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Abstract

There is a lack of evidence pointing to an optimal method for demand forecasting. This paper

joins the collection of studies that forecast demand using a combination of machine learning

methods. Demand forecasting literature from economics and supply chain management lead

to a selection of machine learning models for this paper: random forest (RF), extreme gradi-

ent boosting (XGB), and support vector regression (SVR). These models are developed within a

walk-forward validation process, alongside a benchmark seasonal auto-regressive moving aver-

age (SARIMA) model, to forecast demand of a telecommunications software product with data

from Ericsson AB. A stacked ensemble hybrid model is constructed from the forecasts of the

SARIMA and RF models. The SARIMA model, with a root mean square errors (RMSE) of 1.38,

was outperformed by the three single machine learning models, which had RMSE between 0.98

and 1.05. The stacked ensemble hybrid model, SARIMA-RF, showed high predictive capabilities,

with a RMSE of 0.43.
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1. Introduction

Demand forecasting differs from traditional demand research in economics which puts emphasis on

identifying an equation of demand from its determinant factors. Even if demand forecasting pro-

vides less insight into the causes of observed demand, forecasting is still a crucial aspect, especially

in applied settings. Businesses increasingly employ demand forecasting techniques in order to de-

termine ideal inventory levels, and areas of public concern such as energy or agricultural supply are

taking advantage of forecasting methods to determine future demand levels. In these applications,

accurate forecasting of demand takes precedence over the relationship between demand and other

factors. There is no forecasting method, however, that has been proven to perform optimally for de-

mand forecasting, or forecasting in general (Fildes et al., 2019). Given this, academic literature from

several fields apply the use of different modeling techniques to forecast future demand. Studies from

economics and supply chain management have a sustained history of using auto-regressive moving

average (ARIMA) time series forecasting techniques from Box and Jenkins (1967). Even so, literature

from both economics and business are seeing an increase in the use of machine learning methods for

forecasting demand.

Machine learning derives from a combination of statistics, mathematics, and computer science and

is often harnessed for pattern detection and prediction. This deviates from the movement in eco-

nomic research towards the emphasis of statistical methods that can determine causation between

factors (Athey & Imbens, 2019). Athey and Imbens (2019) point out in their paper, “Machine Learning

Methods That Economists Should Know About” that economic research has been slower at adopt-

ing machine learning techniques compared to other fields, including statistical research which has

largely accepted it. As the usage of machine learning techniques is increasingly present within eco-

nomics literature, continual exploration of their strengths and weaknesses in economic contexts is

crucial.

This study joins those that seek to gain clarity surrounding the potentials of machine learning meth-

ods for the use of forecasting demand data. This is explored using download data for telecommuni-

cations software products in collaboration with Ericsson AB. The study consolidates literature from

several fields in order to inform model choices. These include supply chain management, market-

ing, industrial organization, agricultural and energy economics, econometrics and statistics. Based

on this, the Box and Jenkins (1967) seasonal auto-regressive moving average (SARIMA) forecasting

approach is used as a benchmark model. This is complimented by a selection of machine learning

2



methods, namely random forest, extreme gradient boosting, and support vector machines. In addi-

tion, a final stacked machine learning ensemble model is constructed as a hybrid of the Box-Jenkins

model with the single machine learning model that shows optimal performance.

The study tests no formal hypothesis as it maintains an exploratory purpose. The goal is a compar-

ison of the chosen modeling approaches for forecasting demand of Ericsson’s software. The models

are compared by their prediction error, and the benefits and disadvantages of the each are discussed.

Particular emphasis rests on the comparison of the benchmark model to the machine learning mod-

els, and the hybrid model to the single models.

The paper begins with a literature review based on the conceptual background areas related to the

study. This is followed by theoretical background which discusses brief history, theory, and usage

of the models and methods in the study. The research goals are then clarified, prior to a discussion

regarding the data used in the study. Following this, the methodology is outlined for the study overall

and for the different modeling approaches. Then, the results are presented with analysis. After results,

some additional checks are outlined prior to a discussion.
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2. Conceptual Background

Within this section, conceptual background information is discussed from several literature areas.

First, a selection of business theory is discussed briefly which provides greater context to the study.

Then, a literature review from business and economics is summarized with a focus on demand fore-

casting applications and methods. Finally, a summary of takeaways is provided before moving on to

Section 3. Theoretical Background.

2.1 Supply Chain Management & Product Life Cycle Modeling

This section gives a brief history and overview of concepts related to demand forecasting from busi-

ness literature. This includes a discussion about supply chain management which places demand

forecasting within the larger contextual framework of supply chain management. In addition, prod-

uct life cycle theory is discussed since it signifies the potential of a life cycle trend of demand after a

product is launched. This theory is used in the study when choosing product data.

2.1.1 Supply Chain Management

Supply chain management (SCM) emerged as a field in the 1990’s but has not been clearly defined

nor given clear boundaries (Tan et al., 2002). The literature utilizes a multi-disciplinary approach,

including research from marketing, strategy, operations management, and economics, to study the

interconnected global systems ranging from suppliers to customers that global businesses must navi-

gate today (Ellinger et al., 2015). Figure 1 (Meyr et al., 2002) shows a generalized supply chain planning

matrix where the vertical axis represents planning intervals and the horizontal axis on the top repre-

sents business functions along the supply chain. Each component in Figure 1 represents large areas

of research and business practices in their own right. For this study, the areas of demand planning

and fulfillment are of particular relevance.

Figure 1: Supply chain management overview by Meyr et al. (2002)
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2.1 Supply Chain Management & Product Life Cycle Modeling

Much of supply chain literature focuses on physical goods which present a commonly-studied phe-

nomena: the bullwhip effect. The effect was coined by Procter & Gamble in the 1990’s to refer to

the increasing inventory variation seen at the beginning (upstream) of the supply chain as a response

from smaller fluctuations in consumer demand at the end (downstream) of the supply chain (Wang &

Disney, 2016). The bullwhip effect causes inefficiency and waste in the supply chain, so many studies

have sought to understand the phenomena and its causes. Several comprehensive literature reviews

have been published on the subject (Geary et al., 2006; Miragliotta, 2006; Towill et al., 2007; Giard &

Sali, 2013; Wang & Disney, 2016). Some of this literature overlaps with economic literature through

the use of econometric methods to examine the quantitative effect of the bullwhip phenomena. This

is especially true within the subset of literature that looks at understanding the role of information-

sharing along the supply chain.

Information sharing literature within supply chain literature focuses on modeling sections of the sup-

ply chain and examining the effect that information-sharing can have on inventory levels upstream

in the supply chain. The idea is that supplier-visibility of point-of-sales data can reduce the effect of

demand distortion on supplier inventory levels; therefore, within this literature, demand forecasting

is a large focus (Kembro et al., 2014). Several studies model two-level supply chains consisting of a

retailer and a supplier. Demand on the retailer level is commonly modeled as a univariate time series

process, and the retailer and supplier each have static ordering decision equations with the level of

information sharing as a parameter. In these studies, some model demand for products as a simple

autoregressive (AR) model (Lee et al., 2000; Raghunathan, 2001), but it is more common to use both

AR and moving-average (MA) components (Hsiao & Shieh, 2006; Xu et al., 2010; Cho & Lee, 2013). In

addition, many researchers in this space advocate for modeling demand using seasonal ARMA mod-

els (i.e. SARMA), due to the common seasonality of product sales (Brown, 2004; Cho & Lee, 2013)

Stadtler (2005) claims that SCM is driven by demand and so demand forecasting is the starting point

for understanding the supply chain. In addition, Stadtler claims while addressing Figure 1 from Meyr

et al. (2002) that the integration of product life cycle theories into demand forecasting can elevate

regular time series forecasting of demand into a more comprehensive demand planning.

2.1.2 Product Life Cycle Modeling

Supply chain management is aided by product life cycle monitoring; therefore, life cycle modeling

and prediction can improve supply chain planning (Aitken et al., 2003). Product life cycle (PLC) mod-

eling derives from marketing literature as a method of modeling the demand for a product from its
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2.1 Supply Chain Management & Product Life Cycle Modeling

time entering the market until it is removed from the market. Classical PLC theory emerged in the

late 1950’s out of a necessity for a framework to account for the trajectory of individual products after

market entry, and strategies for when to intervene in a product’s trajectory with, e.g. price changes,

inventory manufacturing, or discontinuation of the product (Cao & Folan, 2012). PLC theory overall

constitutes a bell-shape-like model with stages of the product life cycle such as introduction stage,

growth stage, maturity stage, and decline stage. The marketing literature typically measures PLC us-

ing revenue or sales as the vertical axis with time as the horizontal axis, as visualized in Figure 2 from

Cox (1967), one of the earliest PLC theorists.

Figure 2: Basic product life cycle model by Cox (1967)

The 1976 paper, “Forget the product life cycle concept!” by Dhalla and Yuspeh proposed a number

of issues with PLC theory including its failure to capture the “second lives” seen by some products,

the lack of empirical testing of the model, and the fact that the theory implies that the life cycle is an

independent variable that companies should adopt their marketing strategy to, instead of a variable

that is dependent on marketing actions themselves. In addition, the theory saw little development of

quantitative methods for determining the phases within the cycle, meaning its practicality for guiding

marketing strategy beyond sales monitoring is low (Wood, 1990; Grantham, 1997; Cao & Folan, 2012).

Hayes and Wheelwright (1979) argue that regardless of whether the PLC theory can be applied to

every product, it does provide a useful framework for growth and development conceptualization of

a new product.

PLC theory, the dominating marketing theory in the 1960’s, moved to a “supporting useful role” by

the late 1970’s (Cao & Folan, 2012). Today, marketing literature readily uses the term product life cycle

management (PLM), derived from the earlier PLC modeling theory, which now focuses on theories for

improving the actions required from businesses during product life cycle stages, instead of focusing

on the exact mathematical PLC model for the product. As mentioned in 2.1.1. Supply Chain Manage-

ment, the integration of life cycle theories into demand forecasting improves the demand planning
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2.2 Demand Estimation & Forecasting

component of SCM (Stadtler, 2005).

2.2 Demand Estimation & Forecasting

This section gives an overview of demand forecasting and estimation techniques across business and

economic literature. Some of the methods are discussed in more detail in Section 3. Theoretical Back-

ground. The section emphasizes recent developments in the literature that show a movement towards

using a time series approach for modeling demand. Demand estimation in supply chain manage-

ment and business literature has shifted primarily to time series forecasting research. This literature

applies several forecasting methods to various demand and sales data with fruitful prediction, but

there still is a lack of consensus or clear evidence regarding the best models to use for forecasting

(Fildes et al., 2019). Within economic literature, traditional demand model systems are still used but

there is a growing trend of modeling demand as a time series and employing forecasting techniques.

This is seen in regard to demand estimation of consumer goods as well as energy demand.

Within SCM research, there is an abundance of research on modeling and forecasting techniques

for the demand of products from customers. Conceptually, in a retail application, demand is more

akin to actual sales and several studies forecast demand by building models on past sales data (Ma

et al., 2016; Islek & Oguducu, 2015; Akyuz et al., 2017). The Box and Jenkins (1967) approach fre-

quently employed in econometric applications, auto-regressive integrated moving average (ARIMA)

model, along with its variations such as seasonal ARIMA (SARIMA) and ARIMA with exogenous fac-

tors (ARIMAX), were popular in retail demand literature in the 1970’s and 1980’s (Bechter & Rutner,

1978; Schmidt, 1979; Geurts & Kelly, 1986). More recently, the use of non-parametric methods from

machine learning have become more popular. Alon et al. (2001) claim that neural network (NN)

methods outperform ARIMA-based models for retail forecasting when the macroeconomic condi-

tions, such as unemployment, interest rates, or inflation, are unusually high. Additional non-linear

methods applied to retail forecasting include random forest regression trees, support vector ma-

chines, k-nearest neighbor, and Bayesian P-splines (Ali et al., 2009; Žliobaitė et al., 2012; Lang et al.,

2015). Aye et al. (2015) compared 26 time series methods for forecasting South African retail data and

concluded that no model outperformed the others in all scenarios but hybrid models which weighted

recent data with higher importance than prior data produced better forecasts and responded better

to business cycle fluctuations. Fildes et al. (2019) performed extensive literature review on retail fore-

casting methods and made several observations. First, they argue that most studies in the field do not

have much in common methodologically and are overall not very generalizable. Second, they note
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2.2 Demand Estimation & Forecasting

the successful results from machine learning methods but claim that the evidence is too limited to

conclude the superiority of these methods over traditional ones.

Modeling and forecasting demand as a time series has been popular in SCM literature the past several

decades but demand estimation in general has its origin within economic literature. Deaton (1986)

describes demand analysis as being in a rare position within economics due to its long history of both

theoretical and empirical research. The field of applied econometrics moved away from estimating

consumer behavior around the 1980’s, favoring instead the estimation of causal or treatment effects

with natural and quasi-experiments (Nevo, 2011). Meanwhile, the field of industrial organization

(IO) has continued research with demand estimation and is responsible for several recent develop-

ments in the study of consumer behavior in general (ibid). Literature within IO centralizes around

industries with product differentiation, and mainly, two approaches are taken. Either demand is ex-

amined within the product space with demand system models, or demand is examined within the

characteristics space with discrete choice models (ibid.). There is, however, a growing amount of ap-

plied research in IO and development economics that uses statistical approaches instead of economic

models. These new approaches include more traditional econometric time series models as well as

modern machine learning models, similar to the trends within the business literature.

Much of demand estimation for consumer goods applies the traditional modeling approaches from

IO research. Food demand is a frequently studied concept within agricultural economics, where de-

mand systems are modeled for certain markets or countries. Huang (2000) uses a household demand

system with cross-sectional household survey data to model food demand and examine its elastic-

ity within the United States. Similar studies have been performed using data from various countries

(Huang, 2000; Kumar et al., 2011; Hoang, 2009; Agbola, 2003). Research in this area is abundant and

has become more granular, with plenty of research focusing on demand estimation of certain food

consumption industries. Alcohol demand estimation is popular, likely due to its importance for pub-

lic policy (Gallet, 2007; Meng et al. 2014; Selvanathan, 2004). In addition, meat demand is quite

prominent, likely due to the industry’s environmental impact (Fiala, 2008; Eales, 1996; Jabarin, 2005;

Taljaard et al., 2004). These studies within IO research focus on modeling consumer behavior as well

as factors affecting the demand. It is, however, increasingly common to instead employ time-based

econometric and machine learning models for demand in these industries. Da Veiga et al. (2014)

compare two econometric time-series forecasting models, Holt-Winter (1960) and ARIMA, for de-

mand within the dairy industry in Brazil. Several other studies apply the ARIMA modeling approach

to forecast demand for food (Jia et al., 2010; Deshmukh & Paramasivam, 2016; Fattah et al., 2018).
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2.3 Summary

Shukla & Jharkharia (2011) model and forecast the demand for fruits and vegetables using an ARIMA

model and Mircetic et al. (2016) develop a seasonal ARIMA model applied to demand in the beverage

supply chain.

Energy economics has also seen a growing integration of time series modeling. Forecasting demand

for energy is a large topic, as accurate energy demand forecasting is essential for energy system plan-

ning (Neshat et al., 2018). Intersecting both energy economics and business literature, energy de-

mand forecasting research employs both traditional time series methods, such as ARIMA, and mod-

ern machine learning methods. Forecasting energy demand has complexities similar to that of prod-

uct demand forecasting due to their common nature of calendar effects, non-linearity, non-constant

mean and variance, and high volatility (Azadeh et al., 2010; Neshat et al., 2018). Energy demand fore-

casting literature primarily involves traditional time series methods and regression techniques, often

with a single research paper testing a handful of methods. For example, Shah et al. (2019) study

short-term electricity demand estimation with a variety of methods including autoregressive mov-

ing average (ARMA), as well as non-parametric and vector autoregressive models (VAR). The field has

seen an increasing use of machine learning techniques as well. Azadeh et al. (2010) noted the trend of

applying machine learning neural network (NN) techniques and hybrid models that contain both a

traditional component and a NN component. Li et al. (2018) combined ARMA and a non-parametric

gradient boosting model (XGBoost) from machine learning to forecast energy demand and found

that the combined model performed better than classical models. Similar results were found by Li

and Zhang (2018).

2.3 Summary

Literature from SCM and economics have both shown an increase in time series forecasting ap-

proaches to demand. Modeling approaches vary, with ARIMA-based models and machine learning

models both being tested and applied for demand estimation. It is particularly interesting that ma-

chine learning methods especially vary in the literature. In addition, the success from hybrid machine

learning models with ARIMA-based components is a trend seen within these studies. The review in-

dicates that there is potential value in both modeling approaches, and in the pursuit of additional

exploration of their potential strengths and weaknesses. The modeling approaches used in the litera-

ture are used to inform modeling choices in this study. In addition, PLC theory is used within the data

selection process of the study, since the potential existence of the PLC trend over time could relate to

demand patterns over time.
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3. Theoretical Background

Since demand forecasting literature shows a split preference for ARIMA-based models and machine

learning models, this study pursues both. This section gives relevant background information for

the models used in the study. The econometric seasonal auto-regressive integrated moving average

(SARIMA) is discussed first. Following this, some general concepts from machine learning are dis-

cussed with emphasis on supervised machine learning techniques for time series prediction. Then,

background information about the chosen machine learning models is discussed. The background

information provides the reader relevant knowledge of the history, theory, and usage of the models.

3.1 SARIMA Theoretical Model

The ARMA model, introduced by Box and Jenkins (1976), combines auto-regressive (AR) and moving

average (MA) models. A time series, yt where t is time and yt are real numbers can be modelled as an

ARMA(p, q) process given by:

yt “ c`γ1 yt´1`γ2 yt´2` ...`γp yt´p`εt ´θ1εt´1´θ2εt´2´ ...´θqεt´q (3.1)

where c is a constant, γi , i = 1, 2, ... p are coefficients of the auto-regressive component, and θ j , j = 1,

2, ... q are coefficients for the moving average component of the model. The auto-regressive variables

are time-lags of the time series variable, up to p lags, and the moving average variables are time-lags

of the error terms in the series, up to q lags.

ARMA processes cannot properly model time series that are not stationary1(Box & Jenkins, 1967). If a

time series appears non-stationary, it may have a stochastic trend, where differencing the series can

transform it into a stationary time series. The ARIMA(p, d, q) model extension allows for this, where

d is the number of times the series needs to be differenced to achieve stationarity. If a series follows

an ARIMA(p, d, q) model, differencing it d times allows the series to be modelled as ARMA(p, q) (Xu

et al., 2010). The difference equation is given by dptq“ yt ´µ where µ is the mean of the time series.

To difference yt , it is replaced by r ptq“ yt ´dptq in the model given by equation (3.1).

Under a seasonal demand modeling approach, the underlying demand process is assumed to follow

SARIMA(p, d, q)(P, D, Q)s; where p, d, and q are the usual paramaters; P, D, and Q are the seasonal pa-

rameters and s represents the number of time periods in the seasonal cycle. The seasonal parameters

1Stationary time series have time-invariant mean and variance.
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3.2 Machine Learning Theory

work in the same way as the regular parameters, expect they are offset to the previous seasonal cycle,

for example the Pth seasonal lag of yt is given by yt´s´P (Cho & Lee, 2013).

3.2 Machine Learning Theory

As mentioned in Section 2. Conceptual Background, machine learning methods are frequently used

for time series forecasting and increasingly in economics research. Machine learning methods derive

from a combination of statistical and computer science research. They offer particular usefulness

for prediction, modeling large data, and modeling non-parametric relationships (Athey & Imbens,

2019). In general, machine learning algorithms allow a model to be built through computational

learning of the relationship between independent and dependent variables. This is done by fitting

a machine learning model onto training data. Machine learning methods use varying algorithms

for model fitting. After fitting onto, or learning from, the training data, the model can be used to

make informed predictions from new datasets (James et al., 2013; Boehmke & Greenwell, 2020). This

process contrasts econometrics which mostly involves researcher-imposed models and tuning (Athey

& Imbens, 2019).

A main underlying difference between machine learning and econometrics is that machine learning

focuses on optimizing predictions while many econometric applications center on the estimation of

model hyperparameters (Mullainathan & Spiess, 2017). Athey and Imbens (2019) claim that leading

econometrics sources like Angriske & Pischke (2008) and Wooldridge (2010) focus on the goal of iden-

tifying a functional of a joint distribution of the data, where machine learning methods focus on the

goal of developing algorithms to predict variables based on other variables (Wu et al., 2018). In fact,

researchers often refer to machine learning algorithms as “black boxes” because their results indi-

cate strong detection of relationships between variables but they provide little information about the

exact specifications of the relationships (Naimi & Balzer, 2018; Boehmke & Greenwell, 2020).

3.2.1 General Machine Learning Background

Time Series Forecasting as a Supervised Learning Problem

Forecasting of time series variables can easily be framed as a supervised learning problem within ma-

chine learning. Supervised learning is one of two main subcategories of machine learning methods,

along with unsupervised learning. Supervised learning involves developing models using training

data which supplies the model with predictors associated with example values for the target vari-

able of prediction. In comparison, unsupervised learning simply provides data in general, and the
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3.2 Machine Learning Theory

algorithm detects patterns or clusters for example within the dataset (Athey & Imbens, 2019; Kuhn &

Johnson, 2019).

A supervised machine learning model takes input and output variables from training data to learn

how to estimate an appropriate output value given new data inputs. In this study, input variables are

referred to either as inputs, predictors, or features, and output variables are referred to as outputs or

target variables. In a time series context, machine learning models can predict the value of the target

variable in the future at time t, given a subset of past values of the variable. Therefore, the lagged

values of the target variable itself act as inputs for each time step, t. In this simple reframing of time

series data, several machine learning models can be utilized to predict future values of a time series

variable.

It is useful to note for practical purposes that framing time series data for a supervised machine learn-

ing problem requires transformation of the time series data into a structured dataset where output

values and corresponding input values are within a single row. Assuming the data has already been

pooled into uniform time steps (e.g. months, quarters, etc.) then time series data will, in each row,

have one value for the time series variable for a single time step. The machine learning algorithm,

however, requires certain lagged values to be associated with each time step of the output variable.

This can easily be done with looping algorithms and the use of a function that gives previous time

lags of the main variable, such as the shift() function in the Pandas package in Python, or using lag()

from the Stats package in R.

Figure 3: Transformation of time series data into supervised learning problem, author’s own.

Overfitting & Underfitting

Overfitting is when a machine learning model fits the training data too well, resulting in poor predic-

tion when applied to new data (Fawagreh et al., 2014). Overfitting is usually caused when the model

identifies patterns in the training dataset that are specific to that set, i.e., non-generalizable patterns
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(Kuhn & Johnson, 2019). Overfitting is a natural concern since prediction accuracy is usually the goal

of machine learning to begin with. Hawkins (2004) describes overfitting as added complexity to a

model that does not introduce any gain to performance. Even worse, overfitting often leads to re-

duced prediction performance (Kuhn & Johnson, 2019; Boehmke & Greenwell, 2020). In contrast,

underfitting is when a model does not fit the training data well enough, also resulting in poor pre-

diction performance (ibid.). The goal then is a delicate balance between underfitting and overfitting.

The researcher wants the model to fit well enough onto the training data in order to learn adequate

relationships within the data so that it can perform successful prediction, but not to fit so well that it

cannot generalize its learnings to new data (James et al., 2013; Kuhn & Johnson, 2019).

Loss Functions

Traditional statistics and econometrics typically evaluate models using goodness-of-fit and residual

tests (Athey & Imbens, 2019). Brieman et al. (2001) pointed out that these tests are not appropriate

for algorithmically developed models. Today, machine learning model assessment is approached

from the perspective of loss functions, where the objective of the modeling process is to minimize the

model’s loss function (Athey & Imbens, 2019; Boehmke & Greenwell, 2020). Loss functions compare a

model’s predicted values to the actual values. In practice, loss functions are built into the foundation

of machine learning methods that are used regularly. Therefore, different machine learning models

use different loss functions for their prediction algorithms, although customization is usually possible

(Boehmke & Greenwell, 2020).

Feature Selection

In machine learning model development, feature engineering is an important component since ma-

chine learning methods allow any input variables. Feature engineering involves the selection of in-

put variables and their preprocessing (Kuhn & Johnson, 2019). Preprocessing includes transforming

variables with scaling techniques and handling missing values (ibid). Fortunately, since time series

supervised learning involves a constructed dataset derived from the known time series values, it is

common to have no missing values and all of the data proportionally scaled. Therefore, mainly the

matter of feature selection is important.

In a time series prediction problem, the researcher needs to select which time lags to include as pre-

dictors. As mentioned in subsection 3.1. SARIMA Theoretical Model, lag selection is part of the main

model building for ARIMA-based modeling approaches. Unfortunately, machine learning models do
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not offer such strict feature selection processes. Most models have built in importance functions,

which measure the importance of each feature passed through the model, but these are highly de-

pendent on the training data and model being used. These functions have a tendency to be unstable

and should not be considered robust measures of the dependency between predictors and target vari-

ables, but instead act as a guide to combine with researcher discretion (Calle & Urrea, 2011; Huynh-

Thu et al., 2012).

Machine learning methods for time series forecasting allow a broad array of variables to be used as

inputs for the prediction problem. For example, the numbers for the month, ISO week, or day of

the week can be input variables, calculated based on the timestamp used for the indexing of the

data. These variables are especially relevant in time series data that shows seasonal patterns (Wang

& Ramsay, 2008; Huber & Stuckenschmidt, 2020). Technically, machine learning methods offer the

ability to add any input variable, but researchers should try to use judgement to determine if the

predictor reasonably should be used to predict the outcome variable (Kuhn & Johnson, 2019). Overall,

the goal is to use input variables that add predictive power, but concurrently minimize additional

variables as too many can lead to high computation time and overfitting that affects the performance

of the model on new data (ibid).

3.2.2 Random Forest Model

The random forest model is an ensemble model that was originally developed by Breiman (2001).

Ensemble models are a general class of machine learning models that make predictions from a com-

bination of sub-models (Kuncheva & Whitaker, 2003). This subsection begins with a discussion about

the base model for random forest, the decision tree model, before discussing random forest as an

ensemble of decision trees.

A decision tree is within the class of tree-based models. They are non-parametric and work as an

algorithm to partition the feature space 2 into smaller groups. This is done through recursive split-

ting using splitting rules. Beginning at the top of the tree, also called the root node, with the entire

available feature space, the algorithm searches for the best input variable to partition the remaining

data into one of two regions such that the sum of squared errors (SSE) between the prediction and

the actual output value is minimized. In a continuous prediction case, an inequality separates the

two regions. Since the decision tree has several offshoots of nodes, features should be split more than

once within the tree (Hastie et al., 2009; Boehmke & Greenwell, 2020). An example of a decision tree

2The feature space is the vector space of all input variables.
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for continuous data can be seen in Figure 4 where the input variables industry, population, wet days,

temperature and wind are used to predict the target variable pollution (Vala, 2019).

Figure 4: Decision tree visualization by Vala (2019).

Decision trees have the benefits of being non-parametric, requiring little pre-processing of data, and

allowing missing values. They do however underperform in prediction accuracy. Deeper trees have

the best predictions but are outperformed by most machine learning methods and also suffer from

high variance (Boehmke & Greenwell, 2020).

Since the random forest model is an ensemble model of decision trees, it uses the same loss function,

the sum of squared errors. Ensemble models improve upon simple learning models, such as decision

trees, by combining several weaker models. One main approach to combining submodels is boot-

strap aggregation, also referred to as bootstrapping or bagging (Breiman, 2001; Fawagreh et al., 2014).

This method was derived by Breiman with the random forest model (2001). Bootstrapping builds

each submodel using a randomly drawn sample from the training dataset. This random sampling is

with replacement, meaning the samples for different submodels overlap each other. The random for-

est algorithm builds N decision trees from bootstrapped samples of the training dataset, where N is

a hyperparameter for the number of trees to include in the model. Then the random forest algorithm

selects its final prediction by taking the mean of the predictions from all N decision trees (Breiman,

2001; Sapp et al., 2014).3

The random forest algorithm has several factors that reduce overfitting. Combining predictions from

multiple submodels and using the random sampling bootstrapping method adds robustness. In ad-

dition, Breiman (2001) included additional randomization into the random forest model within the

decision tree building. For random forests applied to discrete data, Breiman added a conditional

probability as the splitting decision to add randomness (Breiman, 2001; Fawagreh et al., 2014). Today,

in practice, and in the case of continuous prediction instead of classification, additional randomiza-

3Note that when random forest is used for classification, the final prediction takes the mode of the predictions from the
N decision trees instead of the mean.
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Figure 5: Random forest model visualization, inspired by Chakure (2020).

tion is used in random forest ensembles by setting a hyperparameter for the number of randomly

chosen input variables the algorithm evaluates for each splitting decision. The parameter is called

mtry in R and Python and the "rule of thumb" is to use either the square root, or a third, of the total

number of input variables (Boehmke & Greenwell, 2020). Another hyperparameter that reduces the

overfitting of random forest is max depth which limits the maximum depth of decision trees (ibid).

The feature selection method within random forest method uses the mean decrease accuracy (MDA)

which involves randomly permuting the values of an input variable values and measuring the change

in prediction error, using the out-of-bag principle (Breiman, 2001; Calle & Urrea, 2011; Boehmke

& Greenwell, 2020). The out-of-bag error involves using the data that is not in a bootstrap sample

to measure the error in the model. As mentioned in 3.2.1. General Machine Learning Background,

feature selection processed in machine learning are not statistically stable and the results should

be assessed using critical judgement from the researcher. Calle & Urrea (2011) as well as Janitza &

Hornung (2018) validated this in the case of random forest’s out-of-bag method for assessing feature

importance.

3.2.3 Extreme Gradient Boosting Model

Gradient boosting methods are another example of an ensemble method. Instead of the bootstrap-

ping method of submodel combination, they use boosting, another popular subclass of ensemble

models (Boehmke & Greenwell, 2020). Within the past 20 years, “boosting” methods have become an

important subclass of ensemble methods (Wu et al., 2008). Boosting involves adding an additional

submodel sequentially and updating the final model prediction with each iteration. The general
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method is called gradient boosting because it follows the algorithm of gradient descent and “boosts”

the process with a new weak model at each step (Bühlmann & Hothorn, 2007; Li, 2016). Gradient

boosting in general is an algorithmic technique, so unlike the random forest model, it is not restricted

to decision tree submodels. Freund & Shapire (1997) first applied boosting to gradient descent algo-

rithms and today there are several variations.

Several gradient boosting models use decision trees as their base, including extreme gradient boost-

ing which is regularly called XGBoost. The XGBoost model, originally developed by Tiqui Chen, can be

visualized exactly like the random forest model. The difference lies in the fact that XGBoost is built se-

quentially while random forests build independent decision trees in parallel (Chen & Guestrin, 2016).

In contrast to the random forest method which takes the mean of the estimates of all decision trees

at the end of the algorithm, gradient boosting ensembles take the mean after each additional deci-

sion tree estimate is made, updating the final estimate in an iterative fashion. In addition, random

forest using bootstrapping, random sampling with replacement, where XGBoost performs random

sampling without replacement. The loss function for XGBoost applied to continuous variables is the

SSE, since this is the loss function used for decision tree models with continuous variables (ibid).

Extreme gradient boosting, and the popular package XGBoost, is commonly praised in data science;

in fact, there are articles theorizing why XGBoost wins so many data science competitions ("Tree

Boosting", 2017). In addition, it often outperforms random forest within academic studies, some of

which were mentioned in Section 2. A few features from XGBoost lend to its predictive power. For

one, as trees are added to the model they are built using information the model learned from the

previous trees. The newer trees are built giving priority to features that the previous tree ranked as

the most important (Boehmke & Greenwell, 2020).

The XGBoost model has the ability to reach accurate predictions with less computation power than

the random forest due to its sequential boosting nature, but it also has the potential of this causing

overfitting quite quickly (Boehmke & Greenwell, 2020). The learning rate parameter eta can help

avoid this by setting the scale at which each tree contributes to the model, in the fashion of gradient

descent where the learning rate represents the size of the step at each iteration (Chen & Guestrin,

2016). A smaller learning rate can help the model stop before it starts overfitting but comes at the cost

of computation time (Boehmke & Greenwell, 2020). In addition, one of XGBoost’s hyperparameters,

gamma is a regularization parameter for the minimum loss reduction required to make another split.

The model also offers several sampling hyperparameters that allow for different random sampling
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methods, for example by feature or by tree. XGBoost has many optional hyperparameters, which

could explain why it is able to achieve great prediction success in several cases (Chen & Guestrin,

2016).

3.2.4 Support Vector Regression Model

Support vector regression (SVR) is the application of the general support vector machine (SVM) model

for continuous variables. Muller et al. (2005) claim that support vector machines show excellent

performance for time series prediction. SVM was developed throughout the 1990’s, beginning with

Vapnik et al. (1992) and continually developed by Vapnik and colleagues4 at AT&T Bell Laboratories

(Smola & Schölkopf, 2004).

Generally, the SVM method maps training data to points in space and finds separating hyperplanes

between data points from different classes of the output variable, trying to maximize the width of

the margin between classes (Boehmke & Greenwell, 2020). In a binary classification case, this can

be easily envisaged, such as the example in Figure 6. The idea is that the separation identifies the

decision boundary between prediction decisions. The SVM algorithm decreases computation time

by relaxing the requirement of perfect separation by hyperplanes, allowing a "cloud" of separation

(ibid).

Figure 6: Visualization of a SVM boundary for a binary classification case by Boehmke & Greenwell (2020).

In the case of continuous variables, SVR utilizes an ε-insensitive loss function, which, like all machine

learning methods, the model attempts to minimize. The ε-insensitive loss function is given by

Lε“maxp0, |r pX , yq|q´ε (3.2)

where ε is a threshold parameter set by the researcher on the separating region, r pX , yq is the resid-

4(Vapnik et al., 1993; Vapnik & Cortez, 1995; Vapnik et al., 1995; Vapnik et al., 1997)
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ual for the prediction associated with the training example with X “px1`x2` ...`xpq as input and

y as output where r pX , yq“ y´ f pX q, and f pX q“β0`β1x1` . . . `βp xp . Data points that satisfy

r pX , yq˘ε form the support vectors which define the margin. Points inside the support vectors, within

the separating "cloud", are ignored by the algorithm for the learning process (Vapnik & Cortez, 1995,

Smola & Schölkopf, 2004). This loss function allows separating regions to be non-strict which gener-

ally improves robustness of the model to outliers (Boehmke & Greenwell, 2020).

Figure 7: Visualization of an SVR epsilon boundary by Smola & Schölkopf (2002).

This concept is extended to non-linear cases using kernel functions (Smola & Schölkopf, 2004). Then

the support vectors are the points where the residuals satisfy r pX , yq˘ε within the kernel-induced

feature space (Boehmke & Greenwell, 2020). The use of kernel functions by SVM is called the "kernel

trick," which avoids the explicit mapping required from linear learning algorithms that can be chal-

lenging to apply to nonlinear data (Hofmann et al., 2008).

Figure 8: SVR example compared to linear regression from Boehmke & Greenwell (2020).

The kernel trick decreases computation time and allows for a multi-dimensional version of linear

computation (Boehmke & Greenwell, 2020). SVM is actually within the class of kernel methods in
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statistical learning (Hastie et al., 2009). The kernel function is a dot product of vectors in a high-

dimensional feature space. Within the high-dimensional feature space the estimation methods are

linear, but the kernel evaluations themselves can be used linearly if the kernel is positive definite,

allowing the actual high-dimensional computations to be avoided (ibid). The kernel function can

be chosen by the researcher and easily passed as a built-in parameter in the SVM packages in R and

Python. Popular examples of kernel functions for classification problems include linear, polynomial,

or radial kernels.

The SVM package offers hyperparameters that can optimize the model’s prediction. This includes

epsilon to adjust the size of the separation boundary as described above. In addition cost parameter

controls how much the separation boundary is allowed to bend. Lower cost values result in smoother

boundaries and higher cost values allow for better prediction (Smola & Schölkopf, 2004).

Unlike random forest and XGBoost, SVM does not have a built-in feature importance calculation.

Feature importance is less important for SVM because it still performs well with many input variables

(Chen & Li, 2010). Even so, a researcher can manually test how much the SVM performance reacts to

a feature being removed.

3.2.5 Stacked Hybrid Model

Stacked ensemble models, or meta-learners, combine different base models to form a single second-

layer prediction model. The stacking method can combine models that differ in their prediction al-

gorithm since the individual models are trained prior to the stacked prediction is made (Boehmke &

Greenwell, 2020). Wolpert (1992) first developed the stacked model concept, calling it stacked gener-

alization.

A simple model stacking procedure utilizes the bootstrapping concept from random forest. A model

can be trained using the random forest algorithm where the dataset used for prediction contains the

target variable along with the fitted values from the base models as input variables. Using a random

forest algorithm is beneficial because it grows trees concurrently and in a parallel fashion, taking the

mean prediction at the end (Naimi & Balzer, 2018).

Stacked models, along with all machine learning models, are “black box” algorithms, i.e., the re-

searcher has no definitive indication of how each input variable contributes to the final prediction

(Naimi & Balzer, 2018). The additional layer of stacked modeling naturally adds more ambiguity in

this regard. Furthermore, Naimi & Balzer (ibid.) point out that there is no supporting theory that the

20



3.2 Machine Learning Theory

estimator developed in a stacked model is consistent or asymptotically normal. Nevertheless, predic-

tion accuracy is found to be improved with stacked models in many case studies, some of which were

highlighted in 2.2. Demand Estimation & Forecasting (ibid.). Some benefits of a stacked model in-

clude improved prediction accuracy, reduced risk of overfitting, and minimized parametric assump-

tions (Naimi & Balzer, 2018). The flexibility of a stacked learner can reduce the risk of bias arising from

regression misspecification (Naimi & Balzer, 2018). Furthermore, Van der Laan et al. (2007) showed

within the confines of their study that stacked models perform at least as well as their best performing

base model.
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4. Research Goals

The study is exploratory in nature, with the purpose of exploring the potentials of machine learning

methods for forecasting demand in the specific use-case of data from Ericsson’s telecommunications

software. Due to the established statistical robustness of ARIMA-based models and the seasonal na-

ture of demand data, a SARIMA model is used as a benchmark. Then the outlined machine learn-

ing methods are explored for the purpose of an initial analysis of their potential to outperform the

SARIMA model in prediction of future demand with this data.

The single machine learning models explored in the study are the bootstrap ensemble method, ran-

dom forest; the boosting ensemble method, extreme gradient boosting; and the kernel method, sup-

port vector regression. These are chosen by the review of relevant demand forecasting literature along

with a general goal of selecting simple models with strong performance history for an initial analy-

sis. This goal removed the neural network model from the selection of choices, which was found in

several studies in the literature, due to its unsupervised nature. The findings in the literature that

showed success of a hybrid model motivate the choice of using a stacked machine learning model

with a SARIMA component. The stacked model uses the SARIMA fitted values along with the fitted

values of the best-performing machine learning model to build a stacked random forest model. A

summary of the chosen models for the study is provided in Figure 9.

Figure 9: Summary of model choices for the study
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Although no specific hypotheses are tested, the literature review guides natural expectations for the

exploration. Findings validate in several use cases that SARIMA modeling performs well, and so it is

expected to predict demand better than random guessing in this case as well. Furthermore, findings

indicate that machine learning methods might perform better than the SARIMA model, although

they will likely provide less substantial insight into the relationship between predictor variables and

the target variable. In addition, literature indicates that the hybrid stacked model should perform

better than single models. The study explores this in the case of this specific data by forecasting a

specified period for all models and comparing the error of their predictions.
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5. Data

This section first outlines the dataset used for the study. Following this, data handling is discussed

prior to data selection. Then, the training, validation, and testing sets for forecasting are discussed.

5.1 Data Sources

Ericsson’s Software Supply unit handles the global delivery for all software products Ericsson sells

through licenses to customers as well as Ericsson subsidiaries. Ericsson’s software offerings relate to

telecommunications; therefore, most of the customers are telecom network providers. The software

products are likely to be used implicitly by the average consumer through their connection to local

networks, but the products are unlikely to be recognized by the average consumer.

All delivered software products are included within Ericsson’s Software Gateway system, a cloud-

based platform holding the code for software that is uploaded from the product development units

within Ericsson, making it available to customers and internal units for download. There is also a Li-

cense Registrar cloud-based system which contains the information of the licenses sold for software

products and packages. Within this system, customer profiles are held with their specific right-to-use

entitlements based on sold functionality and capacity.

Ericsson’s Software Gateway system, containing all deliveries of software from Ericsson, is the source

of the dataset analyzed in this thesis. The data is referred to as downloads in this study, as each de-

livery is a download of a software product to the system of a customer organization. One row of data

corresponds to one software product download. Therefore, for example, a customer downloading a

package with three products will produce three lines of data within the dataset. This is another rea-

son why download is the chosen term for the study. In addition, it is important to note the nature of

time in the Software Gateway data, with timestamps for each download, allowing for time-dynamic

analysis of downloads for each software product.

This dataset is conceptually appropriate for demand estimation. Sales data for the software prod-

ucts would be an inferior measure for demand of Ericsson’s software products since sales in this case

correspond to right-to-use licenses which can be enterprise-wide for the customer organization. In

comparison, download data more closely represents the demand for usage of the product. Better in-

sights into true demand could be obtained through granular usage data of the products (e.g., data

regarding how often a software product is actually used by a customer), but this data is not available.
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5.2 Outlier Analysis

The variables available for each delivery in the dataset include the start and finish time of the down-

load, the product number, and the R-State5. It also includes the functional designation and product

line of the product that was downloaded as well as the customer ID, customer name, and the down-

load method6. It is important to note that since customers are organizations, the customer details

do not contain any personal data. Furthermore, Ericsson follows all GDPR7 regulations with data

handling.

For the study, the data used is time series data derived from the Software Gateway downloads. A

dataset is created that contains counts of deliveries within binned time periods. Daily, weekly, and

monthly binned download counts are initially analyzed, but the study uses weekly aggregated data.

Although the extra variables that are included in the Software Gateway data are removed from the

main testing dataset, they are used within the initial analysis of the data, particularly for examining

potential causes of outliers in the binned download data over time.

Figure 10: Daily binned downloads of Ericsson’s software products, 2017-2019, author’s rendering

5.2 Outlier Analysis

Push Downloads

The push download method automatically downloads updates of software products for which a cus-

tomer has entitlements8 as soon as they are uploaded into the Software Gateway system. Push down-

loads from Ericsson are optional and the customer decides whether to use push downloads or not.

The push delivery system requires a connection between Ericsson and the customer’s database sys-

tem so many customers choose not to use push delivery due to data sharing preferences.

Push downloads do not conceptually represent the demand for the software products in the same

5R-State is an Ericsson code for the version of the product. For example, an update to a software product would cause a
new R-State to be assigned.

6Download methods include automatic push downloads, downloads from the Software Gateway, downloads from
browser, or manual downloads from Ericsson’s end

7General Data Protection Regulation
8Entitlements are determined by license agreements.
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way as the rest of the downloads, since the customer does not exercise any choice in the download

or its timing. Therefore, push downloads are removed from the dataset for the study. This choice

removes some significant outliers from the dataset, since a product update which a customer with

push downloads has entitlements to causes several downloads of that product as soon as the update

is uploaded.

Download Logs

Within the download method variable, there is a method for Software Gateway pull logs. Data anal-

ysis shows that this download method is responsible for outliers in the data. One example is from

the download series of the most downloaded product. There is a spike in in downloads on May 29th,

2019 which is double of the second highest download day that month. 95% of the downloads on May

29th have the download method indicating "Software Gateway pull log". These downloads are from

a few customer organizations, but all within the same country and the same user code was assigned

to each download. This highlights the issue with downloads that have the download method "Soft-

ware Gateway pull log", as it is likely that this involves a log of past downloads which were manually

inserted on May 29th. This is possibly from Ericsson’s local subsidiary in the country. Since pull logs

also do not represent genuine demand, this download method is also removed from the dataset.

Within-Ericsson Downloads

Downloads are also removed from Ericsson AB. This choice is made because the downloads from Eric-

sson AB do not conceptually represent demand from customers. It is important to note that Ericsson

subsidiaries are not removed from the dataset. The majority of these are the Ericsson organization

within different regions, and these subsidiaries act as customers in some ways. Furthermore, their

demand for software products serves important for business analysis and also arguably represents

customer demand well. Removal of Ericsson AB downloads removes some outliers, since Ericsson

uses many of its own software products.

Genuine Demand Spikes

Data analysis also reveals some visual outliers in the data that are not removed from the dataset.

There are a few instances of mass downloads from one customer, or a cluster of customers in one

region, within a few days. After downloads that use the methods of Push and SWG Pull Status Log

have been removed, along with the downlaods from Ericsson AB itself, cases of mass downloads are

kept in the data because they represent a genuine demand event; the customer organizations had to
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5.3 Data Selection

actually trigger these downloads.

Data After Adjustments

Figure 11: Daily binned downloads of Ericsson’s software products with outliers removed, 2017-2019, author’s rendering

5.3 Data Selection

After removing the cases above, data selection is still required since the data available in the Software

Gateway system is too large to derive cohesive insights from. First, the data is reduced in terms of the

time period analyzed. Next, the data is split by product, meaning the downloads for a single product

are considered a single time series for analysis. Then, the data is narrowed down into a single product

series, based on the timing of product life cycles and availability of data.

The time period is chosen with a preference for recent data. Since download data corresponds to

downloads from employees and units within a customer company, the data could likely be affected

by working structures and locations. Therefore, 2020 is not selected for this study since the COVID-19

pandemic suddenly shifted the global workforce to at-home work during 2020. This leaves 2019 as

the most recent data available at the time of this study. Then, the data from 2017 and 2018 are chosen

to provide adequate training data.

Product selection choices began by choosing among the top twenty overall downloaded products

within the 2017 through 2019 dataset. Then, the products were narrowed down by selecting those

that have downloads throughout the whole time period, since modeling and prediction would be

pointless to test if this was not the case. Products which had large gaps in downloads over time were

discluded, but the remaining products still had days or weeks with no downloads. Next, keeping

product life cycles in mind, the products were narrowed to those that have their date of first upload to

the Software Gateway system near the end of 2016. More specifically, products were strictly chosen to

have their first upload in October 2016 or later. This choice is based on business practicality. Given the

product life cycle concept, it is most valuable to be able to model and forecast demand for a product
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over its entire lifecycle, which should begin after launch. This resulted in 6 individual products, out

of which one was randomly selected.

This product is used as the main time series in the study. Figure 12 shows the downloads over time for

the selected product and Figure 13 shows the square root downloads, which highlights the underlying

trend in the series. A time series decomposition of the product series showing the seasonality, trend,

and noise can be seen in Figure 14. The trend appears not dissimilar to the beginning of a product

life cycle.

Figure 12: Download data for selected product Figure 13: Square root download data for selected product

Figure 14: Time series decomposition of the download data for the selected product

5.4 Training, Validation, and Testing Sets

In a supervised machine learning problem with one target variable, a model is first fit onto the train-

ing set which contains all predictive variables and the values for the target variable. Before true de-

ployment, the model is set to predict for the period of the test set, where the true values for the target

variable are available to the researcher but not known to the model. The model’s predictions can then

be compared to the true values for the target variable to evaluate the model’s performance.

In machine learning applications, it is recommended to have as much training data as possible, but
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a general threshold for testing data is maximum 10% of the available data, leaving at least 90% of the

data for training (James et al., 2013; Browne, 2000). For this study, a testing period of 12 weeks is

chosen, corresponding to October through December of 2019, or the last quarter of 2019. This corre-

sponds to a train-test split of approximately 92% and 8%, respectively. Forecasting data by quarters

is a common practice in applied business applications since decisions and planning in many orga-

nizations happen quarterly. Choosing only the last quarter of 2019 maximizes the training data by

allowing the first three quarters of 2019 to be used for training. In addition, the download data shows

a seasonal affect around the end of December each year, so the December period is the most valuable

testing period in order to see the ability of each model to detect and predict this seasonality.

In addition to a test set, it is common practice to have a validation process within the model devel-

opment stage, preceding the final testing stage. A validation dataset can be interpreted similar to a

test set, although it is distinctly different in that it is used for model building, i.e. feature selection

and hyperparameter tuning. In contrast, the test set is exclusively for model performance evalua-

tion (Boehmke & Greenwell, 2020; Browne, 2000). The general validation-training-testing process is

visualized in Figure 15.

Figure 15: Machine learning model building procedure

The most popular model selection method within data science and academia is cross-validation

(Bergmeir et al., 2018; Vanwinckelen & Blockeel, 2012; Zhang & Yang, 2015). With this method, the

model first trains on a random subset of the training data and validates on the remaining training

data. This is then repeated with different random subsample combinations (Browne, 2000). Hyper-

parameter tuning is performed during each cross-validation round, or fold, where several parameter

combinations are tested and the one with the best model evaluation metric is chosen. There are pack-

ages in R and Python which perform cross-validation methods, including k-fold, automatically and
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present the results from each fold. This can be either with a built-in cross validation component in

the machine learning model package, or using a grid-search algorithm. A popular method is k-fold

cross-validation which iterates this process k times. The k-fold cross-validation concept is visual-

ized in Figure 16, where k = 4 and the validation and training sets in each training-validation fold are

represented by the dark and light sections, respectively.

Figure 16: K-fold cross-validation technique, author’s rendering inspired by Shrivastava (2020)

The repeated nature of cross validation reduces the risk of overfitting the model, which is always a

concern in supervised learning problems (Cook & Ranstam, 2016; Moore, 2001). Cross-validation

methods present a way to allow multiple training-validation sets to be used, without requiring a lot

of extra data which, in practice, can be hard to attain. In addition, multiple validation steps increase

the chance for a robust model since the final model choice is not just based on one round, and this is

strengthened in cross-validation techniques involving randomness, such as k-fold (Bergmeir & Ben-

itez, 2012).

Traditional cross-validation methods, such as k-fold, do not preserve time-ordering of the data, mean-

ing they are not ideal for time series problems. Time dependent data theoretically violates the under-

lying assumptions in regular cross-validation techniques, namely the assumption that data obser-

vations are independent (Bergmeir et al., 2018; Bergmeir & Benitez, 2012). Since time series data is

transformed for supervised machine learning so that lagged observations are included as predictors

for each target variable value, the data is inherently serially-dependent. On top of violating the un-

derlying theory of the cross-validation method, the use of standard cross-validation methods is not

practical. In deployment of a model in a real scenario, the prediction period will truly be in the future,

with no possibility of feeding the model data beyond the prediction period. Therefore, if a model is

trained using overlapping time periods, it is trained with data sampling that cannot be recreated in
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deployment, which is naturally ill-advised (ibid.).

Since cross-validation results in more robust model selection on average (Bergmeir & Benitez, 2012),

researchers have aimed to find a way to apply cross-validation techniques to time-dependent data.

Several researchers advocate for block forms of cross-validation, where data is split into time blocks

and the validation set is chosen one block ahead in time for each iteration of training (Snijders, T. A.,

1988; Racine, 2000; Burman, 1989; Jong, 1988). There are variations of this, but the general consensus

for time series data is forward-moving validation sets through time. This general concept is often

called walk-forward validation (ibid). These methods of data-splitting preserve the time-ordering of

data which is crucial. The element of randomness is removed from this form of validation, but the

iterations of multiple training and validation sets in general contribute to more robust model training

compared to a single static training set (Roberts et al., 2017; Bergmeir & Benitez, 2012).

Using an expanding-window method of model validation, the study uses four different training- val-

idation folds. The validation window is chosen to have a length of 12 weeks of data, so that it is the

same size as the testing set. Using this method, the validation set remains the same size in each fold,

while the training data increases in size with subsequent folds (Schnaubelt, 2019; Muzumdar et al.,

2020). The resulting training-validation folds are displayed in Figure 17, where the validation and

training sets in each training-validation fold are represented by the dark and light sections, respec-

tively.

Figure 17: Training-validation groups used in the study, based on the expanding-window technique, author’s rendering
inspired by Shrivastava (2020)
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6. Methodology

This section begins with an outline of the general methodology used to compare the prediction per-

formance of chosen models for the selected demand data. Then, the specific methodology for the

SARIMA model is outlined. Following this, the specific methodology for the machine learning model

development is discussed.

6.1 General Procedure

Each of the forecasting models that are compared in the study have their own modeling "best prac-

tices." The study follows each methodology within the confines of a larger methodology in the study.

The larger methodology involves using the expanding-window model-building and validation pro-

cess as described in 5.4.Training, Validation, and Testing Sets, and comparing the models’ final pre-

diction performances from the testing period to the true test set using statistical error computations.

Within each training-validation fold, each model is tuned and assessed for performance, as outlined

in 5.4. Training, Validation, and Testing Sets. For the machine learning methods, hyperparameters are

tuned, meaning that several combinations of possible hyperparameters are tested and the combina-

tion producing the lowest error measure on the validation set is chosen. In addition, input variable

selection occurs within each fold, using each model’s standard method for feature selection in com-

bination with logical discretion. In subsections 6.2. Econometric Model Development and 6.3. Ma-

chine Learning Model Development, the model-building procedure that occurs within the training-

validation folds are discussed in more detail for the SARIMA and machine learning models, respec-

tively. The best parameter and input variable choices are stored for each validation round. If the

choices are different between rounds, preference is given to choices that were selected more often

and associated with later validation rounds since these were selected with the use of larger training

sets.

For the SARIMA model, such iterative validation is not as common, but some academic studies do

borrow this machine learning principle for ARIMA-based modeling (Krishna et al., 2015; Alberg &

Last, 2018). This study uses the expanding-window forward validation process for the SARIMA model

as well in order to follow a general procedure. It is expected that the SARIMA model selected will be

the same within each validation step because the parameters p and q are not as sensitive to different

datasets as some of the hyperparameters in machine learning models. However, if it arises that dif-

ferent SARIMA models are selected in different folds, it could indicate that there is something wrong
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6.2 Econometric Model Development

with the model specification.

The final versions of each of the single models are selected based on their four expanding-window

validation rounds. Then they are trained using the entire training dataset before forecasting the 12

periods of the testing dataset. The predictions are then compared to the actual download values

in the testing period using the root mean square error (RMSE). RMSE is chosen based on review of

literature and data science sources which indicated that the RMSE is used most often in practice for

assessing machine learning predictions. Furthermore, Chai & Draxler (2014) advocate for the use

of RMSE in academia, especially when residuals are expected to be non-uniform. Another common

error evaluation metric, mean absolute percentage error (MAPE), is not chosen since its denominator

is the true value so it is sensitive to true values that are close to zero which occurs often in the software

product downloads over time (Flores, 1986; Lewison, 2020). The RMSE is given by Equation 6.1 where

P is the number of time steps in the forecast period.
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The process is repeated for the stacked model. Model development for this model differs in that the

input variables are the fitted values from the two submodels. The two submodels are the SARIMA

model and whichever single machine learning model results in the lowest prediction error. The

stacked model then builds a random forest model using these inputs within each expanding-window

validation round where parameter tuning occurs according to the random forest parameters.

For the entirety of the study, the demand series chosen in Section 5 is transformed to its square root

series. This is chosen based on the general practices in time series analysis (Brockwell & Davis, 2016).

It is common to transform a time series to either log or square root (ibid.). Since the time series

contains zero values, the log transformation would result in undefined values, so square root trans-

formation is chosen instead.

6.2 Econometric Model Development

Box-Jenkins Methodology

The modeling approach first follows Box-Jenkins methodology (1967), which uses the autocorrelation

and partial autocorrelation functions, ACF and PACF, for the series to identify the parameters p and q.
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6.2 Econometric Model Development

This process requires the series to be stationary, which can approximately be estimated from exam-

ining whether the series appears mean-reverting. If it does not appear stationary, but the differenced

series does, the series may be difference stationary. The Augmented-Dickey-Fuller (ADF) test can be

used to check this more concretely, where the null hypothesis is that the series is difference stationary

against the hypothesis that it is stationary. If the ADF indicates that the series is stationary, then the

ACF and PACF can be computed using the original series. If not, then the series can be differenced,

and if this series appears stationary it can be used for the rest of the procedure (Brockwell & Davis,

2016).

The next step in Box-Jenkins method is to examine the ACF and PACF. Figure 18 displays the model

decision criteria based on ACF and PACF examination. Recalling the theory for ARIMA models dis-

cussed in Section 3.1, an ARIMA model with d > 0 can be converted to an ARMA(p, q) model by dif-

ferencing the series d times. Therefore, the ACF and PACF identify p and q in ARIMA(p,d,q) and d is

determined by how many times the series was differenced to achieve stationarity.

Figure 18: Selection criteria for the Box-Jenkins approach, inspired by Chatterjee (2018)

After p and q are determined, model diagnostic checks are performed. First, a Wald test checks that

the variables selected by p and q shows statistical significance in the model. Next, the error terms

should appear as an approximate white-noise process with mean zero. The Ljung-Box test is the stan-

dard test for assessing the error terms. Passing the white-noise test and significance test, the model

is accepted. If these tests are not successful, the researcher returns to further analysis, searching for

previously unidentified factors in the model such as trends or co-integration.

Information Criteria Selection

The Box-Jenkins approach is still respected and used today, but researchers advocate for stricter cri-
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teria before final models are chosen. In particular, the most respected selection criteria today are

Akaike and Bayesian information criteria, or AIC and BIC, respectively (Brockwell & Davis, 2016). Un-

der this selection approach, different combinations of p and q are tested in ARIMA models iteratively,

and their AIC and BIC scores are recorded. Then the model producing the lowest AIC and BIC scores

are selected (Kuha, 2004). Both criteria often select the same model. There is an automatic ARIMA

function available in R, auto.arima, that selects the best ARIMA(p,d , q) based on the AIC and BIC

values. This function also works for SARIMA. Since the study uses weekly data and has an annual

seasonal pattern, the seasonal period is set to 52.

Overall SARIMA Procedure

Both methods are used in the study, as the Box-Jenkins procedure provides useful model diagnos-

tics. The Box-Jenkins procedure is performed without seasonality, but just as an initial analysis of the

series, and the final model selection is based on the model selected using the second procedure. If

the parameters chosen for p, d, and q differ from each method, additional analysis is performed to

determine if some wrong assumptions were made.9

Predictions are calculated using a prepared forecast function in R, using the selected model which

is fitted onto the training data, and setting the forecast period to 12 periods, corresponding to the

test set. The RMSE of the forecasts compared to the actual download frequencies is computed and

recorded for comparison to other models.

6.3 Machine Learning Model Development

Within each training-validation round, the models are fit with 8 auto-regressive time lags as well as

the date-based variables ISO week, month, and year. The models’ respective feature importance func-

tions are used to reduce input variables within a training round. In the case of the SVR model which

does not have a feature importance method, researcher discretion in combination with the results

from the feature selection of other models is used.

Recalling the discussions from Section 3. Theoretical Background, the hyperparameters in Tables 1

through 3 are used in each model for possible values. A grid-search algorithm is constructed where

all possible parameter combinations are tested and the combination resulting in the lowest RMSE

for the model is given. This process is usually recommended to be performed using cross-validation,

9For example if the series was trend stationary instead of difference stationary it should be detrended instead of differ-
enced, which is discussed in Section 8.
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but due to the same reasoning for avoiding cross-validation for data splitting, it is avoided here too.

Instead, the entire training set available within the current training-validation group is used for the

grid-search algorithm.

The choices for initial parameters come from a few sources. The insights from the literature review

in Section 3. Theoretical Background provide some indications, particularly for the random forest

parameters, the learning rate (eta) for XGBoost, and the possible kernel options for SVR. The remain-

ing choices are based on consolidation of additional sources (Hastie et al., 2009; James et al., 2013;

Banerjee, 2020). The stacked ensemble method uses the same initial parameters for grid-search as

the regular random forest.

ntrees 300 500 1000
mtry p

?
p p{3

maxdepth 3 4 5

Table 1: Random Forest Parameters for Validation

ntrees 300 500 1000
eta 0.2 0.3 0.4

maxdepth 5 6 7
gamma 0 0.4 0.8

Table 2: XGBoost Parameters for Validation

kernel "linear" "polynomial" "radial"
epsilon 0.2 0.3 0.4

cost 2 4 6

Table 3: SVR Parameters for Validation
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7. Results & Analysis

This section begins with the results obtained during the model development process of each model.

Then the prediction results from each model are outlined. Following this, an analysis of the results is

provided.

7.1 Model Development

7.1.1 SARIMA Model

The SARIMA model was identical in each training-validation round. This is as expected, since ARIMA-

based modeling procedures do not require multi-step validation datasets. Only the final model details

are described here, as the results are identical.

Beginning with the Box-Jenkins model selection process as an initial analysis of the time series, the

ADF test indicated that the square root download series is difference stationary. Differencing the

series passes visual inspection which can be seen in Figure 26 in the Appendix. The ACF and PACF

for the differenced series indicate an auto-regressive model with p = 3, displayed in Figures 19 and 20.

The fitting of an ARIMA(3, 1, 0) model to the data passes the Wald test and Ljung-Box tests, which are

provided in the Appendix in Figure ??. These preliminary results indicate that three auto-regressive

download lags of the differenced series may be a good model, without yet considering seasonality.

Figure 19: Autocorrelation plot Figure 20: Partial autocorrelation plot

Following this, the results from the auto.arima package in R with the seasonal period set to 52 selected

the model SARIMA(3,1,0)(0,1,0)52. The parameter D=1 validates the annual seasonality that can be

implied by visual inspection of the series. The lack of auto-regressive or moving average seasonal lags

indicates that the values of the series just prior to last season’s value are not significantly correlated

with the current value. This model also passes a Wald coefficient test which is provided in Table 4 and
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residual testing.

Dependent variable:

sqrt_series

ar1 ´0.700˚˚˚

(0.095)

ar2 ´0.574˚˚˚

(0.105)

ar3 ´0.450˚˚˚

(0.096)

Observations 91
Log Likelihood ´201.652
σ2 4.865
Akaike Inf. Crit. 411.303

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table 4: Coefficient test for the ARIMA(3,1,0)(0,1,0)52 model selected during final test

The fact that the Box-Jenkins initial analysis and the final model selection procedure both identified

the same significant number of lagged variables is reassuring. The selection of 3 auto-regressive lags

implies that the demand for one week is dependent on the three previous weeks demand levels. This

can be interpreted that demand for any given approximate monthly period is serially correlated. The

selection of 0 for both moving average parameters indicates that the series is not significantly depen-

dent on previous error terms.

7.1.2 Random Forest Model

For the random forest model, feature selection for lag variables differed substantially within each

training-validation round. As mentioned in Section 3. Theoretical Background, the variable impor-

tance functions in machine learning models are not robust and should not be considered scientific.

The 4th and 5th download lags were ranked as top importance in several of the folds. The first 5 lags

were selected for the final model since it does not conceptually make sense that the 4th and 5th lags

would hold importance and the first 3 would not. The date-based variables, ISO week, month, and

year were consistent, with ISO week ranking with very high importance in each round and the oth-

ers ranking very low. Conceptually, it seems logical that the ISO week variable would hold predictive

power since there is an annual seasonal pattern and the data is binned weekly. Therefore, the ISO
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7.1 Model Development

week variable introduces the value from one season prior, acting similarly to a seasonal differencing

parameter, D = 1, that was detected from the SARIMA modeling. Therefore, ISO week was kept in the

final model. Feature importance computations from the 4th validation fold are found in the appendix

in Figure 27.

The chosen parameters after tuning in all four folds are in Table 5. The final model will grew 1000

parellel decision trees, and at each node’s splitting decision was fed
?

6 random features out of which

to decide the best feature for splitting (based on the random forest loss function, SSE). Furthermore,

the maximum depth of all decision trees is set to 3 nodes.

ntrees mtry maxdepth
1000

?
6 3

Table 5: Random forest tuned hyperparameters

7.1.3 XGBoost Model

Similar to the random forest model, feature selection was not clear for the XGBoost model. The first 5

lags were identified as important in all of the validation folds, although in different orders. The 6th lag

was identified as important in two of four validation rounds, but since this lag is far from the predicted

value and did not show consistent importance ranking, it was not included. Therefore, 5 lags were

chosen for the final model. The importance function results from the fourth training-validation can

be seen in Figure 28 in the Appendix.

The chosen parameters after tuning in all four rounds are in Table 6. Similarly to the random forest

model, 1000 decision trees are used in the final XGBoost model. The maximum depth of decision trees

was chosen at 6 nodes. The learning rate, eta, and across-tree regularization parameter, gamma, were

chosen at 0.4 and 0. Eta was chosen just above its "rule of thumb" value of 0.3 and the gamma choice

of 0 means that no regularization was chosen, which is the default value.

nrounds eta gamma maxdepth
1000 0.4 0 6

Table 6: XGBoost tuned hyperparameters

7.1.4 Support Vector Regression Model

Since the random forest and XGBoost models showed similar feature importance rankings, 5 lags

and ISO week were also chosen for the final SVR model. The chosen parameters after tuning in all

four rounds are in Table 7. The kernel function that fit the model best was polynomial. This is not
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surprising since the product’s life cycle trend appears polynomial. The epsilon parameter for the ε-

insensitive loss function is chosen as 0.3 and cost are chosen as 4.

kernel epsilon cost
polynomial 0.3 4

Table 7: SVR tuned hyperparameters

7.2 Prediction Results

The RMSE from each model’s predictions during the testing period are provided in Table 8. The pre-

dictions plotted with the actual series values are shown in Figures 21-25. Overall, the machine learn-

ing models outperformed the SARIMA model. The random forest and support vector regression mod-

els performed slightly better than the XGBoost model, but ultimately, the hybrid model performed far

better than all of the models.

SARIMA RF XGB SVR Meta
RMSE 1.3801 0.9896 1.0563 0.9977 0.4363

Table 8: RMSE from model testing

Figure 21: Predictions from SARIMA Model

Figure 22: Predictions from random forest model Figure 23: Predictions from XGBoost model
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Figure 24: Predictions from SVR model Figure 25: Predictions from stacked SARIMA-RF model

7.3 Analysis of Results

The results suggest that in the case of this data, machine learning methods provide better prediction

capabilities compared to the more traditional SARIMA approach. The most significant result was

that a stacked ensemble hybrid model made from both the SARIMA and random forest submodels

performed substantially better than all single models. Overall, the results are not misaligned with

expectations based on theory and past research, except for the subpar performance of XGBoost in

comparison to the other single machine learning models.

The single machine learning models (random forest, XGBoost, and SVR) performing better than the

SARIMA model is not surprising given the findings from previous studies. The flexibility of machine

learning methods generally allows intricate relationship detection between inputs and outputs, as

long as the models are not too overfit to the training data (Kuhn & Johnson, 2019). The success of

these results indicate that overfitting of the models was at least adequately avoided to provide pre-

diction improvement in comparison to the more traditional SARIMA model. The expanding-window

validation technique, which was chosen for the purpose of avoiding overfitting in light of time series

data, may have been adequate at fulfilling its role.

It is surprising that the XGBoost model performed slightly worse than the random forest and SVR

models. As mentioned, XGBoost has been the winning model in several data science competitions

and has also seen success in academic studies, even in direct comparison to random forest. From a

theoretical perspective, as described in Section 3, XGBoost is an ensemble method using boosting of

decision trees that are optimized based on its previous learning, making it more prone to overfitting

compared to random forest. Several XGBoost hyperparameters offer the ability to offset the chance of

this overfitting, therefore, a reasonable cause of the under-performance of the XGBoost model in the
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study is poor hyperparameter tuning. A downside of the grid-search method for parameter tuning

is that the tested parameters are chosen by the researcher using "rule of thumb". There is potential

that the ideal parameters were never entered into the grid-search algorithm to begin with, resulting

in unoptimized parameters. Furthermore, the gamma parameter depends on the combination of

training data and other parameter choices, so if another parameter was mischosen, the effect could

have been compounded by the choice of gamma (Chen & Guestrin, 2016).

The stacked hybrid model outperforming the others is in line with findings from literature as dis-

cussed in previous sections. The reduction in error from using the hybrid approach was substantial.

The results perhaps validate what is emphasized in the literature; diversity in machine learning model

building can prevent overfitting (Kuhn & Johnson, 2019). Using the predictions from the two models

that had the most differing RMSE results as the inputs for the stacked model may have contributed to

the level of success that the hybrid model achieved.

The results across all models validated the idea of seasonality in the demand for Ericsson’s software

products. The identification of D = 1 in the SARIMA model with no identification of significant auto-

regressive lags (P = 0) could imply that the seasonality might be quite granular, i.e. the value of the

series exactly one year ago is important for prediction but the values slightly before that are not sta-

tistically important. This was further validated from the machine learning models which identified

ISO week as an important predictor but not month.

The model building procedures also validated what literature often highlights about the trade-off of

traditional econometric approaches to machine learning approaches. Particularly in the matter of

feature selection, or the selection of significant input variables. The SARIMA model detected that

only three auto-regressive lags are significant but the machine learning methods detected predictive

importance for the fourth and fifth lags. This exemplifies the flexibility of pattern detection that ma-

chine learning methods offer compared to econometric methods, but the reminder should remain

that the relationships the machine learning methods detect should not be considered statistically

significant or proven in any way (Naimi & Balzer, 2018). Ultimately, this highlights the downside of

machine learning methods for both academic research and business value: at the end of the day, not

much can be said about the relationships between the variables.
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8. Additional Checks

SARIMA Model

Recalling the theory for ARIMA models discussed in Section 3.1, an ARIMA model with d > 0 can be

converted to an ARMA(p, q) model by differencing the series d times. As an additional check of the

original SARIMA(3, 1, 0)(0, 1, 0)52 model, the modeling process was repeated instead with the dif-

ferenced time series. Theoretically, the expectation is that the AIC and BIC selected model should

have the same parameters for the AR and MA components (p, q) , as well as seasonal parameters (P,

D, Q), but that the parameter d should be zero. This was confirmed with the data, indicating ad-

ditional evidence of proper model specification. If this check was not successful, there would have

been indication of improper model selection and further analysis would be advised. The data was

assumed difference stationary from the ADF test, but instead could be trend stationary. This could be

tested with a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test which compliments the ADF unit root

test by testing trend stationarity against difference stationarity (Kwiatkowski et al., 1992). If the series

was indeed trend stationary, it would need to be detrended before the modeling process instead of

differenced (Brockwell & Davis, 2016).

Single Machine Learning Models

Each model was run with the differenced download series to check robustness. Expectations are

that the models would perform similarly with or without differenced data, as stationarity is not a

requirement for these models. Generally machine learning models do not require that the data to

be differenced, but some sources claim that random forest and XGBoost models are not great at ex-

trapolating time trends (Loh et al., 2007). Since the data was differenced for the SARIMA model, it is

useful to check whether feeding the machine learning models the non-differenced data was an un-

fair assessment in comparison to SARIMA. The RMSE from the predictions on differenced data were

very similar. The ability of the machine learning methods to perform similarly with the original data

and differenced data is valuable because they can be utilized with less data preprocessing, and more

importantly, they offer the potential to predict future trends relateively well, which in practice holds

great value.

Stacked Model

The stacked model was also run with differenced data for the same reasoning. Instead of similar re-
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sults, this caused significantly worse results. Researchers claim that stacked models perform best

when the base models’ predictions are less correlated (Boehmke & Greenwell, 2020). This could ex-

plain this response, since the the original model contained the SARIMA predictions for the stationary

series and random forest predictions for the original squareroot series, which was determined to have

stochastic trend. The robustness check with differenced data resulted in the two input variables being

based on the stationary series, likely increasing their correlation. Reflecting on this further, the ran-

dom forest predictions could possibly act for the model as a measure of the "trend" over time, while

the SARIMA predictions could capture the mean-reverting nature in the absence of trend. Since both

submodels had seasonality included (the ISO week variable for the random forest), they likely shared

the responsibility in capturing the seasonal effects.

In addition, the model was tested by removing the confidence interval estimates that derived from

the SARIMA prediction. Conceptually, the confidence intervals could be valuable predictors for the

model, as they are bound relatively closely around the true value. This was already found in the

SARIMA forecasting for this specific data. The stacked model could likely learn an approximate re-

lationship between the lower and upper confidence intervals and then use the confidence intervals

to improve the final predictions. There is no theory to support this, or research which suggests this.

Therefore, the stacked model was replicated with the confidence interval estimates removed from the

data. The results were worse, with a RMSE of approximately 0.51, providing evidence in support of

the reasoning above.
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9. Discussion, Limitations & Future Research

An overarching limitation of the study is that the models are only tested on one series. This is often

the case in time series studies, which typically involve macroeconomic series that do not have the

same granularity as products. Even so, only one product was tested for one time period in the study,

meaning that the results should be explored further in future research by replication and extension.

In addition, the modeling process in the study gave precedence to a "fair assessment" of the models

by following a general methodology, which may have resulted in some of the models being chosen

under unoptimized specifications. The general methodology for the machine learning algorithms

involved grid-search algorithms for choosing hyperparameters from preset "rule of thumb" values.

These researcher choices involved selection of possible hyperparameter values along with choices of

hyperparameters themselves. These "rule of thumb" choices may not have contained the optimum

values, and may be responsible for the final results instead of the models’ capabilities themselves. In

practice, a data scientist or researcher using only one model could build the model in an agile fashion,

returning back to original parameter choices after validation rounds to further optimize the model.

Since the study was comparing models, this was avoided so as to give a "fair" assessment of each. This

highlights a downside to the flexibility of machine learning methods. Their customizability provides

potential for very well-built models but can also make it difficult for a researcher to find the optimal

specifications. This is where the use of the highly praised cross-validation can provide great value.

Completing parameter grid-search algorithms with cross-validation is the recommended approach

for model building (Krstajic et al., 2016). This means cross-validation for parameter tuning within the

greater confines of the cross-validation for training-validation sets. Although time series data inval-

idates cross-validation’s underlying theory, many data scientists and even academic researchers still

apply cross-validation for time series data (Bergmeir & Benítez, 2012). Therefore, a clear limitation in

this study is using the sub-optimal manual grid-search without cross-validation for hyperparameter

tuning. Perhaps following the studies that use cross-validation for time series data, using it within

the grid-search process inside the larger confines of the expanding-window validation could have

resulted in better hyperparameter tuning and different final results.

Another limitation to machine learning methods is that they do not offer statistically stable confi-

dence intervals for predictions (Shrestha & Solomatine, 2006). Confidence intervals for forecasting

hold important value for business applications, especially in supply chain forecasting for physical

goods (Dalrymple, 1987). Generally, businesses with physical goods would prefer to make inventory
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decisions based on the confidence intervals of demand forecasts to ensure adequate inventory. This

is less important in this study where the product being analyzed has unlimited inventory, but is an

important consideration for examining the use of these methods for the case of demand for physical

goods.

The study findings imply that machine learning methods may provide value for demand forecasting

efforts of Ericsson’s Software Supply unit, and that a stacked model, particularly a hybrid model with

ARIMA and machine learning bases may prove the most accurate upon further research. The findings

also imply that demand for these products is not random noise and could perhaps be interpretable

as a product life cycle. This was previously unknown to Ericsson’s Software Supply unit and this study

could be a starting point for validation of product life cycles on additional software products.

Extending from this point, Ericsson could replicate the study on data from additional products. The

process could be replicated with different initial parameters in the machine learning models as well.

After additional validation, the process could be implemented and tested on a rolling basis, allowing

forecasting across longer time periods. Furthermore, Ericsson could extend this analysis by adding

additional variables to the modeling process, i.e. exogenous variables for a SARIMAX model and ad-

ditional factors within the machine learning models. Examples of additional variables could be a

dummy variable indicating when new updates of a product are uploaded to the Software Gateway,

and dummy variables indicating new sales licenses for large customer organizations associated with

the specific software products on the license.

Due to the lack of consensus for modeling approaches to demand forecasting, exploration of models

in different demand contexts presents a useful contribution towards gaining more clarity. Particular

value could be interpreted from the fact that the demand series used for this study was from a non-

physical good. There was no indication from literature that demand for telecommunications software

would in fact show any time-dependent relationship that could be modeled, so the results provide an

initial indication that a regular demand perspective can be applied in similar ways to these types of

goods.

The lack of consensus regarding modeling also extends to the use of machine learning for prediction

in general. As mentioned in the study, there are no strict recommendations for which models outper-

form which in general. Since machine learning is growing in the economics literature in general, it is

important for research to continue exploring the strengths and limitations of machine learning mod-

els. The results of this study provide additional evidence in the grander scheme of required research
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into this question. Future studies should continue applying different models to different time series

to attempt to shed light on the limitations of different methods in different use cases.
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10. Conclusion

The study provides additional evidence to the demand forecasting literature which spans several

fields. It contributes to the collection of studies which employ machine learning methods for de-

mand modeling and also to those that compare ARIMA and machine learning methods. This study

compares several methods for the purpose of demand forecasting. Five individual models are devel-

oped within an expanding-window validation process. These include a benchmark SARIMA model

and several machine learning models. Random forest, XGBoost, and support vector regression are

each developed. Following this a stacked ensemble model is created using the SARIMA and random

forest predictions.

Overall, the machine learning models showed higher forecast accuracy compared to the SARIMA

model. The forecast from the SARIMA model had a RMSE of 1.38 while the single machine learn-

ing methods had RMSE between 0.98 and 1.05. Out of the single machine learning models, random

forest performs best, followed by support vector regression. The most valuable contribution to this

research is the success of the hybrid modeling approach which had a substantially lower forecast

RMSE of 0.43. The results overall indicate that machine learning methods present good possibilities

for demand forecasting, and in the case of software demand. In addition, they indicate that further

exploration in this application should place emphasis on hybrid meta-learning models.

The SARIMA results provide evidence in support of the seasonal approach to demand modeling in

the case of software series analyzed. The SARIMA process identified seasonality within the demand

series and selected three autoregressive lags. The resulting model was SARIMA(3, 1, 0)(0, 1, 0)52, with

weekly aggregated data and an annual seasonal period. The machine learning models detected some

predictive power for the first 5 lags, as well as a variable for the ISO week, aligning with the annual

seasonality detected by the SARIMA model. The difference in lag selection highlights the trade off

between ARIMA-based and machine learning models.

Machine learning methods have the potential for substantially higher accuracy in forecasts com-

pared to the ARIMA-based models, and this was validated in the case of this data. A downside of

these machine learning methods, however, is their inability to provide clarity about the time series

being forecasted. The importance measures of predictor variables associated with machine learning

techniques are statistically unstable, so even after seeing error reduction in the model from selecting

"important" features, the researcher still cannot say to what extent these variables are connected to
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the target variable (Naimi & Balzer, 2018).

This was seen in the study, with the two machine learning "importance" rankings giving different

results in different iterations. In contrast, SARIMA models are built from statistical foundations, and

allow for regression coefficients to be estimated as well as reliable statistical tests to determine their

significance. In this case, statistical backing identified that only the first three auto-regressive lags

are significant, while the machine learning models detected importance for the fourth and fifth lags.

The matter of the relationship between input and output variables may not be a significant concern

in a time series context where the predictors are largely made from previously observed values. It

does, however, become important when the researcher wants to include additional factors into the

forecasting process, such as exogenous variables.

The predictive accuracy of the hybrid SARIMA-random forest model in the study is a promising result

in light of this trade off. Not only did the model present potential for more accurate prediction, it

presents the potential for combining the statistical clarity that the SARIMA model offers with the pre-

dictive power of "black box" machine learning models. As mentioned in this study, previous research

has already found promising results from ARIMA-machine learning hybrid models. The findings of

this study further validate these previous findings in a new context of software demand.
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12. Appendix

Figure 26: Differenced time series

Dependent variable:

sqrt_series

ar1 ´0.658˚˚˚

(0.078)

ar2 ´0.553˚˚˚

(0.084)

ar3 ´0.358˚˚˚

(0.079)

Observations 143
Log Likelihood ´206.988
σ2 1.059

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table 9: Coefficient test from Box-Jenkins methodology ARIMA model on entire training set

Ljung-Box Test

Q 26.723

df 26

p-value 0.424

Model df 3
Total lags used 29

Table 10: Ljung-Box residual test from Box-Jenkins methodology ARIMA model on entire training set
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Figure 27: Feature importance from random forest, 4th validation fold

Figure 28: Feature importance from XGBoost, 4th validation fold
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