time. 

 

Bets 

Kyle et al. (2016) defines a bet as a transaction of assets “intended to produce an 
idiosyncratic gain” in accordance with an institutional trader’s view on market risk 
development. Market microstructure invariance, as proposed by Kyle and Obizhaeva 
(2016), implies viewing institutional trading in financial markets as trading games. 
Executed trades are essentially risk transfers, through which taking on and unloading 
risk are part of a more general and long-run profit-maximizing strategy. Due to the more 
long-run and overall character of bets, a single bet is often executed through a series of 
trades. The strategies underpinning bets are privately held information, and therefore 
hard to observe empirically. Trades are therefore usually used as a proxy for bets in the 
study of market microstructure invariance. 

 

Business Time  

Business time is another important concept within the study of market microstructure 
invariance. Kyle et al. (2016) defines business time as the expected calendar time 
between the arrival of bets in the market, with calendar time measured in conventional 
time units such as years, days, minutes etc. Stock-specific velocity is a related measure 
and is defined as the expected arrival rate of bets, and thus the inverse of business time. 
These definitions facilitate the economically relevant and illustrative interpretation that 
more liquid stocks, i.e. stocks trading at a higher frequency, have a higher velocity and 
consequently shorter business time than less liquid stocks. Kyle and Obizhaeva (2019) 
theorize that the length of business time is the only difference between different 
financial markets, and Kyle and Obizhaeva (2016) postulates that, in order for market 
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microstructure invariance to hold, one must account for this difference by transforming 
calendar time into business time.  

 

Bid-Ask Spread 

The bid-ask spread is one measure of transaction costs. It originates from the fact that 
buyers and sellers in financial markets place orders at prices consistent with their view 
on market development and risk. In order for a trade to occur, traders in financial 
markets must meet the counterparty’s price. The difference between the best (highest) 
bid price and the best (lowest) ask price is called the bid-ask spread. 

 

Liquidity and Illiquidity 

Liquidity of a financial asset is a measurement for how easily the asset can be converted 
to cash or cash equivalents. Illiquidity is simply the inverse of the chosen liquidity 
measure. Kyle et. al (2016), however, use a slightly different definition for liquidity and 
illiquidity. They define illiquidity as the average dollar cost of executing an average bet 
divided by the dollar value of the average bet. The illiquidity is a volume-weighted 
transaction cost and Kyle et. al (2016) express this as a percentage of the value of the 
average bet.  

 

Tick Size 

As described by Harris (2002), tick size refers to the smallest allowed price movement 
in a financial market. The bid-ask spread, measured in absolute terms, can never be 
smaller than the tick size. Tick sizes are set by regulators and exchanges. In. January 
2018, the European Securities and Markets Authority (ESMA) enacted the second 
Markets in Financial Instruments Directive (MiFID II),4 containing harmonizing 
regulation regarding securities markets in the EU. This regulation concerns, among 
other things, tick sizes.  

 

 

 

 

 

 

 

 
4 Directive 2014/65/EU of The European Parliament and of The Council of 15 May 2014 On Markets In 
Financial Instruments and Amending Directive 2002/92/EC and Directive 2011/61/EU. 
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2. Literature Review 

This thesis revolves around three main articles, focusing on the derivation of key 
variables and analysis methodology within market microstructure invariance, intraday 
trading invariance, and transaction costs. The exhibited literature lays the theoretical 
foundation for the thesis and provides testable quantitative predictions for bid-ask 
spreads and market impact costs. 
 

2.1. Dimensional Analysis, Leverage Neutrality, and Market 
Microstructure Invariance 

Kyle and Obizhaeva (2017), applies dimensional analysis – an analytical method 
originating from physics, which simplifies scientific inferences by restricting the 
analysis to a set of assumed explanatory fundamental variables. Their analysis is 
supplemented by the financial equivalent of physics conservation laws, specifically the 
no-arbitrage principle of leverage neutrality. They ultimately pose invariance 
assumptions implying that some quantities are constant across assets and time. Kyle and 
Obizhaeva (2017) test their predictions empirically for US and Russian stocks. They 
find that scaling laws for bid-ask spreads and linear market impact costs, both 
comprised of their defined illiquidity measure, is consistent with financial data.  

 

This article provides us with the necessary derivations, methodology and quantitative 
models. Our empirical analysis is performed for a different financial market, for a 
different time period and for high-frequency data. Our thesis provides additional 
empirical evidence for market microstructure invariance, in accordance with the central 
notion that invariance should hold across all assets and across time.  

 

2.2. Intraday Trading Invariance in the S&P 500 Futures Market 
Andersen et al. (2018) use tick-by-tick data on E-mini S&P 500 futures contracts to 
study how different trading activity variables are related on an intraday level. They 
propose a new theory called Intraday Trading Invariance (ITI) as a high-frequency 
extension of market microstructure invariance. This is new since market microstructure 
invariance theory usually involves bets over longer execution horizons (e.g. months). 
Andersen et. al (2018) test several invariance relationships by averaging tick-by-tick 
data, aggregated on a one-minute level, across all trading days in their sample. Their 
results confirm that the ITI hypothesis holds for the E-mini S&P 500 futures market.  

  

We are most interested in the methodology from Andersen et al. (2018) for measuring 
variables, aggregating them and testing the above-mentioned ITI hypothesis. By 
applying the ITI analysis methodology on our own sample, we confirm that the specific 
scaling laws derived in Kyle and Obizhaeva (2017) hold for high-frequency data. 
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2.3. Large Bets and Stock Market Crashes 
Kyle and Obizhaeva (2019) apply an invariance-implied model to predict market 
impacts during stock market crashes, characterized by intense selling pressure and large 
price declines. They compare their predictions with conventional wisdom, which 
assumes that price elasticity in financial markets is such that selling 1% of market 
capitalization has a market impact of less than 1%. The main difference between 
conventional wisdom and the invariance-implied model is that the latter accounts for 
business time. The consideration of business time implies larger price impacts in more 
liquid markets. Kyle and Obizhaeva (2019) contrast their model with conventional 
wisdom to compare the relative accuracy of these models on five large crash events 
between 1929 and 2010 and find their model superior. 

 

This article provides us with a market microstructure invariance model for predicting 
price movements induced by large sell orders. We also test the relative accuracy of the 
invariance model for the more recent Coronavirus Crash of 2020. 
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3. Theoretical Background 
 

As one purpose of this thesis is to investigate the potentially proportional relationship 
between the relative size of bid-ask spreads and illiquidity, we must formally derive a 
consistent and logical measure of these market microstructure phenomena. The 
computation of the bid-ask spread is generally accepted, and even though we transform 
this to a relative measure by relating it to the mid-price, this part of the theory is 
relatively straight-forward.  

 

Market impact costs are incurred for traders when prices move against them as a result 
of their own trading activities. The result of buy and sell orders is that the trader will 
face new adverse prices if he or she continues to trade in the same direction. The 
difference between the previous execution price and the new one the trader would face, 
is the market impact cost. Bid-ask spread is another transaction cost and can be 
interpreted as the cost that the trader would incur if he or she would simultaneously buy 
and sell the same security at the best prevailing ask and bid price, respectively. The bid-
ask spread is defined as the difference between the best bid and ask prices.  

 

The other purpose of this thesis is to test a market microstructure invariance model for 
predicting price developments induced by intense selling pressure during stock market 
crashes. The core premise and hypothesis presented in Kyle and Obizhaeva (2019) is 
that market microstructure invariance can predict price declines in stock market crashes 
more accurately than conventional wisdom. In this section we briefly derive the 
invariance-implied market impact formula from Kyle and Obizhaeva (2019).  

 

Section 3.1 presents the relevant theoretical background, relevant derivations and 
necessary assumptions underpinning our used illiquidity measure and its proposed 
relationship to the relative size of the bid-ask spread. This largely mimics Kyle and 
Obizhaeva (2017). Section 3.2 includes a brief constructive presentation of the 
invariance-implied market impact formula and the intuitive rationale behind its 
superiority to conventional wisdom.  

 

3.1. Dimensional Analysis, Leverage Neutrality, and Market 
Microstructure Invariance 

Kyle and Obizhaeva (2017) use dimensional analysis, an analytical method which 
originates from physics which facilitates inferences regarding complex relationships 
between variables. The method simplifies these complicated relationships by imposing 
certain restrictions, which reduces the number of explanatory variables to a restricted set 
of fundamental variables.  
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An illustrative example of dimensional analysis in physics is the case of the British 
physicist G. I. Taylor’s estimation regarding the atomic bomb developed within the 
Manhattan project (Trinity Test, 1945, New Mexico). More specifically, Taylor was 
asked to estimate the developed bomb’s energy output, see Deakin (2011). The details 
of the Manhattan Project were classified and thereby not available to Taylor, he had 
only the press images from the test explosion to rely on. Taylor applied the fundamental 
units of physics, such as length, mass, time and energy, along with assumed scaling 
arguments, to formulate a proposed relationship between the radius of the sphere, 
elapsed time since the explosion and the energy of the explosion. Once the project 
details were later exposed, Taylor was proven to have arrived at an estimate which was 
very close to reality. 

 

Analogously to G.I. Taylor, Kyle and Obizhaeva (2017) apply dimensional analysis in 
finance to derive scaling laws for bid-ask spread and market impact costs. The financial 
application of dimensional analysis initially requires deciding on (assuming) the right 
set of explanatory variables, and identifying the relevant base dimensional quantities in 
which these variables are measured. The financial equivalents of physics’ base 
dimensions are by Kyle and Obizhaeva (2017) identified as value, measured in currency 
(e.g. USD), asset quantity, measured in number of contracts or securities, and time, 
measured in conventional time units such as years, days, minutes, milliseconds and so 
forth.   

 

3.1.1. Dimensional Analysis Application 
When institutional traders execute bets through order placement in financial markets, 
they move market prices. This occurs due to increased demand as well as information 
asymmetries and adverse selection.5 Buy orders of institutional sizes signal to the 
market that a stock might be undervalued, while a sell order conversely signals that a 
stock might be overvalued. Buy bets puts upward pressure on prices while sell bets 
work in the opposite direction, and we denote this market impact cost of a bet G. 
Specifically, G denotes the expected price impact cost of executing a bet of a certain 
size, expressed as a fraction of the unsigned value traded through the bet. This is, 
however, a general notion of transaction costs and there are at least three special cases, 
which G takes on in the form of a more specific transaction cost. For now we just 
mention them here as bid-ask spread, linear market impact cost and square-root market 
impact cost, but below we show the specific derivation of the general transaction cost 
formula, as outlined by Kyle and Obizhaeva (2017). 

 

Market microstructure is concerned with trading mechanisms at work in financial 
markets. The beauty of financial markets, and a fact that simplifies quantitative analysis 
and derivation of relationships, is that there is a limited amount of observable, 
quantitative variables at work. A lot of trading-relevant variables also consist of 

 
5 Ong et al. (2020) illustrates some of these effects by proving that institutional ownership has effects of 
IPO pricing. 
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combinations of more fundamental variables whose existence can be taken as given. By 
deducing the financial equivalents of the physics base dimensions, the isolation of 
fundamental variables becomes even more intuitive. 

 

Going forward, stock- and time-specific variables are denoted with subscripts j and t to 
indicate stock j at time t. Kyle and Obizhaeva (2017) assume that the market impact cost 
𝐺!" is a function of the fundamental financial variables asset quantity 𝑄!", asset price 
𝑃!", volume 𝑉!", return variance 𝜎!"# . We initially assume that the market impact cost 𝐺!" 
is any function of these variables. For clarity, the difference between 𝑄!" and 𝑉!" is that 
𝑄!" represents asset quantity relating to an individual bet, and 𝑉!" represents trading 
activity in the market by measuring the amount of trading in a specific stock over a 
specific time interval. Kyle and Obizhaeva (2017) also introduce the expected bet cost 
as an explanatory variable for the market impact cost 𝐺!". They claim that the 
assumption underpinning this inclusion is less intuitive than the inclusion of the other 
chosen variables. The formula for the unconditional expected bet cost is: 

 

𝐶 ≔ 𝐸)𝐺!"𝑃!"*𝑄!"*+	 (1) 

 

As can be seen in equation (1), 𝐶 is the expected product of the stock- and time-specific 
market impact cost 𝐺!" and price 𝑃!" for executing a bet of the unsigned bet size 𝑄!". 
The reason for the absence of subscripts with regards to 𝐶, is that it is assumed to be 
constant across all stocks and time. This constitutes an additional market microstructure 
invariance assumption. In summary, Kyle and Obizhaeva (2017), assume that these five 
variables are explanatory with regards to 𝐺!", and thus constitute arguments in the 
function of 𝐺!", rendering us the assumed formal relationship: 

 

𝐺!" ∶= 𝑔3𝑄!",	𝑃!" , 𝑉!" , 𝜎!"# , 𝐶5 (2) 

 

At this stage, we have yet to assume or conclude the exact composition of function g in 
equation (2). We initially restrict our analysis to this set of five assumed explanatory 
variables. This is a key step in dimensional analysis. Kyle and Obizhaeva (2017) 
mention that due to the inherent procedure of dimensional analysis, some explanatory 
variables might have been omitted. Since we also apply dimensional analysis, we might 
also suffer from omitted variables and misspecifications. This is, however, mitigated by 
the fact that our intention is to essentially test their proposed market microstructure 
invariance relationship. Therefore, despite our derivation of these relationships and 
inherent variables, we take this specification as exogenously given, provided by existing 
theory in the field of market microstructure invariance.  

 

 



12 

The assumed explanatory variables are divided into (1) variables measured in base 
dimensional quantities, and (2) those measured in dimensionless quantities. 
Dimensionless quantities are quantities other than the base dimensional quantities, and 
also includes constants. For clarification purposes, we here summarize the basic 
dimensional quantities in which our variables are measured: 

 

7𝐺!"8 = 1;   7𝑄!"8 = 𝑠ℎ𝑎𝑟𝑒𝑠; 

7𝑃!"8 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦/𝑠ℎ𝑎𝑟𝑒𝑠; 7𝑉!"8 = 𝑠ℎ𝑎𝑟𝑒𝑠/𝑑𝑎𝑦; 

[𝜎!"#] = 1/𝑑𝑎𝑦;  [𝐶] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦. 

 

The brackets indicate that what is stated on the right side of the equation is the basic 
dimensional quantity in which the stated variables are measured in. The quantity of 1 
mentioned in relation to 𝐺!" indicates that this quantity is dimensionless, since it is a 
fraction not consisting of basic dimensional quantities.  

All variables that are not measured in the financial, basic dimensional quantities (i.e., 
currency, asset quantity or time), or combinations hereof, are considered dimensionless. 
As can be seen in the notation above, in this setup, 𝐺!" is the only dimensionless 
variable. Through this exposition one key benefit of choosing these explanatory 
variables begins to emerge. Most of these variables are accessible from financial 
markets data and measured in easily comprehensible and generally accepted basic 
dimensional quantities. 

 

The three dimensional variables 𝑄!", 𝑃!" and 𝜎!"#  are dimensionally independent and span 
the three basic dimensions. Further, 𝑉!" and 𝐶 can be expressed by combining these 
three variables. The fact that the basic dimensions in finance are three – currency, 
quantity and time – and we have five variables, allows us to replace 𝑉!" and 𝐶 by 
introducing two newly constructed dimensionless variables. The new dimensionless 
variables 𝐿!" and 𝑍!" are constructed by adding a dimensionless scaling constant 𝑚#: 

 

	𝐿!" ∶= K
𝑚#𝑃!"𝑉!"
𝜎!"#𝐶

L

%
&
	 (3) 

 

𝑍!" ∶=	
𝑃!"𝑄!"
𝐿!"𝐶

	 (4) 

 

For the general methodology (the Buckingham theorem), see Kyle and Obizhaeva 
(2017). Following the subscript notation above, 𝐿!" and 𝑍!" represent the stock- and 
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time-specific liquidity measure and scaled bet size, respectively. More specifically, 𝑍!" 
is the size of a bet expressed as a multiple of the mean of the unsigned bet size. Since 
the market impact cost 𝐺!" is dimensionless, and for consistency in units on both sides 
of equation (2), the dimensional quantities 𝑄!", 𝑃!" and 𝜎!"#  on the right hand-side must 
be dropped as well.  

 

𝐺!" ∶= 𝑔3𝑄!",	𝑃!" , 𝑉!" , 𝜎!"# , 𝐶5 = 𝑔3𝐿!" , 𝑍!"5	 (5) 

 

In equation (5) we note that 𝐺!" is expressed using only two dimensionless quantities 
and thus independent of the units of measurement. This implication is based on the 
assumption that rational investors are not confused by units of measurement. Kyle and 
Obizhaeva (2017) claim that rational investors do not suffer from money illusion, and 
thereby do not change their behavior when shares are split. Nor do rational investors 
confuse calendar time with business time. Conclusively, it is irrelevant if transaction 
costs are measured in different currencies, since these currencies are interchangeable.  

 

3.1.2. Leverage Neutrality 

Kyle and Obizhaeva (2017) supplement their derivation with a universal, financial 
equivalent of a physics conservation law, leverage neutrality. This principle is a 
generally accepted sub-principle of the Modigliani and Miller principle of no-arbitrage. 
In a transactional setting, this principle implies that adding a riskless asset, i.e. cash, to a 
transaction in risky securities, will not alter the cost of such a transaction, since cash is a 
riskless asset. Leverage neutrality also involves the capital structure irrelevance theory 
as outlined by Modigliani and Miller (1958), which states that a firm’s undertaking of 
riskless debt does not alter the cost of trading the firm’s securities.  

 

Kyle and Obizhaeva (2017) makes a supplementing interpretation of leverage neutrality, 
from a macro perspective. This interpretation implies that margin requirements and repo 
haircuts are irrelevant for the economics of trading, i.e. irrelevant for transaction costs. 
To bring clarity to the terminology, repo haircuts and margin requirements are distinct 
from each other but both concern collateralization. Repo haircuts, or repurchase 
agreements haircuts, are the conservative valuation discount applied to collateral by, for 
instance, a securities dealer. Margin requirements concern maintaining the value of 
posted collateral, and if this drops too low in, for instance, a margin account, the 
potential debtor is contractually forced to post additional collateral, see Dang et al. 
(2013).  

 

By invoking these implications of leverage neutrality, Kyle and Obizhaeva (2017) show 
that, since liquidity 𝐿!" scales proportionally with the cash included in a transaction and 
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is thereby not leverage neutral, impact cost 𝐺!" scales inversely to liquidity 𝐿!" in 
equation (6). 𝑍!" is leverage neutral since it represents the scaled bet size: 

 

𝐺!" ≔ 𝑔3𝑄!" , 𝑃!" , 𝑉!" , 𝜎!"# , 𝐶5 = 𝑔3𝐿!" , 𝑍!"5 =
1
𝐿!"

𝑓3𝑍!"5	 (6) 

 

3.1.3. Market Microstructure Invariance Assumptions 

The third step in Kyle and Obizhaeva (2017) is formulating different invariance 
hypotheses. They initially assume that the function 𝑓 in the general transaction cost 
formula in equation (6) takes the form of a power function with exponent 𝑤: 

 

𝑓3𝑍!"5 = 𝜆̅*𝑍!"*
' (7) 

 

By assuming different values for this exponent in equation (7), they make predictions 
about bid-ask spread costs, linear and square-root market impact costs. For our thesis, 
bid-ask spreads and linear market impact costs are most interesting. Therefore, we show 
them below. 

 

Bid-ask spread cost (𝑤 = 0): 

 

	𝐺!" = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙
1
𝐿!"
	 (8) 

 

Linear market impact (𝑤 = 1): 

 

𝐺!" = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙
𝑃!"*𝑄!"*
𝐶𝐿!"#

	 (9) 

 

Bid-ask spreads are not dependent on bet size 𝑄!" and the proportionality constant 
between bid-ask spreads and illiquidity in equation (8) should be constant and 
dimensionless across all assets. On the other hand, we see that linear market impact 
depends on bet size in equation (9). Finally, Kyle and Obizhaeva (2017) proceed to set 
the market impact cost 𝐺!" in equation (8) to the relative bid-ask spread 𝑆!" 𝑃!"⁄ , i.e. the 
size of the bid-ask spread as a fraction of the mid-price. The mid-price is the price 
located in the middle of the prevailing best bid and ask prices. Like 𝐺!", the relative bid-
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ask spread 𝑆!" 𝑃!"⁄  is a dimensionless fraction. This relationship provides the theoretical 
foundation for our first hypothesis.  

 

3.2. Invariance-Implied Market Impact in Stock Market Crashes 
Kyle and Obizhaeva (2019) build on the core premise that the only difference between 
different financial markets is that business time passes faster in more liquid markets 
than less liquid markets. They use the concepts of transformation of calendar time to 
business time and the inversely correlated measure velocity to predict price impacts 
observed in financial markets during times of intense selling pressure, and contrasts this 
to predictions according to so-called conventional wisdom.  

 

3.2.1. Predicting Market Impact Through Conventional Wisdom 
The rationale underpinning the conventional wisdom model for predicting market 
impact, is by Kyle and Obizhaeva (2019) said to be the Capital Asset Pricing Model 
(CAPM), as well as competitive and efficient financial markets. Since the CAPM model 
implies that all stocks included in the market portfolio contributes to the level of 
systematic risk, trading a certain quantity of a single stock for a limited time carries 
significantly less rewardable risk than the entire market. According to PwC (2021), the 
market risk premium historically has varied around 5-7%. In light of this, conventional 
wisdom states that price elasticity in financial markets is such that a sell order 
corresponding to 1% of market capitalization generates a price impact of less than 1%. 
The conventional wisdom is by Kyle and Obizhaeva (2019) interpreted mathematically 
such that the expected unsigned market impact ∆𝑃/𝑃, approximated logarithmically as 
∆ln𝑃, can be expressed as the fraction of average daily volume (ADV) traded, wherein 
Kyle and Obizhaeva (2019) assume that a stock has an asset turnover of a 100% over 
the course of a trading year (250 days): 

 

∆ln𝑃 ≈
∆𝑃
𝑃 =

𝑄
250 ∙ 𝑉 	

(10) 

 

Where 𝑉is the share volume over a certain interval (normally a calendar day). In 
application, this leads to Kyle and Obizhaeva (2019) taking the currency volume 𝑃𝑉 
over the total market cap of the relevant instrument(s).  

 

3.2.2. Predicting Market Impact Through Market Microstructure Invariance 

Kyle and Obizhaeva (2019) emphasize the importance of accounting for the asset-
specific business time, which they mean is the only difference between different 
financial markets. Henceforth we return to the conventional notation wherein we let 𝑃 
denote price, 𝑉 denote daily share volume, and 𝜎 returns volatility. The derivation of 
the invariance-implied market impact formula in Kyle and Obizhaeva (2019) rests upon 
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the core premise within market microstructure invariance - the transformation of 
calendar time to business time.  

 

In our review of Kyle and Obizhaeva (2017) we derive the market microstructure 
conjecture that expected transaction costs of executing bets are constant across markets, 
contingent on that the bets transfer the same currency risk (𝑃 ∙ 𝜎) per unit of business 
time. Kyle and Obizhaeva (2019) pair this transaction cost invariance conjecture with 
the invariance of returns volatility, given the transformation of calendar time to business 
time. Kyle and Obizhaeva (2019) and Kyle et. al (2016) define trading activity 𝑊 as a 
measure of the rate at which a market transfers risk: 

 

𝑊 = 𝑃 ∙ 𝑉 ∙ 𝜎	 (11) 

 

Trading activity 𝑊 is measured in dollars/day3/2 due to the fact that it is comprised of 
currency volume 𝑃𝑉, measured in dollars/day, and volatility 𝜎 measured in units per 
day1/2. Kyle and Obizhaeva (2019) further introduces a benchmark stock with business 
time corresponding to one calendar day, and is said to approximately correspond to a 
stock at the bottom of the S&P 500 index. This stock is introduced to standardize units 
in the step-by-step formula derivation, and is kept throughout the derivation of the 
linear price impact model. This stock has a price 𝑃∗ = $40/share, expected trading 
volume 𝑉∗ = 1,000,000 shares/day and daily volatility 𝜎 = 2%/day1/2.  

 

Kyle and Obizhaeva (2019) derive the relationship between trading activity 𝑊 and 
variables observable in financial markets, and invoke the deduced proposition that 
invariance holds for the probability distribution of random bet sizes, contingent upon 
scaling by business time over one business day. They denote the used scaling constant 
𝑍∗. The introduction of this scaling constant “forces” 𝑄 to become invariant. This is 
necessary when deriving an invariance-based price impact model, since this allows for 
model application across markets. Once Kyle and Obizhaeva (2019) derive 𝑄 as 
invariant, the equated bets are said to render equivalent price impacts, denoted	∆𝑃 𝑃⁄ , 
contingent of them being expressed as a fraction of returns volatility over one business 
day. In light of this, it becomes possible to estimate market impacts across markets with 
different characteristics, by accounting for differences in business time. 

 

Using a log-linear impact model ∆𝑃 𝑃⁄ ≈ ∆𝑙𝑛𝑃, the linear price impact formula, along 
with the involvement of the benchmark stock constants, renders an invariance-implied 
market impact formula for empirical testing:  

∆ ln𝑃 =
𝜆̅
10) ∙ d

𝑃𝑉
40 ∙ 10*e

%
&
∙ f

𝜎
0.02g

)
& ∙

𝑄
(0.01)𝑉 	

(12) 
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Kyle and Obizhaeva (2019) estimate the term 𝜆̅/10) to be five basis points (0.05%), 
and is for the purpose of our application of this model, exogenously given. This 
function takes unsigned bet size 𝑄, dollar volume 𝑃𝑉, and return volatility 𝜎 as 
arguments. The result is the predicted invariance-implied market impact.  

 

In summary, through their step-by-step derivation, Kyle and Obizhaeva (2019) derive 
an invariance-implied market impact formula to be compared to conventional wisdom 
in predicting price developments in stock market crashes. They hypothesize and confirm 
that differences in business time constitutes an explanatory consideration necessary for 
a higher level of accuracy in predicting price movements caused by large sell orders 
preceding stock market crashes.  
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4. Hypotheses and Research Design 

This section includes our explicitly formulated hypotheses and the theoretical 
motivation behind them. Further, this section presents our research design, which 
includes a description of our practical approach, coupled with the theoretical 
motivations behind it.  

 

4.1. Hypotheses 
We formulate two market microstructure invariance hypotheses about transaction costs 
on the Swedish stock market. First, we formulate our invariance hypothesis regarding 
the bid-ask spread on the Swedish stock market: 
 

The relative size of the bid-ask spread has a proportional relationship to the asset-
specific illiquidity measure, defined as the cube root of the ratio of return variance to 

SEK volume, for Swedish stocks observed on a millisecond frequency (tick-by-tick data) 
for the period of 2010-02-08 to 2020-12-31.  

 

ln K
𝑆!"
𝑃!"
L = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 1 ∙ ln K

1
𝐿!"
L (13) 

 

Where 	

	
1
𝐿!"

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ i
𝑃!"𝑉!"
𝜎!"#

j
+%&

(14) 

And 

 

𝐿 = Liquidity 

𝑆 = Absolute bid-ask spread 

𝑃 = Mid-price 

𝑉 = Share volume 

𝜎 = Volatility 

 

In order to statistically test the hypothesis in equation (13), we choose the log relative 
bid-ask spread as the dependent variable and the log illiquidity measure as the 
independent variable. Let 𝛽 denote the coefficient of the log illiquidity measure. We 
then formulate our null and alternative hypothesis as follows: 
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𝐻,: 𝛽 = 1 

𝐻%: 𝛽 ≠ 1 

 

Under the null hypothesis, the invariant relationship between the bid-ask spread and 
illiquidity measure holds for the Swedish stock market, i.e. the slope is equal to 1. This 
is similar to the manner in which Kyle and Obizhaeva (2017) postulate their hypothesis. 
In this setting, failure to reject the null hypothesis would confirm our market 
microstructure invariance hypothesis. This hypothesis corresponds to the first special 
case of the general transaction cost formula in equation (8). The hypothesis above is 
also coherent with the general market microstructure notion argued by Kyle and 
Obizhaeva (2016), that for invariance to truly hold, the proposed relationship must hold 
for all assets and across time. A successful outcome with regards to this hypothesis 
would add yet another market and another time period to the area of applicability of this 
transaction cost model. Furthermore, this would also extend the applicability of this 
transaction cost to an intraday setting, which would be particularly valuable due to the 
importance of precise and granular transaction cost models in HFT.  

 

Our second hypothesis concerns the invariance-implied linear impact cost in the 
Swedish stock market, which is another type of transaction cost. It is also the second 
special case of the general transaction cost formula in equation (9). We hypothesize the 
following: 

 

The invariance-implied market impact model comes closer in magnitude to predicting 
price declines in the Swedish stock market during the Coronavirus Crash of 2020, than 

conventional wisdom. 

 

Here our null hypothesis is that the linear market impact model is able to predict the 
magnitude of price declines during large stock market crashes more accurately than 
conventional wisdom. The alternative hypothesis is that the magnitude of the price fall 
suggested by conventional wisdom comes closer to the actual price impact. We are not 
able to statistically test this second set of hypotheses for two reasons. First, these are the 
same hypotheses as formulated in Kyle and Obizhaeva (2019) and they do not provide 
an appropriate test statistic. Second, we have only looked at one stock market crash and 
therefore, we do not have a sufficient amount of data to run statistical tests. However, 
being able to quantitatively show the relative superiority of this impact model would 
provide future stock market crash stakeholders with a complementary model, which at 
least historically has generated more accurate predictions than conventional wisdom. 
Since risk models generally make use of sensitivity and scenario analyses, this could 
provide yet another simulation pattern and dimension to such models.  
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4.2. Research Design 

In the step-by-step dimensional analysis in section 3, we pose necessary assumptions 
and show derivations of some formulas in a condensed manner to promote readability. 
The attentive reader will notice that this step-by-step methodology in relevant parts 
closely mimics Kyle and Obizhaeva (2017), whose methodology in turn largely 
originates from Barenblatt (1996) for non-financial applications. One reason for the 
conformity between our thesis and Kyle and Obizhaeva (2017), is that Albert S. Kyle 
and Anna A. Obizhaeva are the main proponents of invariance theories within market 
microstructure. The second and dominant reason is that we wish for a potentially 
successful empirical result of our research to add to the accumulated empirical findings 
in this area, by adding another market and longer time period.  

 

Cross-Sectional Analysis 

A cross-sectional research method implies collecting data from different participants at 
one point in time, see Allen (2017). The participants in our case are the different stocks 
that are, at any point in time, included in the Swedish stock index OMXS30. We gather 
stock-specific data on certain frequencies in order to construct a proxy for the Swedish 
stock market (the reason for us not to study the index directly is that it is not securitized 
and data on the index lacks certain relevant trading variables). Since market 
microstructure invariance theories say that supposedly invariant relationships should 
hold across all assets and time, we perform statistical analysis for both individual stocks 
and on an aggregate level across all stocks as in Kyle and Obizhaeva (2017). We also 
choose to look at the aggregate sample of stocks in order to test if invariance holds for 
our proxy for the Swedish stock market.  

 

Intraday Analysis 

Bets are inherently part of more general, long-run strategies, and in Kyle and Obizhaeva 
(2017) the analysis is performed on a daily frequency and over the course of one year. 
To test the durability of the invariance theory even more, we wish to see whether 
invariance between the relative size of the bid-ask spread and illiquidity holds for an 
intraday frequency as well. We do this by applying the adjusted invariance analysis 
method of intraday trading invariance, a term coined by Andersen et al. (2018). We 
aggregate our empirical variables by certain time intervals, e.g. five-minute intervals, to 
study intraday trading patterns for Swedish stocks similarly as Andersen et. al (2018) do 
for E-mini S&P 500 futures. With this approach we can capture the time-of-day effect 
for intraday trading. The considerations underpinning our chosen level of frequency 
(length of time interval), entails balancing between a high enough level of granularity 
and sufficient number of observations (trades) in each time interval. Longer intervals 
gives a greater number of observations, but are less precise and less likely to capture 
short-lived intraday patterns/fluctuations. On the other hand, shorter intervals may only 
contain a few observations, leading to larger standard errors of arithmetic averages.  
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Correlational Analysis 

In general, our first and main research question implies investigating and empirically 
testing a proposed relationship or correlation between two variables. Kyle and 
Obizhaeva (2017) do not investigate causality between the two variables, and neither do 
we. The results of this thesis can thus not facilitate inferences regarding whether the 
bid-ask spread causes illiquidity or vice versa. However, it can provide normative 
benchmarks and predictive transaction cost models.  

 

Ordinary Least Squares Regression 

The correlational character inherent in the bid-ask spread hypothesis renders regression 
analysis as the evident choice in determining whether there exists a statistical 
relationship between them. The assumption of proportionality, also incorporated in our 
research question and hypothesis, further facilitates the choice of methodology. The 
proportionality, wherein the illiquidity measure is multiplied with a constant, renders 
that this relationship regardless of intercept and thus the value of this constant, should 
render a correlational, linear relationship. This motivates us to apply the ordinary least 
squares (OLS) regression model. This regression model generates a best fitted line 
based on made observations, which in our case are the values of the relative size of the 
bid-ask spread and the values of our computed illiquidity measure respectively, for each 
time interval.  

 

Confidence Intervals and Robustness Checks 

As part of the empirical statistical testing of our hypothesis we also construct a 
confidence interval, centered around our regression slope. This allows us to validate the 
theory if the confidence interval spans a range which includes our desired slope of 1. 
This confidence interval could also, upon failure to validate our postulated market 
microstructure invariance hypothesis, provide a quantitative basis for qualitative 
statements regarding economic closeness to the slope 1.  

 

We also perform robustness checks wherein we test the sensitivity of our obtained 
results by making certain alterations to assumptions and inputs, without changing the 
general methodology. These alterations are thus not made to the assumptions 
underpinning the theoretical framework or the derivations of our variables, but rather to 
our testing procedure. We analyze different time periods, both in regard to our 
hypothesis test but also in regard to our construction of confidence intervals, where we 
aggregate our data on different time periods.  

 

Non-Statistical Test of Invariance-Implied Market Impact Model 

For our second hypothesis, concerning the relative accuracy of the invariance-implied 
market impact model we do not have sufficient data for performing a statistically valid 
hypothesis test. Such a test is however not undertaken by Kyle and Obizhaeva (2019) 
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either, and this is probably due to the lack of a large enough data sample. We suffer 
from the same problem. We can thus make quantitatively based statements regarding 
the relative accuracy, or closeness in magnitude, of the invariance-implied market 
impact model. We perform this test in the same way as Kyle and Obizhaeva (2019).  

 

We compare our predictions according to the conventional wisdom model to the 
predictions generated by the invariance-implied market impact model from Kyle and 
Obizhaeva (2019). The relative accuracy of these two methods are illustrated by 
comparing them to the actual price decline. By accounting for which method renders the 
prediction closest to the actual price decline, we are able to make quantitative, but not 
statistically supported, statements regarding the relative accuracy of these predictive 
models. 

 

As a substitute for statistical robustness checks, and since we only have one stock 
market crash in our sample, we will divide the period for this crash (later defined as the 
time period between the all-time high listing and the bottom listing of 2020) into several 
shorter sub-periods. We will also investigate how sensitive the invariance-implied 
market impact model is to input estimates, which is why we gradually alter the 
computation (“calibration”) period for the average daily SEK volume and volatility used 
as inputs in the model. 
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5. Data 
This section presents our data, outlined with regards to each of our respective 
hypotheses. The disposition is motivated by the use of different data for different 
hypotheses, and our first and main hypothesis require a lot more data processing. In 
each subsection, we first present the data in general, then our cleaning, processing and 
aggregating of this data. Lastly, we present identified and potential data issues as well 
as summary statistics regarding each dataset.  

The subsection regarding futures data follows, despite the absence of subheadings, the 
sequence outlined in this introduction. The absence of subheadings is motivated by the 
simpler data processing undertaken in regard to the futures data. 

 

5.1. Stock Data 
We use high-frequency trading data for the Swedish stock market to test the market 
microstructure invariance between percentage bid-ask spread and the illiquidity measure 
in Kyle and Obizhaeva (2017). We use data from NASDAQ OMX Stockholm (formerly 
known as the Stockholm Stock Exchange) from February 2010 to December 2020, 
which was obtained through the Swedish House of Finance National Research Data 
Center. The reason for us to choose this period, and not include older periods, is that 
NASDAQ changed their trading system from SAXXESS to the more advanced Inet, and 
data from SAXXESS is not freely available.  

  

For this thesis we use a reconstructed limit order book for each stock included in the 
OMXS30 index. A reconstructed limit order book includes the first and second level bid 
price, bid volume, ask price, ask volume, volume traded, and trade price timestamped to 
the millisecond. For this thesis, we only look at the first level of the limit order book, 
i.e. the top bid price, bid volume, ask price and ask volume. The top bid and top ask 
prices are used to calculate the bid-ask spread and the trade price and trade volume are 
used to compute the dollar volume (turnover).  

  

The data covers all the historical constituents in the OMX Stockholm 30 Index 
(OMXS30) between 2010-02-08 to 2020-12-31. The index consists of the 30 most 
traded stocks on NASDAQ OMX Stockholm and tracks the Swedish stock market. Its 
composition is reviewed semi-annually, and it happens that incumbent constituents are 
replaced by new stocks with a higher turnover in the market. We have adjusted the data 
for all exclusions and inclusions that occurred during our time period of interest, to 
include these new constituents. It deserves mentioning that the constituent companies 
were largely the same for the entire time period, and in total we have reviewed 35 
companies.  
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We only consider trades between 09:00 and 17:25 (CET),6 which corresponds to the 
continuous trading hours for equities on NASDAQ OMX Stockholm.7 We also exclude 
51 trading days from our sample because of erroneous start and end times inconsistent 
with official trading hours.  

 

Since Sweden is a member of the EU, NASDAQ OMX Stockholm must follow certain 
trading rules which apply to all stock exchanges in the EU. Since January 2018, the tick 
size of all stocks listed on EU exchanges is regulated by MiFID II. The tick-size, the 
minimum increment in bid or ask price, of each stock traded on NASDAQ OMX 
Stockholm depends on both the price of the stock and its “liquidity band”, according to 
MiFID II. The average daily number of trades (ADNT) in a stock on “the relevant 
market in terms of liquidity” determines which liquidity band it belongs to. The 
European Securities and Markets Authority (ESMA) decides what the relevant market is 
and calculates the average daily number of trades for each stock on an annual basis. 
This information is then released to the public. 

 

5.1.1. Data Limitations 
We do not have data on realized spread costs and use quoted bid-ask spreads instead. 
However, according to Kyle and Obizhaeva (2017) the predictions about bid-ask 
spreads from dimensional analysis, leverage neutrality and market microstructure 
invariance should still hold for quoted bid-ask spreads as well. 

 

Our choice of time period and frequency differs from Kyle and Obizhaeva (2017), 
which use minute-data from January to December 2015 aggregated on a daily basis. We 
study a longer period of time, more than 10 years of financial data on a millisecond 
level, which we then aggregate to five-minute intervals. In addition, since we use a 
longer time period our dataset is posed to contain more stocks split events, which in turn 
change the price of our selected stocks. Fortunately, neither stock splits nor different 
frequencies of data have an impact on these securities-specific measures, such as 
liquidity, according to Kyle and Obizhaeva (2017). 

 

Our granularity-induced purpose of intraday data would have been promoted by the use 
of futures on the Swedish stock market as opposed to stocks, with relevant necessary 
adjustments to our hypothesis and research question.  

 

 
6 http://www.nasdaqomxnordic.com/tradinghours 

7 NASDAQ OMX Stockholm is open between 09:00-17:30 CET, but there is no order-matching during 
the last five minutes (17:25-17:30).  
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Index futures are more liquid than stocks,8 hence they would be beneficial to study, 
especially with regards to the high level of granularity induced by our high-frequency 
data. A possible motivation behind the usage of E-mini futures in Andersen et. al (2018) 
is that such financial instruments are highly liquid and trades intensively, which adds 
value when gathering tick-by-tick data. 

 

Futures on OMXS30 exist, but there are two key reasons why we do not include these in 
our sample. Futures can be divided into regular futures and mini-futures. Mini-futures, 
like the ones studied in Andersen et. al (2018), is more easily accessible to the large 
masses of retail investors due to the lower quantity of underlying,9 and thereby lower 
trading thresholds, contained in each contract. Mini-futures on the OMXS30 index were 
first issued in the summer of 2020, and to study these we would have had to settle for a 
short time period. We deemed this time period as insufficient, and macroeconomically 
significant events during this particular time period, including the occurrence of both a 
pandemic as well as a turbulent presidential election in the US, would likely not render 
such a sample representative of normal market conditions.   

 

Regular futures on the OMXS30 index do, to our knowledge, exist for our time period 
of interest. However, the reason for not including these in our sample instead of the 
shares constituting the index itself, is due to limited access to a longer time series of 
data. There are, however, benefits of studying individual stocks instead. By studying 
individual companies on the Swedish stock market, we can gain insights about how the 
regression slope varies between the different companies in the index.  

 

Despite the fact that we constructed this index-like proxy ourselves in order to obtain 
the necessary trading-related data, a large index is what generally is referred to as “the 
market”. The OMXS30-included stocks make up approximately 60.5% of the market 
capitalization of the entire Stockholm Stock Exchange.10 Despite the fact that the 
sample most coherent with the terms “Swedish stocks” or “Swedish stock market” 
would be a sample of all publicly traded Swedish stocks, our chosen sample strikes, in 
our opinion, a good balance between feasibility, representation, data quality and 
precision, respectively.  

 

 

 

 
8 Nasdaq OMXS30 statistics. 

9 Kurov and Lasser (2004) highlights the main differences between regular futures and mini futures.  

10 Data obtained through the FinBas database, accessed through Swedish House of Finance. Market 
capitalization EOD per 2020-12-30 for OMXS30 stocks still included per 2021-05-12, and EOD data per 
2020-12-30 for Stockholm Stock Market. 
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5.1.2. Construction of Main Empirical Variables 
In this thesis we mainly use variables similar to Kyle and Obizhaeva (2017). This is 
motivated by the fact that financial market microstructure variables usually have a 
conventional and established composition, but also due to the fact that reproducing 
certain assumptions are necessary in order to test whether the bid-ask spread has a 
proportional relationship to illiquidity for Swedish stocks on an intraday level. 

 

Let the subscript j denote stock j, and subscript t denote each five-minute intraday 
interval during a full trading day (only continuous trading), that starts at 09:00 and 
closes at 17:25. As our entire sample contains 35 Swedish stocks, subscript j ranges 
from 1 to 35, and subscript t ranges from 1 to 101. Our main empirical variables are 
order size 𝑄!", SEK volume 𝑃!"𝑉!", realized volatility 𝜎!", main illiquidity index 1 𝐿!"⁄  
and the percentage bid-ask spread 𝑆!" 𝑃!"⁄ . 

 

We use tick-by-tick data with timestamp to the millisecond. For each stock we 
aggregate trades recorded on a millisecond frequency for each consecutive five-minute 
intraday interval for all trading days. More specifically, we calculate time-weighted 
averages for the mid-price 𝑃!" and the percentage bid-ask spread 𝑆!" 𝑃!"⁄  within each 
five-minute intraday interval. However, time-weighting is not possible for trades that 
are recorded at the exact same timestamp in our data sample. This happens when a 
marketable order is executed against several standing limit orders. Our remedy for this 
is to use a volume-weighting similar to the approach by Pohl et. al (2020), before the 
time-weighting. When multiple trades are recorded at the exact same timestamp on the 
millisecond 𝑡-, the observed mid-prices 𝑃!"! and percentage bid-ask spreads 
𝑆!"! 𝑃!"!⁄ are volume-weighted to give us one observation per variable for that timestamp 
and stock. The time-weighting follows what is done by McInish and Wood (1992). The 
procedure for calculating these volume- and time-weighted averages is explained in 
more detail in Appendix C.  

 

5.1.3. Summary Statistics 
Our empirical variables of interest are the formula input variables for the measurements 
whose relationships are tested. Apart from the directly computable mid-price 𝑃!", we 
focus on volume 𝑉!" and volatility 𝜎!" as these are our main inputs for our illiquidity 
measure 1 𝐿!"⁄ , whose composition is further derived and elaborated as one of our 
empirical variables in Appendix C. For these variables, we divide each trading day in 
101 five-minute intervals, assign them a chronological number based on their 
occurrence during the trading day, so that the time interval 09:00-09:05 (CET) receives 
the number 1 since this is the first five-minute interval of a trading day, 09:05-09:10 
receives the number 2 since this is the second five-minute interval of a trading day, and 
so on. Once this is done we group all variables by each five-minute interval and average 
them across our entire time period (February 2010-December 2020), in order to obtain 
average variable measurements for each five-minute interval.  
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TABLE 1. Summary Statistics for OMXS30 Constituents 

 
Table 1 – The summary statistics are reported for all OMXS30 stocks and the entire continuous trading 
session. Relative bid-ask spread is the ratio between bid-ask spread and the quoted mid-price, and it is 
measured in 10-4. Illiquidity is defined as the cube root of the ratio of return variance to SEK volume, and 
it is measured in 10-5. Volatility is realized volatility and is calculated by summing squared returns 
between each quoted mid-price within every five-minute interval. Realized volatility is then averaged 
across all five-minute intervals and stocks, and finally annualized by multiplying with 101 ∙ 252. All other 
variables are reported on a five-minute level.  

 

This thesis focuses on share volume 𝑉!", volatility 𝜎!", trade size 𝑄!", bid-ask spreads 
𝑆!" 𝑃!"⁄  and illiquidity 1 𝐿!"⁄ . We plot these variables together with the number of trades 
𝑁!" = 𝑉!" 𝑄!"⁄  in figure 1. All six trading variables show interesting intraday patterns. 
Perhaps surprisingly, bid-ask spreads in our sample do not follow the U-shaped pattern 
reported for NYSE stocks by Brock and Kleidon (1992) and Lee et. al (1993), nor the 
reversed J-shaped pattern for NYSE stocks documented by McInish and Wood (1992). 
In figure 1 bid-ask spreads for OMXS30 constituents drastically drop during the first 
minutes after market open, slowly decrease through the rest of the trading day (except a 
small jump around 15:30 when US markets open), and then begin to slightly fall around 
16:00. This more closely matches the (weakly) reversed J-shape for bid-ask spreads in 
DAX30 constituents that Hussain (2011) finds, with the main difference being that our 
spreads decrease rather than increase near the close. Chan et. al (1995) also see intraday 
bid-ask spreads for NASDAQ securities narrow near the close, in contrast to classical 
U-shape observed for NYSE securities. Their explanation for these different patterns is 
structural differences between the two markets (NASDAQ is a dealer market, while 
NYSE is a specialist market). Traders’ inventory control of securities in dealer markets 
is said to be consistent with narrow spreads preceding the close, while specialists’ 
market power is thought to contribute to wider spreads at the end of the day. However, 
in figure 1 we can see a U-shaped pattern for share volume, similar to that of Brock and 
Kleidon (1992) and Chan et. al (1995), as well as a U-shape for the number of trades, 
matching the intraday curve in Chan et. al (1995). In our sample, realized volatility has 
a reverse J-shaped pattern: it falls significantly directly after the market opens and this 
decreasing pattern continues until later in the afternoon when volatility suddenly jumps 
up at 15:30. It stays close to this new level for the rest of the day. This is in line with 
results found by Hussain (2011) and Chan et. al (1995).  
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FIGURE 1. Intraday Trading Patterns for OMXS30 Constituents 

 
Figure 1 – The figure shows averages (per five minutes) across all stocks and days for volatility, share 
volume, trade size, number of trades, illiquidity and percentage bid-ask spread. Illiquidity is defined as 
the cube root of the ratio of return variance and SEK volume. Percentage bid-ask spread is defined as the 
dollar bid-ask spread divided by the mid-point price between the best bid and ask price. The figure shows 
how these averages develop over the average trading day for the average stock. All times are in CET.  

 

5.2. Futures Data 

To test the invariance-implied market impact formula in equation (12) we use three 
datasets. The first dataset consists of tick-by-tick (millisecond) trade data on OMXS30 
derivatives (futures and options) from January to March 2020 and is provided by 
NASDAQ’s office in Vilnius. This sample covers seven different futures contracts with 
maturities in January, February, March, April, May, June and September 2020, and 
includes 62 trading days. The second dataset contains a time series of the daily closing 
value of the OMXS30 index between January and March 2020, and is provided by 
NASDAQ. The third dataset is a time series of the continuous OMXS30 futures contract 
and is retrieved directly from Refinitiv Eikon. This particular continuous contract 
always gives the nearest month futures contract.  
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Data cleaning procedures include what follows. The data contains trades in both futures 
and options contracts. Since we are only interested in the futures market in order to 
explain price change on the stock market, we drop all option trades (191,432 trades) and 
are left with 9,361,855 futures trades. We only have futures trades data for the first 
quarter of 2020. 

 

The main empirical variables for our analysis of the 2020 Coronavirus Crash are 
average daily volume (ADV), daily volatility 𝜎 of futures prices, futures gross sales in 
SEK, stock gross sales in SEK and the actual price impact of the OMXS30 index. For 
the alternative conventional wisdom model we use the same gross sales as for the 
invariance-implied model, but for market capitalization we use the market capitalization 
of the entire Stockholm Stock Exchange. 

 

We construct average daily volume (ADV) by first summing the total SEK volume of 
futures each day and then taking the mean of daily SEK volumes (for x days preceding 
18 February 2020). To calculate daily volatility 𝜎, we compute daily returns from the 
price of the continuous nearest month OMXS30 futures contract (for x days preceding 
17 February 2020). Then we take the standard deviation of the returns to get daily 
volatility. We calculate futures (gross) sales for a specified time period as the total sales 
in SEK during the same period. We calculate actual price impact for the same period as 
for gross sales, by computing the percentage change between end-of-day (EOD) index 
values of the OMXS30.  

 

TABLE 2. Summary Statistics for OMXS30 Futures 

 
Table 2 – This table presents daily volatility, average daily number of trades, average daily volume, total 
volume, total number of trades and average trade size for futures with the expiration dates stated in the 
left column. Volatility is calculated by taking the standard deviation of EOD futures returns. Total (daily) 
volume is calculated for each futures series (based on expiration date) by summing (averaging) the 
number of traded contracts for all trades within the entire time period.  
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6. Empirical Findings 
 

This section is devoted to illustrating the empirical results that we obtain through the 
analysis of our sample data. The first subsection presents our results with regards to our 
first hypothesis, proposing a proportional relationship between the relative size of the 
bid-ask spread and illiquidity in the Swedish stock market. We combine descriptive 
statistics with illustrating plots and a written review of our results. This is concluded by 
a brief statement concerning whether or not the hypothesis is statistically confirmed.  

 

The second subsection concerns our second hypothesis, whether or not the invariance-
implied market impact model is more accurate than conventional wisdom in predicting 
sell order-induced price impacts in the Swedish stock and futures market during the 
Great Coronavirus Crash of 2020. As aforementioned, we do not have large enough data 
samples to confirm or reject this hypothesis statistically, hence we merely validate the 
results from Kyle and Obizhaeva (2019) for another dataset, obtained from a more 
recent crash.  

 

6.1. The Relative Bid-Ask Spread vs. Illiquidity 

It deserves mentioning that the results presented here are the aggregated results for the 
entire time series. We present results for individual years in Appendix B as an 
indication of level of robustness. The reason behind this disposition is that our 
hypothesis concerns the Swedish stock market taken over the entire time period. The 
sampling of data for individual stocks is also a necessary step in our compilation of the 
stocks contained in the OMXS30 index, but not particularly relevant to the hypothesis 
test. Therefore results for individual stocks are placed in Appendix A. As a reminder, 
the investigated and supposedly proportional relationship is ln3𝑆!" 𝑃!"⁄ 5 = 	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +
1 ∙ ln	(1 𝐿!"⁄ ). Illiquidity 1 𝐿!"⁄  is in turn defined as the cube root of the ratio of return 
variance 𝜎!"#  to SEK volume 𝑃!"𝑉!".  

 

Table 3 presents the results from the OLS regression for ln(𝑆!" 𝑃!")⁄  against ln	(1 𝐿!")⁄  
on the aggregate sample, i.e. the entire time period (2010-02-08 to 2020-12-31) and 
includes 35 different stocks. The number of stocks covered in this sample is greater than 
30, because it includes all stocks that at some point during the time period of interest 
have been included in the OMXS30 index. Each trading day contains 101 five-minute 
intervals, which renders a total of 35 ∙ 101 = 3535 data points.  
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TABLE 3. OLS Regression 

 
Table 3 – The table presents the OLS regression of ln	(𝑆"# 𝑃"#) = 𝑐 + 	𝛽 ∙ ln	(1 𝐿"#)⁄⁄ . For each of the 35 
stocks contained in the OMXS30 index over the full time period, 101 aggregated five-minute intervals are 
used in the regression, corresponding to 3535 points. Coefficients 𝑐 and 𝛽, coefficient of determination 
𝑅$ and 95 % confidence interval for the aggregate slope 𝛽 are estimated for the entire period (2010-
2020).  

Figure 2 plots log bid-ask spread ln(𝑆!" 𝑃!")⁄  against log illiquidity ln	(1 𝐿!")⁄ . Each 
point represents each (non-overlapping) five-minute interval between 09:00 and 17:25 
(CET), aggregated from our millisecond data, for each stock. Each color of the points 
represents a different stock. A fitted line for each stock is also plotted in the same color 
as the corresponding points. This graph is supposed to capture the time-of-day effect for 
each stock on its average trading day. Hence, the number of trading days are aggregated 
into five-minute intervals and do not contribute to the number of points plotted in the 
graph. The blue fitted line for the aggregate data, which we obtain through our OLS 
regression, is ln	(𝑆!" 𝑃!") = 2.0908 + 0.9881 ∙ ln	(1 𝐿!")⁄⁄ . Our confidence interval 
ranges from 0.9707 to 1.0054, while the coefficient of determination 𝑅# is 0.7786. As a 
benchmark, we add a red line with a slope of 1, with its exact equation being 
ln	(𝑆!" 𝑃!") = 2.2022 + 1 ∙ ln	(1 𝐿!")⁄⁄  as predicted by the market microstructure 
invariance hypothesis.  

 

FIGURE 2. Aggregate OLS Regression 

 
Figure 2 – This figure plots log percentage bid-ask spread against log illiquidity for each of the 35 stocks 
in the OMXS30 index from 2010-02-08 to 2020-12-31. Different colors represent different stocks. For 
each stock, 101 points for all the five-minute intervals between 09:00 and 17:25 are plotted. Each point 
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represents a five-minute bid-ask spread and illiquidity average of a particular stock. All stocks have been 
averaged across all days. Dashed lines represent OLS regressions for individual stocks. The red line 
ln	(𝑆"# 𝑃"#) = 2.2022 + 1 ∙ ln	(1 𝐿"#)⁄⁄  is added as a benchmark and represents the predicted regression 
slope of one according to our hypothesis. The slope is fixed at exactly one and only its intercept is 
estimated for the aggregate sample. The blue fitted line for the aggregate sample is ln4𝑆"# 𝑃"#⁄ 5 =
2.0908 + 0.9881 ∙ ln	(1 𝐿"#⁄ ). The blue and red line almost overlap because our estimated blue line is 
very close to the hypothetical red line. 

  

As we can see, both by the aggregate slope coefficient 𝛽 stated in Table 3 as well as by 
the spread of the observations in Figure 2, the estimated slope is not exactly one. 
However, if we instead turn our attention to our statistically constructed 95 % 
confidence interval, which ranges from 0.9707 to 1.0054, we see that the value one is 
contained in this interval. On a 95 % confidence level the invariance prediction that the 
slope is one (null hypothesis) is not statistically rejected. Thus, we can confirm, with a 
relatively high level of certainty, that invariance holds for our entire sample, i.e. the 
Swedish stock market over the period 2010-2020,11 when we aggregate trades on a five-
minute frequency. Kyle and Obizhaeva (2017) use daily averages for US and Russian 
stocks in their log-linear regression. For the Russian stocks, their fitted line is 
ln	(𝑆!" 𝑃!")⁄ = 2.093 + 0.998 ∙ ln	(1 𝐿!")⁄ . For the US sample, their fitted line is 
ln	(𝑆!" 𝑃!") = 1.011 + 0.961 ∙ ln	(1 𝐿!")⁄⁄ . Hence, our results are similar to the results 
reported by Kyle and Obizhaeva (2017), in particular their fitted line for the Russian 
stocks.    

 

For the 35 dashed lines in figure 2, which are fitted based on data on each of the 35 
individual stocks, we can see that the slope estimates vary around and above one. In 
table 4 we see that the slopes of individual stocks vary between 0.9867 and 1.5776, with 
a mean slope of 1.1454. See Appendix A for the slopes of all stocks. These estimates 
are higher than implied by invariance. For Russian stocks, Kyle and Obizhaeva (2017) 
get individual slopes which are instead lower than one, and for both US and Russian 
stocks they report larger spread in individual slopes.   

 

TABLE 4. OMXS30 Constituents Regression Statistics 

 
Table 4 – The table presents the maximum, minimum and mean individual slopes across all OMXS30 
constituents and days for the period 2010-02-08 to 2020-12-31.   

 

As a robustness check over subperiods, we perform yearly aggregate regressions across 
all stocks. The results from these regressions can be found in Appendix B. We 

 
11 2010-02-08 to 2020-12-31. 
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statistically reject the hypothesis that the slope is one for all individual years 2010-2020, 
except for 2017. However, for 2010, 2014, 2016 and 2018 the slope is economically 
close to one. There are many explanations for these results since market microstructure 
relationships are affected by a number of factors, such as regulation, clearing 
mechanisms, digitized trading, tick sizes and so on.  

 

This simple model does not account for these market frictions. Based on the regression 
statistics presented in Appendix B, we notice, for instance, that a shift occurs 2017/2018 
and the yearly slope seems to increase thereafter. This shift interestingly coincides with 
the EU’s introduction of MiFID II in January 2018, which harmonized tick sizes on 
stock exchanges throughout the union. This causes us to suspect that regulation 
concerning minimum tick sizes could affect bid-ask spreads. 

 

Kyle and Obizhaeva (2017) also derive a more general bid-ask spread formula that 
accounts for the minimum tick size 𝐾!"./0 and lot size 𝑄!"./0, which may be theoretically 
relevant here: 

 

𝑆!"
𝑃!"

=
1
𝐿!"

𝑠 K
𝐾!"./0𝐿!"
𝑃!"

,
𝑄!"./0𝜎!"#𝐿!"#

𝑉!"
L (15) 

 

However, they do not test this extended formula empirically. We test this new 
specification for the bid-ask spread by taking a naive approach, assuming that 𝑠(𝑥, 𝑦) =
𝑥𝑦, and taking the natural logarithm of both sides in equation (15). We get a log-linear 
relationship with three explanatory variables: log illiquidity, log ratio between actual 
and optimal tick size, and log ratio between actual and optimal lot size. Optimal tick and 
lot size are derived from invariance theory. We have been able to show that these two 
new variables improve 𝑅# of our regression from 0.7786 to 0.8110. 

 

Lastly, it deserves mentioning that although we manage to confirm our postulated 
market microstructure invariance hypothesis regarding the relationship between the 
relative size of the bid-ask spread and our illiquidity measure, we are not able to make 
any causal inferences. Similar to Kyle and Obizhaeva (2017) we are only able to state 
that market microstructure invariance holds for the relationship between the relative size 
of the bid-ask spread and illiquidity, when empirically tested for the Swedish stock 
market between the years 201012 and 2020. Our research design does not allow for us to 
make any inferences regarding whether the relative size of the bid-ask spread causes 
illiquidity, or vice versa.   

 

 
12 2010-02-08. 
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6.2. Invariance Predictions for the Coronavirus Crash of 2020 

Our second hypothesis concerns the relative accuracy of the invariance-implied market 
impact model developed by Kyle and Obizhaeva (2019). They confirm their model’s 
superiority to conventional wisdom in predicting price declines in previous stock market 
crashes, by testing it empirically for five different market crashes, with the latest being 
in 2008.   

 

During the Great Coronavirus Crash of 2020 the OMXS30 index fell from 1 900.28 
(2020-02-19) to 1 292.27 (2020-03-23) and thus experienced a price decline of 32%. 
The 23rd of March represented the lowest mark of 2020 and by studying the subsequent 
development, it can be said that the recovery started after this date.  

 

FIGURE 3. OMXS30 2020-02-10 to 2020-04-30 

 
Figure 3 – The figure plots the crash of the OMXS30 index during the outbreak of Covid-19 and the 
beginning of its subsequent recovery. The graph includes dates between 2020-02-10 and 2020-04-30, 
with the highest and lowest point being 1 900.28 (2020-02-19) and 1 292.27 (2020-03-23), respectively. 
Specific dates are plotted along the x-axis, with corresponding index values along the y-axis.  

 

Emergency Information from Swedish Authorities (2020) reported Sweden’s first 
registered case of Covid-19, the disease caused by the Coronavirus, at the end of 
January 2020. The OMXS30 index, however, continued to rise until the top listing on 
the 19th of February. The 11th of March the World Health Organization (WHO) declared 
Covid-19 a pandemic, and consequently, on the 12th of March the OMXS30 index 
experienced a decline of 10.57%. Table 5 illustrates the development of the index 
during the period between 2020-02-19 and 2020-03-23: 
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TABLE 5. OMXS30 2020-02-19 to 2020-03-23 

 
Table 5 – The table presents EOD values of the OMXS30 index for selected dates during the 2020 
Coronavirus Crash. The first date is the all-time-high listing on the 19th of February, and subsequent 
values are obtained for the following Fridays, with the last value being the bottom listing on Monday the 
23rd of March.  

 

We apply the predictive models to three separate time periods during the Coronavirus 
Crash of 2020. First, we compare the models to the actual price decline for the entire 
time period, from top to bottom listing, i.e. from 2020-02-19 to 2020-03-23. This is 
motivated by a desire to capture the entire downward movement. Due to the 
construction of the invariance-implied market impact model, wherein a longer 
measurement period renders higher predicted price impacts (unless ADV is calculated 
based on a rolling window), we also choose to divide this period into two sub-periods as 
well. The first sub-period begins on 2020-03-09 and ends on 2020-03-23. This period 
contains a major price decline, as well as the individual days with the steepest value 
decline (12th and 23rd of March). The second sub-period consists of a single day, 12th of 
March, motivated by the fact that it was the largest daily decline (-10.57%) during the 
Coronavirus Crash of 2020 for the Swedish market. Table 6 contains a summary of the 
actual and predicted price declines for our selected time and sub-periods respectively: 

 

TABLE 6. Comparison of Predictive Market Impact Models 

 
Table 6 – The table summarizes actual and predicted price declines during the Coronavirus Crash of 
2020. The table compares actual price declines of the OMXS30 index during this period with predicted 
price declines by market microstructure invariance theory and conventional wisdom, respectively. The 
invariance predictions are based on the first model calibration period 2020-02-03 to 2020-02-18.     

 

Below we present the invariance-implied market impact predictions for all three time 
periods in tables 7-9. Each table includes the input variables we use for the invariance-
implied market impact formula. We make predictions for stocks and futures separately 
as well as combined, with the combined impact as our main result. All currency values 
are expressed in 2020 SEK, thus without the use of a GDP deflator. The model inputs 
are calibrated for three different time periods, the first one covering the period from the 
beginning of February 2020 up until the day before the top listing on the 19th of 
February. The second calibration period is intended to correspond to trading days in 
2020 preceding the crash, and is therefore measured from the first trading day of 2020, 
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i.e. the 2nd of January. The third and last calibration period contains an entire year, 
starting at the 18th of February 2019.  

 

TABLE 7. Invariance-Implied Market Impact 2020-02-19 to 2020-03-23 

 
Table 7 – The table shows the invariance-predicted price impact of futures sales of SEK 52 372 466 565 
and stock sales of SEK 5 900 397 707, combined as well as separately, between 2020-02-19 and 2020-03-
23 given average daily SEK volume and volatility between 2020-02-18 and 2020-02-03, 2020-01-02, and 
2019-02-18 respectively. Conventional wisdom predicts a price impact of 0.75% for the same time 
period. The actual price decline over this period was 32%. Note that all price impacts are unsigned values, 
and all price impacts stated represent price declines.  

 

TABLE 8. Invariance-Implied Market Impact 2020-03-09 to 2020-03-23 

 
Table 8 – The table shows the invariance-predicted price impact of futures sales of SEK 29 811 566 530 
and stock sales of SEK 3 343 432 828, combined as well as separately, between 2020-03-09 and 2020-03-
23 given average daily SEK volume and volatility between 2020-02-18 and 2020-02-03, 2020-01-02, and 
2019-02-18 respectively. Conventional wisdom predicts a price impact of 0.42% for the same time 
period. The actual price decline over this period was 18.83%. Note that all price impacts are unsigned 
values, and all price impacts stated represent price declines.  
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TABLE 9. Invariance-Implied Market Impact 2020-03-12 

 
Table 9 – The table shows the invariance-predicted price impact of futures sales of SEK 2 451 416 950 
and stock sales of SEK 439 916 324, combined as well as separately, on 2020-03-12 given average daily 
SEK volume and volatility between 2020-02-18 and 2020-02-03, 2020-01-02, and 2019-02-18 
respectively. Conventional wisdom predicts a price impact of 0.04% for the same time period. The actual 
price decline over this period was 10.57%. Note that all price impacts are unsigned values, and all price 
impacts stated represent price declines.  

 

As we can see from tables 6-9, the invariance-implied market impact model generates 
predictions that are closer in magnitude to actual price declines than the conventional 
wisdom model. This is in a general sense coherent with the findings of Kyle and 
Obizhaeva (2019). 
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7. Concluding Remarks 
 

Market microstructure invariance theory provides several empirical hypotheses, many 
of which are presented by Kyle and Obizhaeva (2016), Kyle and Obizhaeva (2017) and 
Kyle and Obizhaeva (2019).  

 

In this thesis we use high-frequency trading data for Swedish stocks and index futures 
to examine scaling laws for bid-ask spreads and linear market impact costs derived 
through dimensional analysis, leverage neutrality and from principles of market 
microstructure invariance. Kyle and Obizhaeva (2017) finds that these scaling laws hold 
for data on bid-ask spreads for US and Russian stocks, and Kyle and Obizhaeva (2019) 
apply scaling laws to explain price declines during stock market crashes. 

 

We examine the proportional relationship between the bid-ask spread and an illiquidity 
measure, the latter composed of observable financial market variables, and find that it 
also holds for the Swedish stock market for more than a decade. In the spirit of 
invariance, we thus add yet another time period and another financial market to the 
discourse of market microstructure invariance.  

 

We extend the daily analysis used by Kyle and Obizhaeva (2017) to analyze bid-ask 
spreads in a high-frequency setting, similar to the intraday analysis of S&P 500 E-mini 
futures performed by Andersen et al. (2018). We combine dimensional analysis with 
intraday trading invariance, the high-frequency version of market microstructure 
invariance, and the main finding of this thesis is that the proportional relationship 
between bid-ask spreads and illiquidity holds on an intraday level as well.  

 

Furthermore, we show that the proportional bid-ask spread-illiquidity relationship still 
holds for OMXS30, a proxy for the Swedish stock market, despite a different tick size 
regime. Russian and US stock markets are affected by different institutional 
microstructure details or market frictions, such as minimum tick sizes, than the Swedish 
stock market. This thesis provides additional statistical evidence of the explanatory 
power of such details for bid-ask spreads to the market microstructure literature.  

 

In addition to bid-ask spread costs we investigate linear market impact, which is another 
transaction cost component. Kyle and Obizhaeva (2019) construct an invariance-implied 
market impact model with the purpose of predicting the price impact of order pressure. 
This model accounts for security-specific differences in the length of business time, the 
inverse of bet frequency. When testing this model for the recent Coronavirus Crash of 
2020, we find that it predicts price declines more accurately than conventional wisdom. 
However, we as Kyle and Obizhaeva (2019), are not able to statistically validate the 
general applicability of this model due to a small sample size.   
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This thesis uses regression analysis and in light of our findings, we are therefore not 
able to make statements regarding causality. We do however provide additional support 
to a robust and universal transaction cost model for bid-ask spreads that seems to hold 
across different markets and time periods. This is desirable, since otherwise a number of 
different models will be needed for different markets and time periods. Market 
microstructure invariance for bid-ask spread costs would effectively reduce the number 
of transaction cost models needed. This is of course of great interest to risk managers 
and traders, who according to Kyle and Obizhaeva (2017) want to measure and 
minimize transaction costs. Moreover, the relationship between tick sizes and bid-ask 
spreads found here can provide valuable insights to financial regulators and stock 
exchanges. Likewise, a model for understanding how order flows move prices is 
important from a financial stability perspective.  

 

Conclusively, our findings can serve as a benchmark to which market concepts and 
theories in behavioral finance can be compared. We hope that our thesis alone, as well 
as paired with further studies, can facilitate normative implications of value to 
academics, finance professionals and society at large. 
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Appendix A – Cross-Sectional Plots 
 

FIGURE A1. Individual OLS Regressions of Bid-Ask Spreads on Illiquidity 

 
Figure A1 – plots individual OLS regressions for 35 OMXS30 constituents during the period 2010-02-08 
to 2020-12-31. Each subplot contains 101 points corresponding to the number of five-minute intervals 
between 09:00-17:25 (CET).  
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Appendix B - Robustness Check 
 

TABLE B1. Aggregate OLS Regressions for Individual Years 2010-2020 

 
Table B1 – The table shows linear regression statistics for intercept 𝑐 and slope 𝛽 across all stocks, for 
each individual year between 2010 and 2020.  

 

TABLE B2. Individual Stock Regression Statistics 2010-2020 

 
Table B2 – The table shows a statistical overview of the individual slopes in each yearly linear regression 
between 2010 and 2020.  
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Appendix C – Construction of Empirical Variables for 
Stocks 
 

 

Step 1: Volume-weighted aggregation  

We drop subscript j for stock j for simplification of all aggregation formulas below. 
Furthermore, suppose that L trades occur simultaneously at time 𝑡- , so that the 
timestamp is recorded L times (𝑡-% , 𝑡-& , …	 , 𝑡-' ). First, these L trades are counted as one 
trade.  

First, let	𝑄"! = ∑ 𝑄"!ℓ
1
ℓ3% denote the total number of shares traded at time 𝑡-, where 

𝑄"!ℓ is the trade size of limit order ℓ. 

Let 𝑃"!ℓ 	 =	
5)!ℓ

	6	7)!ℓ
#

 denote the quoted mid-price at time 𝑡- after limit order ℓ, 

where 𝐴"!ℓ  and 𝐵"!ℓdenote the best ask price and best bid price at time 𝑡-, after limit 
order ℓ, respectively.  

Finally let 𝑆"!ℓ = 𝐴"!ℓ −	𝐵"!ℓ 	denote the bid-ask spread at time 𝑡-, after limit order ℓ. 

Then we can volume-weight our empirical variables as follows: 

𝑃"!	 =	
%
8)!

∑ 𝑄"!ℓ
1
ℓ3% 𝑃"!ℓ 	denotes the volume-weighted mid-price at time 𝑡-. 

9)!
:)!

= %
8)!

∑ 𝑄"!ℓ
1
ℓ3%

9)!ℓ	

:)!ℓ	
  denotes the volume-weighted relative bid-ask spread at time 𝑡-. 

Each variable now has exactly one observation per timestamp. The steps in our time-
weighted aggregation are outlined below.  

 

Step 2: Time-weighted aggregation  

Temporarily let i denote intraday time interval i (replacing t). Now let trade 𝑘 represent 
the volume-weighted trade at time 𝑡- above. Suppose that 𝑁/ trades (marketable orders) 
occur at irregularly spaced times 𝑡%, 𝑡#, …	 , 𝑡;+ 			during each intraday interval i with a 
fixed length 𝑇′ − 	𝑇 = 5 minutes. 

First,  

𝑄/ 	= 	
%
;+
∑ 𝑄"!
;+
-3%  denote the average trade size in five-minute interval i, and 

𝑉/ 	= 	∑ 𝑄"!
;+
-3%  denote the total share volume traded in five-minute interval i. 

For the first intraday interval i each day (no preceding trades), the time-weighted mid-
price and relative bid-ask spread are: 
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𝑃/ 	= 	}
𝑃"!(𝑡-6% −	𝑡-)

𝑇′ −	𝑡%

;+

-3%

 

 

𝑆/
𝑃/
	= 	}

3𝑆"! 𝑃"!⁄ 5(𝑡-6% −	𝑡-)
𝑇′ −	𝑡%

;+

-3%

 

 

For each subsequent intraday interval i, the time-weighted mid-price and relative bid-
ask spread are: 

 

𝑃/ 	= 	}
𝑃"!(𝑡-6% −	𝑡-)

𝑇′ − 	𝑇

;+

-3,

 

 

𝑆/
𝑃/
	= 	}

3𝑆"! 𝑃"!⁄ 5(𝑡-6% −	𝑡-)
𝑇′ − 	𝑇

;+

-3,

 

 

where 𝑡, = 𝑇 is the start time of the interval and 𝑡;+	6	% = 𝑇′ is the end time of the 
interval. 𝑃", and 𝑆", are the outstanding mid-price and bid-ask spread at the beginning 
of the interval, respectively. The realized variance over interval i is calculated by 
summing the squared returns between mid-prices at each time of trade: 

 

𝜎/# =		}3ln3𝑃"!	5 − ln	(𝑃"!-%	)5
#

;+

-3#

 

 

Finally, the illiquidity index over interval i can be computed from our time-weighted 
mid-price, total volume and realized variance: 

 

1
𝐿/
= K

𝑃/𝑉/
𝜎/#

L
+%/&

 


