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Abstract 

This paper investigates the presence of a cointegrating relationship among the main stock 

market indices in South-East Asia, namely those of Hong Kong, Singapore, Malaysia and 

Thailand. It takes into consideration two different databases: one that used the indices values 

in local currency, while the other contains USD-adjusted values. Both a linear vector error 

correction model and a two-regimes Markov-switching heteroscedastic vector error 

correction model are estimated. For the latter, the intercept, the speed-of-adjustment vector, 

the cointegrating vector and the variance-covariance matrix are defined as regime-

dependent. The Markov-switching model is estimated through MCMC parameters sampling 

using the No-U-Turn Sampler (NUTS). Given that precedent literature leads to contrasting 

results, an explanation might be that different regimes exist that make the result of the linear 

cointegration test dependent on the specific time horizon selected by the authors. A Markov-

switching model accounts for that. The test of linear cointegration shows no evidence of the 

presence of a cointegrating vector among the variables for both the local-currency and the 

USD-adjusted databases. On the contrary, the Bayes Factors calculated among the different 

Markov-Switching models lead to different results. In the USD-adjusted case, the markets are 

not cointegrated in the bear market regime, but they do show evidence of cointegration in 

the bull market regime. For the local currency database, the results are interpreted on the 

basis of the volatility: the Bayes Factors suggest that the cointegrating relationship is present 

in both the low-volatility and the high-volatility regimes, but the effect of the cointegrating 

relationship is stronger in the low-volatility regime than in the high volatility one. 
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Introduction 

South-East Asian Markets Development 

Over the last 50 years the markets of the South-East Asian economies have undergone major 

structural changes aimed at boosting economic and financial integration in the region. A brief 

introduction to such developments has to start necessarily from the foundation of the 

Association of South East Asian Nations (ASEAN), an inter-governmental organization initially 

composed of five nations: Indonesia, Malaysia, Philippines, Singapore and Thailand. While 

initially founded for political reasons, in 1993 the ASEAN members undersigned the creation 

of the ASEAN Free Trade Agreement (AFTA) with the aim of reducing tariffs among the 

member states. The agreement enjoyed a quick implementation: the original deadline for the 

reduction of tariffs to the 0-5% range was moved forward twice to 2002. Okabe and Urata 

(2013) noted a significant increase in the intra-ASEAN import shares following the AFTA 

foundation, which suggests that the free trade agreement created a regional production 

network in ASEAN for intermediate and capital goods. On the contrary, the intra-ASEAN 

export share declined, and they found this to be caused by the strengthening of the 

production network between ASEAN countries and its neighbours, with the latter outsourcing 

the production of intermediate and capital goods in the former more and more. 

On top of such initiatives, ASEAN has also undersigned bilateral agreements known as 

“ASEAN+1” with China, Japan, South Korea, India and Australia. The first three are by far the 

most influential ones. Table 1 reports the total trade in goods in the ASEAN region broken 

down by trading partner. It is evident that the role of China cannot be ignored when 

considering the economic integration of ASEAN countries. The production network of capital 

goods between ASEAN and China has been enhanced by the ASEAN-China FTA established in 

2004. Over last two decades, China moved up in the value chain, while the technical level and 

manufacturing capacity of the ASEAN members has progressed comparatively slowly. This has 

greatly decreased the imports from advanced ASEAN countries of medium- and high-tech 

products in favour of intermediate goods (Cheong, Wong and Goh, 2016). The China-ASEAN 

Free Trade Agreement (CAFTA) is composed of three agreements covering trade in goods 

(2004), services (2007) and investments (2009), respectively. The most ambitious one is the 

agreement on the trade of goods, which envisaged the elimination of the tariffs on 91% of 
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the product items within 2010, with only 7% of product items considered sensitive, on which 

tariffs are allowed to be levied. Figure 1 shows how the total trade in goods between China 

and ASEAN has increased by more than 450% since the inception of the CAFTA. 

Coming to financial integration, a stepping stone in the region was the ASEAN Banking 

Integration Framework undersigned in 2014, in which the five founding members of the 

ASEAN community agreed to reach a semi-integrated banking market status by 2020. Its 

effect has been on the one hand to liberalize the banking markets and achieve greater foreign 

bank penetration, but on the other hand it has led to a higher degree of consolidation and 

greater market power in the hands of few regional banks. Furthermore, in the aftermath of 

the Asian financial crisis, ASEAN members started devoting efforts to the improvement of 

monetary and financial coordination. One cannot avoid mentioning the Chiang Mai Initiative, 

arranged by the whole ASEAN organisation, that in 2000 already comprised today’s 10 

members, plus China, the Republic of Korea and Japan (the so-called “ASEAN+3”). It refers to 

a bilateral swap arrangement aimed at providing USD short-term liquidity to countries 

experiencing short-run payment deficits. Nevertheless, in recent years exchange rates 

movements in South-East Asian countries showed a divergent pattern, with the misalignment 

mainly caused by the different exchange rate regimes and different monetary policy 

objectives that the currencies witnessed (Kawai, Park and Wyplosz, 2016). 

Another area of regional improvement which made itself necessary after the Asian financial 

crisis was the development of a local-currency bond market. In particular the Asian Bond 

Funds project, organised by eleven central banks in East Asia, aimed at creating an 

environment to help private-sector financial institutions to introduce investment trusts 

tracking the Asian bond market. Furthermore, the Asian Bond Markets Initiative led to the 

creation of a Credit Guarantee and Investment Facility which provides credit enhancement 

for investment-grade corporate bonds in ASEAN+3 countries. Kawai, Park and Wyplosz (2016) 

find that these developments were effective in the expansion of the primary market for local-

currency sovereign and quasi-sovereign bonds. It is worth noting how stock markets in the 

region have undergone major changes, as well. In 2009 the ASEAN Common Exchange 

Gateway alliance was launched which paved the way for the development of back-end 

linkages involving clearing, settlements and depositary arrangements. They also created the 

ASEAN Bulletin Board where brokers list the top 30 stocks of the ASEAN-5 markets giving a 
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single access point to the capital markets of five countries and giving the markets enough 

liquidity to be globally attractive for institutional investors. 

Cointegration in the South-East Asian equity markets 
Cointegration is an interesting concept, which studies the existence of long-run common 

trends, possibly stochastic, among a number of different time series. If two time series are 

cointegrated, then there exists at least one linear combination of integrated variables which 

is stationary. This entails that any deviation from the long-run equilibrium is temporary, as 

the linear combination of the variables consistently reverts to its mean. The coefficients of 

the linear combination are grouped in a cointegrating vector. When a number of time series 

processes tend to co-move together, it is interesting to study the potential existence of a 

common stochastic trend.  

It is interesting to study the cointegration relationship among the different stock markets in 

light of the developments towards economic integration outlined in section 1.1. If a number 

of economies are more and more interconnected from a macroeconomic point of view, a 

shock to a number of companies in one country should easily be passed to companies in the 

other countries. If the market is efficient, it is plausible to think that the equity markets of the 

whole region should be exposed to shocks to one of the country, given the degree of 

economic integration of the ASEAN+1 region. From Figure 2 one can see the market 

movements of the four most developed financial markets in Asia. This paper focuses on the 

four most developed markets, mainly due to practical constraints in the running time of the 

algorithm required to run the models (six models need to be calculated that need to run 

iterations for around 6-7 hours each to achieve convergence in RStan). It is interesting to note 

how they seem to strongly co-move together, with the notable exception of Thailand, which 

seem to have had a period of different movements during 2012-2014. Figure 3 shows the 

USD-adjusted value, which appear more homogeneous vs the local currency indices, and this 

is explained by diverging monetary policies ran by the local central banks. It is indeed 

important to conduct the research over the two different datasets. The first one is based on 

the nominal value of the indices measured in local currency. This provides insights on whether 

the co-movements in equity markets tend to happen no matter what the contemporaneous 

movement in the FX market is. This is particularly relevant given the volatile nature of EM 

currencies, and the fact that the HKD is pegged to the USD, and MYR has been pegged to the 
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USD for a few years in the early 2000s. It is also possible to appreciate from Figure 4 how the 

development of currencies has diverged, with the MYR depreciating vs the USD in the period 

under consideration, while SGD and THB have both appreciated. Having two different results 

for the two databases would be insightful in the sense that it would provide different insights 

over portfolio diversification for a US based investor and a local currency investor. If the 

practitioner is interested in impulse response function studies, the different VECMs could 

further give insights on whether the shocks from one country to the other take into the 

account the simultaneous FX movement or they tend not fully price FX in. 

Another interesting façade of studying the cointegrating relationship is that one can try to 

understand the dynamic relationships among the markets under study. Once the presence of 

a long-run equilibrium has been established, the VECM can help in forecasting at which speed 

variables will revert back to the equilibrium and can lead to a more precisely defined 

econometric model than a simple VAR model, as not consider the cointegrating relationship 

results in a major loss of valuable information. 

Getting to understand whether a number of market indices share a common, possibly 

stochastic, trend can be particularly interesting for the purpose of portfolio diversification: if 

two stock markets share a long-run trend, the benefits of diversification are limited due to 

the fact that the error correction mechanism will make the markets revert to the long-run 

equilibrium over time. On top of that, building a vector error correction model (VECM), can 

reveal both how strong is the cointegrating relationship, how quickly an index reverts back to 

the long run equilibrium once it deviates from it and finally which countries are most 

important in defining the equilibrium. This gives the opportunity for investors to exploit 

departures from the equilibrium outlined in the cointegrating vector and to forecast the time 

needed for the indices to revert back to the equilibrium, given their speed of adjustment 

coefficient. 

This would enhance the price forecasting process, as estimating a vector autoregression 

model when the two series are cointegrated entails a major loss of information and much 

worse predictive powers. A risk manager would be able to better forecast the spill-over 

effects from a shock in one market by using a VECM rather than a simpler VAR model, in case 

the markets are indeed cointegrated, in order to better gauge the level of risk related to a 

given portfolio. A portfolio manager could also understand what is the contagion effect 
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coming from another market when entering a position in a different geography. Once he/she 

specifies correctly the VECM, the manager can proceed to study the impulse response 

function to assess this risk. Finally, a trader could use a VECM to forecast the speed of 

adjustment towards the long-run equilibrium and enter into long/short strategies on the 

indices, once an index is so far away from the long-run equilibrium that the speed of 

adjustment and the related risk/return factors are attractive to enter the relative position.  

Cointegration is important not only for investors, but for policymakers, too. Naryan et al. 

(2011) found that regional integration can increase the investor base and, as a consequence, 

can broaden the investment products, which in turn enables a country to strengthen its 

domestic capital markets and enable local-currency stocks and bonds to be able to compete 

at a global level.  

Masih and Masih (1999) showed that, on average, the higher the bilateral/multilateral trade 

among countries are, the higher is the degree of co-movements or causality effects in the 

equity markets. Given the increasing level of trade and financial integration outlined in 

Section 1, it makes sense to investigate the presence of cointegration in equity markets. At 

the same time, Korajczyk (1996) showed that emerging markets tend to show lower degrees 

of stock market integration, since different levels of financial markets development, explicit 

capital controls and other frictions hinder the markets’ integration. Therefore, the 

cointegration of the South-East Asian equities is not as obvious as it would be for developed 

markets in the same free-trade economic area. 

Literature review  
Existing literature over cointegration in the South East Asian equity markets is extensive but 

very contradictory. The outcomes of the pieces of research are heavily dependent on how 

many markets were taken into consideration, i.e. if the authors were focusing on ASEAN or 

on the whole East Asian markets (also known as ASEAN+6). Furthermore, the choice of the 

sampling period and the discretionary decision on when the crises are defined to begin and 

end are causes of contrasting results in the literature. In this section, a quick summary of 

existing papers focusing on cointegration in the South-East Asian and wider Asian space is 

presented. Table 2 summarizes the main findings of each paper in the literature. 
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Roca, Selvanathan, and Shepherd (1998) first studied the interdependence relationship 

between the ASEAN-5 countries among themselves and with Australia by differencing the 

short-run and the long-run dynamics before the Asian financial crisis. They discover that the 

markets appear to be linearly interdependent in the short-run, but they seem to share no 

long-term equilibrium. Yang, Kolari and Min (2003) also study the interdependent relationship 

among East Asian countries and the US and Japan, including the 1997 crisis, in their analysis. 

Their findings show that the stock markets appear to be more integrated after the crisis than 

before the crisis and explain that the US market has a greater role than Japan in explaining 

the behaviour of emerging East Asia. Huyghebaert and Wang (2010) study the 

interdependence among East Asian equities in the period 1992-2003. The markets show 

evidence of cointegration only during the crises, both in local currency and in USD terms: the 

1997 financial crisis looks to be a temporary phenomenon, after which the cointegrating 

power diminished to the pre-crisis level. On the contrary, Shabri Abd. Majid et al. (2009) test 

for the cointegration among the ASEAN-5 countries between 1995 and 2006 and show the 

existence of a significant cointegrating vector both in the pre- and post- Asian financial crisis, 

even if interdependence after the crisis is much stronger than before. Such findings are in line 

with those of Click and Plummer (2005), who proved that there is a single cointegrating vector 

among the ASEAN-5 for the period 1998-2002 in both USD, JPY and local currency terms. 

Atmadja (2009) focuses, on the contrary, on the study of the cointegrating relationship 

around the time of the global financial crisis on the ASEAN-5 nations. He finds that before the 

crisis two cointegrating vectors exist, but during the crisis no cointegration is present. 

Interestingly enough, and in contrast with the notion that markets tend to co-move during 

crises, in this case no cointegrating relationships is found during the course of the 2008 

financial crisis. In contrast with this result, Yu, Fung and Tam (2010) studied the dynamic 

cointegration in the greater East Asian region (ASEAN+3 plus Taiwan) for the period 2002-

2008 and noticed that it appeared to be weakening in 2002-2006, but increasing during 2007 

and 2008. Arsyad (2015) studied the relationship between the ASEAN-6 (which include 

Vietnam) and the other East Asian equity markets (China, Japan and the Republic of Korea). 

The ASEAN-6 markets did not display any cointegrating vector among them in the period 

2003-2013, but the result changes if one adds the three East Asian countries. Wang (2014) 

divided the period under consideration (from 2005 to 2013) in three sub-samples to study the 
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cointegration before, during and after the crisis in six major East Asian exchanges. He finds 

that there is a cointegrating vector only during the crisis period and in the transition period 

immediately after that. He also notices that East Asian markets are more influenced by global 

shocks than by regional ones. In contrast with it, Rahman, Othman and Shahari (2017) find 

the ASEAN+3 market without Vietnam to be cointegrated in the whole post-Asian financial 

crisis period under consideration (from 1999 to 2013). Guidi and Gupta (2013) make an 

analysis of the cointegration in ASEAN-5 plus Vietnam and find the markets not to be linearly 

cointegrated in the period 2000-2011, and only Thailand and Singapore to be cointegrated 

among themselves. Ahmed and Singh (2016) took into consideration both the exchange rates 

and the equity markets of ASEAN and ASEAN+6. The period under consideration is from 2001 

until 2013. They also allowed for a single shift in regime according to the Gregory-Hansen 

method (Gregory and Hansen, 1996). Results outline the presence of cointegration in the FX 

markets for both ASEAN and ASEAN+6, while for the equity markets no cointegration is 

present for ASEAN markets alone, while a single cointegrating vector is present for the 

ASEAN+6 database. Having only one vector with 14 variables under consideration could be 

seen as a weak form of cointegration. Chien et al. (2015) use a recursive trace-statistic method 

to study the cointegrating vectors among the ASEAN-5 plus China equity markets over time. 

Their findings show that the markets stopped being cointegrated after the dot-com bubble. 

However, they also perform an Arai and Kurozumi cointegration test (Arai and Kurozumi, 

2007) which allows for multiple structural regime shifts. Testing for cointegration with two 

shifts reveals the presence of one cointegrating vector. 

Finally, Yilmaz (2010) studied the volatility spillovers in East Asian equity markets using the 

variance decomposition from a vector autoregression model. He uses a rolling sub-sample 

window and notices that East Asian markets have become more and more independent from 

the 1990s, not even showing declines in volatility spillovers after the Asian financial crisis of 

mid-1990s. The spillover index reaches its all-time high during the 2008 global financial crisis.  

Current market literature is therefore heavily reliant on arbitrary choices as to which 

countries to consider, the sampling period and the timespan over which a crisis is defined. 

However, it generally acknowledges that the level of integration among Asian emerging 

markets is time-varying. There is lack of a holistic study which investigates cointegration over 

a long time horizon without fixing arbitrary switching points as to when the crisis is 
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determined to be over, and which does not set a priori the number of switching points. Many 

papers decide to run a number of separate linear cointegration tests with arbitrary choices as 

to when the crisis begins and when it finishes. In the following section a potential solution to 

this problem is proposed, whereby a non-linear cointegrating relationship is allowed to exist 

and to be time-varying according to a latent variable, which cannot therefore be arbitrarily 

chosen. 

Markov Switching models as a solution 

As one could appreciate from Table 2, the period selected for the research has a significant 

impact over the result of the research, as well as on the coefficients inside the VECM. Most 

of these studies investigate the presence a single vector error correction model throughout 

the period and focus their research over a single regime model. However, the time spanned 

by such studies is often large, and encompasses both periods of crises and of low volatility. It 

is plausible to think that more than one VECM exists, as the relationship among the markets 

change during periods of distress or between periods of high/low volatility. It is also plausible 

to think that a specific event over the course of the last 20 years has changed the relationship 

among different markets. A study that wants to focus on different VECMs in times of bull/bear 

markets or high/low volatility is well-suited for a regime switching cointegration analysis. A 

study that wants to check for regime shifts without the possibility of reverting back to a prior 

state is well-suited for a regime shifting cointegration analysis. In both cases, some or all of 

the coefficients are regime-dependent, i.e. they are time-varying. However, the definition of 

regime is very different among the two: in a regime-switching model, regimes are allowed to 

recur in time and the variables can switch regime freely; while in a regime-shifting model, the 

number of shift points are set a priori and the variables cannot revert back to a prior regime. 

Regime-switching model can therefore have a practical implementation for a portfolio 

manager able to recognise the switch and able to define regime-specific coefficients and the 

average duration of each regime. As markets linkages can vary among regimes, and the 

regimes are allowed to recur, the portfolio manager would change its positioning according 

to the regime in which he/she currently is. On the contrary, in a regime-shifting model, only 

the current regime is useful for a real-life user of the model, as past regimes are not allowed 

to recur. In this section an overview over why a particular regime-switching model, the 
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Markov-switching one, is a suitable solution to overcome the issue of the contrasting 

outcomes in the literature, and why it is particularly useful for practitioners. 

A Markov Switching-VECM (MS-VECM) model is particularly interesting given that it could 

point out different behaviours in stock markets between different periods, and it can provide 

actionable insights on the dynamic relationships between the markets in the area. The reason 

why Markov switching is particularly interesting in this application is the possibility to model 

regimes as driven by latent variables, rather than threshold methods that require observable 

variables-dependent regimes. This enables the model to be able to find the parameters which 

maximise the log-likelihood function, and the practitioner can then attempt to interpret the 

regimes based on the parameters that he/she decided to be regime-dependent. In this case, 

both the cointegrating vector, the speed of adjustment, the constant terms and the 

variance/covariance matrix are defined as regime-dependent. The latent nature of the 

regimes makes it possible for us not to try to guess a priori what causes the change in regime, 

but rather to let the Bayesian sampler run and construct the parameter distribution, from 

which the practitioner can then attempt to identify the regimes and give them an economic 

meaning. On top of that, the Vitelli algorithm will enable the practitioner to find the most 

likely sequence of states, so that one can double check the consistency of the regime 

interpretation and have a tangible representation of the dynamic relationship through the 

sample period under consideration. Furthermore, the transition matrix could provide further 

useful information for a risk manager as to the switching probability and the average duration 

of each regime. Having a solid regime persistence would enhance the economic meaning of 

the study under consideration. A portfolio manager or risk manager could use the Vitelli 

algorithm to understand a posteriori the most likely state in which the market is at the 

moment, and if he/she notices a regime switch, then a high regime persistence would enable 

him to act on the basis of the regime-specific econometric model with a long time horizon. 

This is not possible with low regime persistence, as the ability to build a potential trade idea 

or to better diversify the portfolio on the basis of the regime-specific VECM would be 

constrained by the short average duration of the regime, which would clearly diminish its 

usefulness. It is worth stressing out that the aim of this paper is to get to understand whether 

the long-run equilibrium among the markets under consideration changes in different 

periods, and not just to understand whether the speed of the adjustment changes in 
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particular periods. A big part of the literature uses the two-step approach proposed by Krolzig 

(1996), but this keeps the matrix of cointegrating vectors constant across regimes. This paper 

manages to let the cointegrating vector be regime dependent, even if this approach is able to 

test only the hypothesis of the existence of 1 cointegrating vector. Still, the presence of a 

common regime-dependent stochastic trend would enhance conditional mean calculations 

and it would lead to interesting implications for different portfolio diversification benefits in 

different regimes. 

An investor able to spot the changing relationship among markets, and who is able to 

understand whether diversification benefits arise in one of the two regimes, can position 

himself/herself to make gains on the different response that each market has to departures 

from equilibrium. On top of that, being able to recognise the switching relationship in the 

market would allow better hedging and better trade ideas generation. If we assume that a 

linear cointegrating relationship is statistically significant, but in reality a MS-VECM is able to 

better forecast the market behaviour, then an investor might be able to understand whether 

the markets tend to converge more quickly in a given regime. This would be helpful in a 

long/short equity strategy on the convergence on the two indices, as a single-regime linear 

VECM might lead to poorer decisions on entry points and could lead to sub-optimal forecasts 

on the speed of convergence. A longer-than-expected time of convergence could hit 

negatively the P&L of the portfolio manager. However, a stronger-than-expected 

cointegrating relationship could also come at the detriment of a portfolio manager or risk 

manager. The presence of a strong cointegrating relationship might diminish diversification 

benefits, and if the cointegrating relationship becomes stronger and more persistent in 

bearish market conditions, then the portfolio manager who thought to have a well-balanced 

portfolio might find his/her portfolio actually showing sub-optimal diversification benefits in 

a particular regime.  
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The Linear Model 
The first step needed to investigate whether the stock market indices share a common trend 

is to investigate a linear cointegration model over the whole sampling period in order to get 

preliminary insights. It is necessary to first run an Augmented Dickey-Fuller test to make sure 

that the time series are non-stationary, even if this appears to be self-evident from the graphs 

in Figure 2 and Figure 3. If the series investigated were all stationary, then the estimation of 

a VAR would be appropriate. After checking for non-stationarity, the paper continues by 

testing for linear cointegration over the whole sample period. A Johansen test is used to study 

whether there is any evidence of cointegration among the indices and what is the number of 

cointegrating vectors statistically significant, if any. The test can reveal the existence of up to 

three cointegrating vectors. The absence of linear cointegration would reveal that there is no 

single trend shared by the four stock markets under consideration over the 2000-2020 period. 

The presence of one or more cointegrating vectors would entail that common trends can be 

found already in a linear setting without the need of non-linear switching models. However, 

in case of just one cointegrating vector, the model outlined in section 3 could still improve 

the precision of the VECM estimated in a linear way. The study of the presence of linear 

cointegration is therefore the starting point to get a framework over the long-term market 

equilibrium among the markets under consideration and does not constitute per se 

something different from the past literature. 

Theoretical Framework 
A review of the cointegration framework shall begin from a brief discussion of the concept of 

unit roots. It is useful to introduce the concept of lag operator L as the operator inducing the 

j-th lag 𝐿"𝑦$ ≡ 𝑦$&"  in the context of an ARMA model. An ARMA(p,q) model can be 

represented as: 𝜙(𝐿)(𝑦$ − 𝜇$) = 𝜃(𝐿)𝜀$ with 

 𝜙(𝐿) = 1 − ∑ 𝜙1𝐿1
2
134  and 𝜃(𝐿) = 1 + ∑ 𝜃"𝐿"

6
"34 . The aim of the presence of 𝜇$ is to account 

for any deterministic trend. The unit root null hypothesis can then be written as: ∑ 𝜙1
2
134 =

1. The existence of a unit-root generates a non-stationary process, i.e. the process is not 

mean-reverting and its probability structure is not constant over time (Patterson, 2011). 

Nevertheless, Engle and Granger (1987) observe that many nonstationary series can be made 

stationary by applying the difference operator. The time series process 𝑦$ is said to be 
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integrated of order d if it needs to be differenced d times before achieving a stationary, 

invertible and non-deterministic ARMA process. Such process is defined as 𝑦$~𝐼(𝑑). In 

particular, the authors highlight four key differences among 𝐼(0) and 𝐼(1) processes. First of 

all, the variance of the former is finite, while the variance of the latter diverges to infinity as 

time increases. Secondly, the memory of the process is infinite and each innovation has a 

permanent effect over the series. Thirdly, the expected time between crossing of 𝐸(𝑦$) is 

infinite for nonstationary processes. Finally, the autocorrelation 𝜌= tends to 1 for all k as time 

tends to infinity.  

Given the very different properties of a 𝐼(1) process vis-à-vis a 𝐼(0) one, it is important to use 

formal tests to identify whether the time series under consideration contains a unit root or 

not. In this paper we make use of the Augmented Dickey Fuller test, which is simply a refined 

version of the classic Dickey-Fuller test (Dickey and Fuller, 1979) which does not use just an 

AR(1) process as the alternative hypothesis. The null hypothesis is that the series contains a 

unit root. The ADF test considers an AR(p) process and notices that it can be rewritten as: 

∆𝑦$?4 = 𝜙@ + 𝛼𝑦$ +B𝛾1

2

134

∆𝑦$&1?4 + 𝜀$?4 

with 𝛼 ≡ −	(1 − ∑ 𝜙1
2
134 ) and 𝛾1 = −∑ 𝜙"

2
"34 . 

It is then possible to obtain estimates for 𝛼 and 𝛾, where the coefficient of interest is 𝛼. If 

𝛼 = 0, then the equation is entirely in first differences, which is a proof of the presence of a 

unit root in the process. This is the null hypothesis of the test. Alternatively, if 𝛼 < 1, by 

differentiating we fail to eliminate 𝑦$,	thus representing evidence of stationarity. Once the 

estimate of 𝛼 is obtained, one should calculate the t-statistic and compare it with the critical 

values found by Dickey-Fuller through Monte Carlo simulations. Dickey and Fuller (1981) show 

that the t-ratio is invariant of the number of lags included. However, it is sensitive to the 

presence of the constant and a deterministic trend. This means that different statistics shall 

be used for such models. 

In order to properly estimate the coefficient 𝛼, the proper number of lags for the VAR 

representation has to be chosen. For the purpose of lag selection, the Bayesian Information 

Criterion is adopted given its consistency, i.e. it will determine the correct model 

asymptotically (Schwarz, 1978), and is defined as: 
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𝑆𝐵𝐼𝐶 = ln(𝜎MN) +
2𝐾
𝑇 ln	(𝑇) 

where T is the sample size, 𝜎MN is the residual variance and K is the number of parameters 

estimated. Clearly, the best performing model is the one minimising the information criterion. 

The reader should know that the presence of unit roots in time series makes standard 

inference invalid and the use of nonstationary processes in regressions can cause spurious 

regression problems. However, in some cases simply differencing all nonstationary time series 

could cause a loss of valuable information and suboptimal predictive performance. One 

should always look for linear combinations of integrated nonstationary variables which are 

stationary. In such a case, the variables are said to be cointegrated. It would be a mistake to 

transform such variables in 𝐼(0) processes: differencing a linear relationship that is already 

stationary would entail a misspecification error (Guidolin and Pedio, 2018). Formally, the 

components of a vector 𝑦$ = [𝑦4$, 𝑦N$, … , 𝑦T$]′ are said to be cointegrated of order d,b, 

denoted 𝑦$~𝐶𝐼(𝑑, 𝑏) if all components of 𝑌$ are 𝐼(𝑑) and there exists a vector k such that the 

linear combination 𝑘′𝑦$~𝐼(𝑑 − 𝑏). The vector k is called the cointegrating vector. The most 

interesting and common case in finance and economics is d=1, b=1. This would translate in a 

stationary equilibrium error which would be mean-reverting. On the contrary, if the 𝐼(1) 

variables were not cointegrated, then they would be free to wander far away from each other, 

as no long-run equilibrium would be present among them. In this paper the common practice 

of normalizing the cointegrating vector by fixing the coefficient of the first variable to unity is 

used. It is worth highlighting that if a vector has N variables, then it can have up to N-1 

cointegrating vectors, and the number of cointegrating vectors corresponds to the number of 

stochastic trends they have in common. 

The most important characteristic of cointegrated variables is that they are influenced by the 

size of their departure from the long-run equilibrium. This means that at least some variables 

will respond to the disequilibrium by moving towards the long-run equilibrium with a 

magnitude proportionate to the size of the recorded disequilibrium. This feature 

characterizes short-run dynamics. It is then possible to represent these corrections in a vector 

error correction model (VECM): 

∆𝑦$ = 	𝜇 + 	Π𝑦$&4 +	B𝛾1	∆𝑦$&1

2

134

+	𝜀$ 
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Please note that if the 𝐼(1) variables in 𝑦$ have a VECM representation, then they are 

necessarily cointegrated because, since the equation needs to be balanced, Π𝑦$~𝐼(0) means 

that the variables in 𝑦$ are 𝐶𝐼(1,1). The only case in which the VECM indicates the absence 

of cointegration among the variables is when Π = 0 because it indicates that the variables 

will not react to the deviations from the long run equilibrium recorded in the previous period. 

The VECM can also be written as a product of the speed of a unique correction factor Nx1 

vector α and a unique cointegrating Nx1 vector β, transforming the VECM representation into: 

∆𝑦$ = 	𝜇 + 	αβ′𝑦$&4 +	B𝛾1	∆𝑦$&1

2

134

+	𝜀$ 

Clearly, the greater the coefficient of the speed of adjustment α, the larger the response of 

∆𝑦$ to the deviations from the long run equilibrium in previous periods. Furthermore, in order 

for the error correction model to make sense it is necessary for 𝛼 to be negative, as it would 

ensure an appropriate response to the error term. Otherwise, the series would diverge from 

the long-run equilibrium. It is worth mentioning that it is possible to model the VECM such 

that it is possible to insert a constant term in the cointegrating relationship implying a linear 

trend in the level of variables, on top of the linear trend that we allow for the differenced 

series by including the constant term in the VECM.  

Johansen Cointegration Test 
Since the paper deals with multivariate vectors, it is preferable to use tests for cointegration 

based on the vector error correction models rather than regression-based ones like Engle and 

Granger’s (1987). This would entail choosing a dependent variable and being able to find at 

most one cointegrating vector. While the authors prove that asymptotically the results of the 

test do not change based on which variable is considered endogenous, there is no solution to 

the problem of being able to find only one cointegrating vector. This would not be a problem 

in a bi-variate case, since the maximum cointegrating rank is one, but it poses a limit when 

dealing with N>2 variables.   

The test for cointegration that this paper adopts is the one proposed by Johansen (1995). In 

his work, he starts by noticing that the rank of Π in a VECM is equivalent to the number of 

cointegrating vectors. In particular, if 𝑟𝑎𝑛𝑘(Π) = 0, then all the variables of 𝑦$ contain a unit 

root and they are not cointegrated. If 𝑟𝑎𝑛𝑘(Π) = N, then all variables are stationary. Finally, 
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if 0 < 𝑟𝑎𝑛𝑘(Π) < N, then it represents the number of cointegrating vectors and Π𝑦$&4 

represents the error correction term. Π can be decomposed into a N x r matrix of 

cointegrating vectors K and a N x r matrix of weights Λ with which each cointegrating vectors 

enters into the VECM equation. Λ can also be seen as a matrix containing r vectors of 

correction factors 𝛽. 

Johansen method is based on testing whether we can reject the restrictions that are posed 

on the rank of the matrix Π. In particular, it exploits the matrix property that states that the 

number of its eigenvalues significantly different from zero is equal to its rank. One can then 

estimate Π and order its eigenvalues in terms of their magnitude. In case that the series are 

not cointegrated, no eigenvalue will be significantly different from zero. If 𝑟𝑎𝑛𝑘(Π) = 1, then 

0 < 𝜆4 < 1 and 𝜆N, … , 𝜆T = 0. Evidently, this implies ln(1 − 𝜆4) < 0 and  ln(1 − 𝜆1) = 0 for 

i = 2,…,N.  

Johansen (1988) derived a likelihood ratio test of the hypothesis that the space of 

cointegration Π has a given number of dimensions. Such test is based on the number of 

eigenvalues significantly different from zero and can be conducted using two different trace 

statistics for the null hypothesis of r cointegrating vectors: 

𝜆$defg(𝑟) = 	−𝑇 B ln	(1 − 𝜆h1)
T

13d?4

 

𝜆iej(𝑟, 𝑟 + 1) = 	−𝑇	ln	(1 − 𝜆hd?4) 

The two statistics tend to return similar results but they test different hypotheses. The null 

hypothesis of 𝜆$defg(𝑟) is that the rank of the cointegrating space matrix is less than or equal 

to r, against the alternative hypothesis of the rank of the matrix being in excess of r. On the 

contrary, the null hypothesis of 𝜆iej(𝑟, 𝑟 + 1) is that 𝑟𝑎𝑛𝑘(Π) = 𝑟 against the alternative 

hypothesis that 𝑟𝑎𝑛𝑘(Π) = 𝑟 + 1. Similarly, to the Augmented-Dickey Fuller test, the critical 

values for the trace statistics are derived from Monte Carlo simulations obtained by Johansen 

and Juselius (1990). Such critical values are influenced by the presence of deterministic trends 

and by the number of nonstationary time series.  

It is worth highlighting that the Johansen test estimates the VECM via maximum likelihood. 

This is in contrast with the Bayesian approach which will be presented in section 3. It is 



 16 

nonetheless impossible to use ordinary least square methods for the purpose of VECM 

estimation due to the cross-equation restrictions to be imposed on the matrix Π. 

  



 17 

The Regime-Switching Model 
The second part of the paper focuses on a regime-dependent model. In order to try to explain 

the different results obtained in the previous literature, we acknowledge that the markets 

under observation have witnessed tremendous changes in the period under consideration. 

Abrupt changes are indeed a prevalent feature of financial data, which reacts quickly to 

financial crises or other changes in fundamental values (Garcia, Luger and Renault, 2003). Two 

main categories of regime-dependent econometric models exist. The former follows regime 

switching dynamics, first applied by Hamilton to U.S. GNP data in 1989, and found wide 

application in economic data, for example in forecasting business cycles (Hamilton, 1989), bull 

and bear markets (Maheu et al., 2010), interest rates (Ang and Bekaert, 2002) and inflation 

(Evans and Wachtel, 1993). Two main features characterise such models. Firstly, past states 

can recur over time. Secondly, the number of states is finite, and is in the great majority of 

cases two (Song, 2012). On the contrary, in structural break models the parameters are 

allowed to change among the different regimes without recurring over time. The number of 

regimes is usually very large, up to an infinite number of states (Koop and Potter, 2007). The 

values of parameters can be either independent or not among the two regimes, even if 

complete independence is often undesirable as in a Bayesian framework this would be in 

contrast with the use of relatively non-informative priors to estimate the parameters in the 

new regime (Bauwens, Dufays and Rombouts, 2014). This paper focuses on regime-switching 

models, thus having a finite number of states and allowing the two regimes to recur in time.  

The possible outcomes for each dataset (local currency and USD-adjusted) are mainly three: 

there could be evidence in favour of cointegration in both regimes, albeit with the two 

cointegrating relationships defined by different parameters; or there might be evidence in 

favour of cointegration in just one of the two regimes; or finally there could be no evidence 

in favour of cointegration in both regimes. From an interpretation standpoint, these are three 

quite different situations. In the first case, the presence of two different cointegrating vectors 

would be proof of a strong relationship among markets. The equity markets would indeed be 

reverting towards a long-run equilibrium in both cases, even if it is different according to the 

regime, and this would represent evidence of the strong relationship among the four markets 

- i.e. by omitting the cointegrating relationship you would lose valuable information whatever 

regime you are in. It means that markets are expected to co-move in both regimes, albeit with 
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different coefficients and reverting to a different equilibrium. Alternatively, the second case, 

in which only in one regime the four equity markets move according to a VECM, carries a 

different interpretation. In this case, there is evidence that the markets share a long-run 

equilibrium and are expected to co-move accordingly just in one state, while not in the other. 

It can be a powerful discovery, because it might entail, for instance, that in periods of bear 

markets the different responses of each country to crises lead the markets to stop sharing a 

long-run equilibrium and to respond disorderly to a shock. In this case, there would be no 

point in expecting a convergence among markets after a shock, given that there is no 

equilibrium to revert to. Failing to appreciate the difference among the two regimes could 

lead in a loss of valuable information when the markets are in the cointegration regime, or 

alternatively to consider as mean-reverting an equilibrium which is not mean-reverting in its 

nature. Both cases would lead to sub-optimal forecasting. Finally, in the last case - no 

cointegration in both regimes - there would be no point in trying to estimate a MSH-VECM, 

and a MSH-VAR would constitute the right econometric model to estimate instead. This would 

also be a point against the assumption that South-East Asian equity markets tend to co-move 

and an investor should be wary of entering long-short strategies targeting a convergence in 

their performance over time. 

This part of the paper focuses on estimating the regime-dependent model, in which we 

account for two different regimes. The aim is understanding whether the many contrasting 

results that past literature outlines are due to the fact that different regimes are present, and 

the different VECMs cause the linear cointegration test to fail to account for such differences. 

The use of Markov-switching models allows not to define a priori a variable according to which 

regimes switch. The regimes switch according to a latent variable and the model is estimated 

in order to maximise the marginal likelihood function. In our MS-VECM the cointegrating 

vector is defined as regime-dependent, so that the equilibrium to which the markets revert 

to is regime-dependent. At the end of this section, the practitioner will be able to check 

whether the cointegration is actually regime-dependent. He/she will also be able to interpret 

the regimes based on the factors that are defined as regime-dependent (bear/bull markets, 

low/high volatility, etc.) and can check the different weights and relationships among markets 

that make up the long-run equilibrium in the two cointegrating vectors. The presence of 

different VECMs would explain the different results obtained by past literature, as the 
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different sample periods under consideration would correspond to the selection of different 

regimes under consideration, and possibly even to different regimes entering the same 

Johansen cointegration test. The model selection is not based on a formal test, but rather on 

the Bayes Factors among the different models that have been estimated using a Bayesian 

sampler. 

Before moving on to the description of the framework of Markov-switching models, in section 

3.1 their most important element, the hidden Markov chain, is presented. This is the variable 

according to which the model will be in one of the two regimes, which is however latent and 

therefore not observable by the practitioner. Section 3.2 presents an overview over the most 

important characteristics of a general Markov-switching model. Section 3.3 proceeds to 

describe the MS-VECM model this paper wants to estimate, and explains which factors are 

considered regime-dependent and which are not. We generally allow a great level of flexibility 

among regimes, allowing for both the variance-covariance matrix, the adjustment factor and 

the cointegrating vectors to be regime-dependent. Section 3.4 explains the Bayesian sampler 

that this paper uses to get to the target distribution. It outlines its theoretical basis, the reason 

of its choice vis-à-vis the EM algorithm and other Bayesian samplers, and finally outlines the 

choice of the prior distributions chosen for each parameter. Section 3.5 explains how we then 

get from the posterior distributions of the parameters in the MS-VECM model to the most 

likely sequence of states, which is calculated a posteriori and gives us an historical overview 

of which regime was most likely at each point in time in the sample period. Finally, section 

3.6 outlines the criterion according to which this paper chooses which model suits the data 

best. It is important to understand that for each of the two datasets (local currency and USD 

data), three different models are calculated: the first one entails no cointegration in both 

regimes, the second one includes a cointegrating vector in one regime, but not in the other, 

while the last one estimates one different cointegrating vector for each regime. In order to 

finally be able to comment on the presence or absence of cointegration among the markets, 

a model selection criterion is necessary. Whereas it is outside the scope of this paper to 

present a new statistical test to accept or reject a null hypothesis for a Bayesian MS-VECM, 

the three different models are compared using the Bayesian Factor. In this way the best model 

is chosen among the three in a consistent way, finally enabling us to comment on the 
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presence of cointegration among the four markets under consideration and ultimately 

leading to the correct model selection. 

Hidden Markov Models 
A Markov process is such if it satisfies the Markov property: the distribution of the state of 

the process 𝐶$	: 𝑡 = 1, 2, … at time t+1 is determined only by the information available at t, 

and previous observations do not provide any meaningful information.  

𝑃𝑟(𝐶$?4	|	𝐶$, 𝐶$&4, …	, 𝐶4) = 𝑃𝑟(𝐶$?4	|	𝐶$) 

This makes immediately clear that in Markov processes the future is dependent only on the 

present. The probabilities of moving from one state to another are called transition 

probabilities: 	

𝑝1," = 	Pr(𝐶r?$ = 𝑗	| 	𝐶r = 𝑖) 

We will use homogeneous transition probabilities, i.e. they are not dependent on s, because 

we do not have clear indication of the contrary, following Zucchini et al. (2016). The number 

of states of the model described in this paper is two, so that the square matrix of switching 

probabilities will be a two-by-two matrix: 

Γ = 	 v
𝑝4,4 𝑝4,N
𝑝N,4 𝑝N,Nw 

in which both rows sum to one. The remark of homogeneity of the matrix Γ is particularly 

important because it ensures that the Markov Chain satisfies the Chapman-Kolmogorov 

equations: 

Γ(t + u) = 	Γ(t) + 	Γ(u); 

which, in turn, implies that for all t ∈ ℕ :  

Γ(t) = 	Γ(1)$. 

This means that matrix of the t-step transition probabilities is equivalent to the t-th power of 

the matrix of one step probabilities. The matrix Γ(1), which can be abbreviated by Γ, is called 

the transition matrix. It is clearly also possible to calculate the probability of being in a given 

state at a given point in time. For a chain with m states this means:  

𝑢(𝑡) = (Pr(𝐶$ = 1) , … , Pr(𝐶$ = 𝑚),  𝑡	 ∈ 	ℕ. 
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We can then also deduce the distribution at time t+1 by multiplying the unconditional 

probability by the transition matrix as 𝑢(𝑡 + 1) = 𝑢(𝑡)Γ. The Markov chain is finally said to 

have a stationary distribution d if and only if 𝛿Γ = 	𝛿. 

A hidden Markov model 𝑌$ ∶ 𝑡	 ∈ 	ℕ is a particular dependent mixture of multiple 

distributions. This is used when there is no single distribution able to properly model the 

process due to some characteristics of the sample, e.g. over-dispersion. By adopting a Markov 

chain, we assume that the population might be generated by a number of different 

distributions that switch themselves over time. We also immediately notice that the state is 

latent: the observed parameters are used to make inference on the hidden chain. The model 

is indeed made up of two components: an unobserved process 𝐶$ which satisfies the Markov 

properties and a state dependent process 𝑌$, whose distribution depends only on the current 

regime and not on past ones. Subsequently, the model could be used to make further 

inferences on the properties of the process or for forecasting purposes. Hidden Markov 

models are particular kinds of Markov chains.  

The distribution of 𝑋$ can be described by: 

Pr(𝑌$ = 𝑦) = 	BPr(𝐶$ = 𝑖) Pr(𝑌$ = 𝑦	| 𝐶$ = 𝑖)
i

134

= 	B𝑢1(𝑡)	𝑝1(𝑦)
i

134

 

The former equation can be expressed in matrix form as: 

Pr(𝑌$ = 𝑦) = 	 [𝑢4(𝑡), … , 𝑢i(𝑡)] �
𝑝4(𝑦) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑝i(𝑦)

� �
1
⋮
1
� = 𝑢(𝑡)	𝑃(𝑦)	1′ 

It is then possible to rewrite such probability as: 

Pr(𝑌$ = 𝑦) = 𝑢(1)	Γ$&4	𝑃(𝑦)	1′. 

By allowing the assumption of stationarity to hold, the marginal density of 𝑌$ becomes: 

Pr(𝑌$ = 𝑦) = 	𝛿	𝑃(𝑦)	1′. 

Such findings will be crucial in section 3.5 for the forward algorithm calculation and the 

parameters’ sampling. 
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Markov-Switching Models 
This section aims at further expanding the concept of Markov-switching models and at 

implementing a finite Markov mixture distribution of autoregressive processes, and hence 

able to capture the autoregressive components of the process within a regime switching 

framework. Given a parameter set for a regime changing model, represented by 𝜃, this will 

depend on the current state 𝑆$ = 1,…	,𝑀.	Hence, assuming that the number of regimes is 

different from one and that there is no regime such that Pr(𝑠$ = 𝑗) = 1	∀	𝑡 ∈ 1,… , 𝑇; the 

vector 𝜃 will be time-varying. The conditional probability density of the observed vector 𝑌$ is 

then given by: 

Pr(𝑦$	| 𝑌$&4, 𝑆$) = �
𝑓(𝑦$|𝑌$&4, 𝜃4)								𝑖𝑓	𝑆$ = 1

⋮
𝑓(𝑦$|𝑌$&4, 𝜃�)								𝑖𝑓	𝑆$ = 𝑀

 

Inferences about the state at time t given the information 𝑌� = 	𝑦4, … , 𝑦� about the 

observable process 𝑌$ is expressed in terms of the probability distribution Pr(𝑆$ =

𝑙	| 𝑌�	, 𝜃)	with 𝑙	= 1, … , M. The meaning of such probability distributions depends on the 

relationship between 𝑡 and 𝜏. If 𝑡 > 𝜏, then one is dealing with predictive probabilities and 

particular importance is reserved for the one-step-ahead predictive probability. In case 𝑡 = 𝜏, 

one is facing filtered state probabilities and the associated filtering problem. Finally, 

smoothed state probabilities are the distributions characterized by 𝑡 < 𝜏 and the most 

important role is played by full sample smoothed probabilities 𝜏 = 𝑇.  

A very interesting property of Markov-switching models concerns autocorrelation. It is 

useful to first define the autocorrelation function of 𝑌$ as: 

𝜌�� = 	
𝐸(𝑌$	𝑌$?�	|	𝜃) −	𝜇N

𝜎N  

Let us define in a different fashion the transition matrix previously presented, in terms of 

the ergodic probability distribution: 

ξ = 	 �ξ44 ξ4N
ξN4 ξNN

� = 	 v
𝜂4 𝜂N
𝜂4 𝜂Nw − 	𝜆 v

𝜂N −𝜂N
−𝜂4 𝜂4 w 

where 𝜆 is the eigenvalue which is different from 1. Clearly, the closer 𝜆 to 1, the higher the 

persistence of the state.  
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Frühwirth-Schnatter (2006) further investigates the autocorrelation function of 𝑌$ starting 

from the previous decomposition of the transition matrix ξ and realizes that it the ACF can be 

rewritten as: 

𝜌�� = 	
𝜂4𝜂N(𝜇4 −	𝜇N)	

𝜎N 	𝜆 

In the two-states case, it is therefore self-evident that, provided that the two conditional 

means 𝜇4 and 𝜇N are not identical, autocorrelation in 𝑌$ enters through persistence in levels. 

In particular, the autocorrelation function of 𝑌$ will be positive if ξ44> ξN4, otherwise a 

negative autocorrelation will result. 

Poskitt and Chung (1996) further proved that there exists a relationship between K-state 

hidden Markov models and ARMA processes. In particular, for a two-states chain, the 

autocorrelation function of 𝑌$ satisfies the following recursion: 

𝜌��(ℎ	|	𝜃) = 	𝜆𝜌��(ℎ − 1	|	𝜃) 

This is indeed the structure of an ARMA(1,1) process. The nonnormality of the process is 

preserved thanks to the mixture distribution. It is useful, and now self-evident, to point out 

that 𝑌$, unlike 𝑆$, is not a Markov process of the first order.  

Such persistence in levels generally allows the practitioner to use a lower number of lags vis-

à-vis the unique regime case.  

Markov-Switching Vector Error Correction Model 
The next step of the discussion consists in a definition of a Markov-Switching Vector Error 

Correction Model under consideration. The MS-VECM is a generalization of the linear Vector 

Error Correction Model. It is worth noticing nonetheless that, conditional on the regime 𝑠$ in 

which the model is at time t, the data generating process is linear. The base case is the one 

with 2 regimes and in which both the variance, the speed of convergence and the 

cointegrating vector are allowed to change among the different regimes: 

Model 1 = ℳ��: D𝑦$ = 	𝜇r� + 𝛼r�𝛽′r�	𝑦$&4 + ∑ 𝛾",r�
2&4
"34 D𝑦$&" +	𝜀$								𝑖𝑓	𝑠$ = 1,2      

Model 2 = ℳ�T: D𝑦$ = 	�
𝜇r� + 𝛼r�𝛽

�
r�
	𝑦$&4 + ∑ 𝛾",r�

2&4
"34 D𝑦$&" +	𝜀$								𝑖𝑓	𝑠$ = 1

	
	𝜇r� + ∑ 𝛾",r�

2&4
"34 D𝑦$&4 +	𝜀$																																				𝑖𝑓	𝑠$ = 2
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Model 3  = ℳTT: D𝑦$ = 	𝜇r� + ∑ 𝛾",r�
2&4
"34 D𝑦$&4 +	𝜀$																																			𝑖𝑓	𝑠$ = 1,2 

with 𝜀~𝑁�0, Σr�� for all the models above. 

The choice of letting both the speed of correction and the cointegration vector parameters 

free to switch among regimes inevitably leads to lack of identification. Nonetheless, it is 

important to give the cointegrating vector the possibility to change across states because the 

dynamic linkages among the market under consideration and their respective weights in the 

cointegrating vector cannot be assumed to be stable on solid ground. Furthermore, the 

addition of the constant term might enable to capture the presence of bull or bear markets 

causing the shift. The paper aims to estimate only one cointegrating vector and one vector of 

speed of adjustment factors rather than the full set of possible cointegrating vectors. 

It is worth stressing out that we also allow for the presence of Markov Switching 

Heteroskedasticity, since we are interested in the dynamic linkages among variables. This 

means that the variance-covariance matrix is allowed to switch among the regimes as well. 

The model is therefore called MSH-VECM. In light of the persistence in levels generated by 

the presence of the hidden Markov model, as detailed in section 3.2, it is decided to use just 

one lag for the vector error correction model in order not to make the number of variables to 

be estimated explode. The models we want to estimate are therefore MSH(2)-VECM(1). 

The choice of restricting the number of regimes to two is based on previous literature and 

computational reasons. Running the algorithm described in section 3.4 requires 

approximately 6-8 hours for each model using a computer with average CPU performance. 

Adding a third regime could potentially more than double the running time and this is 

inconvenient. Furthermore, having only two regimes might help to give an economic meaning 

two regimes, if any is present. It is quite common to characterize such models with tranquil 

vs turbulent times. 

The first model entails the presence of cointegration among the variables of interest in both 

regimes, even if it allows for different 𝛼 and 𝛽 as discussed above. In the second model, on 

the contrary, the cointegrating relationship is present only in one of the two regimes. This 

means that the characteristic of the variables to share a common stochastic trend to which 

they resort is present only in one regime, while in the other they can be considered not 

cointegrated. Finally, the last model is simply a Markov-Switching Vector Autoregressive 
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Model (MSH-VAR), where no cointegrating relationship is present among the variables in 

both the regimes. 

Please note that the aim of the paper is to test whether the number of cointegrating vectors 

is equal or greater than one vis-à-vis the hypothesis of no cointegrating relationship at all 

among the markets under consideration. The model does not attempt to ascertain the exact 

cointegrating rank if it is different from zero. This is due to the fact that we are able to 

estimate via MCMC methods only one cointegrating vector and not the full cointegrating 

space. 

MCMC Parameters Sampling using the No-U-Turn Sampler  
Markov Chain Monte Carlo methods are sampling methods which, instead of computing a 

deterministic approximation to a target posterior distribution, offer algorithms which draw 

series of correlated samples that will converge over a number of iterations to the target 

distribution. Such methods require higher computational power vis-à-vis their deterministic 

counterparts, but they are more generally applicable and asymptotically unbiased (Neal, 

1993). Nevertheless, within the class of MCMC different degrees of efficiency exist. 

Algorithms such as Metropolis (Metropolis et al., 1953) and the Gibbs Sampler (Geman and 

Geman, 1984) make use of random walks to generate samples, which leads to a higher 

number of iterations needed to converge and incredibly long running times. Hamiltonian 

Monte Carlo methods for continuous variables are able to avoid such random walk behavior 

via a scheme that switches the problem of draw samples from the target distribution into the 

problem of simulating Hamiltonian dynamics (Neal, 2011). Hamiltonian dynamics are complex 

systems that describe the evolution of a physical system over time and behave according to 

Hamilton’s equations. They have historically found wide application in the study of planetary 

systems and electromagnetic fields, and they are finding increasing application in machine 

learning. The cost per independent sample in terms of order of complexity stands at 𝑂 ¡𝐷
£
¤¥ 

which shows its superiority vis-à-vis the cost of the Metropolis algorithm of 𝑂(𝐷N). 

One of the drawbacks of Hamiltonian Monte Carlo methods is that it requires arbitrary tuning 

for the step size parameter and the number of steps. The No-U-Turn-Sampler eliminates the 

need to set the number of leapfrog steps by using an algorithm that detects when running 
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simulations for more steps would no longer increase the distance between the proposal 𝜃¦ 

and the initial value of 𝜃. Such algorithm is defined by: 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =
𝑑
𝑑𝑡 	

�𝜃¦ − 	𝜃�	�𝜃¦ − 	𝜃�
2 = �𝜃¦ − 	𝜃�	

𝑑
𝑑𝑡 	�𝜃

¦ − 	𝜃� = 	 �𝜃¦ − 	𝜃�	�̃� 

where �̃� is the momentum variable. Such formula shows that if the further step makes the 

value of the criterion negative, the proposed 𝜃¦ would start to move backward towards	𝜃, but 

the sampler under examination would prevent that (Hoffman and Gelman, 2014). It is exactly 

for this property that it is called “No-U-Turn-Sampler”. The proposal location 𝜃¦ will then 

represent the initial value of the following iteration if the proposal is accepted. The Hamilton 

dynamic is simulated for L steps in each iteration using the leapfrog method (Neal, 2011), with 

the step size automatically tuned by Stan (Stan Development team, 2018). The No-U-Turn-

Sampler clearly prevents the sampling from following random walks, unlike the Metropolis-

Hastings algorithm and the Gibbs sampler. 

In order to find the MS-VECM parameters, the method adopted by this paper is the 

combination of marginal likelihood and Hamiltonian Monte Carlo that has been recently 

proposed by Osmundsen, Kleppe and Oglend (2019). Such sampling method has been 

preferred to precedent literature in light of its superior efficiency, given by a lower effective 

sample size needed to obtain reliable results, lower number of restrictions on parameters 

needed and higher flexibility with respect to model specification. An approach that 

marginalizes out the latent states S to draw samples directly from the posterior is not 

completely new, but the innovation of Osmundsen’s model is the possibility to use it in 

combination with the No-U-Turn-Sampler of Hoffmann and Gelman available in the Stan 

software (Carpenter et al., 2017).  

Ryden (2008) also provides a brief comparison between the expectation maximisation 

algorithm and the use Bayesian techniques. Its paper shows that computation times for the 

EM algorithm are substantially higher than for the Bayesian sampler, even if it notices that 

the coding of the Bayesian sampler requires more effort. However, once the code has been 

written, a Bayesian sampler also avoids the issue of ending up in local maxima, which is 

present in the EM algorithm. Of course, a Bayesian sampler might spend a number of 

iterations calculating minor models. However, first of all this problem is minimised by using 

the No-U-Turn-Sampler which is described below, and which was not available yet in 2008 
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when the paper was written. In fact, this is an issue more relevant for the Gibbs sampler. 

Furthermore, by setting a proper number of iteration and checking for convergence (R-hat 

close to 1), we are able to discern whether the model is proper or not. On the contrary, a 

sensible idea with the EM is to run the sampler multiple times to check for the quality of the 

estimates and not to end up in local maxima. Furthermore, Ryden (2008) clearly finds the 

Bayesian approach to be clearly preferable when one is not only interested in estimating the 

best-fitting model, but also to compare its plausibility against other models thanks to the 

relative ease of computing the marginal likelihood. As specified above, the introduction of the 

NUTS sampler has further enhanced these positive aspects of the Bayesian approach and the 

development of the Stan software has reduced the coding efforts required to tune the model. 

The original method to sample directly from the posterior distribution was first proposed by 

Scott (2002) in the context of forward-backward algorithms. Hidden Markov Models naturally 

admit posterior samplers that alternate draws of the latent variable S given 𝜃 and 𝑌4:ª  with 

draws of 𝜃 given complete data. However, we are integrating out latent states and we just 

use a forward algorithm in order to calculate the likelihood of the proposed parameters. Since 

we are marginalising out the hidden states, the marginal likelihood that will be calculated can 

be found analytically and does not need to be approximated by Monte Carlo simulations. The 

marginal likelihood is the normalizing constant of the parameters’ posterior distribution. This 

results in no inference over the most likely state in the forward algorithm, but this can be 

retrieved in a second moment through the Viterbi algorithm. The No-U-Turn-Sampler, as 

aforementioned, generates a proposal 𝜃¦ and accepts or rejects this proposal according to 

Metropolis algorithm (Metropolis et al., 1953). One between 𝜃¦ and the initial value 𝜃 is then 

promoted to 𝜃($?4) depending on the relative likelihood of 𝜃¦ and 𝜃 under 𝑝(𝜃|𝑌4:ª) and the 

candidate distribution. The marginal likelihood is defined as the integral of the likelihood over 

the prior: 

𝑝(𝑌4:ª) = «𝑝(𝑌4:ª|𝜃)	𝑝(𝜃)	𝑑𝜃 

In our case, the marginal likelihood function is used to evaluate the likelihood of 𝜃¦ and it 

requires the summation over all possible state sequences of the parameters proposed. The 

use of marginal likelihood instead of complete data likelihood allows to avoid sampling 

alternatively for states and parameters. Leos-Barajas and Michelot (2018) further define it as: 
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ℒℳ = 𝑝(𝑌4:ª) = 		 B …
�

r34

	B 𝛿r
(4)

�
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	®𝜉r�°,r�

ª
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	®𝑝(𝑌$	|	𝜃$)
ª

$34

 

with 𝛿r
(4) being the probability of being in the first state in the initial state distribution and 

can be computed by sampling and ℳ is the model under consideration 

The marginal likelihood can also be rewritten in matrix form following the notation of Zucchini 

et al. (2016), assuming the transition matrix is ergodic: 

ℒℳ =	𝛿(4)𝑃(𝑌4)	Γ	𝑃(𝑌N)… 	Γ	𝑃(𝑌$)1ª  

where there appears a N x N matrix 𝑃(𝑌$) = 𝑑𝑖𝑎𝑔(𝑝(𝑌$	|	𝜃4, 𝑌$&4), … , 𝑝(𝑌²	|	𝜃i, 𝑌$&4)). The 

marginal likelihood can hence be calculated recursively in the forward algorithm. It starts by 

defining 𝛼$, starting from t=1: 

𝛼4 = 	𝛿(4)𝑃(𝑌4) 

𝛼$ = 	𝛼$&4Γ	𝑃(𝑌$) 

Finally, the marginal likelihood is calculated by summing all the 𝛼$, 𝑡 = 1,… , 𝑇: 

ℒℳ = 𝑝(𝑌4, … , 𝑌ª) =B𝛼ª(𝑖)
�

134

= 𝛼ª1ª  

The algorithm calculates pointwise the marginal likelihood at each Stan iteration for each 

proposed parameter vector 𝜃. A marginal likelihood based on the forward algorithm and 

MCMC draws is particularly computationally burdensome, and for this purpose is common to 

practice to resort to the log marginal likelihood. This is also done in the computation of the 

likelihood of this paper. 

Given a prior distribution for the vector of parameters 𝜃, called 𝑝(𝜃), its posterior distribution 

is thus: 

𝑝(𝜃	|	𝑌4:²) ∝ 𝑙(𝜃)	𝑝(𝜃) = 	 �«𝑝(𝑌N:² 	|	𝑆N:², 𝜃, 𝑌4)	𝑝(𝑆N:²|𝜃)		𝑑𝑆N:²� 	𝑝(𝜃) 

where the latent states S have been integrated out because they are de facto unobservable. 

The posterior distribution of the parameters summarizes everything that is known about the 

vector 𝜃. For each step in the simulation and sampling phase described above, the goal is to 

converge to the target posterior distribution. 
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The priors that have been used are the same used by Jochman and Koop (2014), who selected 

them from a wide range of previous literature dealing either with Markov-switching models 

or cointegration, but not with both at the same time. In particular, there is a wide literature 

which implements the so-called “Minnesota priors” for Vector Auto-Regressive (VAR) models 

after their first proposal in such framework by Doan, Litterman and Sims (1984). In the VECM 

framework, the vectors 𝛼 and Γ play a similar role to the one of auto-regressive coefficients 

in a VAR model. For this reason, the Normal shrinkage prior usually implemented in the 

cointegration literature have properties similar to the Minnesota priors. Such priors follow 

the assumption that the parameters follow a random walk, with or without drift (Giannone, 

Lenza and Primiceri, 2012). Furthermore, Sims (1992) has shown that such priors diminish the 

tendency of priors to display heterogeneity, i.e. different behaviour at the beginning and at 

the end of the sample, due to deterministic components. Priors for the distribution of 𝛽 are 

then placed in order to place proper priors on the cointegrating space. In the Bayesian 

cointegration literature priors are indeed usually placed over the whole cointegrating space 

(Strachan, 2003). This is due to the fact that product structure of the term 𝛼′r�	𝛽′r�  does not 

allow for a complete identification of the two terms. Nevertheless, Jochman and Koop (2014) 

show that the priors placed below are proper and allow for a valid calculation of marginal 

likelihood: 

𝑎1 ≡ 𝑣𝑒𝑐(𝛼1)	~	𝑁(0, 𝜂&¶&4𝐼)				𝑤𝑖𝑡ℎ		𝜂&¶ = 10 

𝑏1 ≡ 𝑣𝑒𝑐(𝛽1)	~	𝑁(0, 𝑃)			𝑤𝑖𝑡ℎ	𝑃 = 0.5𝐼 

𝑐1 ≡ 𝑣𝑒𝑐(Γ1)	~	𝑁(0, 𝜂&¹&4𝐼)				𝑤𝑖𝑡ℎ	𝜂&¹ = 10 

The Inverse Wishart prior is placed on Σ because they are conditionally conjugate. The 

Wishart distribution is a multivariate generalization of the gamma distribution and is defined 

only for positive or semi-positive defined matrices. It is therefore a good candidate for the 

prior of the variance-covariance matrix. Its conjugacy property with the Normal distribution 

makes it extremely useful: if 𝜇	|	Σ		~	N(𝜇@,
º
=»
); then the posterior Σ		|	y		has an inverse 

Wishart distribution (Alvarez, Niemi and Simpson, 2014). Since we are using Minnesota priors 

that use Normal distributions for the other parameters, the inverse Wishart is a proper prior 

to use: 

Σ	~	𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡�𝜈, 𝑆�			𝑤𝑖𝑡ℎ	𝜈 = 13	𝑎𝑛𝑑	𝑆 = 10𝐼 
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Finally, for the prior on the transition matrix the Dirichlet distribution is used, which is 

commonly used for unknown discrete probabilities and within prior Bayesian Markov 

Switching models literature: 

𝜉1∙	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 ¡𝑐14, … , 𝑐1�¥ 				𝑤𝑖𝑡ℎ	𝑐1" = 1 

All the priors selected are only weakly informative because we do not want to strongly impose 

a distribution on the posterior, but we also want to keep parameters within reasonable 

bounds. Furthermore, we also need to keep the running time of the Stan algorithm within 

reasonable time limits and at the same time allow it to reach convergence. In general, 

Minnesota priors are non-informative, while Inverse Wishart priors tend to be slightly 

informative. 

Most Likely State Calculation 

Finally, in order to evaluate the most likely sequence of states the Viterbi algorithm (Viterbi, 

1967) is used. Its result is a sequence of states 𝑆4:T∗ = {𝑠4∗, 𝑠N∗, …	, 𝑠T∗ } which is the most 

probable state sequence conditional on the observations and the model parameters 𝜃. Such 

sequence is the solution to the equation described by: 

𝑆4:T∗ = argmax
È:É
∗

	𝑝(𝑆4:T∗ 	|	𝑌4:T) 

The Vitelli algorithm proceeds as follows. It defines: 

𝛿²(𝑗) ∶= max
6,…	,6Ê°

𝑝 (𝑌4:²&4, 𝑠² = 𝑗|𝑌4:²&4) 

This is the probability of ending up in state j at time n, given that the most likely state is 

selected. However, since this is a Markovian context, the most probable state at time n 

depends also on the most probable sequence of some other state i at time n-1, followed by a 

transition from i to j from time n-1 to time t. Therefore 𝛿²(𝑗) is more precisely described by: 

𝛿²(𝑗) = max
1
𝛿²&4(𝑖)	𝜉1"

(²)	𝑝(𝑦²	|	𝑠² = 𝑗) 

The best forecast for previous state on the most likely path is then defined as: 

𝜉²(𝑗) = argmax
1

𝛿²&4(𝑖)	𝜉1"
(²)	𝑝(𝑦²	|	𝑠² = 𝑗) 

For the initialization step the following is used: 
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𝛿4(𝑗) = 𝜋6𝑝(𝑦²|𝑠² = 𝑗)				 

with 𝜋6 = 𝑝(𝑠4 = 𝑗). 

The most likely state at time N is calculated as: 

𝑠T∗ = 	 argmax
1

𝛿T(𝑖) 

Finally, the most probable sequence of states can be easily retrieved by using traceback to 

find previous states: 

𝑠²∗ = 𝜀²?4(𝑠²?4∗ ) 

It is worth mentioning that, as Murphy (2012) points out, the most probable state sequence 

is different from the marginally most likely states that would be computed by a forward-

backward algorithm and is defined as: 

𝑆h4:T = (argmax
r

	𝑝(𝑠4	|	𝑌4:T) , …	, argmax
rÉ

	𝑝(𝑠T	|	𝑌4:T)) 

This difference between the most likely sequence and the most likely state at a given point in 

time is known as the difference between global and local decoding (Zucchini et al., 2016). 

3.6 Bayes Factor and Model Selection 

We now use the values of the marginal likelihoods calculated in the estimation step for the 

purpose of model selection. Remember indeed that in a Bayesian framework, one can 

consider the marginal density of the data p(Y) as the normalizing constant of the posterior 

density: 

𝑝(𝜃	|	𝑌) =
𝑝(𝑌|𝜃)	𝑝(𝜃)

𝑝(𝑌)  

where 𝑝(𝜃) is the prior density for the parameters 𝜃. We clearly target a marginal likelihood 

as high as possible. The importance of marginalizing out the latent states for the computation 

of marginal likelihood is explained by the fact that it is possible to calculate marginal (log) 

likelihood analytically following the steps of section 3.5 and avoid Monte Carlo simulations 

and bridge sampling techniques, which would increase further the computational burden of 

the model. For hierarchical models, while model estimation with a target other than marginal 

likelihood would be possible, such simulations-based techniques would be inevitable at the 

model selection step. 
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Moreover, MacKay (2002) proved that the Bayes rule follows the Occam Razor effect, i.e. it 

automatically penalizes unnecessarily complex models. Remember that posterior inference 

of Bayesian models follows: 

𝑝(ℳ1	|	𝑌) ∝ 𝑝(ℳ1)	𝑝(𝑌	|	ℳ1) 

and the marginal likelihood is given by: 

𝑝(𝑌	|	ℳ1) = «𝑝(𝑌	|	𝜃,ℳ1)	𝑝(𝜃	|	ℳ1) 	𝑑𝜃 

Intuitively, a more complex model might be able to explain a wider range of datasets Y, but it 

is necessary for it to integrate to 1, so it must assign lower probabilities to the ones it can 

explain. Therefore, it penalizes complex models. Mathematically, the previous equation can 

be re-written as: 

𝑝(𝑌	|	ℳ1) ≃ 𝑝(𝑌	|	𝜃,ℳ1)	𝑝(𝜃	|	ℳ1)|𝐴|&4/N 

with 𝐴 = ∇ÐN 	log 𝑝(𝑌	|	𝜃,ℳ1). The first probability term in the equation is the best-fit 

likelihood provided during the sampling, while 𝑝(𝜃	|	ℳ1)|𝐴|&4/N is known as the Occam 

factor. The determinant is there because the probability deals with the volume of the possible 

parameters explained by the model ℳ1  under consideration. Clearly, the higher the number 

of parameters, the greater A, and therefore the lower the Occam factor. This results in a lower 

value of the marginal likelihood for the complex model with a higher number of parameters 

if the two models share a similar likelihood. It can be, indeed, proven that asymptotically the 

former equation behaves like: 

log 𝑝(𝑌	|	ℳ1) ≃ log 𝑝(𝑌	|	𝜃,ℳ1) −
1
2𝜃	 log𝑁 

This quantifies the penalization for each additional parameter, with N representing the 

number of parameters of model ℳ1. 

The marginal likelihood can be used as a model selection criterion between a model ℳ4 and 

another model ℳN when it is used to compute the Bayes factor. The Bayes factor represents 

the odds ratio in favour or against a model against the other: 

𝐵𝑎𝑦𝑒𝑠	𝐹𝑎𝑐𝑡𝑜𝑟4N = 	
𝑝(ℳ4|𝑌)
𝑝(ℳN|𝑌)

=
𝑝(𝑌|ℳ4)	𝑝(ℳ4)
𝑝(𝑌|ℳN)	𝑝(ℳN)

=
𝑝(𝑌|ℳ4)
𝑝(𝑌|ℳN)
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It is common to consider the logarithm of the Bayesian factor, since it is simply the difference 

between the log of the marginal likelihoods, given the same priors. The Bayes factor is easy 

to interpret: 𝐵𝐹4N > 1 entails that ℳ4 is relatively more plausible with respect to ℳN. In order 

to put some context in the discussion, the reader should consider that log(𝐵𝐹4N) = 3 returns 

a probability of around 95% in favor of model ℳ4. If log(𝐵𝐹4N) diverges to infinity, then we 

may reject the model ℳN in favor of model ℳ4, since the posterior probability of model ℳ4 

goes to 1. Moreover, the Bayes factor is a consistent tool for model selection when models 

are nested into each other because it verifies that Laplace regularity holds for identifiable 

mixtures. Furthermore, Kass and Vaidyanathan (1992) proved that the Bayes factor penalizes 

the most complex model if the simple and the complex models’ fits are similar. Furthermore, 

under Laplace regularity, that has been proven to hold for identifiable mixtures, it is possible 

to derive the Schwarz-based information criterion as an asymptotic approximation of the 

marginal likelihood (Gelfand and Dey, 1994). 

As one can appreciate, the method for model selection is based on an in-sample methodology 

by calculating the Bayes Factors within the same sample. The purpose of this paper is indeed 

to see whether a MS-VECM can fit past data better than MS-VAR models, in order to see if 

the four markets under consideration have shared one or more cointegrating relationships in 

the past, if they are time-changing, and interpret the different regimes. This paper uses the 

same uninformative or weakly informative priors among the different models (except for 𝛼 

and 𝛽 when they are missing, of course), and this leads to consistent conclusions. Du, Edwards 

and Zhang (2019) show indeed that different assumptions on priors’ mean and variance have 

a considerable influence on the Bayes Factor. However, this methodology does not use out-

of-sample forecasting to validate the model selection, as the whole sample data available is 

used for model estimation purposes and the paper does not split the data into training, 

validation and test sets. As a consequence, it does not present any measure of out-of-sample 

forecasts’ goodness-of-fit with the different models that have been estimated. The 

practitioner that aims to use them not just to understand the nature of past co-movements, 

but also to forecast future conditional expected values, should be aware of the limitation and 

check their performance for data out of the sample of this research. A model selection based 

on out-of-sample forecasting power can be derived using predictive log-likelihood estimators. 

Eklund and Karlsson (2005) propose use such estimators and split data between training and 
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hold-out samples. They point out that the use of predictive measures offers greater 

protection against in-sample overfitting and improves the performance of out-of-sample 

forecasting. However, there are limitations to this approach when the data is serially 

correlated, and in the fact that it does not use the most recent, and perhaps more interesting, 

data to estimate the models. Such predictive measures are out of the scope of this paper, 

which intends to explain past behaviour and propose a new way to look at cointegration in 

South-East Asian market through Markov switching models. However, the practitioner might 

be able to increase accuracy of out-of-sample VECM estimation for forecasting purposes 

through predictive log-likelihood estimators discussed in Eklund and Karlsson (2005) and 

Ando and Tsay (2010). 
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Cointegration in South-East Asian Equities 

The Data 
The aim of this paper is to perform a study of the cointegration among ASEAN countries and 

Hong Kong to see whether they share at least one stochastic trend. The choice of the 

countries is not arbitrary: the aim is to study in particular the relationship among South-East 

Asian equities. Hong Kong has been chosen because it is widely regarded as the South-East 

Asian financial hub, together with Singapore. On top of it the most developed ASEAN equity 

markets have been selected, based on the Financial Development Index Database provided 

by the International Monetary Fund. A pre-condition for the choice of the market is to be 

classified as “emerging market” from the MSCI index provider. The pre-conditions set by MSCI 

include important features of an exchange including market size, liquidity and accessibility. 

The latter includes issues like foreign ownership restrictions, the regulatory framework and 

the ability to short the stocks listed on the exchange. The more sophisticated the exchange, 

the more institutional investors are likely to be interested in it and the more attention will be 

paid to the pricing of the assets on that exchange. On top of this, the MSCI Emerging Markets 

Index is by far the most important index tracked by ETFs and when a country gets promoted 

from a Frontier Market to an Emerging Market status, this leads to an automatic increase in 

liquidity coming from passive funds. It is clear that the number of investors interested in 

emerging markets that fulfil more stringent investability criteria is much greater than the one 

of frontier markets’ investors. Such criterion leaves us with the choice between Indonesia, 

Malaysia, Philippines, Singapore and Thailand. The reason why we cannot pick all of them is 

that this could lead to the algorithm running time to increase excessively, possibly above 24 

hours. Choosing the most developed equity indices should give us a proxy also for the 

cointegration relationship with the other two. If an investor is particularly interested in the 

price discovery process of a specific country, he can run the algorithm with the proper 

substitutions. Figure 5 shows the values of the Financial Development Index calculated by the 

IMF following the methodology presented in Svirydzenka (2016). Figure 6 shows the Financial 

Markets Development Index. In brief, the financial development index is a combination of 

measures on the development of financial institutions and financial markets. The former is a 

function of the depth, access and efficiency of the banking system of the emerging country. 

The latter is a function of depth, access and efficiency of the markets of the particular country. 
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One can appreciate that the most developed countries both in terms of financial markets and 

of overall financial development are Singapore, Malaysia and Thailand. As we discussed 

before, Hong Kong is analysed as well due to both its prominent role in South-East Asian 

markets and the importance of China as a trading partner of the ASEAN countries that was 

highlighted in section 1 of the paper. We will use the main large-cap index of each country as 

a proxy of the overall equity market for each country: the Hang Seng Index is used for Hong 

Kong, the FTSE Straits Times Index is selected for the Singapore market, the FTSE Bursa 

Malaysia is the index under consideration for Malaysia and the Stock Exchange of Thailand 

(SET) Index is picked for Thailand. 

The time horizon chosen is wide: it goes from January 2000 to February 2020, thus spanning 

both periods of bull and bear market which showed different features in the literature gap. 

Finally, the frequency of the observations is weekly, which allows to minimise the problem of 

different closing days of the stock markets due to national holidays and provides a picture 

consistent with portfolio allocation in the medium to long term. The test is first conducted in 

US Dollar terms and then in local currency terms, in order to account for the foreign exchange 

effect. This is important as the presence of cointegration in only one of the datasets might 

have different consequences for the portfolio allocation choices of a US based portfolio 

manager vis-à-vis one based in one of the ASEAN countries under consideration. 

In order to get a much faster convergence, we take the log of all the raw data points. This 

greatly reduces the time needed for convergence and the time the CPU takes to run each 

iteration. It also diminishes the maximum treedepth that the Stan algorithm requires. Using 

the log of the time series also helps smoothing the differences in scale of some indices. It is 

natural for these variables to mix more easily when taking logs. The situation gets even worse 

when data are scaled for the foreign exchange with the US Dollar. The USD value of the index 

is defined as: 

𝐼𝑛𝑑𝑒𝑥$ÔÈÕ =
𝐼𝑛𝑑𝑒𝑥$Ö×ØÙÖ

𝑈𝑆𝐷/𝑋ÈÛ×ª,$
 

where USD/X is the currency pair between the USD and the currency of country X expressed 

in terms of how many foreign currencies unit one US dollar buys. All data is retrieved using 

Thomson Reuters Datastream. Please note that the value of the Malaysia and Thailand’s stock 

indices were pre-multiplied by 10 because of differences in scale. 
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Table 5 shows the results from the Augmented Dickey Fuller Test, performed directly on the 

log variables. We are not able to reject the null hypothesis, which entails the presence of a 

unit root, in any of them with a 95% confidence. This result tells us that all the series are non-

stationary and, as such, they might share a cointegrating relationship. In order to be sure of 

the number of unit roots in each series, we take the difference of the log indices and re-run 

the ADF test. Table 6 reports the results of such test. We immediately see that all of the series 

are now stationary, as we can reject the null hypothesis of non-stationarity with 99% 

confidence. All in all, all the log indices, both in local currencies and in USD term, are 𝐼(1), i.e. 

integrated of order one. It is now possible to proceed with the cointegration tests detailed in 

section 2 and 3. 

Results 

We first run the Johansen cointegration test. In this instance, we allow for a number of lags 

greater than one and we let the model choose the most appropriate number of lags according 

to the Schwarz information criterion. We run the test with and without a constant term. Table 

7 and Table 8 report the results for both the local currency and the USD-adjusted datasets. 

We report both the 𝜆$defg  and the 𝜆iej. We fail to reject the null hypothesis that the rank of 

the cointegrating space is equal to zero for both datasets at the 95% confidence level.  

This indicates that there is no long-run linear cointegrating relationship among the four 

markets under consideration for the time horizon 2000-2020. This is not completely 

unsurprising: the precedent literature already pointed at times in which the Johansen test 

failed to show cointegration among Asian equity markets. By taking into account such a wide 

time horizon, the model might include either periods in which cointegration was present and 

others in which the equity markets of Hong Kong, Malaysia, Singapore and Thailand did not 

share any stochastic trend. Alternatively, the linear model might take an inconsistent average 

of different cointegrating vectors pertaining to different regimes. We therefore continue our 

research with the Markov-switching model outlined in section 3. 

In order for results to be interpretable, we have to specify the vector under investigation 𝑦$ =

[𝑦ÜÙTÝ	ÈÞTÝ,$; 	𝑦àªÈÞ	ÈªáÙâªÈ,$; 	𝑦àªÈÞ	ãÔáÈÙ	�ÙÖÙ�ÈâÙ,$; 	𝑦Èª×Øä	ÞåØÜÙTÝÞ	ªÜÙâÖÙTÕ,$]′. The 

results have been obtained by running the appropriate algorithm in the R software. We start 

discussing the results from the USD-adjusted database, as it might be more relevant for 
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investors interested in returns in a hard-currency. Table 9 reports the results of the marginal 

likelihood and Table 10 associated Bayes Factors from the three different models under 

consideration for the USD-adjusted and the local currency datasets, respectively. Each model 

is run for 2300 total iterations: 500 iterations are used as warm-up and are disregarded for 

the purpose of posterior distribution construction. No divergent transition is obtained during 

the sampling phase in any of the models, which reassures us as far as the appropriateness of 

the priors is concerned. The running time of the algorithm for models which entail 

cointegration in at least one regime ranges between six and eight hours. This explains the 

willingness not to increase the number of iterations further. The running time for the model 

with no cointegrating relationships is about one hour.  

The comparison of the respective marginal likelihoods and Bayes Factors strongly supports 

the second model, which shows cointegration among variables in the first regime but not in 

the second one. The factor of ℳ�� against ℳ�T is lower than one in absolute value and the 

former is therefore less likely than the latter. A Bayes Factor of 5.519 in favour of model ℳ�T 

against ℳ�� returns a probability between 95% and 99% in favour of the first model against 

the second one. We can clearly reject the third model, which is just a MSH(2)-VAR(1). The 

Bayes factors of ℳ�� and ℳ�T against ℳTT both tend to infinity, thus giving the former a 

probability of over 99% against the vector autoregressive models. In other words, not 

considering the cointegrating relationship among variables leads to the omission of useful 

information for the purpose of forecasting the future returns of the equity markets.  

As Table 11 shows that all the estimates of the parameters have successfully converged after 

2,300 iterations, as R-hat, a measure of convergence which should be below 1.1 to ensure 

convergence, is 1 for all the variables. The effective sample size, which is connected to the R-

hat, is therefore also very high for all the parameters, indicating that the model is not 

saturated, and an appropriate number of iterations has been used to ensure that each 

parameter used large samples to converge. The posterior distribution does not seem to have 

multiple local maximums, thus suggesting that the convergence has been correctly achieved 

and the posterior is reliable. 

A very important result for the model in order to be meaningful is the regime persistence 

expressed in the transition matrix. In model ℳ�T both regimes are very persistent: 𝜀4̂4, the 

probability of being in regime 1 at time 𝑡 given that the model is in regime 1 at 𝑡 − 1 is 0.9773. 
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Figures 7 and 8 show the mean state and the most likely state and they clearly indicate four 

strong switching points for the VECM in the time frame under consideration. Regime 1 is still 

more persistent than regime 2: 𝜀N̂N estimate is 0.958. It can nonetheless be considered 

persistent, even if its average duration is shorter than the one of regime one. This is crucial in 

case one is interested in studying the impulse response function or the variance 

decomposition of the model. If the regime is persistent, the practitioner can be less worried 

about the influences that changes in regime would have over the impulse horizon. This is the 

reason why a scarcely persistent model is undesirable and this model can be considered as a 

valid basis not only for the study of the past cointegration relationship, which is its objective, 

but also for further studies on the impulse response function, for example.  

The interpretation of the two regimes is quite surprising. We take into consideration the role 

of constants. If one recalls that we are dealing with differences of the variables of interest, 

the presence of a constant will determine the presence of a linear trend. By considering the 

estimates of the constant term 𝜇r�  as a proxy for bear and bull markets we notice that for 

each of the equity markets �̂�4 = [0.0087, 0.0044, 0.0026, 0.0120]� is positive, indicating a 

bull market, or in any case an indicator of positive market conditions. Conversely, �̂�N =

[−0.0029,−0.0027,−0.0003,−0.0012]′ appears to be negative for all the variables under 

consideration. On top of that, all coefficients are statistically significant different from zero. 

They make sense from a practical standpoint. If we look at figures 7 and 8 we can see the 

sequences of the regimes: the model starts in a bear market during the peak of the Dot-Com 

Bubble and its aftermath: regime two is persistent until year 2003, then the most likely state 

starts to be switching more often than usual. Successively, from roughly the beginning of year 

2004 to year 2007 the model is persistent in regime 1, bull market. It then switches to bear 

market regime until mid-2010, and from there on it is widely persistent in regime one except 

for some occasional switches. Nevertheless, it is very interesting to notice that the model 

interpretation leads to the presence of cointegration in the South-East Asian markets in a bull 

market, but not in a bear market. This result goes against the intuitive idea that, given that 

correlation in bear markets tends to increase, the markets’ cointegrating relationship might 

increase during bear markets. This is not the case when we consider South-East Asian markets 

from a USD perspective. Unsurprisingly, the bull market regime also represents the regime 

with the lowest volatility. 
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By applying standard results from Poisson distribution and the probabilities contained in the 

main diagonal of the transition matrix, we can see that the average duration of regime one 

(positive market) is 44.1 weeks; while the average duration of the second state (harsh market 

conditions) is 23.8 weeks. This is useful in two ways. First of all, it could signal the portfolio 

manager that once the regime has switched, the market is likely to stay so for 44 or 24 weeks 

depending on its direction. Furthermore, it provides a consistent time horizon for IRF and 

variance decomposition calculations. 

As to the cointegrating vector, it is represented by 𝛽h = [1, −0.9757,−0.3532,−0.0739]′ and 

it is immediately visible the big role of the Singapore equity market for the as an explanatory 

variable for the Hong Kong equity prices. The role of Thailand appears more limited. It is worth 

remembering that we are dealing with log variables, so that such big differences are less likely 

to come as a result of differences in scales of variables and more likely to be a result of higher 

weights in driving price discovery. The close relationship between Singapore and Hong Kong 

is expected given the prominent role they hold among South-East Asian markets as regional 

financial hubs. Finally, it is worth looking at the vector of the correction speed coefficients 

𝛼M = [−0.0243,−0.0055,−0.0024, 0.0006]′. It is interesting to note that, in a log context, 

the first three corrections speeds are satisfactory and statistically significant, the sign of the 

correction speed for Thailand is wrong, as it is positive, and is the only non-statistically 

significant one. This casts some doubt over the usefulness of the model for the purpose of 

USD-adjusted price discovery of the Thai market. However, as its beta coefficient is 

statistically significant, it is probably of some help for the purpose of price discovery of the 

other three markets. This is interesting from an economic perspective because Thailand is the 

least open country among the four under consideration as per the Chinn-Ito Index (Chinn and 

Ito, 2006), which is a measure of current account openness. Such additional frictions might 

diminish the convergence of the Thai equities towards the stochastic trend shared by at least 

the other three countries. 

All in all, the model ℳ�T for USD-adjusted South-East Asian equity markets greatly enhances 

the price discovery for the markets under consideration, which shows that such four markets 

are cointegrated in one regime (bull market), but not in the other (bear market). A linear 

cointegration test fails to adapt to the changing regimes and hence fails to recognize the 

benefits of switching from a VAR to a VECM model. This idea is also supported by the Bayes 
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Factors. Some doubts are only casted on its usefulness for the price discovery of the Thai 

market in the bull market regime due to sign and non-significance of the estimate of 𝛼. 

We now analyse the results for the local currency database. These results are more important 

for the purpose of diversification for Asian-based investors as they do not take into account 

the FX effect arising from different monetary policies.  

First of all, the Bayes Factors indicated a different model as the most probable, as pointed out 

in Table 12. For the local currency database, the Bayes factor in favour of ℳ�� against the 

alternative model ℳ�T is 219.19, thus indicating a probability of over 99% in favour of the 

model in which cointegration is present in both regimes. The model with no cointegrating 

relationship in any state is the least likely: the Bayes factor in favour of ℳ�� against the 

alternative ℳTT is 2516.51, while the Bayes factor in favour of ℳ�T against ℳTT is 11.48, 

still provide strong evidence in favour of ℳ�T. Not considering the cointegrating relationship 

corresponds once again to a loss of valuable information for price discovery. However, in this 

case the correct model to be analysed is the one allowing two different cointegrating vectors 

and two different correction speed vectors. The Johansen cointegration test, in its linear 

nature, tried to estimate parameters from two different distributions and has therefore failed 

to estimate statistically significant cointegrating vectors. 

This model displays a high level of persistence among regimes in the transition matrix: the 

estimate 𝜉h4,4 is 0.9482, while the estimate of the probability of staying in regime 2 at time 

𝑡 + 1 𝜉hN,N is 0.9727.  

However, the regime interpretation is more complicated in this case. The reason is that 

different monetary policies adopted in different times by central banks have different effects 

on the markets, and in this case there is no clear delineation of bear vs bull market. Table 13 

details the key statistics of the posterior. We turn our attention to the estimates of the 

constant terms 𝜇 to look for deterministic trends: the vector �̂�4 =

[0.0054, 0.0043,0.0019,0.0111]’ and the vector �̂�N = [0.0098, 0.0050,0.0040,0.0019]’. We 

notice that on average the mean of the deterministic trend component is higher in regime 

two, but the sign is positive for both. Furthermore, the value for the Thai market is higher for 

the first regime. The lack of defined market trends, differently from the USD-adjusted case, 

despite the most likely state sequence provided in Figure 9 and 10 being similar to Figure 7 
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and 8, is puzzling. Nevertheless, a sensitive reason might be the fact that emerging markets’ 

central banks offer resort to expansionary monetary policies in times of crisis that lead to 

currency depreciation. Furthermore, in times of financial distress, the “rush to safety” leads 

many investors to reposition themselves towards safe currencies like USD and sell emerging 

markets’ currencies. The currency depreciation has a positive nominal effect on the value of 

shares listed in the local currency, which hence might have sunk less than they would 

otherwise have.  

Another possible interpretation of regimes is nonetheless possible. Instead of focusing solely 

on the constant terms of the MS-VECM, we now turn our attention to the estimate of the 

variance-covariance matrix Σì. In order to have a snapshot, we focus on the volatility of each 

variable in each regime, thus looking at the standard deviations of:                

𝑠𝑡𝑑𝑒𝑣 ¡𝑑𝑖𝑎𝑔�Σì4�¥ = [0.0457, 0.0349,0.0288,0.0397]′ and 𝑠𝑡𝑑𝑒𝑣 ¡𝑑𝑖𝑎𝑔�ΣìN�¥ =

[0.0220,0.0154,0.0122,0.0201]′. This finally provides a way to interpret more clearly the 

regimes. Regime 1 could be interpreted as a high-volatility regime, while regime 2 would be 

a low-volatility environment. This would also match the intuition of FX as a reason for the 

different interpretations of regimes between the two datasets. The FX effect is a positive 

catalyst for equities listed in local currencies, however the abrupt foreign exchange 

movements increase the volatility of markets in regime one. Furthermore, different monetary 

policy stances among the four countries increase also the volatility of the estimates of the 

model, just think at pegged currencies behaviour (e.g. HKD pegged to USD) against floating 

currencies (e.g. THB). Trying to use an equity market without a peg for the purpose of price 

discovery of a market quoted in a pegged currency, and vice versa, leads to greater volatility 

of estimates when markets are in panic mode and central banks act differently. This might 

explain the higher level of variance in regime one vs the one in regime two. However, 

interestingly enough, since the model captures cointegration only for the local currency 

dataset, the markets share a stochastic trend only if differences in monetary policy are not 

taken care of.  

Just like before, we can calculate the average duration of the high-volatility and low-volatility 

market. The former lasts on average 19.3 weeks, while the latter has an average duration of 

36.7 weeks. It can be appreciated that the persistence of regimes in the local currency 

environment is slightly lower than for the USD framework. However, the four markets under 
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analysis have a long-run equilibrium in both regimes when they are not adjusted in hard 

currency. 

The next step of the analysis is centred over the two different cointegrating vectors: 𝛽h4 =

[1, −1.1084,−0.2473, 0.0826]′ and 𝛽hN = [1, −1.1169,−0.0610, 0.1346]′. The greatest 

weight is given once again to the Straits index, with which the Hang Seng is highly correlated. 

It is then followed by the weight on the Malaysian market. The Thai market takes then an 

opposite sign of unsure interpretation. The alpha signs further cast some doubt on the 

strength of the long-run equilibrium in the high-volatility regime. By observing 𝛼M4 =

[−0.0171, 0.0250, 0.0135, 0.0167]′ we immediately notice that for three out of four signs 

present the wrong sign, and only the Hong Kong market correctly resorts to the long-run 

equilibrium via the appropriate error correction model in regime one. On the contrary, 𝛼MN =

[−0.0136,−0.0062,−0.0083,−0.0105]′ has all its components presenting negative sign 

and they are all significant. This makes clear that all the markets resort to their long-run 

equilibrium in regime two.  

After all the relevant parameters have been considered, in the local currency framework the 

Bayes Factor indicates that by omitting the long-run cointegrating relationship we would not 

consider valuable information in both regimes. In the low-volatility regime this relationship is 

particularly strong, while in the high-volatility regime its importance diminishes. In particular, 

the Hang Seng seems to revert to the long-run equilibrium quickly and appropriately, but the 

other three markets in analysis seem not to be doing the same in the high-volatility regime. 
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Conclusions 
The purpose of this research was to understand whether there is a long-run cointegrating 

relationship among the four markets under consideration. In the USD-adjusted database 

there is evidence of cointegration just in the regime characterized by the presence of a 

positive linear trend, which we interpreted as periods of bull trends in the stock markets. On 

the contrary, during bearish times, there appears to be no cointegration among the markets 

under consideration. The result is surprising, as it goes against the intuitive idea that, given 

that correlation in bear markets tends to increase, the markets’ cointegrating relationship 

might increase during bear markets. In terms of countries, Hong Kong, Singapore and 

Malaysia fit well the VECM, while the role of Thailand appears limited both from the 

coefficient inside the cointegrating vector and from the wrong sign of its speed-of-adjustment 

coefficient. The results are different for the local currency database, where there is evidence 

of cointegration in both the high-volatility and low-volatility regime, but the effect of the 

cointegrating relationship is stronger in the low-volatility regime than in the high-volatility 

one. Also in this case, the Thai stock market is the one that appears less significant for the 

cointegration among markets. However, on top of that, we also notice that the speed-of-

adjustment factor has the wrong sign not only for Thailand, but for Singapore and Malaysia, 

too. This makes the interpretation of the relevance of the cointegrating relationship for the 

high-volatility regime dubious, while cointegration in the low-volatility regime appears to be 

strong.  

It is worth highlighting that this research does not attempt to create a formal test for the 

acceptance or rejection of the Markov-switching cointegration model vs a null of no 

cointegration. It rather uses Bayes factors to understand which one among the models 

estimated works best in describing the movements across the markets. On top of that, the 

main point of this paper is to understand the nature of the past cointegrating relationship 

rather than to estimate the best model for forecasting purposes. Based on the Bayes Factors 

between the different models proposed, it provided an interpretation over the nature of the 

cointegrating relationships among the markets under consideration, which differ based on 

market conditions. A practitioner or portfolio manager might want to do some out-of-sample 

forecasting to check how the proposed models perform out of sample.  
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The results from this paper also suggest a possible reason for the contradictory findings of 

previous literature. They could indeed be the consequence of performing the same linear 

Johansen test over different periods of time that span over two different regimes. This would 

be consistent with the presence of two regimes and the use of Markov-switching models over 

a long sample period would solve the issue, as the results of this research show. It is also 

worth noting that the different results for the USD-adjusted and the local currency databases 

highlight the fact that the FX effect on the cointegrating relationship is significant and is 

something that an international investor might want to adjust for in his/her calculations.   



 46 

Bibliography 
Ahmed, F. and Singh, V. (2016). Financial Integration Among RCEP (ASEAN+6) Economies: 

Evidences from Stock and Forex Markets.” South Asian Journal of Management 23, 164-188. 

Alexander, C. O. (1999). Optimal Hedging Using Cointegration. Philosophical Transactions of 

the Royal Society 357, 2039-2058. 

Ando, T. and Tsay, R. (2010). Predictive Likelihood for Bayesian model selection and averaging. 

International Journal of Forecasting 26 (4), 744-763. 

Ang, A. and Bekaert, G. (2002). International Asset Allocation with Regime Shifts. The Review 

of Financial Studies 15(4), 1137–1187. 

Arai, Y. and Kurozumi, E. (2007). Testing for the null hypothesis of cointegration with a 

structural break. Econometric Reviews 26 (6), 705–739. 

Arsyad, N. (2015). Integration between East and Southeast Asian equity markets. Journal of 

Financial Economic Policy 7(2), 104–121. 

Atmadja, A. S. (2009). The Asean Stock Market Integration: The Effect of the 2007 Financial 

Crisis on the Asean Stock Indices’ Movements. Jurnal Akuntansi dan Keuangan (Universitas 

Kristen) 11, 1–12. 

Bauwens, L., Dufays, A. and Rombouts, J., (2014). Marginal Likelihood for Markov-Switching 

and Change-Point GARCH Models. Journal of Econometrics 178, 508-522. 

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., 

Guo, J., Li, P., and Riddell, A., (2017). Stan: A Probabilistic Programming Language. Journal of 

Statistical Software 76(1), 1-32. 

Cheong, K., Wong, C.Y. and Goh, K. (2016). Technology Catch-up with Chinese Characteristics: 

What Can Southeast Asia Learn from China? The Round Table 105, 1-15. 

Chien, M., Lee, C., Hu, T., and Hu, H. (2015). Dynamic Asian stock market convergence: 

Evidence from dynamic cointegration analysis among China and ASEAN-5. Economic 

Modelling 51, 84–98.  

Chinn, M. D., and Ito, H. (2006). What Matters for Financial Development? Capital Controls, 

Institutions, and Interactions. Journal of Development Economics, 81(1), 163-192. 



 47 

Click, R., and Plummer, M. (2005). Stock market integration in ASEAN after the Asian financial 

crisis. Journal of Asian Economics 16(1), 5–28. 

Dickey, D., and Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series 

with a Unit Root. Journal of the American Statistical Association 74(366a), 427–431. 

Dickey, D., and Fuller, W. (1981). Likelihood Ratio Statistics for Autoregressive Time Series 

with a Unit Root. Econometrica 49(4), 1057–1072. 

Du, H., Edwards, M.C. and Zhang, Z. (2019). Bayes factor in one-sample tests of means with a 

sensitivity analysis: A discussion of separate prior distributions. Behav Res (51), 1998–2021. 

Eklund, J., and Karlsson, S. (2005). Forecast combination and model averaging using predictive 

measures. Sveriges Riksbank Working Paper 191. 

Engle, R., and Granger, C. (1987). Co-Integration and Error Correction: Representation, 

Estimation, and Testing. Econometrica 55(2), 251–276. 

Evans, M. and Wachtel, P., (1993). Inflation regimes and the sources of inflation 

uncertainty. Proceedings, Federal Reserve Bank of Cleveland, 475-520. 

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer-Verlag. 

Garcia, Y., Garcia, R., Luger, R. and Renault, E., (2001). Empirical Assessment of an 

Intertemporal Option Pricing Model with Latent Variables. Journal of Econometrics 116, 49-

83. 

Gelfand, A., and Dey, D. (1994). Bayesian Model Choice: Asymptotics and Exact Calculations. 

Journal of the Royal Statistical Society. Series B (Methodological), 56(3), 501-514. 

Geman, S., Geman, D., (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian 

Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 

721-741. 

Giannone, D., Lenza, M. and Primiceri, G., (2012). Prior Selection for Vector Autoregressions. 

ECB Working Paper Series No. 1494. 

Gregory, A., and Hansen, B. (1996). Residual-based tests for cointegration in models with 

regime shifts. Journal of Econometrics 70(1), 99–126. 



 48 

Guidi, F., and Gupta, R. (2013). Market efficiency in the ASEAN region: evidence from 

multivariate and cointegration tests. Applied Financial Economics 23(4), 265–274 

Guidolin, M., and Pedio, M. (2018). Essentials of Time Series for Financial Applications. 

Academic Press. 

Hamilton, James D, (1989). A New Approach to the Economic Analysis of Nonstationary Time 

Series and the Business Cycle. Econometrica, Econometric Society 57(2), 357-384. 

Hoffman, M. and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths 

in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1593-1623. 

Huyghebaert, N. and Wang, L. (2010), The co-movement of stock markets in Asia: did the 

1997-1998 Asian financial crisis really strengthen stock market integration? China Economic 

Review 21, 98-112. 

Jetin, B. and Mikic, M. (2016). ASEAN Economic Community: A Model for Asia-Wide Regional 

Integration? Palgrave Macmillan US. 

Kawai, M., Park, Y., and Wyplosz, C. (2015). Monetary and Financial Cooperation in East Asia: 

The State of Affairs After the Global and European Crises. Oup Oxford. 

Korajczyk, R. (1996). A Measure of Stock Market Integration for Developed and Emerging 

Markets. The World Bank Economic Review 10(2), 267–289. 

Krolzig, H. (1997). Markov-Switching Vector Autoregressions : Modelling, Statistical Inference, 

and Application to Business Cycle Analysis . Springer. 

Leos-Barajas, V., and Michelot T. (2018). An Introduction to Animal Movement Modeling with 

Hidden Markov Models using Stan for Bayesian Inference. arXiv 1806.10639. 

Litterman, R. and Sims, C. (1984). Forecasting and Conditional Projection Using Realistic Prior 

Distributions, NBER Working Papers 1202.  

Jochmann, M., and Koop, G., (2015). Regime-switching cointegration. Studies in Nonlinear 

Dynamics & Econometrics 19(1), 35-48. 

Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. Journal of Economic 

Dynamics & Control 12(2-3), 231–254. 



 49 

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive 

Models. Oxford University Press. 

Johansen, S., and Juselius, K. (2014). An Asymptotic Invariance Property of the Common 

Trends under Linear Transformations of the Data. Journal of Econometrics 178, 310–315. 

Kass, R., and Vaidyanathan, S. (1992). Approximate Bayes Factors and Orthogonal 

Parameters, with Application to Testing Equality of Two Binomial Proportions. Journal of the 

Royal Statistical Society. Series B (Methodological), 54(1), 129-144 

Koop, G. and Potter, S. M. (2007). Estimation and Forecasting in Models with Multiple Breaks. 

The Review of Economic Studies 74(3), 763–789. 

MacKay, D. (2002). Information Theory, Inference & Learning Algorithms. Cambridge 

University Press, New York. 

Masih, A. and Masih, R. (1999). Are Asian stock market fluctuations due mainly to intra-

regional contagion effects? Evidence based on Asian emerging stock markets. Pacific-Basin 

Finance Journal 7, 251–282. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A.H., (1953). Equation of 

State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21(6), 1087-

1092. 

Neal, R. M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods, 

Technical Report CRG-TR-93-1, University of Toronto 

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte 

Carlo, 113-162. 

Osmundsen, K. K., Kleppe, T. S., and Oglend, A. (2019). MCMC for Markov-switching Models—

Gibbs Sampling vs. Marginalized Likelihood. Communications in Statistics-Simulation and 

Computation, 1-22. 

Patterson, K. (2011). Unit Root Tests in Time Series. Palgrave Macmillan UK. 

Poskitt, D. S. and Chung, S. H., (1996). Markov Chain Models, Time Series Analysis and Extreme 

Value Theory. Advances in Applied Probability 28(2), 405-425. 



 50 

Rahman, M., Othman, A., and Shahari, F. (2017). Testing the validation of the financial 

cooperation agreement among ASEAN+3 stock markets. International Journal of Emerging 

Markets 12(3), 572–592. 

Roca, E., Selvanathan, E. and Shepherd, W. (1998). Are the ASEAN Equity Markets 

Interdependent? ASEAN Economic Bulletin 15(2), 109-120 

Rydén, T., (2008). EM versus Markov chain Monte Carlo for Estimation of Hidden Markov 

Models: A Computational Perspective. Bayesian Analysis 3, 659-716. 

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics 6(2), 461–

464. 

Scott, S., (2002). Bayesian Methods for Hidden Markov Models, Journal of the American 

Statistical Association 97, 337-351. 

Shabri Abd. Majid, M., Kameel Mydin Meera, A., Azmi Omar, M., and Abdul Aziz, H. (2009). 

Dynamic linkages among ASEAN-5 emerging stock markets. International Journal of Emerging 

Markets 4(2), 160–184.  

Sims, C., (1992). Interpreting the Macroeconomic Time Series Facts: The Effects of Monetary 

Policy. Cowles Foundation Discussion Papers 1011. 

Song, Y., (2012). Modelling Regime Switching and Structural Breaks with an Infinite Hidden 

Markov Model. Working Paper series 28(12), Rimini Centre for Economic Analysis. 

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.17.3. 

Stan Development Team (2018). Stan Modeling Language Users Guide and Reference Manual 

2.18.0. 

Svirydzenka, K., (2016). Introducing a New Broad-Based Index of Financial Development. IMF 

Working Paper 16/5. 

Tongzon, J. (2005). ASEAN-China Free Trade Area: A Bane or Boon for ASEAN Countries? 

World Economy 28, 191-210. 

Urata, S. and Okabe, M., (2013). The impact of AFTA on Intra-AFTA Trade.  Economic Research 

Institute for ASEAN and East Asia, Working Papers DP-2013-05. 



 51 

Wang, L. (2014). Who moves East Asian stock markets? The role of the 2007–2009 global 

financial crisis. Journal of International Financial Markets, Institutions and Money 28, 182-

203. 

Yang, J., Kolari, J., and Min, I. (2003). Stock market integration and financial crises: the case of 

Asia. Applied Financial Economics 13(7), 477–486. 

Yilmaz, K. (2010). Return and volatility spillovers among the East Asian equity markets. Journal 

of Asian Economics 21(3), 304–313. 

Yu, I., Fung, K. and Tam, C. (2010). Assessing Financial Market Integration in Asia – Equity 

Markets. Journal of Banking & Finance 34, 2874-2885. 

Zhang, T., and Matthews, K. (2019). Assessing the degree of financial integration in ASEAN—

A perspective of banking competitiveness. Research in International Business and Finance 47, 

487–500. 

Zucchini, W., MacDonald, I., Langrock, R., (2016). Hidden Markov Models for Time Series. 

Chapman and Hall/CRC.  

  



 52 

Figures and Tables 

Table 1: Trading partners of ASEAN countries, trade of goods only, 2019 figures in 
$bn 

 Raw Figure ASEAN Market Share 

 
ASEAN 

Total Trade 
ASEAN Total 

Exports 
ASEAN Total 

Imports 
Total 
Trade 

Total 
Exports 

Total 
Imports 

Intra-ASEAN 632.40 332.44 299.96 22.5% 23.4% 21.5% 
Extra-ASEAN 2,182.81 1,090.71 1,092.10 77.5% 76.6% 78.5% 
China 507.86 202.46 305.39 18.0% 14.2% 21.9% 
Japan 225.92 109.83 116.08 8.0% 7.7% 8.3% 
Republic of Korea 156.48 59.36 97.12 5.6% 4.2% 7.0% 
India 77.05 48.25 28.80 2.7% 3.4% 2.1% 
Australia 63.08 35.44 27.65 2.2% 2.5% 2.0% 
European Union 280.55 153.89 126.67 10.0% 10.8% 9.1% 
United States 294.59 183.60 110.99 10.5% 12.9% 8.0% 

Source: ASEAN Statistics Database 

 

Figure 1: Evolution over time of total trade in goods with ASEAN countries, figures in 
$ml 

 

Source: ASEAN Statistics Database 
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Figure 2: Rebased stock indices movements over the Jan 2000-Feb 2020 period for 
the selected countries, in local currency (1/1/2000=100) 

 
Source: Thomson Reuters Eikon 

 
Figure 3: Rebased stock indices movements over the Jan 2000-Feb 2020 period for 
the selected countries, in USD terms (1/1/2000=100) 

 
Source: Thomson Reuters Eikon 
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Figure 4: Rebased FX movements over the Jan 2000-Feb 2020 period for the 
selected countries, in USD terms (1/1/2000=100) 
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Table 2: Summary of precedent literature findings on cointegration in the South-East 
Asian or East Asian region  
Paper Period under 

consideration 
Countries under 
consideration 

Linear cointegrating 
relationship 

Roca, 
Selvanathan and 
Shepherd (1998) 

1988-1995 ASEAN-5 Short-run linear 
dependence, no 
long-run equilibrium 

Huyghebaert and 
Wang (2010) 

1992-2003 East Asia Only during crises 

Shabri abd. Majid 
et al. (2009) 

1995-2006 ASEAN-5 Cointegration both 
pre- and post- Asian 
crisis 

Click and 
Plummer (2005) 

1998-2002 ASEAN-5 Cointegration 
present 

Yu, Fung and 
Tam (2010) 

2002-2008 ASEAN+3+Taiwan Cointegration 
weakening in 2002-
2006, strengthening 
in 2006-2008  

Arsyad (2015) 2003-2013 ASEAN-6 and 
ASEAN+3 

Cointegration 
present only in 
ASEAN+3 

Atmadja (2019) 2000-2009 ASEAN-5 Cointegration pre-
GFC but not during 
GFC 

Wang (2014) 2003-2013 ASEAN-6 No cointegration 
Rahman, Othman 
and Shahari 
(2019) 

1999-2013 ASEAN+3 Cointegration 
present 

Guidi and Gupta 
(2013) 

2000-2011 ASEAN-5 No cointegration 

Ahmed and Singh 
(2016) 

2001-2013 ASEAN-5 Cointegration in FX, 
not in equities 

Chien et al. 
(2015) 

1992-2013 ASEAN-5 + China Cointegration in 1 of 
3 regimes  
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Figure 5: Financial Development Index for the five ASEAN emerging markets, which 
takes into account both the banking system and the financial markets development 

 
Source: International Monetary Fund 

 
 
Figure 6: Financial Markets Development Index for the five ASEAN emerging markets 

 
Source: International Monetary Fund 
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Table 3: Descriptive statistics for the variables in the USD-adjusted dataset 
 Mean St. Dev Min 1Q Median 3Q Max N. Obs 

HK 7.790 0.321 6.986 7.552 7.888 8.019 8.347 1050 
SG 7.458 0.396 6.515 7.111 7.640 7.458 7.785 1050 
ML 8.114 0.389 7.284 7.770 8.253 8.433 8.697 1050 
TH 7.784 0.661 6.384 7.385 7.835 8.396 8.676 1050 

 
 
 
Table 4: Descriptive statistics for the variables in the local currency dataset 

 Mean St. Dev Min 1Q Median 3Q Max N. Obs 

HK 9.841 0.321 9.040 9.604 9.939 10.068 10.403 1050 
SG 7.842 0.284 7.065 7.619 7.962 8.068 8.248 1050 
ML 7.102 0.358 6.316 6.792 7.216 7.422 7.546 1050 
TH 6.744 0.560 5.553 6.463 6.722 7.293 7.516 1050 

 
 
 
 
Table 5: Augmented Dickey-Fuller Test on the selected markets for both USD-
adjusted and local currency datasets. Test performed with a drift and allowing it to 
choose the most appropriate number of lags up to 6 to minimise the p-value. P-
values in brackets 

USD-adjusted Local Currency 

Hong Kong -1.51 
(0.523) Hong Kong -1.51 

(0.521) 

Malaysia -0.668 
(0.819) 

Malaysia -1.146 
(0.650) 

Singapore -2.100 
(0.289) 

Singapore -1.580 
(0.495) 

Thailand -1.200 
(0.630) 

Thailand -1.087 
(0.671) 
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Table 6: Augmented Dickey-Fuller Test on the first difference selected of selected 
markets for both USD-adjusted and local currency datasets. Test performed with a 
drift and allowing it to choose the most appropriate number of lags up to 6. P-values 
in brackets. Note: p.value = 0.01 in this case means p.value ≤ 0.01 

USD-adjusted Local Currency 

Hong Kong -35.8 
(0.01) Hong Kong -35.8 

(0.01) 

Malaysia -33.9 
(0.01) Malaysia -32.8 

(0.01) 

Singapore -33.6 
(0.01) Singapore -32.5 

(0.01) 

Thailand -34.6 
(0.01) Thailand -32.8 

(0.01) 
 

 
Table 7: Johansen cointegration test for the USD-adjusted dataset 

Rank Eigenvalue 𝜆$defg 
5% critical 

value 𝜆iej 10% critical 
value 

0  46.2669* 47.21 23.1125* 27.07 
1 0.02181 23.1544 29.68 13.5109 20.97 
2 0.01281 9.6435 15.41 8.3465 14.07 
3 0.00793 1.2970 3.76 1.2970 3.76 
4 0.00124     
N. lags = 2 selected according to the Schwarz based Information Criterion 

 
 
 
Table 8: Johansen cointegration test for the local currency dataset 

Rank Eigenvalue 𝜆$defg 
5% critical 

value 𝜆iej 10% critical 
value 

0  40.1386* 47.21 21.5917* 27.07 
1 0.02039 18.5469 29.68 11.3121 20.97 
2 0.01074 7.2347 15.41 5.9793 14.07 
3 0.00569 1.2554 3.76 1.2554 3.76 
4 0.00120     
N. lags = 2 selected according to the Schwarz based Information Criterion 
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Table 9: Marginal log-likelihood for the models under consideration 

USD-adjusted Local Currency 

Model Marginal log-likelihood Model Marginal log-likelihood 

ℳ�� 10364.27 ℳ�� 10473.02* 

ℳ�T 10365.98* ℳ�T 10467.63 

ℳTT 10343.92 ℳTT 10465.19 
 
 
 
Table 10: Bayes Factor for the USD-adjusted models 

Bayes Factor of ℳ�� against ℳ�T 0.1811752 

Bayes Factor of ℳ�� against ℳTT 108.8137 

Bayes Factor of ℳ�T against ℳTT 600.5994 
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Table 11: Posterior distribution key statistics for model ℳ�T using USD-adjusted 
data  

Parameter Mean Std Error Std Deviation R-hat 
ksi[1,1] 0.977347 0.000191 0.007273 0.999449101 
ksi[2,2] 0.957842 0.000336 0.014557 0.999449101 
ksi[1,2] 0.022653 0.000191 0.007273 0.9996181 
ksi[2,1] 0.042158 0.000336 0.014557 0.9996181 
mu[1,1] 0.008679 0.002868 0.044447 0.999812205 
mu[2,1] -0.002881 0.000046 0.002458 1.003552356 
mu[1,2] 0.004450 0.000937 0.014446 0.999458979 
mu[2,2] -0.002682 0.000034 0.001892 1.000898644 
mu[1,3] 0.002571 0.000484 0.011257 1.000098564 
mu[2,3] -0.000255 0.000031 0.001542 0.999766765 
mu[1,4] 0.012010 0.001121 0.022454 0.999856674 
mu[2,4] -0.001198 0.000044 0.002200 0.999695289 
gamma[1,1,1] -0.077669 0.001023 0.041461 0.999501222 
gamma[2,1,1] -0.091829 0.001694 0.054897 0.999505879 
gamma[1,2,1] -0.024667 0.000768 0.028925 1.000913873 
gamma[2,2,1] -0.009261 0.001227 0.045996 0.999528198 
gamma[1,3,1] -0.064711 0.000592 0.025758 1.000446932 
gamma[2,3,1] -0.047116 0.001178 0.042227 0.999542363 
gamma[1,4,1] -0.051205 0.000847 0.037676 0.999579859 
gamma[2,4,1] -0.008424 0.001245 0.052841 0.99953906 
gamma[1,1,2] -0.012227 0.001393 0.054582 0.999504869 
gamma[2,1,2] 0.029084 0.001606 0.064202 0.999471501 
gamma[1,2,2] -0.009311 0.000878 0.041331 0.999551148 
gamma[2,2,2] -0.062463 0.001344 0.056041 0.999990271 
gamma[1,3,2] 0.075860 0.000911 0.036336 1.000076136 
gamma[2,3,2] 0.084602 0.001333 0.049706 1.000238968 
gamma[1,4,2] 0.048281 0.001395 0.053909 0.999981637 
gamma[2,4,2] 0.089113 0.001498 0.064216 0.999596994 
gamma[1,1,3] -0.019967 0.001373 0.058850 0.999684914 
gamma[2,1,3] 0.011689 0.001371 0.061441 1.000343342 
gamma[1,2,3] -0.019292 0.001065 0.043022 0.999491302 
gamma[2,2,3] 0.012841 0.001182 0.049933 1.001611485 
gamma[1,3,3] -0.073772 0.000896 0.038019 0.99988316 
gamma[2,3,3] -0.018386 0.000910 0.045695 0.999825821 
gamma[1,4,3] 0.031255 0.001189 0.053856 0.999749218 
gamma[2,4,3] -0.015411 0.001254 0.059641 0.999659696 
gamma[1,1,4] 0.057765 0.001087 0.041622 1.002461372 
gamma[2,1,4] -0.038347 0.001369 0.055213 1.00227568 
gamma[1,2,4] 0.035685 0.000730 0.030148 0.999597626 
gamma[2,2,4] 0.008226 0.001149 0.043704 1.000243062 
gamma[1,3,4] 0.022707 0.000681 0.026622 0.999849642 
gamma[2,3,4] 0.012097 0.000920 0.039034 0.999462228 
gamma[1,4,4] -0.129885 0.000818 0.038149 0.999614596 
gamma[2,4,4] -0.053254 0.001220 0.052206 1.000429528 
alpha[1] -0.024317 0.000463 0.011721 1.001087152 
alpha[2] -0.005501 0.000200 0.006084 0.999504375 
alpha[3] -0.002399 0.000174 0.005341 1.000098862 
alpha[4] 0.000574 0.000526 0.010988 0.999475267 
sigma[1,1,1] 0.000498 0.000001 0.000031 0.999992731 
sigma[2,1,1] 0.002171 0.000004 0.000167 1.000901567 
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sigma[1,2,1] 0.000201 0.000001 0.000017 1.000156632 
sigma[2,2,1] 0.001133 0.000002 0.000087 1.000436563 
sigma[1,3,1] 0.000084 0.000000 0.000012 1.000901567 
sigma[2,3,1] 0.000400 0.000001 0.000061 1.000736583 
sigma[1,4,1] 0.000180 0.000001 0.000021 1.001349597 
sigma[2,4,1] 0.000838 0.000002 0.000083 1.001264985 
sigma[1,1,2] 0.000201 0.000001 0.000017 1.000156632 
sigma[2,1,2] 0.001133 0.000002 0.000087 1.001349597 
sigma[1,2,2] 0.000229 0.000000 0.000014 0.999465952 
sigma[2,2,2] 0.001254 0.000002 0.000082 1.000335682 
sigma[1,3,2] 0.000072 0.000000 0.000009 1.000436563 
sigma[2,3,2] 0.000409 0.000001 0.000046 1.001264985 
sigma[1,4,2] 0.000128 0.000001 0.000014 1.000335682 
sigma[2,4,2] 0.000635 0.000001 0.000054 0.999950686 
sigma[1,1,3] 0.000084 0.000000 0.000012 0.999470532 
sigma[2,1,3] 0.000400 0.000001 0.000061 0.999468951 
sigma[1,2,3] 0.000072 0.000000 0.000009 0.999615493 
sigma[2,2,3] 0.000409 0.000001 0.000046 0.999444762 
sigma[1,3,3] 0.000157 0.000000 0.000010 0.999468951 
sigma[2,3,3] 0.000812 0.000001 0.000060 0.999534943 
sigma[1,4,3] 0.000084 0.000000 0.000011 0.999481073 
sigma[2,4,3] 0.000341 0.000001 0.000052 0.999934629 
sigma[1,1,4] 0.000180 0.000001 0.000021 0.999615493 
sigma[2,1,4] 0.000838 0.000002 0.000083 0.999481073 
sigma[1,2,4] 0.000128 0.000001 0.000014 0.999634371 
sigma[2,2,4] 0.000635 0.000001 0.000054 0.999666577 
sigma[1,3,4] 0.000084 0.000000 0.000011 0.999444762 
sigma[2,3,4] 0.000341 0.000001 0.000052 0.999934629 
sigma[1,4,4] 0.000395 0.000001 0.000024 0.999666577 
sigma[2,4,4] 0.001590 0.000003 0.000114 0.999584316 
beta[1] 1.000000    
beta[2] -0.975744 0.015534 0.322541 1.000457524 
beta[3] -0.353232 0.018438 0.361631 0.999494886 
beta[4] -0.073884 0.019805 0.381380 1.000015522 
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Figure 7: Probability of being in regimes 1 and 2 at all points in time (USD-adjusted) 

  
 
 
 
Figure 8: Most likely regime at all points in time (USD-adjusted) 

 
 
 
 
 
Table 12: Bayes Factor for the local currency’s models 

Bayes Factor of ℳ�� against ℳ�T 219.1814 

Bayes Factor of ℳ�� against ℳTT 2516.505 

Bayes Factor of ℳ�T against ℳTT 11.48138 
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Table 13: Posterior distribution key statistics for model ℳ�� using local currency 
data  

Parameter Mean Std Error Std Deviation R-hat 
ksi[1,1] 0.948201 0.000646 0.018474 0.999973 
ksi[2,2] 0.972717 0.000327 0.009044 0.999973 
ksi[1,2] 0.051799 0.000646 0.018474 0.999541 
ksi[2,1] 0.027283 0.000327 0.009044 0.999541 
mu[1,1] 0.005371 0.002715 0.037565 0.999782 
mu[2,1] 0.009807 0.001433 0.025770 1.001333 
mu[1,2] 0.004323 0.001711 0.033187 1.005425 
mu[2,2] 0.005066 0.001000 0.016488 1.002904 
mu[1,3] 0.001952 0.001085 0.023633 0.999540 
mu[2,3] 0.003963 0.001348 0.018980 1.001213 
mu[1,4] 0.011120 0.001791 0.034225 1.002508 
mu[2,4] 0.001879 0.003231 0.035986 1.004427 
gamma[1,1,1] -0.097609 0.002016 0.056626 1.002767 
gamma[2,1,1] -0.098064 0.001637 0.043978 1.000057 
gamma[1,2,1] -0.020103 0.001620 0.046164 1.000908 
gamma[2,2,1] -0.004985 0.001310 0.034626 0.999906 
gamma[1,3,1] -0.041390 0.001405 0.043516 1.002177 
gamma[2,3,1] -0.038686 0.000945 0.027183 1.000626 
gamma[1,4,1] -0.015029 0.001831 0.052356 0.999630 
gamma[2,4,1] -0.018305 0.001440 0.042777 1.000704 
gamma[1,1,2] 0.044000 0.002105 0.065277 0.999469 
gamma[2,1,2] 0.061175 0.001909 0.057308 0.999512 
gamma[1,2,2] -0.047791 0.001755 0.056008 1.000788 
gamma[2,2,2] -0.005287 0.001500 0.044431 0.999479 
gamma[1,3,2] 0.094780 0.001638 0.053316 0.999459 
gamma[2,3,2] 0.050498 0.001340 0.037567 0.999676 
gamma[1,4,2] 0.116602 0.002085 0.063866 0.999448 
gamma[2,4,2] 0.012124 0.001869 0.057550 0.999447 
gamma[1,1,3] 0.026530 0.002332 0.061764 0.999541 
gamma[2,1,3] -0.008044 0.001945 0.059316 0.999869 
gamma[1,2,3] 0.017831 0.001930 0.051474 0.999446 
gamma[2,2,3] 0.014725 0.001513 0.046412 0.999478 
gamma[1,3,3] -0.016160 0.001561 0.048625 1.000557 
gamma[2,3,3] -0.054321 0.001114 0.039334 1.004022 
gamma[1,4,3] -0.013012 0.001631 0.060551 0.999523 
gamma[2,4,3] 0.015401 0.001562 0.059020 0.999626 
gamma[1,1,4] -0.051493 0.001718 0.055469 1.001730 
gamma[2,1,4] 0.033102 0.001410 0.042282 1.003552 
gamma[1,2,4] 0.013791 0.001644 0.044025 0.999467 
gamma[2,2,4] 0.041862 0.001089 0.031340 0.999446 
gamma[1,3,4] 0.011075 0.000983 0.040616 0.999997 
gamma[2,3,4] 0.041326 0.000757 0.026128 1.001780 
gamma[1,4,4] -0.035987 0.001618 0.049232 0.999630 
gamma[2,4,4] -0.064551 0.001574 0.042260 0.999491 
alpha[1,1] -0.017137 0.001810 0.028518 1.002200 
alpha[2,1] -0.013550 0.000767 0.010165 1.000723 
alpha[1,2] 0.025006 0.001837 0.026137 1.002093 
alpha[2,2] -0.006201 0.000934 0.007319 0.999465 
alpha[1,3] 0.013534 0.000984 0.019814 1.000152 
alpha[2,3] -0.008266 0.001110 0.008307 1.004730 
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alpha[1,4] 0.016683 0.001820 0.027931 1.010533 
alpha[2,4] -0.010524 0.002212 0.015768 1.008624 
sigma[1,1,1] 0.002091 0.000005 0.000159 0.999508 
sigma[2,1,1] 0.000483 0.000001 0.000027 0.999560 
sigma[1,2,1] 0.001115 0.000003 0.000081 1.000399 
sigma[2,2,1] 0.000237 0.000000 0.000014 0.999445 
sigma[1,3,1] 0.000411 0.000002 0.000060 0.999560 
sigma[2,3,1] 0.000122 0.000000 0.000010 1.000744 
sigma[1,4,1] 0.000751 0.000002 0.000078 0.999617 
sigma[2,4,1] 0.000189 0.000000 0.000015 0.999635 
sigma[1,1,2] 0.001115 0.000003 0.000081 1.000399 
sigma[2,1,2] 0.000237 0.000000 0.000014 0.999617 
sigma[1,2,2] 0.001218 0.000002 0.000076 0.999620 
sigma[2,2,2] 0.000247 0.000000 0.000013 0.999636 
sigma[1,3,2] 0.000419 0.000002 0.000044 0.999445 
sigma[2,3,2] 0.000093 0.000000 0.000007 0.999635 
sigma[1,4,2] 0.000629 0.000001 0.000050 0.999636 
sigma[2,4,2] 0.000143 0.000000 0.000009 1.001351 
sigma[1,1,3] 0.000411 0.000002 0.000060 0.999706 
sigma[2,1,3] 0.000122 0.000000 0.000010 0.999877 
sigma[1,2,3] 0.000419 0.000002 0.000044 0.999508 
sigma[2,2,3] 0.000093 0.000000 0.000007 0.999662 
sigma[1,3,3] 0.000829 0.000001 0.000064 0.999877 
sigma[2,3,3] 0.000149 0.000000 0.000008 0.999483 
sigma[1,4,3] 0.000366 0.000002 0.000053 1.000212 
sigma[2,4,3] 0.000094 0.000000 0.000008 0.999687 
sigma[1,1,4] 0.000751 0.000002 0.000078 0.999508 
sigma[2,1,4] 0.000189 0.000000 0.000015 1.000212 
sigma[1,2,4] 0.000629 0.000001 0.000050 0.999529 
sigma[2,2,4] 0.000143 0.000000 0.000009 0.999540 
sigma[1,3,4] 0.000366 0.000002 0.000053 0.999662 
sigma[2,3,4] 0.000094 0.000000 0.000008 0.999687 
sigma[1,4,4] 0.001578 0.000003 0.000113 0.999540 
sigma[2,4,4] 0.000403 0.000001 0.000025 1.001385 
beta[1,1] 1.000000    
beta[2,1] 1.000000    
beta[1,2] -1.108444 0.030498 0.409859 1.002959 
beta[2,2] -1.116858 0.052620 0.517232 1.005901 
beta[1,3] -0.247315 0.036475 0.539921 0.999655 
beta[2,3] -0.061015 0.049063 0.577597 1.003191 
beta[1,4] 0.082620 0.100984 0.645219 0.999447 
beta[2,4] 0.134615 0.013903 0.225353 1.011521 
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Figure 9: Probability of being in regimes 1 and 2 at all points in time (local currency) 

  
Figure 10: Most likely regime at all points in time (local currency) 
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Abstract 
This paper investigates the presence of cointegration among the four most developed equity 

markets in South-East Asia, both on a local currency and on a USD-adjusted basis. Given the 

largely contrasting previous literature, Part 2 of the thesis adopts a cointegration model which 

allows for the presence of a structural break a-la Gregory-Hansen (1996), a model that 

determines the break point analytically rather than discretionarily and provides a formal test 

for the presence of cointegration over the whole period under consideration. In a second 

moment, the VECMs for both regimes are calculated. This complements Part 1 of the thesis, 

which is centered around a Markov-switching cointegration model which allowed regimes to 

recur in time based on the market status (bull/bear markets, high/low volatility). In this case, 

we do not allow regimes to recur. We therefore study non-linear cointegration with a 

different approach: instead of trying to model two different VECMs which recur in time based 

on a latent variable, which we then interpret as bearish/bullish markets regimes or high/low 

volatility regimes, in this case we attempt to understand whether a single structural break in 

the cointegrating relationship caused the market dynamics to abruptly change. The study 

shows that the stock markets of Hong Kong, Singapore, Malaysia and Thailand are not linearly 

cointegrated between January 2000 and February 2020 both for the local currency dataset 

and the USD-adjusted dataset. However, for the USD-adjusted database there is evidence in 

favor of cointegration given a structural break on the 7th September 2007, which roughly 

coincides with the outbreak of the Global Financial Crisis. While still significant and playing an 

important role in the price discovery mechanism for Hong Kong and Malaysia, the role of the 

error correction factor appears to be weaker after the global financial crisis than it was before. 

On the contrary, for the local currency dataset, there is evidence in favor of cointegration 

given a structural break on the on the 9th January 2015, which could coincide with the 2015 

Chinese stock market bubble. In this case, the strength of the cointegrating relationship and 

the speed at which variables revert to it seem to have strengthened after the 2015 Chinese 

stock market bubble, except for Malaysian equities.  

 

Keywords: Cointegration, Equity Markets, Emerging Markets, South-East Asian Stock 

Markets, Structural Break Models, Time Series Comovements  
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Introduction 
Over the last 50 years the markets of the South-East Asian economies have undergone major 

structural changes aimed at boosting integration in the region. As the regional economies 

become more and more intertwined and open to fiscal and financial integration, one natural 

consequence would be a higher degree of co-movement among regional equity-markets. 

Masih and Masih (1999) gave proof of such intuitive relationship by showing that, on average, 

the higher the degree of bilateral/multilateral trade among countries is, the higher the degree 

of co-movements of their stock markets. The aim of this paper is to investigate the dynamic 

cointegrating relationship among South-East Asian equity markets allowing for a structural 

break at an unknown point in time between 2000 and 2020. 

A brief introduction to the South-East Asian regional developments has to start necessarily 

from the foundation of the Association of South East Asian Nations (ASEAN), an inter-

governmental organization composed of five nations: Indonesia, Malaysia, Philippines, 

Singapore and Thailand. At that time, the purpose of the organisation was political, aimed at 

promoting coordination in the region among the volatilities and foreign influences at the time 

of the Cold War. The 1967 Bangkok Declaration did not mention the establishment of 

economic cooperation and the organization remained aimed at policy cooperation until the 

stabilization of post-Vietnam War relationships (Jetin and Mikic, 2016). The first attempt to 

set up a robust economic integration project was done in 1977 with the ASEAN Preferential 

Trading Arrangement, followed by other minor arrangements. Nevertheless, their results had 

been underwhelming. This is why in 1993 the ASEAN members undersigned the creation of 

the ASEAN Free Trade Agreement, also known as AFTA, with the aim of eliminating and 

reducing tariffs among the members. The agreement enjoyed an incredibly fast 

implementation: the original deadline for the reduction of tariffs to the 0-5% range, originally 

set for 2008, was moved forward twice to 2002. By 2010, 99% of such tariffs were completely 

eliminated. Okabe and Urata (2013) analysed some key trends that follows the 

implementation of the AFTA. First of all, they noted a significant increase in the intra-ASEAN 

imports in the import shares, which suggests that the free trade agreement created a regional 

production network in ASEAN for intermediate and capital goods. On the contrary, the intra-

ASEAN export share declined, and they found this to be caused by the strengthening of the 
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production network between ASEAN countries and its neighbours, with the latter outsourcing 

the production of intermediate and capital goods in the latter more and more. The region 

offers a broad range of labour productivity and level of wages, thus enabling the trading 

partner to have a wide choice of competitive cost locations. Furthermore, the portion of 

ASEAN’s intra-regional trade held by the bilateral trades between Singapore and Malaysia, 

which has always been historically high, has significantly declined between 2009 and 2010. 

This was due to big gains in the multi-lateral trade with Indonesia, Thailand and Vietnam. All 

such evidence points at the fact that AFTA has been successful in promoting intra-AFTA trade, 

even if growth potential is still there. In 2008 a further step towards economic integration 

was taken through the ideation of the ASEAN Economic Community (AEC). Its aim is to create 

a single market and production base in a highly competitive region integrated in the global 

economy. In 2015 the AEC started being effective, with most of the tariffs among the 

members completely removed. Further developments concerning liberalization of service 

trades, improving mobility of capital and labour and reducing nontariff barriers are envisaged 

in the plan AEC Blueprint 2025. 

On top of such initiatives, ASEAN has also undersigned many bilateral agreements with its 

major neighbours. Such agreements are known as “ASEAN+1” free trade agreements, and 

have been struck with China, Japan, Republic of Korea, India and Australia. The first three are 

by far the most influential ones. Table 1 reports the total trade in goods in the ASEAN region 

broken down by trading partner. It is evident that the role of China cannot be ignored when 

considering the economic integration of ASEAN countries. In spite of China accounting for a 

higher market share of imports than for export, the production network of capital goods 

between ASEAN and China has been enhanced by the ASEAN-China FTA established in 2004. 

Trading with China is on average 11.4% less expensive than with other regions (Jetin and 

Mikic, 2016). The China-ASEAN economic relationship has changed dramatically over the last 

30 years. Before 1990s, the role of China in the block trade was marginal and limited to 

commodities import and export. It is interesting to note that prior to the Asian crisis, China 

had a comparative advantage in labour-intensive exports vis-à-vis the ASEAN block, but the 

six nations had an advantage in higher value-added exports like machinery and electrical 

appliance (Tongzon, 2005). The situation reversed during the Asian financial crisis of the late 

1990s, during which China performed relatively well compared to its neighbours. Over last 
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two decades, China moved up in the value chain, while the technical level and manufacturing 

capacity of the ASEAN members has progressed comparatively slowly. This has greatly 

decreased the imports from advanced ASEAN countries of medium- and high-tech products 

in favour of intermediate goods (Cheong, Wong and Goh, 2016). The China-ASEAN Free Trade 

Agreement (CAFTA) is composed of three agreements covering trade in goods (2004), services 

(2007) and investments (2009), respectively. The most ambitious one is the agreement on the 

trade of goods, which envisaged the elimination of the tariffs on 91% of the product items 

within 2010, with only 7% of product items considered sensitive, on which tariffs are allowed 

to be levied. Figure 1 shows how the total trade in goods between China and ASEAN has 

increased by more than 450% since the inception of the CAFTA. This shows the effectiveness 

of both the AFTA and CAFTA free trade agreements and their role in the path towards 

economic integration in the South-East Asian region. 

After having briefly analysed the patterns in trade of goods, it is now time to pay attention to 

the financial integration in the region. Zhang and Matthews (2019) published a study on the 

convergence of the banking market in the ASEAN-5 region (which contains only the five 

founding members). They note that the banking system is still the principal vehicle of 

monetary policy pass-through and financial intermediation, in spite of increasing 

liberalization, deregulation, openness to foreign firms and privatization in their respective 

financial markets. A stepping stone towards financial integration in the region was the ASEAN 

Banking Integration Framework undersigned in 2014, in which the five founding members of 

the ASEAN community agreed to reach a semi-integrated banking market status by 2020. Its 

effect has been on the one hand to liberalize the banking markets and achieve greater foreign 

bank penetration, but on the other hand it has led to a higher degree of consolidation and 

greater market power in the hand of few banks. The authors find that in the ASEAN-5 banking 

markets convergence has been achieved on both price-based indicators and institutional level 

indicators of market competitiveness. They also find that the process of financial integration 

among the five countries has been running uninterrupted by the Asian financial crisis and by 

the subsequent global financial crisis. 

Furthermore, in the aftermath of the Asian financial crisis, ASEAN members started devoting 

efforts to the improvement of monetary and financial coordination. One cannot avoid 

mentioning the Chiang Mai Initiative, arranged by the whole ASEAN organisation, that in 2000 



 
 

4 

already comprised the current 10 members, plus China, the Republic of Korea and Japan (the 

so-called “ASEAN+3”). It refers to a bilateral swap arrangement aimed at providing USD short-

term liquidity to countries experiencing short-run payment deficits. The Initiative also 

comprised the ASEAN Swap Agreement, which was reserved to the ten ASEAN constituents, 

available in USD, JPY and EUR. The bilateral swap agreement allows any constituent to draw 

up to 10% of the maximum amount of drawing without an agreement with the IMF. Such 

agreement is required to borrow more than 10%. The total amount of BSA is $90bn and each 

facility can be used for up to 6 months.  

Another area of regional improvement which made itself necessary after the Asian financial 

crisis was the development of a local-currency bond market. In particular the Asian Bond 

Funds project, organised by eleven central banks in East Asia, aimed at creating an 

environment to help private-sector financial institutions to introduce investment trusts 

tracking the Asian bond market. Furthermore, the Asian Bond Markets Initiative led to the 

creation of a Credit Guarantee and Investment Facility which provides credit enhancement 

for investment-grade corporate bonds in ASEAN+3 countries. It also has facilitated the access 

to the bond market by opening it to a greater variety of issuers and types of instruments and 

by creating a common market infrastructure in the region (Yu, Fung and Tam, 2010). Kawai, 

Park and Wyplosz (2016) find that these developments were effective in the expansion of the 

primary market for local-currency sovereign and quasi-sovereign bonds, as well as for the 

creation of a benchmark for the region. On the contrary, the improvements are not uniform, 

with some countries like Indonesia and Philippines lagging behind. The recently established 

ASEAN+3 Bond Market Forum is expected to play an important role in bond market 

cooperation. 

It is also important to mention the various arrangements that South-East Asian countries 

made with regard to their exchange rates. The range of exchange rates policies are very 

different: they go from the pegged rate of the Hong Kong dollar to the floating exchange rates 

of Indonesia, Philippines and Thailand. Nevertheless, the different comparative advantages 

of the countries make exchange rate coordination a very difficult task. Many economists have 

proposed the ACU index, a weighted average of East Asian currencies, as an indicator of the 

overvaluation against the regional average for exchange rate policy coordination (Morgan and 

Pontines, 2013). Nevertheless, in recent years exchange rates movements in South-East Asian 
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countries showed a divergent pattern, with the misalignment mainly caused by the different 

exchange rate regimes and different monetary policy objectives that the currencies witness 

(Kawai, Park and Wyplosz, 2016). 

It is worth noting how stock markets in the region have undergone major changes, as well. In 

2009 the ASEAN Common Exchange Gateway alliance was launched which paved the way for 

the development of back-end linkages involving clearing, settlements and depositary 

arrangements. They also created the ASEAN Bulletin Board where brokers list the top 30 

stocks of the ASEAN-5 markets giving a single access point to the capital markets of five 

countries and giving the markets enough liquidity to be globally attractive for institutional 

investors. Click and Plummer (2005) state that the creation of a supranational stock market 

would greatly enhance capital flows towards ASEAN capital markets. 

Literature on South East Asian Equity Markets Linkages  

The increasing integration in both trade and finance experienced by South-East Asian 

countries naturally lead to questioning the linkages among the main equity markets in the 

region. One might expect such developments to lead to co-movements or causality effects in 

the equity markets, as the market drivers might be shared among companies based in the 

region. Masih and Masih (1999) showed that, on average, the higher the bilateral/multilateral 

trade among countries are, the higher the degree of co-movements of their stock markets. 

However, Korajczyk (1996) showed that emerging markets tend to show lower degrees of 

stock market integration, since different levels of financial markets development, explicit 

capital controls and other frictions hinder the markets’ integration. Therefore, the 

cointegration of the South-East Asian equities is not as obvious as it would be for developed 

markets in the same economic area. 

Roca, Selvanathan, and Shepherd (1998) studied the interdependence relationship between 

the ASEAN-5 countries both among themselves and with Australia by differencing the short-

run and the long-run dynamics before the Asian financial crisis. He discovers that they appear 

to be linearly interdependent in the short-run, but they seem to share no long-term 

equilibrium. Yang, Kolari and Min (2003) also study the interdependent relationship among 

East Asian countries and the US and Japan, including the 1997 crisis in their analysis. Their 

findings show that the stock markets appear to be more integrated after the crisis than before 

the crisis and explain that the US market has a great role in explaining the behaviour of 
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emerging East Asia, while the role of Japan seemed to be circumscribed at the crisis period. 

They also show how the Hong Kong market appears to be fairly isolated during normal times, 

while Indonesian and Thai equity indices appear to be integrated with many different markets 

in the region. Huyghebaert and Wang (2010) also study the interdependence among East 

Asian equities, in the period 1992-2003, and find that a pivotal role is played by the Hong 

Kong and Singapore market, both before, during and after the Asian financial crisis. The 

markets seem to be cointegrated only during the crisis, both in local currency and in USD 

terms. The 1997 financial crisis looked to be only a temporary phenomenon, after which the 

cointegrating power diminished to the pre-crisis level. On the contrary, Shabri Abd. Majid et 

al. (2009) test for the cointegration among the ASEAN-5 countries and show the existence of 

a cointegrating vector both in the pre- and post- Asian financial crisis priods, even if 

interdependence after the crisis are much stronger than before it. They point out that for data 

comprised between 1995 and 2006 the pivotal roles are played by Thailand, Malaysia and 

Singapore; while Indonesia and Philippines seem to be marginal for the long-run equilibrium. 

Such findings are in line with those of Click and Plummer (2005), who proved that there is a 

single cointegrating vector among the ASEAN-5 for the period 1998-2002 in both USD, JPY 

and local currency terms. 

Atmadja (2009) focuses, on the contrary, on the study of the cointegrating relationship 

around the time of the global financial crisis on the ASEAN-5 nations. He finds that before the 

crisis two cointegrating vectors exist, but during the crisis no cointegration is present. 

Interestingly enough, and in contrast with the notion that markets tend to co-move during 

crises, in this case no cointegrating relationships is found during the course of the 2008 

financial crisis. In contrast with this result, Yu, Fung and Tam (2010) studied the dynamic 

cointegration in the greater East Asian region (ASEAN+3 plus Taiwan) for the period 2002-

2008 and noticed that it appeared to be weakening in 2002-2006, but increasing during 2007 

and 2008. However, such results are reversed by using a cross-market dispersion analysis: 

equity returns divergence increased in 2007-2008 compared to previous years. Arsyad (2015) 

studied the relationship between the ASEAN-6 (which include Vietnam) and the other East 

Asian equity markets (China, Japan and the Republic of Korea). The ASEAN-6 markets did not 

display any cointegrating vector among them in the period 2003-2013, but the result changes 

if one adds the three East Asian countries. In this case, the markets show cointegration. Wang 
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(2014) divided the period under consideration (from 2005 to 2013) in three sub-samples to 

study the cointegration before, during and after the crisis in six major East Asian exchanges, 

thus excluding many ASEAN countries. He finds that there is a cointegrating vector only during 

the crisis period and in the transition period immediately after the crisis. Nevertheless, the 

strengthened integration during the crisis has not led to a structural integration, since after 

the transition period, there is no statistically significant cointegrating vector, just like before 

the crisis. He also notices that East Asian markets are more influenced by global shocks than 

by regional ones. In contrast with it, Rahman, Othman and Shahari (2017) find the ASEAN+3 

markets ex-Vietnam to be cointegrated in the whole post-Asian financial crisis period under 

consideration (from 1999 to 2013). Guidi and Gupta (2013) make an analysis of the 

cointegration in ASEAN-5 plus Vietnam and find the markets not to be linearly cointegrated 

in the period 2000-2011, and only Thailand and Singapore are cointegrated among 

themselves. Ahmed and Singh (2016) took into consideration both the exchange rates and 

the equity markets of ASEAN and ASEAN+6, i.e. including the members of the Regional 

Comprehensive Economic Partnership, which is a trade agreement in the Asia-Pacific region. 

The period under consideration is from 2001 until 2013. They also allowed for a single shift in 

regime according to the Gregory-Hansen method (Gregory and Hansen, 1996). Results outline 

the presence of cointegration in the FX markets for both ASEAN and ASEAN+6, while for the 

equity markets no cointegration is present for ASEAN markets alone, while a single 

cointegrating vector is present for the ASEAN+6 database. Having only one vector with 14 

variables under consideration could be seen as a weak form of cointegration. This paper is 

the only one to consider also Cambodia and Laos, whose stock markets had just two and three 

listed companies, respectively, at the time. The number has slightly increased today but they 

still do not reach double-digit for the number of listed companies. Chien et al. (2015) use a 

recursive trace-statistic method to study the cointegrating vectors among the ASEAN-5 plus 

China equity markets over time. Their findings show that the markets stopped being 

cointegrated after the dot-com bubble. Testing for cointegration with two shifts reveals the 

presence of one cointegrating vector. 

In Part 1 of this thesis, a study of cointegration among the stock markets of Hong Kong, 

Singapore, Malaysia and Thailand following non-linear models is proposed for both a USD-

adjusted and a local currency dataset. In particular, by using a Markov-Switching vector error 
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correction model, the paper proves that in the USD-adjusted database there is evidence of 

cointegration just in the regime characterized by the presence of a positive linear trend, which 

has been interpreted as periods of bull trends in the stock markets. On the contrary, during 

bearish times, there appears to be no cointegration among the markets under consideration. 

The results are instead different for the local currency dataset: there is evidence of 

cointegration in both the high-volatility and low-volatility regime, but the effect of the 

cointegrating relationship is stronger in the low-volatility regime than in the high-volatility 

one. 

Finally, Yilmaz (2010) studied the volatility spillovers in East Asian equity markets using the 

variance decomposition from a vector autoregression model. He uses a rolling sub-sample 

window and notices that East Asian markets have become more and more independent from 

the 1990s, not even showing declines in volatility spillovers after the Asian financial crisis of 

mid-1990s. The spillover index reaches its all-time high during the 2008 global financial crisis.  

Literature Gap 

It is clear from the previous section that the precedent literature is split on the presence of 

cointegration in the South-East Asian and East Asian equity markets. The results are heavily 

influenced by the arbitrary choices of the researchers as far as the time selected for the 

analysis is concerned. Not only results are different based on whether data contains crises 

periods or not, but they also differ based on the month and year the authors choose to define 

the beginning and the end of the global financial crisis. Furthermore, also the choices of the 

countries under consideration differ, mainly between those considering only South-East Asian 

markets and those that analyse East Asian markets, too. Inference about the presence of 

cointegration among a number of different markets is important for portfolio managers in 

order to understand whether they can reap the full benefits of diversification by investing in 

assets from different foreign markets. Alexander (1999) noted that making use of 

cointegration analysis rather than simple correlations results in higher asset returns. The 

former could indeed complement the latter on long-term decisions. If markets are 

cointegrated, they will exhibit co-movements in the long run, thus lessening the benefits of 

investing in different countries.   

Precedent literature on cointegration among South-East Asian equity markets is therefore 

heavily reliant on arbitrary choices, but it generally acknowledges that the level of integration 
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among Asian emerging markets is time-varying. In such a context, a regime-dependent 

analysis of cointegration in the markets could account for the presence of different 

cointegrating vectors in difference regimes. Both regime-shifting and regime-switching 

models would fit the purpose, and in Part 1 of the thesis a regime-switching model was used, 

which allows the characterization of different regimes based on bear/bull market or the level 

of volatility in the market and to check the dynamic linkages among markets and among 

regimes, by considering the transition matrix. We now turn to studying a regime-shifting 

model over the same dataset used for Part 1 of the thesis, in order to check whether a 

structural break is present in the data which causes the cointegrating relationship to change 

over time. In this case, much of the precedent literature could be inaccurate as it might 

consider a period over time which considers both regimes, and therefore the maximum 

likelihood estimator of the cointegrating vector will actually come from two different 

distributions, coming from two different regimes. In this case, the contrasting results of 

precedent literature could be affected by the arbitrary choice of the sample period taken into 

consideration. The great benefit of using regime-shifting models is that we allow the 

structural break point not to be known a priori. This means that the structural break point in 

time will be the one that minimizes a given test statistics, and we will not set any a priori 

breaking point. This is clearly in contrast with previous literature which sets breaks a priori in 

the sample period by defining pre- and post- global financial crisis periods.  

The two approaches aim to tackle the same issue from two different angles: precedent 

literature may be contrasting because it tries to fit a linear model on a time span which 

encompasses two different regimes, so that two different VECMs need to be fitted. Analysing 

regime-shifting cointegration on top of Markov-switching models is an additional insight on 

past market behaviour, especially given that the time frame under consideration is ample and 

many macro events have happened between 2020: at the beginning of the time frame the 

markets were still recovering from the 1997 Asian financial crisis, in 2005 Malaysia unpegged 

the MYR from the USD, in 2007/2008 the global financial crisis hit global markets, in 2014 the 

Shanghai-Hong Kong stock connect was launched, in 2015-2016 the Chinese stock market 

bubble grew and then burst were only the largest macro events affecting the regional 

markets. It is completely plausible that one (or more) of such events have structurally affected 

market equilibria, and this makes a linear cointegration model unfit for the purpose of 
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estimating the interdependent relation among the markets under consideration. Regime-

shifting models have the ability to capture the important feature that the aggregate economy 

is subject to discrete and persistent changes in the business cycle. In the Markov-switching 

model outlined in Part 1 of the thesis, while two different VECMs describe different periods 

of bull/bear markets or high/low volatility, those two VECMs are kept constant across the 

sample period. The switching probabilities inside the transition matrix are defined as ergodic, 

too. Part 2 of the thesis investigates whether allowing a single structural break in the data 

gives evidence in favour of cointegration. In this case, the only VECM useful for the purpose 

of future forecasting is the one of the second regime, as the first regime is not allowed to 

recur by construction, as it represents the pre-structural break equilibrium. This is different 

from the Markov-switching model of Part 2, in which we can calculate what is the most likely 

regime in which markets currently are, but both regimes are allowed to recur in time. The 

switching probabilities are defined in the transition matrix, and the persistence of each 

regime is an important factor to consider for forecasting purposes. In Part 2 of the thesis, 

there is no switching probability. These approaches are complementary as they give different 

insights on the market dynamics of the markets under consideration. 

The literature gap that this paper aims to fill concerns the cointegration analysis of South-East 

Asian markets, thus disregarding the economies of Japan, the Republic of Korea and Taiwan. 

This paper considers the Hong Kong market as part of South-East Asia given the prominent 

role of Hong Kong financial centre in the region and the great influence of China in ASEAN 

economies, also taking into account the ASEAN+1 FTA. Finally, the choice is due to the leading 

role that precedent literature highlighted for Hong Kong and Singapore stock markets in 

influencing the other ASEAN emerging stock markets. 
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Methodology 

Linear Model 

Testing for stationarity 

In order to provide a meaningful introduction to the concept of cointegration, the analysis 

will start from the description of unit roots in econometric analysis. An ARMA (p,q) model can 

be represented as: 𝜙(𝐿)(𝑦$ − 𝜇$) = 𝜃(𝐿)𝜀$ with 𝜙(𝐿) = 1 − ∑ 𝜙1𝐿1
2
134  and 𝜃(𝐿) = 1 +

∑ 𝜃"𝐿"
6
"34 . L is called the lag operator and it simply represents the j-th lag of the time series 

y, i.e. 𝐿"𝑦$ ≡ 𝑦$&". The presence of a unit root in a time series process entails the presence of 

a stochastic trend, i.e. a process which is not mean-reverting and is not constant over time 

(Patterson, 2011). If a unit root is indeed present, then the sum of the 𝜙1  coefficients will be 

equal to 1, making the process non-stationary: ∑ 𝜙1
2
134 = 1. Regressing non-stationary 

variables generally leads to the well-known problem of spurious regressions, which described 

the problem that the linear combination of a number of non-stationary time series will 

generally be integrated with an order that is the maximum across all integration processes. 

This makes the results coming from spurious regressions statistically meaningless, with high 

R2 representing mistakes rather than satisfying results (Guidolin and Pedio, 2018).  

However, Engle and Granger (1987) show that it is possible to transform a non-stationary 

process into a stationary one by applying the difference operator a number 𝑑 of times. The 

time series process 𝑦$ is said to be integrated of order d if it needs to be differenced d times 

before achieving a stationary, invertible and non-deterministic ARMA process. Such process 

is defined as 𝑦$~𝐼(𝑑). The authors then outline the main differences among 𝐼(0) and 𝐼(𝑑) 

processes, with 𝑑 ≠ 0. First of all, the variance of the former is finite, while the variance of 

the latter diverges to infinity as time increases. Secondly, the memory of the process is infinite 

and each innovation has a permanent effect over the series. Thirdly, the expected time 

between crossing of 𝐸(𝑦$) is infinite for nonstationary processes. Finally, the autocorrelation 

𝜌= tends to 1 for all k as time tends to infinity.  

Since the properties of stationary vs non-stationary processes are so different, many formal 

tests have been developed to check for the presence of a unit root. We will present two: the 

Augmented Dickey-Fuller test (Dickey and Fuller, 1981) and the Phillips-Perron test (Phillips 
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and Perron, 1988). The two tests tend to have the same results, however they might at time 

be in contrast among each other. 

The null hypothesis of the Augmented Dickey-Fuller test is that the series does contain a unit 

root, and the test is a refined version of the original version of the Dickey-Fuller test (Dickey 

and Fuller, 1979). The ADF test considers an AR(p) process and notices that it can be rewritten 

as: 

∆𝑦$?4 = 𝜙@ + 𝛼𝑦$ +B𝛾1

2

134

∆𝑦$&1?4 + 𝜀$?4 

with 𝛼 ≡ −	(1 − ∑ 𝜙1
2
134 ) and 𝛾1 = −∑ 𝜙"

2
"34 . It is then possible to obtain estimates through 

OLS for 𝜙@, 𝛼 and 𝛾1. If 𝛼 = 0, then the equation is all in first differences and the process 

contains a unit root. On the contrary, if 𝛼 < 1, then the equation is not written in first 

differences and by differentiating we fail to eliminate 𝑦$. This is evidence in favor of 

stationarity in the time series process and is the alternative hypothesis of the process. The 

innovation vis-à-vis the initial Dickey-Fuller test is that the ADF fits an AR(p) process, while the 

DF test fits just an AR(1). The t-ratio is not sensitive to the number of lags used, but it is 

sensitive to the presence of a deterministic trend and the intercept. The null hypothesis is 

that of the presence of a unit root. 

In the Phillips-Perron test, the null hypothesis is that the time series process does not contain 

a unit root. Differently from the ADF test, this one is based on a non-parametric method to 

check for the presence of serial correlation when testing for a unit root. It proceeds in this 

way: it first calculates the traditional Dickey-Fuller test, which is based on fitting an AR(1) 

model, and secondly it changes the t-ratio of the coefficient 𝛼 to account for potential serial 

correlation in the residuals. The new t-ratio is defined as follows: 

𝑡¶ÛÛ = 𝑡¶Õà𝜁 − 	𝜓 =			

=
𝛼M

𝑠𝑒(𝛼M) ñ

𝑇 −𝑚
𝑇

1
𝑇∑ 𝜀$̂Nª

$34

∑ 1
𝑇 − 𝑖 ∑ 𝜀$̂𝜀$̂&1ª

$31?4
[ªò/ó]

13ô&ª
ò
óõ

								

− 	
𝑠𝑒(𝛼)	𝑇	 ¡∑ 1

𝑇 − 𝑖 ∑ 𝜀$̂𝜀$̂&1ª
$31?4

[ªò/ó]

13ö&ªò/ó÷ ¥ − 𝑇 −𝑚𝑇 ∑ 𝜀$̂Nª
$34

2ø¡∑ 1
𝑇 − 𝑖 ∑ 𝜀$̂𝜀$̂&1ª

$31?4
[ªò/ó]

13ö&ªò/ó÷ ¥	(1𝑇 ∑ 𝜀$̂Nª
$34 )
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Where m is the number of regressors. Clearly, as both 𝜁 and 𝜓 are positive, so that even in 

case 𝜁 > 1, it is possible that 𝑡¶ÛÛ < 𝑡¶Õà, in which case it is possible for the Phillips-Perron test 

would reject the null even when the DF test would fail in doing so. The main difference with 

the ADF test is that the PP test directly adjusts the test-statistic in a HAC-way instead of fitting 

an AR(p) model. 

Cointegration and Vector-Error Correction Models 

As we anticipated, the presence of a unit root in time series processes generally gives rise to 

spurious regressions and timer series have to be made stationary before modelling VAR 

models. However, there are particular cases in which the linear relationship among a number 

of non-stationary time series might result in a stationary process. In this particular case, 

difference the I(d) variables to get I(0) variables would result in a misspecification error 

leading to a major loss of valuable information. This leads us to the formal definition of 

cointegration. The components of a vector 𝑦$ = [𝑦4$, 𝑦N$, … , 𝑦T$]′ are said to be cointegrated 

of order d,b, denoted 𝑦$~𝐶𝐼(𝑑, 𝑏) if all components of 𝑌$ are 𝐼(𝑑) and there exists a vector k 

such that the linear combination 𝑘′𝑦$~𝐼(𝑑 − 𝑏). The vector k is called the cointegrating 

vector. 

The most interesting characteristic of cointegrated time series is that they will consistently 

revert to their long-run equilibrium relationship and the size of their departure from the 

equilibrium influences the conditional mean. This is because at least some variables will 

respond to the disequilibrium by moving towards the long-run relationship with a magnitude 

proportionate to the size of the recorded disequilibrium. This is called the ‘error correction 

factor’ and influences short-term dynamics. It is for this reason that a vector autoregression 

which includes the error correction factor is called a vector error correction model (VECM). 

A VAR(p) model can be rewritten by adding and subtract 𝐴2𝑦$&2?4 on the right-hand side as: 

𝑦$ =B𝐴1𝑦$&1

2

134

+ 𝜀$?4 = B𝐴1𝑦$&1

2&N

134

+ �𝐴2&4 + 𝐴2�𝑦$&2?4 + 𝐴2∆𝑦$&2 +	𝜀$?4 

After that, once can keep on adding and subtracting until, after having performed the 

operation p times, one arrives at: 

∆𝑦$ = 	𝜇 + 	Π𝑦$&4 +	B𝛾1	∆𝑦$&1

2

134

+	𝜀$ 
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Where Π = −(𝐼T −	∑ 𝐴1
2
134 ) and 𝛾1 = −∑ 𝐴"

2
"34?4  

Such representation also makes clear that if the variables within 𝑌$ are I(1) and fit a VECM 

model, then they have to be necessarily cointegrated, given that in order for the above 

equation to be balanced Π𝑦$&4 needs to be necessarily I(0). Clearly, if Π = 0, then there is no 

cointegrating relationship as it indicates that variables do not react to deviations from the 

long-run equilibrium, and the equation would be balanced. A common way to represent the 

VECM by using a vector of speed of adjustments 𝛼 and a vector representing the coefficients 

of the variables in the long-run equilibrium, also known as the cointegrating vector 𝛽. 

∆𝑦$ = 	𝜇 + 	αβ′𝑦$&4 +	B𝛾1	∆𝑦$&1

2

134

+	𝜀$ 

The coefficient 𝛼 is of uttermost importance: first of all, it tells us the magnitude of the 

response to the temporary deviances from the long-run equilibrium of the variables; and 

secondly, it given an indication over how good the estimate of the VECM is. This is because 

the sign of the speed of adjustment factor needs to be negative by construction in order for 

the variables to revert to the long-run equilibrium. Hence, the getting positive estimate of 𝛼 

is an indication of a poor significance of the VECM in defining market equilibrium, at least for 

the variable that shows a positive speed of adjustment factor. Including 𝜇 allows us to account 

for potential deterministic trends, given that the equation is expressed in first differences. 

Johansen Test 

The Johansen cointegration test is generally seen as preferred to the Engle-Granger test 

(1987) for multi-variate linear models. This is because of two main reasons: (i) even if 

asymptotic theory tells us that with infinite samples order does not matter, it might be the 

case that only a limited amount of observations of Y is available; (ii) the Engle-Granger test 

leads to the discovery of at most one of the N-1 potential cointegrating vectors. The Johansen 

(1995) cointegration test is a multi-variate generalization of the ADF test that allows the 

determination of the exact number of stochastic trends shared by the variables under 

consideration. Starting from the VECM described in the previous section, we add 𝜇 that will 

represent the intercept of the equation and will capture potential linear trends: 

∆𝑦$ = 	𝜇 + 	Π𝑦$&4 +	B𝛾1	∆𝑦$&1

2

134

+	𝜀$ 
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The key for the test is the matrix Π: the Johansen cointegration test consists in the estimation 

of the matrix Π from an unrestricted VAR and it tests whether it is possible to reject the 

restrictions implied by the reduced rank of Π. This is because the rank of a matrix is equal to 

the number of its eigenvalues different from zero. If the N series are cointegrated, then 0 < 

rank(Π) < N and Π𝑦$&4 is the error correction term such that: 

0 = 𝐸[∆𝑦$] = 	Π𝑦$&4 +B𝛾1	𝐸[∆𝑦$&1]
2

134

+ 	𝐸[𝜀$] 

Which means that Π𝑦$&4 = 0 and Π = αβ′, with α being the N x r of cointegrating vectors 

and β being the N x r matrix of weights with which each cointegrating vector enters the VAR, 

also interpreted as the speed of adjustment factors of the various cointegrating equations.  

In order to perform the test, after having estimated the matrix Π, the eigenvalues are 

ordinated such that 𝜆4 > 𝜆N > ⋯ > 𝜆T. If the variables in 𝑦$ are not cointegrated, then all 

the eigenvalues will not be significantly different from zero. On the contrary, if the series are 

cointegrated of order j < N, then 1 > 𝜆4 > ⋯ > 𝜆T > 0. If rank(Π)=N, then all variables are 

stationary. 

In order to test that eigenvalues are insignificantly different from unity, two test statistics are 

proposed: 

𝜆$defg(𝑟) = −𝑇 B ln	(1 − 𝜆h1)
T

13d?4

 

𝜆iej(𝑟, 𝑟 + 1) = 	−𝑇	ln	(1 − 𝜆hd?4) 

𝜆$defg(𝑟) tests the null that the number of cointegrating vectors is less than or equal to r, 

while 𝜆iej(𝑟, 𝑟 + 1) tests the null that the number of cointegrating vector is r agains the 

alternative hypothesis that they are r+1. The critical values are obtained by Monte Carlo by 

Johansen and Juselius (1990), given the non-standard distribution of test statistics. The critical 

values depend on the value of N-r, the number of non-stationary components and on whether 

deterministic trends are included in the initial equation. In this paper, they are included.   

 
Regime-shifting model 

After testing the potential presence of one or more cointegrating vectors among the variables 

via the Johansen cointegration test, the paper goes on by investigating whether a structural 

break in the data is present. This would be particularly beneficial in case the Johansen test 
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fails to find any proof of cointegration among the markets under consideration. It might 

indeed be the case that two distinct cointegrating vectors are present in time, but that a 

structural shock occurred that caused the long run equilibrium among the variables to change. 

Regime-shifting models have the ability to capture the important feature that the aggregate 

economy is subject to discrete and persistent changes in the business cycle. A regime-shifting 

model like that of Gregory-Hansen (1996) is able to capture this pattern: its main intent is to 

find the date in which a structural break took place, and then it investigates the presence of 

cointegration along the sample period. The knowledge of the point of the structural breaks 

also makes it possible to estimate two different vector error correction models and 

investigate the presence of cointegration not only over the whole sample period, but also to 

study the different market dynamics that define the markets before and after the structural 

break separately. The authors present an extension of the ADF and Z tests to formally test for 

regime-shifting cointegration. It is plausible to think that a given macro event may have 

caused a number of cointegrated time series to break from any long run equilibrium, or vice 

versa, that a number of variables which did not have any trend in common suddenly came to 

be cointegrated. It would also help in explaining the contrasting precedent literature, which 

shows proof of cointegration during certain blocks of time, but fails to unanimously agree on 

the presence or absence of cointegration among the returns of the markets under 

consideration. 

Such approach is complementary to the regime-switching model that has been used in Part 1 

of the thesis because it tests whether a single deterministic break has led to a structural 

change in cointegration relationship among the time series. The Markov-switching model, on 

the contrary, allows regimes to recur in time and tests whether the cointegrating relationship 

differs between times characterized by high and low volatility, for example. It is useful to see 

whether precedent literature has contrasting results as a result of including different blocks 

of time that are characterized by more than one regime. In this case, a particular event may 

have structurally changed spillages effects among markets, and given that the change is 

structural, the first regime is not allowed to recur in time.  

As the regime-shifting Gregory-Hansen model is based on the linear Engle-Granger 

cointegration test, the linear test is described first, and the paper proceeds to define the 

Gregory-Hansen test at a second moment. 
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The main idea behind the Engle-Granger cointegration test is to test whether the residuals 

coming from an equilibrium relationship that can be estimated through ordinary least square 

method are stationary. This means that testing for cointegration becomes similar to the 

Augmented Dickey-Fuller test previously described, even if in this case the distribution of test 

statistics will be different. 

We therefore need to break up the NxN matrix 𝑌$ into a vector 𝑦4$ which will contain the first 

variable of the cointegrating vector and will be on the left-hand side of the equation, and the 

other variable will be in a N-1 x N-1 matrix 𝑌N$, where N represents the number of variables 

we are testing for integration. The test then estimates by ordinary least square method the 

following long-run equilibrium relationship: 

𝑦4$ = 	𝜇 + 𝛼�𝑌N$ + 𝑢$ 

Guidolin and Pedio (2018) highlight that if variables are indeed cointegrated, the above 

regression is not spurious, but instead an OLS regression yields a superconsistent estimator 

of the cointegrating parameters 𝜇 and 𝛼�, as the OLS estimator converges faster (at a rate 

proportional to T) than in OLS regressions which use stationary variables (which converge at 

a rate proportional to √𝑇). We then proceed to run the ADF test on the residuals coming from 

the regression of 𝑦4$ over 𝑌N$: 

𝑢M$ = 𝑦4$ −	 �̂� − 𝛼M�𝑌N$ 

∆𝑢M$ = 𝜑𝑢M$&4 +B𝛾1	∆𝑢M$&1

2

134

+ 𝑣$ 

Similarly to the ADF test, the coefficient of interest is 𝜑: if 𝜑 ≠ 0, then the variables are indeed 

cointegrated of order (1,1). We do not include the mean in the second equation because 𝑢M$ 

are already zero-mean by construction, as they are OLS residuals. In this test, the null is 

therefore that of the presence of a unit root in the residuals (𝐻@:	𝜑 = 0) and of no 

cointegration among the variables. It is still worth noting that even if the variables are indeed 

cointegrated, standard inference using t-tests and F-tests would not be possible for the above 

model, because while the OLS coefficients are superconsistent, the standard errors are not. 

A key note is that the critical value of the ADF test are different from those of the Engle-

Granger test: by construction OLS estimates are the parameters minimizing the sum of 

squared residuals, and since residual variance is made as small as possible, using standard 
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ADF critical values in Engle-Granger tests will contain a bias towards finding a stationary error 

process. One thing to point out is that the ordering of the variable makes a difference in Engle-

Granger tests. However, as the sample size grows, asymptotic theory indicates that the tests 

for a unit root using the residuals from vectors with different variables order will become 

equivalent. 

Gregory-Hansen Test 

Gregory and Hansen (1996) test uses the Engle and Granger (1987) test as a starting point, by 

defining the cointegration model as: 

𝑦4$ = 	𝜇 + 𝛼�𝑌N$ + 𝜀$ 

The main innovation proposed by their paper is the addition of a dummy variable which is 

defined as: 

𝜑4$ = ü0	𝑖𝑓	𝑡 ≤ [𝑛𝜏]
1	𝑖𝑓	𝑡 > [𝑛𝜏] 

With 𝜏 ∈ (0,1) representing the relative timing of the switching point, while [𝑛𝜏] is the 

integer part. There exist three distinct structural shifts in the cointegrating relationship among 

variables. The first of this kind is a shift in level, i.e. a parallel shift in the cointegrating 

relationship in which the cointegrating vector is kept constant while the value of the intercept 

𝜇 changes among the regimes. 

𝑀𝑜𝑑𝑒𝑙	𝑤𝑖𝑡ℎ	𝑙𝑒𝑣𝑒𝑙	𝑠ℎ𝑖𝑓𝑡	(𝐶):		𝑦4$ = 𝜇4 + 𝜇N𝜑$� + 𝛼�𝑌N$ + 𝜀$ 

A further possibility is to add a model with a trend on top of the shift in level among the 

different regimes, which would be characterized as follows: 

𝑀𝑜𝑑𝑒𝑙	𝑤𝑖𝑡ℎ	𝑙𝑒𝑣𝑒𝑙	𝑠ℎ𝑖𝑓𝑡	𝑎𝑛𝑑	𝑡𝑟𝑒𝑛𝑑	(𝐶 𝑇⁄ ): 	𝑦4$ = 	𝜇4 + 𝜇N𝜑$� + 𝛼�𝑌N$ + 𝛽𝑡	+	𝜀$ 

Finally, one last model allows for the slope vector to change, too. This latter model allows the 

equilibrium to rotate as well as shit in a parallel way. This is the full regime shift model, given 

that it allows the cointegrating relationship to change. 

𝑀𝑜𝑑𝑒𝑙	𝑤𝑖𝑡ℎ	𝑟𝑒𝑔𝑖𝑚𝑒	𝑠ℎ𝑖𝑓𝑡	(𝐶 𝑆⁄ ):		𝑦4$ = 𝜇4 + 𝜇N𝜑$� + 𝛼4�𝑌N$ + 𝛼N� 𝑌N$𝜑$� + 𝜀$ 

In the latter model, the coefficients 𝜇4 and 𝜇N represent the different coefficients of the 

equilibrium equation in regime 1 and regime 2, respectively; while the different cointegrating 

vectors for the two states are the slopes vectors 𝛼4 and 𝛼N.  
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The shifting point 

The main difficulty in estimating such models and testing for them is represented by the 

knowledge over the point in time at which the structural break happens. If the point was 

known a priori, then the cointegrating relationship could be estimated via simple OLS/MLE 

methods and apply residuals-based tests. One of the major inventions proposed by Gregory-

Hansen has been the development of a test that allows to test for structural breaks in 

cointegrating relationships without the need of a-priori knowledge of the structural break 

date. This allows this paper to do a big step forward from previous literature, which used 

discretionary qualitative-based dates to decide when periods of crises began and finished, 

and then used them as structural break points. Gregory and Hansen propose a test where the 

null hypothesis is that of no cointegration and they develop three different tests having as 

alternative hypotheses the three models outlined in the previous section.  

Since the Gregory-Hansen test is residuals-based, the starting point is to define the vector of 

the innovations 𝑢$ = ∆𝑌$ and its cumulative process 𝑆$ = ∑ 𝑢1$
134 . The long-run variance-

covariance matrix is then defined as Ω = 𝑙𝑖𝑚²	𝑛&4𝐸𝑆²𝑆²� . Clearly, given that the null 

hypothesis is that of no cointegration, the residuals process is not stationary in such case, and 

thus the null implies 𝑒$ = 𝐼(1) and Ω > 0. In order to find the breaking point, the test 

statistics are calculated for each possible regime shifts 𝜏 ∈ 𝑇 and the one returning the 

smallest value among all breaking points candidates is returned. Following the precedent 

literature, 𝑇 = (0.15,0.85) is chosen. While T theoretically includes an infinite number of 

points, all the statistics considered are step functions of T with jumps on the points 

ÿ1
²
,			𝑖	𝑖𝑛𝑡𝑒𝑔𝑒𝑟!. In integer terms, the test statistic is computed for each potential break point 

in the interval ([0.15𝑛], [0.85𝑛]). 

The test statistics are calculated beginning from the correlation coefficient among the first-

order residuals �̂�$ that come from the estimation of the model we previously defined through 

ordinary least squared methods: 

𝜌M$ =
∑ �̂�$��̂�$?4�²&4
$34

∑ �̂�$�²&4
$34

 

We now need to define a bias-corrected version of the Phillips (1987) test-statistics. The 

Phillips test statistics would suffer indeed from a size distortion in models with structural 
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breaks and Perron (1989) showed that standard test-statistics are inconsistent when the 

alternative hypothesis contains a structural break. In order to adjust these, it is then necessary 

to define second-order residuals as: 

𝑣M$� = �̂�$� − 𝜌M$�̂�$&4� 

With the correction concerning the estimate of a weighted sum of autocovariances: 

𝜆�" = ∑ 𝑤�
"34 ¡ "

�
¥ 𝛾M�(𝑗)     

where   𝛾M�(𝑗) = 	
4
²
	∑ 𝑣M$&"�²

$3"?4 𝑣M$� and M=M(n) is the bandwidth number selected so that 

𝑀 → ∞. The estimate of the long-run variance of 𝑣M$� is then: 

𝜎M�N = 𝛾M�(0) + 2𝜆h� 

The first-order serial correlation coefficient estimate corrected to take into account the bias 
is then defined as: 

𝜌$∗ =
∑ (�̂�$,��̂�$?4,� − 𝜆h�)²&4
$34

∑ �̂�$�N²&4
$34

 

The bias-corrected Phillips-Perron test statistics are then: 

𝑍¶(𝜏) = 𝑛(𝜌M�∗ − 1) 

𝑍$(𝜏) =
(𝜌M�∗ − 1)

�̂�$
=
(𝜌M�∗ − 1)
∑ �̂�$�N²&4
$34

 

Finally, the ADF test-statistic is calculated by regressing ∆�̂�$� on �̂�$&4 and ∆�̂�$&4,�, …, ∆�̂�$&=,� 

given lag length K chosen according to information criteria.  

𝐴𝐷𝐹(𝜏) = 𝑡𝑠𝑡𝑎𝑡(�̂�$&4,�) 

Importantly, we will select the smallest test statistic across all possible 𝜏 ∈ 𝑇. Clearly, the 

smallest value is chosen because it constitutes the most important piece of evidence against 

the null hypothesis. Hence, the test statistics for the Gregory-Hansen test are: 

𝑍¶∗ = inf
�∈ª

𝑍¶(𝜏) 

𝑍$∗ = inf
�∈ª

𝑍$(𝜏) 

𝐴𝐷𝐹∗ = inf
�∈ª

𝐴𝐷𝐹(𝜏) 
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The value 𝜏 ∈ 𝑇 will represent the structural break point, which will allow us to estimate the 

two different vector error correction models for the two different regimes. We will indeed 

estimate one VECM that holds for 𝑡 < 	𝜏 and then another one that will hold for 𝑡 > 	𝜏. 

Critical values 

Gregory and Hansen expressed test statistics as functionals of Brownian motions, following 

precedent and recent literature. In order to get to critical values, Monte Carlo simulations 

were then utilized, given that no closed-form equation exist. Clearly, if 𝜏 was fixed a priori, 

the test-statistics could be an extension of the Phillips-Ouliaris (1990) test nonparametric 

methodology to deal with serial correlation in the regression residuals. However, in Gregory-

Hansen test statistics are functions of every pointwise test statistic, considered as a function 

of 𝜏 ∈ 𝑇. Contrarily to Zivot and Andrews (1992), Gregory and Hansen avoid considering test 

statistics as functions of the indicator function, as its discontinuous metric is of difficult 

handling. Following MacKinnon (1991) procedure, then Gregory Hansen compute by OLS the 

response surface, with presence of a constant and/or trend and the number of variables in 

the equation being significant factors in changing critical values. The Monte Carlo simulations 

for the three different models are sampled from the following distributions: 

𝑍¶∗ ⟶ inf
�∈ª

∫ *+	,*+

»

∫ *+ò

»

  and  𝑍$∗ ⟶ inf
�∈ª

∫ *+	,*+

»
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While 𝑊N�(𝑟) and 𝐷	�	are specific to each of the three model. 

For the model with level shift (C): 𝑊N�(𝑟) = [1, 𝜑�(𝑟),𝑊N
�(𝑟)	]′  and 𝐷� = �0 0

0 𝐼i
�. 

For the model with level shift and trend (C/T): 

𝑊N�(𝑟) = [1, 𝑟, 𝜑�(𝑟),𝑊N
�(𝑟)	]′ and 𝐷� = �0 0

0 𝐼i
�. 

For the model with regime shift (C/S): 𝑊N�(𝑟) = [1, 𝜑�(𝑟),𝑊N
�(𝑟),𝑊N
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In all cases, 𝜑�(𝑟) = 	 ü
0	𝑖𝑓	𝑟 ≤ 𝜏
1	𝑖𝑓	𝑟 > 𝜏 
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Results 

Data 

Following Part 1 of the thesis, we continue focusing on the three most developed stock 

markets among ASEAN countries and the regional financial hub of Hong Kong. Hong Kong is 

chosen as the regional Asia ex-Japan financial hub role that it holds. The choice over which 

ASEAN countries to include is not done arbitrarily, in contrast with precedent literature. We 

follow the Financial Development Index and the Financial Markets Development Index scores 

published annually by the International Monetary Fund. They show that the Singapore, 

Malaysia and Thailand financial systems and financial markets are much more open vs those 

of Philippines and Indonesia, which are the other two emerging markets among ASEAN 

countries. The other countries in the region are still considered ‘frontier markets’ from an 

equity market perspective and are therefore not taken into account. MSCI classification of 

‘emerging’ vs ‘frontier’ market entails some minimum regulatory requirements on issues such 

as market size, liquidity and accessibility. This latter requirement also involves restrictions on 

foreign ownership and possibility to short stocks, two very important factors guiding correct 

asset pricing and price discovery. Clearly, the more frictions are present in the pricing 

mechanisms in the markets, the less they are expected to be cointegrated. This is the rationale 

behind the exclusion of frontier markets and the idea to follow the IMF’s development 

indices. A classification based just on the stock market size would have seen the inclusion of 

Indonesia. However, this is driven mostly by the size of the Indonesian economy vs that of 

Malaysia and Thailand, rather than by a higher level of development of its stock market. The 

Financial Development Index is a composite index of the depth, access and efficiency of the 

banking system of the country. The Financial Markets Development Index is on the contrary 

a function of depth, access and efficiency of the financial markets of the particular country. 

Following common practice in the financial markets’ literature, we take the main stock indices 

of the countries under consideration (most liquid) as proxies of the overall equity markets. 

This means that we will use the Hang Seng index for the Hong Kong market, the FTSE Straits 

Times Index for Singapore, the FTSE Bursa Malaysia for Malaysia and the Stock Exchange 

Thailand (SET) for Thailand. 

Our sample period goes from January 2000 to February 2020, which includes the Global 

Financial crisis, often arbitrarily chosen as a structural break point in previous literature, but 
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also other potential break points including the 2015 Chinese stock market bubble. The 

frequency of the observations is weekly, which allows to minimize the problem of different 

closing days of the stock markets due to national holidays and has less ability to respond to 

shocks that may last just for few days, which is desirable as the research aims to evaluate the 

presence of long-run cointegration rather than in high-frequency data. The test is first 

conducted in US Dollar terms and then in local currency terms, in order to account for FX 

effects. This is important as a shock in one market could impact the other markets differently. 

For instance, they could be not cointegrated in local currency terms, while showing 

cointegration dynamics once you take into account the FX effect, as the markets behavior 

could be governed by international investors that take into account hard currency returns 

rather than nominal returns in local currency. If one assumes the largest market players in the 

four countries to be international investors interested in hard currency returns, then the 

cointegrating relationship should be stronger in the USD-adjusted dataset, as the spillover 

effects of shocks from one stock market to the others would already factor in different FX 

responses in an efficient market. This means that VECMs and structural break points among 

the two different datasets can indeed be very different, especially given that in recent years 

exchange rates movements in South-East Asian countries showed an increasingly divergent 

pattern, with the misalignment mainly caused by the different exchange rate regimes and 

different monetary policy objectives. Since the markets have undergone major changes over 

the last decades and have been more and more open to international investors, especially as 

the paper is focused on emerging markets rather than frontier markets, one would expect 

USD-adjusted return to potentially be more cointegrated, as they discount the divergent 

effect of FX. In order to get to the USD-adjusted values of the indices, we simply take the 

nominal value of the index in local currency and we divide it by the FX spot rate at time t: 

𝐼𝑛𝑑𝑒𝑥$ÔÈÕ =
𝐼𝑛𝑑𝑒𝑥$Ö×ØÙÖ

𝑈𝑆𝐷/𝑋ÈÛ×ª,$
 

It is worth highlighting that for the USD-adjusted database, the values of the Malaysia and 

Thailand’s stock indices were pre-multiplied by 10 because of differences in scale generated 

by the different nominal value of the FX rates vs USD. 

We first of all plot the auto-correlation and partial auto-correlation functions in order to 

understand the nature of the time series of the four stocks. By plotting the ACF and PACF of 
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the time series we notice a very high PACF in the first lag of all the four variables for both the 

USD-adjusted and local currency databases, followed by a drop from lag 2. We also notice 

that the ACF is very high, close to unity, and slowly decays over time. These immediately 

provides a first hint over the likely presence of a unit root in data, which is also common for 

stock markets data. Finally, in order to be sure about the presence of a unit root in the market, 

we use the Augmented Dickey-Fuller test, where we notice that there is support in favor of 

the presence of a unit root in both the USD-adjusted and the local currency datasets for all 

the variables under consideration. The Phillips-Perron test confirms all the results for all the 

variables we are using. On the contrary, once we apply the difference operator, we notice 

that the result changes and we can reject the null of the presence of a unit root. However, 

since we want to test for cointegration, we will keep using the non-stationary variables 

because, as discussed in Section 2, in that case the linear relationship among the variables 

would exist such that it results in a stationary process. 

Results 

We proceed to test the presence of a linear cointegrating relationship among the stock 

markets under consideration. In order for results to be interpretable, it is important to specify 

the ordering of the variable. The most primitive variable is set first because for the purpose 

of post-VECM estimation analysis, for example calculation impulse response functions 

through a structural VAR, it is common practice to force a Cholesky identification on the 

equation. In this case, the shocks to the first variable are considered as the most ‘primitive’, 

in the sense that it will not be influenced by the other variables at t=0, but instead it will 

influence all of the other variables. We choose to order the variables within 𝑦$ in the following 

way: 

 𝑦$ = [𝑦ÜÙTÝ	ÈÞTÝ,$; 	𝑦àªÈÞ	ÈªáÙâªÈ,$; 	𝑦àªÈÞ	ãÔáÈÙ	�ÙÖÙ�ÈâÙ,$; 	𝑦Èª×Øä	ÞåØÜÙTÝÞ	ªÜÙâÖÙTÕ,$]′.   

By using the same Johansen test, we are following much of the previous literature, even if we 

are testing the presence of cointegration over a longer-than-usual time horizon. We first 

analyze the results for the USD-adjusted database. We notice that both the 𝜆$defg(0) and the 

𝜆iej(0, 1) test statistics give proof in favour of no cointegrating relationship among the 

variables at the 95% confidence level, with values equal to 46.27 and 23.11, respectively. The 

results are consistent with those of the local-currency database. The 𝜆$defg(0) test-statistics 

for the local currency database is actually lower (40.13), and the same is true for the 
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𝜆iej(0, 1), which is equal to 21.59. We therefore can reject the null hypothesis that there 

are at most 1 cointegrating vectors in favour of the alternative that there are 0 cointegrating 

vectors. This result is not entirely surprising. Precedent literature shows contrasting results 

exactly because it is apparent that over the period under consideration (2000-2020), different 

cointegrating vectors have been present. It is therefore unlikely to be able to find a single 

linear cointegrating vector fitting the VECM over the whole period. 

Part 1 of the thesis solves the problem by showing that different cointegrating relationships 

exist at different times based on the regimes in which the market is. By using a hidden Markov 

model which treats regimes as a latent variable, two different VECMs over two different 

regimes were estimated over the same time horizon, and then economic interpretations were 

given thanks to the constant capturing deterministic trends and the variance-covariance 

matrix values. Unlike what we are dealing with in this case, we allowed regimes to recur in 

time, i.e. no structural breaks were present.  

In this second part of the thesis, our main research question centres around the study of a 

structural break method, with the coefficients changing at one point in time, to check whether 

allowing for a structural break point allows us to understand whether cointegration is present 

in the sample, albeit with different cointegrating vectors in time.  

For the USD-adjusted database, we reject the null hypothesis of no cointegration in favour of 

the alternative hypothesis of cointegration among the variables at a 95% confidence interval. 

Results are reported in Table 8. The proper number of lags is chosen according to the Bayesian 

Information Criterion and is equal to one. Interestingly enough, both the 𝐴𝐷𝐹∗, the 𝑍¶∗  and 

the 𝑍$∗ test statistics reject the null of no cointegration. However, they find different switching 

dates minimizing their values. In particular, the 𝐴𝐷𝐹∗ test-statistics finds the date of the 

structural break to be 24th May 2013. On the contrary, the 𝑍¶∗  and the 𝑍$∗ test statistics find 

the date of the structural break to be the 7th September 2007, a date that can easily coincide 

with the outburst of the Great Financial Crisis. We also see that while the 𝐴𝐷𝐹∗ and the 𝑍¶∗  

test-statistics are significant at a 95% confidence level, the 𝑍$∗ test-statistics is significant at a 

99% confidence level. We therefore decide to use the 7th September 2007 as the date of the 

structural break on the basis of (i) economic interpretation (i.e. making it coincide with the 

beginning of the  Great Financial Crisis) and (ii) superior confidence level from the 𝑍$∗ test-

statistics. However, it is worth pointing out that superior forecasting results may be obtained 
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by fitting a three-regimes model such as the one of Hatemi-J (2007). This is outside the scope 

if this paper, whose interest is to check for the presence of cointegration among the variables, 

and it finds that there is evidence of cointegration given a structural break on the 7th 

September 2007.  

We then proceed to calculate the two different Vector Error Correction Models to see how 

the dynamic linkages among markets change between one regime and the other and to assess 

the impact that the Great Financial Crisis had.  

We first of all notice that in the first regime spanning the 2000-2007 time period the signs 

within the speed of adjustment vector are all proper (negative). Thig gives us confidence on 

the fact that the error correction factor correctly has an impact on the markets under 

consideration. In terms of the cointegrating vector, we follow usual normalization 

procedures, where the first variable is placed equal to one. In the first regime, the equilibrium 

relationship is such that 𝐻𝐾 = 2.5022	𝑆𝐺 − 	1.0072	𝑀𝐿 + 0.0342	𝑇𝐻 + 	1072.169. We 

immediately appreciate that the market which has the highest influence in defining the 

equilibrium level for the Hang Seng index is Singapore, which is not surprising given that it is 

widely regarded as the financial hub of ASEAN countries. The negative sign of Malaysia is of 

uncertain interpretation, while the role of Thailand is minimal, and its coefficient within the 

cointegrating vector is not statistically significant. Moving to the post-crisis VECM, we 

immediately notice that the coefficients in front of the error correction factors for Singapore 

and Thailand are wrong. This means that, while departures from the long-run equilibrium do 

have an error correction effect on the Hang Seng and FTSE Bursa Malaysia Indices, this does 

not hold true for the Straits and SET indices. While still significant and playing an important 

role in the price discovery mechanism for Hong Kong and Malaysia, we can however 

appreciate that the role of cointegrating relationship appears to be weaker after the global 

financial crisis than it was before. This is true even by looking at the values of the speed of 

adjustment coefficients of Hong Kong and Malaysia, which are lower in both cases. This means 

that the two time series revert slower to the long-run equilibrium once they deviate from it 

than the speed at which they reverted to it before the crisis. Within the cointegrating vector, 

we notice how the equilibrium level did not change greatly. Singapore is the still the most 

important market to define the equilibrium level for th Hong Kong market, while the absolute 
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value of the Malaysian market decreases. The Thai market is still not statistically significant in 

defining the long-run equilibrium in the market.  

We then turn to the local currency dataset. In this case, we notice that the different test-

statistics return different results. According to the 𝑍¶∗  and 𝑍$∗ test statistics, we fail to reject 

the null hypothesis that there is no cointegration among the markets under consideration at 

a 95% confidence level. However, according to the ADF* test statistics, we manage to reject 

the null hypothesis of no cointegration in favor of the alternative hypothesis of the presence 

of cointegration among the variables at a 95% confidence level. We decide to use the ADF* 

test statistics and assuming that by allowing a structural break on the 9th January 2015 we 

have evidence in favor of cointegration in the dataset. However, we remain wary of the fact 

that alternative test statistics do not show evidence in favor of the alternative hypothesis, 

and that therefore evidence in favor of cointegration is weaker for the local currency dataset 

than it is for the USD-adjusted dataset. We highlight that in this case the structural break point 

in early 2015 represents the year of the Chinese equity market bubble, which might have 

caused regional linkages among equity markets to change. The structural break date is quite 

distant from the one for the USD-adjusted dataset. One reason for that might be found in the 

different monetary policy regimes adopted by central banks from 2014 onwards. Figure 4 

outlines FX movements, and one can appreciate two defining moments: (i) Malaysia 

unpegging the MYR from the USD in July 2005 and (ii) the increasingly divergent FX 

movements since 2014/2015, which Kawai, Park and Wyplosz (2016) explain to be a 

consequence of divergent monetary policies. This can therefore explain why the model 

estimates the breaking point to be on 9th January 2015, which is probably also a reflection of 

a new FX equilibrium in the market post-2015, which is something that does not affect the 

USD-adjusted database because it already incorporates FX movements. On top of FX, it is also 

plausible to think that the Chinese stock market bubble caused market dynamics to change, 

both in its wake and in its aftermath post 2015. 

We now focus on the two different VECMs for the local currency dataset. We see that all signs 

of the speed of adjustment coefficient are proper for the pre-2015 period, and we also notice 

that they are statistically significant for the Hong Kong, Singapore and Thailand markets. On 

the contrary, for the post-2015 period the Thailand speed of adjustment coefficient is wrong, 

which means that it is not influenced by the cointegrating relationship. However, the signs of 
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Hong Kong, Singapore and Malaysia are all proper and statistically significant, with the 

absolute values of the coefficients actually increasing. In terms of the cointegrating vectors, 

we notice that for the pre-2015 period the Singapore and the Malaysian markets are the most 

important in defining the equilibrium, with reasonable negative signs and statistically 

significant coefficients. The Thailand market enters the cointegrating relationship with a 

positive sign of uncertain interpretation. On the contrary, for the post-2015 vector, we see 

that Thailand becomes more important in defining the long-run equilibrium to which markets 

revert to, while Malaysia gets a positive coefficient. Singapore still has a negative and 

statistically significant coefficient. All in all, we notice that in the local currency dataset the 

strength of the cointegrating relationship and the speed at which variables revert to it seem 

to have strengthened after the 2015 Chinese stock market bubble. In particular, the role of 

the error correction factor is greater than for the pre-2015 period for the stock markets of 

Hong Kong, Singapore and Malaysia, while Thailand’s stock market time series process is not 

described by an error correction factor. Nevertheless, it plays a more important part than it 

did pre-2015 in defining the long-run equilibrium to which markets revert to.  
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Conclusions 
The main question of this thesis was to understand whether the conflicting precedent 

literature over the presence of cointegration in the South-East Asian equity markets could be 

explained by the presence of two different regimes in the data. In particular, Part 2 of the 

thesis studies the presence of a structural breakpoint in the data, leading to a regime-shift at 

a single point in time. The research uses the Gregory-Hansen (1996) test for regime-shifting 

cointegration. Part 1 of the thesis had instead studied the presence of cointegration in a 

Markov-switching framework, i.e. allowing regimes to recur in time according to a hidden 

Markov chain. The research focuses on two different datasets: one is a USD-adjusted 

framework, where all index values are studied in USD terms to account for FX movements, 

while the second one studies the variables from a local currency perspective. Results among 

the two different datasets differ.  

In the USD-adjusted dataset there is evidence in favour of cointegration in all three test-

statistics and the structural break is identified to be in the week starting on the 7th September 

2007. The null hypothesis of no cointegration is rejected by all three test-statistics, which 

gives confidence over the presence of cointegration among markets.  This shows that from a 

USD-adjusted perspective the structural break coincides with the outbreak of the Great 

Financial Crisis. In the pre-crisis period (2000-2007), all signs of the coefficients within the 

speed of adjustment vector are proper, while in the 2007-2020 period the signs of Singapore 

and Thailand are positive, which means that their returns fail to revert to a long-run 

equilibrium as a function of their distance from the equilibrium. This means that while all 

series are correctly influenced by the error correction factor within the VECM in the pre-GFC 

regime, only the Hang Seng and the FTSE Bursa Malaysia are still influenced by the error 

correction factor in the VECM in the post-GFC regime. Singapore is the market which has the 

most important role in defining the equilibrium level of the Hong Kong market in both 

regimes, while the role of Malaysia inside the cointegrating vectors appears to be limited. 

Things are different for the local currency database, which shows that the FX effect is indeed 

significant among the markets under consideration. This is unsurprising, as the different 

monetary policies of the various countries led to different equity market movements, if one 

accounts for FX movements. In the local currency database, there is evidence in favor of 

cointegration only in the ADF test statistics, while we are unable to reject the null of no 
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cointegration at a 95% confidence level by using the 	

𝑍¶∗  and 𝑍$∗ test statistics. The structural break point is defined on the 9th January 2015 

following the ADF test statistics. This coincides with the beginning of the Chinese stock market 

bubble that occurred in 2015, with equities rallying in H1 2015 and eventually crashing in 

June-August. The conclusion is that this caused a structural shift in the cointegrating 

relationships of South-East Asian equity markets. In particular, one can notice that while all 

speed-of-adjustment factors signs are proper in the pre-2015 crisis regime, this is no longer 

the case post-2015, as the SET stops reacting to deviations from the long-run equilibrium. 

However, the Hang Seng, the Straits and the FTSE Bursa Malaysia all have higher speed of 

adjustment values, which means that the error correction factor gains importance in the 

second regime. One of the reasons why the structural break is identified in a different period 

versus the USD-adjusted dataset could be found in the divergent monetary policies that 

central banks pursued from 2014-2015 onwards. While this was undetected in the USD-

adjusted dataset, it has an impact on the local currency dataset. 

All in all, the main result of Part 2 of the thesis is consistent with the one from Part 1: 

precedent literature is largely contrasting because it investigates the presence of 

cointegration using linear models, while non-linear analyses of cointegration in the South-

East Asian equity markets reveal the presence of different VECMs in different regimes and 

provide evidence in favor of cointegration. In the two different parts of the thesis this has 

been analyzed under the two prevalent regime-dependent models in the stock markets 

econometric literature: Markov-switching models (Part 1) and models with structural breaks 

(Part 2). Implications from the two parts of the thesis are different but not inconsistent, as 

they study markets dynamics from two different angles. In Part 1 the Markov-switching model 

allows regimes to recur in time according to a latent variable, with a transition matrix 

containing switching probabilities that reveal the persistence of the two regimes. Regime 

interpretation is then based on the different values of the constant in the VECM and of the 

variance-covariance matrix. On the contrary, in Part 2 we modelled the two regimes according 

to a single structural break, meaning that after the structural break, the vector error 

correction model that explains markets’ dynamics is just one and there is no regime-switching 

probability or transition matrix, as regimes are not allowed to recur in time. Part 1 aims to 

explain past behavior and different regimes based on different bull/bear market periods, 
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while Part 2 aims to explain the two existence of two different VECMs based on a single 

structural break that could be related to macroeconomic events. Another difference among 

the two different parts is that Part 1 evaluates the presence of cointegration in zero regimes, 

just one regime or both regimes based on the marginal log-likelihood of three different 

VECMs, but no formal test for the presence or absence of cointegration was implemented 

because no such test has been formalized in literature, yet. On the contrary, in Part 2 of the 

thesis the Gregory-Hansen test provides a formal framework to accept or reject the null 

hypothesis of no cointegration. 

For the USD-adjusted dataset, results are different among the two models. In the Markov-

switching model there is evidence of cointegration just in the bull market regime, while in the 

bear market regime the Bayes Factors suggest that the role of the error correction factor is 

not significant. On the contrary, the regime-shifting model provides evidence in favor 

cointegration across the whole time period, with a regime shift in September 2007. One thing 

that both models have in common is that SET’s returns are not influenced by the error 

correction factor: the sign of the speed of adjustment factor is positive for Thailand in the 

2007-2020 regime in the regime-shifting model, and it is positive in the bull market regime in 

the Markov-switching model. In terms of importance withing the cointegrating vector, the 

Straits is the most important market in both models. 

For the local-currency dataset, results are similar across models: in both regimes of the 

Markov-switching model and of the regime-shifting model there is evidence in favor of 

cointegration. However, in the Markov-switching model, the low-volatility regime has all 

proper signs, while in the high-volatility one only the Hang Seng is correctly influenced by the 

error correction factor, meaning that the strength of the cointegrating relationship in the 

high-volatility regime is actually dubious. In the regime-shifting model the importance of the 

cointegrating relationship appears to be lower than for the USD-adjusted dataset, as just one 

of the three test-statistics show evidence in favor of cointegration at 95% confidence level. 

Also in this case, in the post-2015 regime, Thailand is not influenced by the error correction 

factor, which is common among both models. 

All in all, none of the two models is necessarily superior to the other, but rather they tackle 

the non-linear nature of the cointegrating relationship of the South-East Asian equity markets 

in different ways. They can be viewed as complementary, and further research could see the 
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Markov-switching model applied to the two different time periods defined by the structural 

breaks of the regime-shifting dataset, which could ultimately lead to superior forecasting 

power vis-a-vis that of the Markov-switching or the regime-shifting model alone. 
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Figures and Tables 

Table 1: Trading partners of ASEAN countries, trade of goods only, 2019 figures in $bn 

 Raw Figure ASEAN Market Share 

 
ASEAN 

Total Trade 
ASEAN Total 

Exports 
ASEAN Total 

Imports 
Total 
Trade 

Total 
Exports 

Total 
Imports 

Intra-ASEAN 632.40 332.44 299.96 22.5% 23.4% 21.5% 
Extra-ASEAN 2,182.81 1,090.71 1,092.10 77.5% 76.6% 78.5% 
China 507.86 202.46 305.39 18.0% 14.2% 21.9% 
Japan 225.92 109.83 116.08 8.0% 7.7% 8.3% 
Republic of Korea 156.48 59.36 97.12 5.6% 4.2% 7.0% 
India 77.05 48.25 28.80 2.7% 3.4% 2.1% 
Australia 63.08 35.44 27.65 2.2% 2.5% 2.0% 
European Union 280.55 153.89 126.67 10.0% 10.8% 9.1% 
United States 294.59 183.60 110.99 10.5% 12.9% 8.0% 

Source: ASEAN Statistics Database 

 

Figure 1: Evolution over time of total trade in goods with ASEAN countries, figures in 
$ml 

 

Source: ASEAN Statistics Database 
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Figure 2: Rebased stock indices movements over the Jan 2000-Feb 2020 period for 
the selected countries, in local currency (1/1/2000=100) 

 
Source: Thomson Reuters Eikon 

 
Figure 3: Rebased stock indices movements over the Jan 2000-Feb 2020 period for 
the selected countries, in USD terms (1/1/2000=100) 

 
Source: Thomson Reuters Eikon 
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Figure 4: Rebased FX movements over the Jan 2000-Feb 2020 period for the 
selected countries, in USD terms (1/1/2000=100) 

 
Table 2: Summary of precedent literature findings on cointegration in the South-East 
Asian or East Asian region 

Paper Period under 
consideration 

Countries under 
consideration 

Linear cointegrating 
relationship 

Roca, 
Selvanathan and 
Shepherd (1998) 

1988-1995 ASEAN-5 Short-run linear 
dependence, no 
long-run equilibrium 

Huyghebaert and 
Wang (2010) 

1992-2003 East Asia Only during crises 

Shabri abd. Majid 
et al. (2009) 

1995-2006 ASEAN-5 Cointegration both 
pre- and post- Asian 
crisis 

Click and 
Plummer (2005) 

1998-2002 ASEAN-5 Cointegration 
present 

Yu, Fung and 
Tam (2010) 

2002-2008 ASEAN+3+Taiwan Cointegration 
weakening in 2002-
2006, strengthening 
in 2006-2008  

Arsyad (2015) 2003-2013 ASEAN-6 and 
ASEAN+3 

Cointegration 
present only in 
ASEAN+3 

Atmadja (2019) 2000-2009 ASEAN-5 Cointegration pre-
GFC but not during 
GFC 

Wang (2014) 2003-2013 ASEAN-6 No cointegration 
Rahman, Othman 
and Shahari 
(2019) 

1999-2013 ASEAN+3 Cointegration 
present 

Guidi and Gupta 
(2013) 

2000-2011 ASEAN-5 No cointegration 

Ahmed and Singh 
(2016) 

2001-2013 ASEAN-5 Cointegration in FX, 
not in equities 

60

70

80

90

100

110

120

130

01/2000

01/2001

01/2002

01/2003

01/2004

01/2005

01/2006

01/2007

01/2008

01/2009

01/2010

01/2011

01/2012

01/2013

01/2014

01/2015

01/2016

01/2017

01/2018

01/2019

01/2020

USD/HKD USD/SGD USD/MYR USD/THB



 
 

41 

 

Table 3: Descriptive statistics for the variables in the USD-adjusted dataset 

 Mean St. Dev Min 1Q Median 3Q Max N. Obs 

HK 2533.6 626.8 1081.4 1902.9 2663.9 3037.4 4217.0 1050 

SG 1859.8 626.9 674.9 1225.2 2080.1 2404.8 2767.9 1050 

ML 3586.4 1271.9 1456.2 2367.3 3838.9 4597.5 5986.6 1050 

TH 2904.8 1587.4 592.4 1611.7 2528.8 4429.3 5859.3 1050 

 

Figure 5: ACF and PACF of the HK variable for the USD-adjusted dataset 

 

 

Figure 6: ACF and PACF of the first difference of the HK variable for the USD-adjusted dataset 

 

 

Figure 7: ACF and PACF of the SG variable for the USD-adjusted dataset 

 

Figure 8: ACF and PACF of the first difference of the SG variable for the USD-adjusted dataset 
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                                          -1       0       1 -1       0       1
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Figure 9: ACF and PACF of the ML variable for the USD-adjusted dataset 

 

 

Figure 10: ACF and PACF of the first difference of the ML variable for the USD-adjusted dataset 

 

 

Figure 11: ACF and PACF of the TH variable for the USD-adjusted dataset 

 

 

 

Figure 12: ACF and PACF of the first difference of the TH variable for the USD-adjusted dataset 
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Table 4: Descriptive statistics for the variables in the local currency dataset 

 Mean St. Dev Min 1Q Median 3Q Max N. 
Obs 

HK 19719.8 5752.1 8435.0 14815.7 20718.3 23584.5 32966.9 1050 

SG 2640.5 662.9 1170.9 2036.1 2870.4 3192.2 3819.0 1050 

ML 1289.6 417.2 553.3 890.3 1360.5 1672.0 1892.5 1050 

TH 977.9 475.9 258.1 640.8 830.8 1471.0 1837.5 1050 

         

Figure 13: ACF and PACF of the HK variable for the local currency dataset 

 

 

Figure 14: ACF and PACF of the first difference of the HK variable for the local currency dataset 
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Figure 15: ACF and PACF of the SG variable for the local currency dataset 

 
 
Figure 16: ACF and PACF of the first difference of the SG variable for the local currency dataset 

 
 
Figure 17: ACF and PACF of the ML variable for the local currency dataset 

 
Figure 18: ACF and PACF of the first difference of the ML variable for the local currency 
dataset 
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Figure 19: ACF and PACF of the TH variable for the local currency dataset 

 
 
Figure 20: ACF and PACF of the first difference of TH variable for the local currency dataset 

 
 
 
 
Table 5: Augmented Dickey-Fuller Test on the selected markets for both USD-
adjusted and local currency datasets. Test performed with a drift and allowing it to 
choose the most appropriate number of lags up to 6 to minimise the p-value. P-
values in brackets 

USD-adjusted Local Currency 

Hong Kong -1.51 
(0.523) Hong Kong -1.51 

(0.521) 

Malaysia -0.668 
(0.819) 

Malaysia -1.146 
(0.650) 

Singapore -2.100 
(0.289) 

Singapore -1.580 
(0.495) 

Thailand -1.200 
(0.630) 

Thailand -1.087 
(0.671) 
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Table 6: Augmented Dickey-Fuller Test on the first difference selected of selected 
markets for both USD-adjusted and local currency datasets. Test performed with a 
drift and allowing it to choose the most appropriate number of lags up to 6. P-values 
in brackets. Note: p.value = 0.01 in this case means p.value ≤ 0.01 

USD-adjusted Local Currency 

Hong Kong -35.8 
(0.01) Hong Kong -35.8 

(0.01) 

Malaysia -33.9 
(0.01) Malaysia -32.8 

(0.01) 

Singapore -33.6 
(0.01) Singapore -32.5 

(0.01) 

Thailand -34.6 
(0.01) Thailand -32.8 

(0.01) 

 

Table 7: Johansen cointegration test for the USD-adjusted dataset 

Rank Eigenvalue 𝜆$defg 
5% critical 

value 𝜆iej 10% critical 
value 

0  46.2669* 47.21 23.1125* 27.07 
1 0.02181 23.1544 29.68 13.5109 20.97 
2 0.01281 9.6435 15.41 8.3465 14.07 
3 0.00793 1.2970 3.76 1.2970 3.76 
4 0.00124     
N. lags = 2 selected according to the Schwarz based Information Criterion 

 

Table 8: Gregory-Hansen cointegration test with one structural break for the USD-
adjusted dataset  

 Test 
statistic 

Breakpoint Date 1% critical 
value 

5% critical 
value 

10% critical 
value 

𝐴𝐷𝐹∗ -6.13 689 15/03/2013 -6.51 -6.00 -5.75 

𝑍¶∗  -6.40 401 07/09/2007 -6.51 -6.00 -5.75 

𝑍$∗ -84.88 401 07/09/2007 -80.15 -68.94 -63.42 

Lags = 1 chosen by Schwarz Bayesian Information Criterion 
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Figure 21: Speed-of-adjustment vectors and cointegrating vectors for the two different 
regimes before and after 07/09/2007 for the USD-adjusted dataset 
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Table 9: Gregory-Hansen cointegration test with one structural break for the local 
currency dataset 

 Test 
statistic 

Breakpoint Date 1% critical 
value 

5% critical 
value 

10% critical 
value 

𝐴𝐷𝐹∗ -6.10 784 09/01/2015 -6.51 -6.00 -5.75 

𝑍¶∗  -5.64 791 27/02/2015 -6.51 -6.00 -5.75 

𝑍$∗ -68.77 791 27/02/2015 -80.15 -68.94 -63.42 

Lags = 5 chosen by Schwarz Bayesian Information Criterion 

 
 
Figure 21: Speed-of-adjustment vectors and cointegrating vectors for the two different 
regimes before and after 09/01/2016 for the local currency dataset 

𝛼M4,ÖØ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.0727
[0.0172]
−0.0046
[0.0018]

	
−0.0005
[0.0006]	
−0.0022
[0.0006]⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

     𝛼MN,ÖØ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.1133
[0.0383]	
−0.0069
[0.0031]

	
−0.0029
[0.0014]	
0.0014
[0.0015]⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

      𝛽h4,ÖØ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1	
−5.1873
[0.9548]

	
−9.5756
[2.8237]
7.2053
[2.1483]
289.083⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

        𝛽hN,ÖØ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1	
−6.6347
[1.8617]

	
7.5079
[3.9661]	
−16.6145
[2.8770]
8333.396 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 


