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Abstract 

The goal of this thesis is to use established methodologies in the field of machine learning in 

finance to extend the list of current applications to commodity futures, reviewing and 

refining the established empirical approaches to return forecasting and hyperparameter 

optimization. We thus investigate the out of sample predictive accuracy of tree-based 

machine learning (ML) techniques and neural networks applied to monthly commodity 

futures returns, relying on conventional regression and classification accuracy metrics. We 

find that a large selection of machine learning techniques cannot consistently outperform 

the benchmark AR(1) model when applied to monthly data, and that there is no specific ML 

method suitable to all the analyzed commodity series at once. While we also find potential 

portfolio-level investor gains from using ML techniques, the robustness of these gains is 

questionable. Finally, we suggest an updated approach to hyperparameter optimization and 

find that different commodity series have to be modelled separately, which is suggested by 

large differences in the optimal architectures estimated by our Grid Search and Bayesian 

Optimization tuner algorithms. 

Keywords: Machine learning, asset pricing, neural networks, decision trees  

Supervisors: Dr. Tobias Sichert (SSE) and Prof. Massimo Guidolin (Bocconi University)  
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1. Introduction 

“Machine Learning Revolution” is a term that is commonly applied in scientific publications 

and media in order to describe a dramatic increase in the use of algorithms in different 

scientific applications, ranging from mathematics and physics to social sciences. Finance did 

not become an exception, and different methodologies have been developed for such 

purposes as risk management, macroeconomic analysis, and, of course, active investing 

(Dixon and Halperin, 2019). A significant part of the existing literature finds increased 

predictive power and potential portfolio gains from the use of machine learning (henceforth, 

ML) techniques, which is fostering further research in this field. 

The purpose of this thesis is thus to test the out of sample forecasting power of a wide 

selection of ML methods applied in the context of commodity futures returns. We rely on the 

methodology developed by Gu et al. (2020) who report high out of sample investor gains 

from using ML techniques, applying this methodology to the case of commodity futures. We 

also rely on previous academic research to review the approach to hyperparameter 

optimization suggested by Gu et al. (2020), adding a stronger focus on neural networks. The 

study by Guidolin and Pedio (2020), in which the authors use hidden Markov chain models 

and stepwise variable selection algorithms to forecast returns of commodity futures, will be 

our main guide in adapting the methodology by Gu et al. (2020). Namely, this research will 

determine our choice of variables and provide a benchmark for assessing the out of sample 

performance of our models.  

Even though we aim to adapt the ML approach to return forecasting suggested by Gu et al. 

(2020) to a different asset class, the contribution of the thesis to the existing body of 

knowledge is not limited to this. One of our key contributions is a more careful and consistent 

approach to model specification and hyperparameter tuning: we rely on such optimization 

algorithms as Grid Search and Bayesian Optimization to tune the hyperparameters of our 

models. Hyperparameter optimization will be explained in more detail in the Methodology 

section. Moreover, we extend the list of models proposed by Gu et al. (2020) by adding Long 

Short-Term Memory (LSTM) neural networks, explaining why this class of models carries 
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the potential to achieve a higher out of sample forecast accuracy compared with more 

conventional, feedforward neural networks.  

We will focus on two broad classes of ML models within this thesis: tree-based methods and 

neural networks. Tree-based methods include random forests and boosted decision tree 

algorithms, and neural networks include feedforward and recurrent neural networks. Each 

model will be tested on different sets of prediction variables, discussed in more detail in the 

Dimensionality Reduction subsection of the methodology chapter. We will estimate three 

tree-based methods on three sets of variables, and two types of neural networks on four sets 

of variables, which gives us a total of 17 models the out of sample forecasting accuracy of 

which will be compared against the AR(1) benchmark.  

Guidolin and Pedio (2020) show that hidden Markov chain models and stepwise variable 

selection algorithms cannot consistently outperform the AR(1) benchmark, so a closer 

analysis of this conclusion would be beneficial. Namely, it is unclear whether the reasons 

why the models fail to show consistent outperformance are driven by model selection, the 

structural instability of the data generating process, or a combination of both. We will thus 

focus on the methodology in Guidolin and Pedio (2020) and their suggested set of predictors, 

aiming to explore whether tree-based methods and neural networks can show a better out 

of sample forecasting performance. 

Hyperparameter optimization is another contribution of the current thesis: to the best of our 

knowledge, hyperparameter tuning algorithms have not been analyzed and used to optimize 

neural networks aiming to forecast the returns on commodity futures. For example, the 

papers by Struck and Cheng (2020) have used ML methods to predict commodity futures 

returns; however while they use tree-based methods and neural networks on portfolios of 

commodities, they state that default model parameters are used, which completely neglects 

the hyperparameter tuning stage. While it is commonly established that hyperparameters 

are a crucial element of applying ML algorithms (see, for example, Pereyra et al., 2017), this 

aspect of the methodology often has not received adequate scrutiny in financial applications. 

In turn, Gu et al. (2020) approach hyperparameter tuning in a more academic and consistent 

way. While they use exhaustive grid searches for tree-based methods, their neural network 
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hyperparameter tuning stage is limited to five architectures, which can be justified by the 

massive size of the dataset used in their study.  

In order to choose the hyperparameter values within the five architectures, Gu et al. (2020) 

rely on more conventional approaches to hyperparameter optimization, such as the pyramid 

rule for neurons proposed by Masters (1993). The rule states that a rough approximation of 

the optimal number of neurons in the hidden layer can be found by taking the square root of 

the product of the number of neurons in the input layer and the output layer. However, 

despite its efficiency in empirical applications, the pyramid rule only serves as a first 

approximation and does not suggest an undisputedly optimal solution.  Given the common 

opinion within ML that hyperparameter optimization is “more art than science”, our goal is 

not to provide exhaustive evidence that optimization algorithms can outperform established 

academic approaches. We are rather trying to empirically test whether hyperparameter 

tuning algorithms can suggest a better model specification compared with more 

conventional rules and notions. This way, an undisputable advantage of our approach is that 

we test a significantly larger number of architectures: while Gu et al. (2020) tested five 

different architectures of feedforward neural networks, our approach to dimensionality 

reduction and the use of tuning algorithms will enable us to find optimal models from over 

1,000 different specifications.  

In this thesis, we work with fourteen monthly commodity futures return series: Light Crude 

Oil, Corn, Soybeans, Wheat, Coffee, Cocoa, Sugar, Cotton No.2, Gold, Silver, Platinum, Frozen 

Orange Juice, Lumber, and Live Cattle. Descriptive statistics of these series can be found in 

Table 1. The sample spans the period January 31, 1989 - June 30, 2020, which gives us a total 

of 377 observations per series. While one could argue that “data-hungry” ML algorithms 

perform best on a significantly larger amount of data, an important advantage of shorter 

series is the enormous reduction in computational costs. When working with smaller 

datasets, modern hyperparameter optimization algorithms allow for a significantly more 

careful choice of hyperparameters that provide a better balance between over- and 

underfitting models. Indeed, while ML techniques do perform better on large data sets, the 

advantage of working with a relatively short series of monthly returns is that we can afford 

a larger number of simulations and model specifications. This will allow us to minimize the 
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probability that potential underperformance of our models is driven by parameter 

misspecification, making the limited sample size and the complexity of dependencies within 

the data the only factors that can affect the performance of our models relative to the 

benchmark.  

Consistently with Gu et al. (2020), we close our empirical work with a portfolio exercise in 

which we explore whether the ML algorithms are capable of outperforming the benchmark 

in terms of realized portfolio performances. In this exercise, the models that displayed the 

lowest out of sample forecast errors will be used to forecast the returns of commodity 

futures. The forecasts will be ranked from highest to lowest, and the investor will take a long 

position in the top four commodities while taking a short position in the bottom four 

commodities. However, an important restriction is that due to the positive correlation 

between commodity futures (see the evidence in Table 2), there is no guarantee that there 

will be four positive and four negative forecasts at the same time. To account for this issue, 

we set a restriction that will only allow the algorithm to assume a long position in a 

commodity futures contract if the forecasted return is positive, and vice versa.  

The research questions of this thesis are thus the following: 

1. How do tree-based methods and neural networks perform relative to the benchmark 

AR(1) model in the context of forecasting returns of commodity futures? 

2. Given that Gu et al. (2020) show that their methodology leads to larger portfolio 

performance gains, how will it perform when a different asset class is analyzed? 

We find that the set of analyzed ML techniques cannot consistently outperform the AR(1) 

benchmark, and that the complexity of the dependencies between commodity futures and 

forecast variables forces the forecast from most models to converge to their long-run mean, 

suggesting that the analyzed data frequency is not suitable for neural networks and tree-

based methods. Our findings are consistent with Guidolin and Pedio (2020); however, we 

believe that our approach to hyperparameter optimization can be used in further research 

on the topic of forecasting returns of commodity futures. While we also find potential 

portfolio performance gains from applying ML methods, we cannot vouch for the robustness 
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of this forecast, which makes real-world applications of our methods for commodity futures 

return prediction infeasible.  

The rest of the thesis is structured as follows. In Section 2, we survey the literature on return 

predictability and previous attempts to apply ML models in different areas of finance. In 

Section 3, we describe the methodology, dimensionality reduction techniques, the key 

principles behind the tree-based methods and neural networks used in this thesis, and our 

approach to hyperparameter optimization, showing how our research deviates from and 

contributes to the existing body of literature. In Section 4, we describe the set of commodity 

futures whose returns we aim to forecast, and the set of aggregate and commodity-specific 

predictors. In Section 5, we present the empirical results of our study, analyzing both the out 

of sample forecast accuracy metrics and the performance of our models at a portfolio level. 

Finally, Section 6 concludes and provides suggestions for further research.  

2. Literature Review 

This section is dedicated to a review of past applications of ML models within finance and a 

brief discussion of predictability of returns. We first motivate our choice of data frequency 

and sample window, reviewing the studies on efficiency of commodity markets and market 

efficiency overall. Next, we briefly discuss the history and development of applications of ML 

models for investment management and return forecasting.  

2.1 Return Predictability 

Any empirical research on the use of quantitative techniques to predict asset returns has to 

start with a consideration of the Efficient Market Hypothesis and a discussion of return 

predictability overall. Indeed, one’s opinion on market efficiency is always implied in their 

research design choices, and one’s decision to apply a certain model and a certain frequency 

of the data implies one’s attitude towards the notion of return predictability.  

The earlier pieces of research on efficiency of commodity markets date back to Kaminsky 

and Kumar (1990) and Kellard et al. (1999). These studies emphasize a large degree of 
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ambiguity regarding the evidence of market efficiency in commodity markets: multiple 

studies come up with contradicting conclusions, and these conclusions largely depend on the 

choice of methodology and sample window. More recent studies have found evidence of 

inefficiencies in certain commodity markets, such as wheat, soybeans, and maize (Algieri and 

Kalkuhl, 2019). The absence of unambiguous evidence of commodity market efficiency 

implies that there can be sources of relevant information which can forecast returns of 

commodity futures with reasonable accuracy and potential investor gains, so a large number 

of studies emerged to tackle this issue.   

Next, we refer to the debate on the efficiency of equity markets to motivate our choice of data 

frequency. As stated in Shiller (2013), if day to day returns were indeed predictable, making 

money day trading would be an easy way to get rich; however, there is no evidence of that in 

the real world. Shiller argues that investors have to remain patient and aware not only of 

short-term market inefficiencies, but also of their own psychological biases that often drive 

irrationality and, as a result, financial losses. In his 2013 Nobel Prize lecture, Shiller 

emphasizes that in terms of R squared there is better return predictability observed in longer 

time series and longer horizons, and investors should rely on long-term strategies as 

opposed to speculation in order to generate consistently high positive returns. 

In an attempt to follow Shiller’s proposition and to keep our analysis consistent with 

recognized academic research, we focus on fourteen monthly series of commodity futures 

returns, spanning the period from January 1989 to June 2020. We thus believe that the focus 

on monthly data will allow us to minimize the short-term noise component, allowing the 

models to capture established long-term dependencies between the returns of futures 

contracts and explanatory variables, or, in the worst case, the lack thereof.  

2.2 Machine Learning in Finance  

As argued by Dixon and Halperin (2019), machine learning techniques have been actively 

used in financial services for more than 40 years; however, the rise of these methods in 

investment management is relatively recent. While such established quantitative hedge 

funds as D.E. Shaw, AQR, and Two Sigma have successfully implemented ML and deep 
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learning in investment management, Dixon and Halperin (2019) emphasize that healthy 

skepticism must be present, since multiple companies failed from their over-reliance on ML. 

Indeed, the complicated mathematical foundation behind these models and the ease which 

modern programming languages and packages enable users to run these models with 

promote the “black-box” approach to ML, which leads to irrational decisions driven by a lack 

of understanding of the underlying models. This emphasizes how careful analysis, testing, 

and reliance on established methodologies are vital for a successful implementation of 

machine learning-driven investment decisions over the long term, which creates a vast 

research field for the modern academia.  

Some of the earliest academic applications of ML in investment management date back to, 

for example, Swanson and White (1995) and Trippi and Desieno (1992); however, as ML 

started to gain more popularity, improved methodologies and regularization techniques 

started to emerge. Besides, a higher availability of data allowed researchers to extend the 

field of application from the conventional case of equities to other asset classes. For example, 

Bali et al. (2020) provide an extensive study on corporate bond pricing, Ye and Zhang (2019) 

and Ni (2019) analyze various classes of conventional derivatives, and Cramer et al. (2017) 

and Akyildirim et al. (2020) research weather derivatives and cryptocurrencies respectively. 

Despite the fact that multiple authors developed methodologies for the application of ML 

within investment management and return forecasting, multiple contributions are still 

required. Taking into account fundamental differences between asset classes, it is 

unreasonable to expect that methodologies used to forecast, for example, equity returns will 

perform equally well unless asset-specific adjustments are implemented.  

As we mentioned previously, one of the goals of this thesis is to introduce these adjustments 

to an established methodology suggested by Gu et al. (2020). This study provides a very 

comprehensive introduction to the use of ML methods in the case of stock returns, and many 

conclusions from it will be the basis for the current thesis. For example, the authors find that 

after considering a wide set of model specifications, simpler models with fewer parameters 

tend to outperform their more complicated, “deeper” counterparts. Indeed, the authors 

argue that conventional financial data stands far from what ML algorithms are most 

“comfortable” with, despite the large number of factors and observations available. This way, 
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smaller data sets imply the need for simpler model specifications to find the balance between 

sufficiently high prediction accuracy and avoidance of overfitting the training data. This 

finding is of particular relevance in our case, given that our chosen data frequency implies a 

small number of observations, especially by ML and deep learning standards. 

3. Methodology 

The purpose of this section is to introduce the benchmark AR(1) model, out of sample 

forecast accuracy metrics, and the ML methods used in this thesis. We also dedicate a 

paragraph to describing the issue of the “curse of dimensionality”, why it is highly relevant 

in our application, and how this issue will be solved using established academic approaches. 

The section ends with a detailed description of our approach to hyperparameter tuning and 

how it deviates from previously published academic research: we describe the tuner 

algorithms used to find optimal sets of hyperparameters and outline regularization 

techniques used to prevent the neural networks from overfitting the training data. 

3. 1 Preliminary Conditions and Model Specifications 

Prior to introducing the models used in this thesis and discussing their optimization process, 

several preliminary conditions have to be established. The first important consideration is 

the choice of the benchmark model and accuracy metrics: consistently with Guidolin & Pedio 

(2020), we use AR(1) as the benchmark. In order to make the comparison as realistic as 

possible, the coefficients of the benchmark AR(1) model are re-estimated after each data 

point: this way, all information available at time 𝑡 is used for forecasting the returns at time 

𝑡 + 1. Given that AR-type models converge to their ergodic means when the forecast period 

is too large, this approach would allow us to get the most accurate assessment of the 

benchmark AR(1) in the context of forecasting commodity futures returns. 

Next, consistently with Guidolin and Pedio (2020), forecast accuracy will be assessed via two 

out of sample metrics: Root Mean Squared Forecast Error (RMSFE): 
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and Mean Absolute Forecast Error (MAFE): 
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where 𝑛 is the number of observations in the test subsample, �̂�𝑡+1|𝑡
𝑗 (𝑀) is the forecasted 

return of commodity futures 𝑗 at time 𝑡 + 1, and 𝑅𝑡+1
𝑗

 is the realized return. Guidolin and 

Pedio (2020) find that different models are considered optimal when these accuracy metrics 

are compared, so the use of two metrics will provide an additional robustness check.  

We also divide the models in four categories based on the number and the nature of predictor 

variables (also known as “features” in the ML jargon). The first class is the so-called “kitchen 

sink” models where all the features are used without any prior dimensionality reduction; the 

second class of models will use the first five principal components, the third class of models 

will use the first ten principal components, and the fourth class will use the variables selected 

by the Decision Tree Regressor. In the next section we outline why dimensionality reduction 

is of extreme importance given the structure of our data and explain the choice of the sets of 

predictor variables. 

3.2 Dimensionality Reduction  

The Curse of Dimensionality, a term coined by Richard E. Bellman to describe issues that 

arise in the analysis of multidimensional spaces and data, is of extreme relevance and 

importance in any ML application. In the context of data analysis, Willmott (2019) describes 

the curse of dimensionality using an example where a researcher is trying to explain N data 

points using M independent variables. The author assumes for simplicity that the numerical 

data for each independent variable is binary, which gives us a total of 2𝑀 combinations. 

Willmott thus argues that unless N is larger than 2𝑀 , the researcher is facing the risk to 

classify each realization of the dependent variable as “unique”, making the classification 

exercise meaningless.  
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This way, as it might appear logical that adding more independent variables will lead to a 

higher aggregate explanatory power, the curse of dimensionality makes this decision a 

double-edged sword. While it is apparent that the dataset has to be “large enough”, exactly 

how large should it be and how many independent variables can be considered at the same 

time? Unfortunately, this largely depends on the choice of models and variables, and no rules 

are set in stone; this way, researchers have to rely on multiple model specifications and 

established methodologies from published academic research to find the optimal ways to 

minimize the impact of the curse of dimensionality. The issue is of extreme relevance in the 

current thesis as well, given that the sample size is only limited to 377 observations; thus, 

several approaches to dimensionality reduction will be applied. 

Consistently with Gu et al. (2020), we will start with Principal Component Analysis (PCA) to 

reduce the number of predictor variables. Principal Component Analysis (PCA) uses the 

variance-covariance matrix of predictor variables to structure these variables into factors 

and rank these factors by the share of explained aggregate in-sample variance. This way, a 

small selection of principal components would allow us to reduce the total number of 

variables while still retaining most of their explanatory power. Indeed, we find that the first 

five principal components explain over 50% of variance for each commodity series, while 

the value for the first ten principal components is over 70% (Table 3).  

In spite of a sound theoretical foundation, a significant drawback of PCA discussed in Gu et 

al. (2020) is the fact that principal components are constructed without taking the 

dependent variable into consideration. Indeed, while the principal components do capture 

the degree of variation of predictor variables, this degree of variation could potentially be 

less relevant for forecasting purposes than, for example, a small number of comparatively 

static variables which the dependent variable has a high fundamental dependence on. Thus, 

to take this issue into account and conduct an additional robustness check, we will be relying 

on Decision Tree Regressors. 

The methodology of using decision trees for feature selection is discussed in Kira and Rendell 

(1992): the main idea is to run a simple decision tree regressor using the full set of 

independent variables and to look at the variables in the top “leaves” of the decision tree. 
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The variables that lead to some of the first splits of the decision tree are expected to have the 

highest forecasting power: this way, decision trees tackle the drawback of principal 

components, allowing us to select the key variables based on their forecasting ability. With 

decision trees, we will limit the number of key predictor variables to five: this will allow us 

to train models without overloading them with too many variables, which is the desired 

outcome given the structure of the analyzed dataset. Besides, the predictor variables selected 

by the Decision Tree Regressor will only be tested on neural networks, since this class of 

models is significantly more parametrized than decision trees, and such a significant 

reduction in the number of variables would arguably benefit neural networks more.   

This way, we distinguish between four classes of models based on the set of predictor 

variables: full set of variables (also known as “kitchen sink” models), 5 of the first principal 

components, 10 of the first principal components, and 5 predictor variables suggested by 

decision tree regressors. The set of ML models used in the current thesis is mainly based on 

the study by Gu et al (2020), and these models can be broadly divided into two main 

categories: tree-based methods and neural networks. We now proceed with a description 

and explanation of the founding principles behind each of these classes of models.  

3.3 Tree-Based Methods 

Decision trees and tree-based models in general have proven to be highly effective in many 

prediction tasks, which led to a spike in their popularity within economics and finance 

(Athey and Imbens, 2019). In the case of commodity futures, Struck and Cheng (2020) find 

that tree-based methods significantly outperform the more conventional linear models, 

regardless of the horizon. Ease of interpretation and visualization, combined with a 

relatively fast training process and availability of boosting algorithms make decision trees a 

widely used tool that is capable of handling complex classification, regression, and 

forecasting problems. Breiman et al. (1984) outline the algorithms that are used to construct 

decision trees in modern programming languages and statistical software; however, such 

statistical packages as Keras and Tensorflow within the Python programming language make 

decision trees significantly more intuitive to build and estimate.  
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As discussed in Hull (2020), a single decision tree represents a flowchart-like structure, 

consisting of three main parts: the root, internal nodes, and leaves. Decision trees split the 

values of the dependent variables based on the optimal thresholds found in the values of 

independent variables, and the first split takes place in the root. More formally, as outlined 

in Coqueret and Guida (2020) and Athey and Imbens (2019), given a sample of size I, the 

regression tree will minimize the total variation of 𝑦𝑖 inside the subclusters. The process 

consists of two steps: first, the model will find the best splitting point for each independent 

variable, and then pick the variable that leads to the optimal split. The optimal split in 

regression problems is defined as the one which minimizes the variability (or dispersion) 

inside each subcluster.  
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The optimal splits thus satisfy the following condition: 

 𝑘∗ =  argmin
𝑘

𝑉𝐼
(𝑘)

(𝑐𝑘,∗) (6) 

However, despite the advantages, one of the key issues of decision trees discussed in Hull 

(2020) and Gu et al. (2020) is that they tend to quickly overfit the training data, unless 

sufficiently strict regularization is imposed. Of course, there are multiple ways to regularize 

decision trees: the researcher could limit the minimum number of observations per leaf, 

maximum “depth” of a decision tree, the minimum number of observations required for a 

split, etc. However, decision trees are still infamous for overfitting despite these 

regularization options, and this is part of the reason why improved and modified versions of 

tree-based models have been gaining popularity in the recent years. For this reason, we will 
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not be looking at simple decision trees within this thesis, but rather start the analysis with 

their more advanced extensions; namely, we will be looking at Random Forests, Adaptive 

Boosting, and Extreme Gradient Boosting. 

3.3.1 Random Forests 

Out of the three tree-based methods used in this thesis, random forests are the easiest to 

understand and interpret. Random forests are an ensemble method whose main idea is to 

train multiple decision trees (hence the name “forest”) and to take the average of their 

forecasts. While the “perfect” decision tree is different for each problem and is impossible to 

estimate unequivocally, intuitively it is reasonable to train multiple trees and use their 

average forecast as the final output. Apart from Gu et al. (2020), random forests were proven 

successful in forecasting asset returns, for example, in Sadorsky (2021), where the author 

demonstrates how random forests outperform the standard logit model in forecasting the 

direction of price movements of Clean Energy stock prices. Besides, another advantage of 

random forests is that they can be trained on different subsamples: predictor variables for 

each tree are selected randomly, which allows us to avoid inconclusive or overfitted results 

due to the curse of dimensionality and to reduce the risk of model misspecification at the 

same time. This way, the curse of dimensionality becomes close to irrelevant in the case of 

random forests, since the number of randomly chosen predictor variables used to estimate 

each tree in the forest, and the number of trees for that matter, are tunable parameters that 

will be chosen to optimize the out of sample forecast accuracy. 

3.3.2 Adaptive Boosting (AdaBoost) 

Adaptive Boosting or AdaBoost is the first boosting decision tree-based algorithm analyzed 

within the current master thesis, and the idea behind boosting is slightly less intuitive 

compared with random forests. While random forests try to find the optimal forecasts by 

diversifying across multiple simple models, boosted algorithms aim to learn from past 

iterations of the model and improve with each consecutive one. Boosted algorithms are 
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distinguished by the ways they “learn”, and two of the more popular ones are Adaptive 

Boosting and Extreme Gradient Boosting, both of which are used in this thesis.  

The founding principles of Adaptive Boosting are outlined in Freund and Schapire (1996, 

2012), and theoretical principles and further advancements were derived by Breiman 

(2004). The algorithm is the following:  

1. Set a matrix of equal weights 𝑤𝑖 =  𝐼−1 

2. For 𝑚 ∈ {1, 2, … , 𝑀}, find the learner that minimizes the weighted loss function  

 
∑ 𝑤𝑖𝐿(𝑙𝑚(𝑥𝑖), 𝑦𝑖)

𝑀

𝑖=1

 (7) 

3. Calculate the weight of the learner 

 𝑎𝑚 = 𝑓𝑎(𝑤, 𝑙𝑚(𝑥), 𝑦) (8) 

4. Update the weights matrix 

 𝑤𝑖 ←  𝑤𝑖𝑒
𝑓𝑤(𝑙𝑚(𝑥𝑖),𝑦𝑖 (9) 

5. Normalize the weights so that they sum to one.  

The output for each instance is thus a simple function of the following form: 

 
�̃�𝑖 =  𝑓𝑦( ∑ 𝑎𝑚𝑙𝑚(𝑥𝑖)

𝑀

𝑚=1

) (10) 

The difference between simple decision trees and AdaBoost comes in points 2 and 3: in these 

parts of the algorithm, the model sequentially adapts the weight of each learner based on its 

performance, assigning larger weights to the more accurate learners. Then the model will 

change the weights of observations within the sample, giving preference to those where the 

learners perform poorly, i.e. generate the largest errors. Thus, not only do boosted decision 

tree algorithms take multiple learners into account, but they also aim at identifying the weak 

spots in their forecasting abilities.  
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3.3.3 Extreme Gradient Boosting (XGBoost) 

XGBoost is a relatively young tree-based algorithm first introduced by Chen and Guestrin 

(2016); however, it has gained high popularity in all applications of ML, including finance. 

This algorithm builds upon the best features of AdaBoost and Random Forests, allowing for 

better regularization to avoid overfitting and reduce variance. Consistently with Gu et al. 

(2020), we will be using the Mean Squared Error loss function, for which the XGBoost seeks 

to optimize the following objective: 

 

𝑂 =  ∑(𝑦𝑖 − 𝑚𝐽−1(𝑥𝑖) − 𝑇𝐽(𝑥𝑖))2

𝐼

𝑖=1

+  ∑ Ω(𝑇𝑗)

𝐽

𝑗=1

 (11) 

Where 𝑇𝑗  is the 𝑗𝑡ℎ tree under consideration, 𝑥𝑖  is the instance, 𝑚𝐽−1(𝑥𝑖)  and  𝑇𝐽(𝑥𝑖) are the 

aggregate forecasts of past learners and the currently examined tree, respectively. The first 

term penalizes large deviations from the observed values of the dependent variable, while 

the second term controls the complexity of the model, preventing it from overfitting. These 

terms are called the error term and the regularization term respectively. According to Hull 

(2020), one of the main features of XGBoost is that the algorithm “targets” residuals from the 

previous iterations and trains each learner consecutively. For instance, if the first tree 

produced a significant upward bias, the next one will be biased downwards, thus aiming to 

minimize the aggregate error of all learners (hence the name “gradient boosting” through 

additional learners). More detailed derivations and cases of different loss functions are 

described in Chen and Guestrin (2016) and Coqueret and Guida (2020).    

3.4 Neural Networks 

Artificial Neural Networks are arguably the most powerful machine learning technique that 

is used in a wide array of applications, such as natural language processing, image processing 

and recognition, automated game-playing, etc. (Gu et al, 2020). An important caveat is that 

neural networks are widely considered some of the most complex and heavily parametrized 

ML techniques, perceived by many as “black boxes”. This way, the lack of transparency in 

their structure requires a carefully developed methodology and multiple iterations of 

different combinations of hyperparameters that will optimize the model for the task at hand. 
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Further we describe the main principles behind neural networks and outline the 

architectures used in the current thesis. We mainly refer to Gu et al. (2020), Dixon et al. 

(2020), Hull (2020), and Coqueret and Guida (2020) for the theoretical foundations behind 

neural networks. 

3.4.1 Feedforward Neural Networks 

Consistently with Gu et al. (2020), we start the analysis with simpler feedforward networks. 

Such networks consist of the input layer, hidden layers, and the output layer, and a non-

linear activation function is used to transform the input data before it is passed to the next 

layer. Each layer consists of neurons which independent variables are passed to, and the 

values in the neurons are multiplied by the optimal weights estimated by the neural network. 

This step is called forward-propagation; however, the power of neural networks lies in their 

ability to iteratively improve weights of independent variables to minimize the targeted loss 

function. Aiming to minimize the assigned loss function, the neural network will estimate the 

sensitivities of the loss function to weights and biases through a process called 

backpropagation, obtaining the information on how these weights and biases are to be 

adjusted. The estimation of the required sensitivities starts at the output layer and goes all 

the way back to the input layer, hence the name “backpropagation”. Next, the network will 

repeat the forecasting exercise, but with updated weights. This explains how the model 

“learns” and iteratively improves the forecasts based on the obtained value of the loss 

function. This step is regulated by the number of epochs, i.e. the number of times the model 

“is allowed” to re-estimate the forecasts with updated parameters and learn before it outputs 

the final forecast.   

Intuitively, the choice of the loss function and the activation function is of utmost 

importance: in the end, these functions define what the model finds accurate or inaccurate, 

and how exactly the data will be transformed within the network before the final forecasts 

are produced. Thus, we closely follow the methodology by Gu et al. (2020) when choosing 

these functions. The loss function for all architectures of neural networks will be the Huber 

loss (Huber, 1964):  
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𝐿𝛿 {

1

2
(𝑦 − 𝑓(𝑥))2                    𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤  𝛿,

𝛿|𝑦 − 𝑓(𝑥)| −  
1

2
𝛿2                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       

 (12) 

Until a certain threshold 𝛿, the Huber loss function is identical to the classical Mean Squared 

Error (MSE); however, the advantage of the former is that it is less sensitive to outliers in the 

data. If the error is above the threshold, the Huber loss function resembles the Mean Absolute 

Error, “punishing” the model less than the MSE would. This loss function is also consistent 

with the two forecast accuracy metrics we are using in this thesis (RMSFE and MAFE), 

allowing us to find a balance between the two during the optimization process.  

Regarding the activation function, consistently with Gu et al. (2020) we will be using the 

rectified linear unit (ReLU) function that has recently gained high popularity in machine 

learning literature. Such studies as Jarrett et al. (2009), Nair and Hinton (2010), and Glorot 

et al. (2011) outline the superior performance of ReLU, showing that one of its main 

advantages is that by construction it leads to “sparsity in the number of active neurons”, 

significantly reducing the computational requirements. The function is defined as follows: 

 
𝑅𝑒𝐿𝑈(𝑥) = {

0, 𝑖𝑓 𝑥 < 0  
  𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

This way, the recursive output formula for the neuron 𝑘 in the layer 𝑙 > 0 is the following: 

 𝑥𝑘
(𝑙)

= 𝑅𝑒𝐿𝑈(𝑥(𝑙−1)′𝜃𝑘
(𝑙−1)

) (14) 

Where 𝑥 is the vector of values of the neurons within layer (𝑙 − 1) and 𝜃𝑘
0 is the matrix of 

weights associated with the neuron 𝑘. 

The final output of the model has the following shape: 

 𝑔(𝑧; 𝜃) =  𝑥(𝐿−1)′𝜃(𝐿−1) (15) 

Next, we would like to proceed with a discussion of one of the most important 

hyperparameters within neural networks, namely the learning rate. This hyperparameter 

regulates how much weight the model puts on new observations and which share of 

adjustment implied by the new observations will be used to update the weights of predictor 
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variables. Thus, an extremely large learning rate can deprive the model of its memory and 

continuous past “learning”, making large adjustments to the parameters after each 

consecutive epoch. At the same time, an extremely small learning rate would significantly 

slow down the optimization process, making it difficult for the gradient to converge to the 

optimal value. Besides, another important issue emphasized by Gu et al. (2020) is that the 

learning rate has to be shrunk to zero as the gradient approaches zero in order to prevent 

the noise component from negatively affecting the gradient. The first issue is tackled by 

adding the learning rate as one of our tunable hyperparameters and choosing the optimal 

value based on out of sample performance of neural networks. In order to solve the second 

issue, we follow the approach suggested by Gu et al. (2020) and use the “learning rate 

shrinkage” algorithm called Adam, which was suggested by Kingma and Ba (2015).  

Another issue that has to be considered is the fact that due to the stochastic nature of neural 

networks, two identical models will generate different forecasts because of randomly 

generated initial weights. More formally, as the weights are transformed within the neural 

network, their initial values are generated at random, and the shallower the neural network, 

the larger the impact of this weight initialization. This way, models can show high out of 

sample forecasting accuracy by chance, resulting in an apparent lack of robustness and use 

in real world applications. To account for this issue, we follow the ensemble methodology 

suggested by Gu et al. (2020). Ensemble allows us to account for the stochastic component 

of neural networks by training several networks with identical parameter values and 

averaging their forecasts to achieve the final result. We set different random seeds for each 

neural network in the ensemble, which eliminates the possibility of initializing identical 

weights. We also set identical random seeds for all models trained in the hyperparameter 

optimization stage and take the average forecasts of three runs of each model prior to 

assessing and ranking their out of sample forecasting performance. This allows us to 

increase the robustness of our results and eliminate the “luck” component in the 

initialization of weights.  
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3.4.2 Long Short-Term Memory (LSTM) Neural Networks 

Introduced by Hochreiter and Schmidhuber (1997), the Long Short-Term Memory model is 

a Recurrent Neural Network (RNN) that has several advantages over the more conventional 

feedforward neural networks. The first advantage is that LSTM models tackle the so-called 

“Vanishing Gradient Problem”: discussed in Hochreiter (1998), the vanishing gradient 

problem occurs when the inputs of the activation function approach extreme values. For 

example, the ranges of such common activation functions as the sigmoid are bounded 

between 0 and 1; thus, the closer the transformed values are to either of these extremes, the 

closer the partial derivatives within the gradient are to zero. The vanishing gradient problem 

thus significantly complicates the backpropagation process since the model lacks 

information on the sensitivities of the loss function to the parameters. While Wang (2019) 

show that the ReLU activation function is effective in tackling this issue, it cannot completely 

eliminate the exposure of the model to the vanishing gradient problem by itself. LSTM in turn 

tackles this issue by using a “unique additive gradient structure”, which we describe in more 

detail further. 

While it is true that the vanishing gradient problem is not a too dangerous for shallower 

neural networks, there is another important property of LSTM that is significantly more 

important in the context of forecasting asset returns. Namely, by construction LSTM models 

are capable of learning and, what is more important, remembering long-term dependencies 

in the data. As argued in Wilmott (2019), recurrent neural networks are distinguished by 

feedback loops, i.e. not only is the output from any layer passed to the next one, but it is also 

used to update that same layer further in the learning process. The LSTM model builds upon 

this framework by adding the so-called “gates” – devices used to selectively let information 

through the network. The first gate within the LSTM layer is the forget gate which controls 

whether the memory is reset to zero: 

 𝑓(𝑡) =  𝜎(𝑏𝑓 + 𝑊𝑓ℎ(𝑡 − 1) + 𝑈𝑓𝑥(𝑡)) (16) 

Next, the input gate controls the updates of the memory cell and what new information will 

be stored in the current cell state: 
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 𝑔(𝑡) =  𝜎(𝑏𝑔 + 𝑊𝑔ℎ(𝑡 − 1) + 𝑈𝑔𝑥(𝑡)) (17) 

Finally, the output gate is used to determine the next hidden state ℎ𝑡  (which is the output of 

the layer): 

 𝑞(𝑡) =  𝜎(𝑏𝑞 + 𝑊𝑞ℎ(𝑡 − 1) + 𝑈𝑞𝑥(𝑡)) (18) 

 ℎ𝑡 = 𝑞(𝑡) × tanh (𝐶𝑡) (19) 

An important detail is that all these gates have the same activation function (sigmoid); 

however, the weights and biases within each gates are individual, which allows the optimal 

gating procedure to be captured from the data and learned, rather than recreated using a 

predefined pattern. At the same time, the cell state, which is the internal state of the layer 

that does not directly produce any output but instead modifies the hidden state in further 

iterations, is modified by the vector 𝐶̅: 

 𝐶̅(𝑡) =  tanh (𝑊𝐶[ℎ(𝑡−1), 𝑥(𝑡)] + 𝑏𝐶  (20) 

To sum up, the LSTM can “decide” on the optimal way to update the cell state and the hidden 

state based on this gating system, and its construction allows it to tackle both the vanishing 

gradient problem and the tendency of feedforward neural networks to “forget” long-term 

dependencies in the data. This way, the construction of LSTM makes these networks ideally 

suitable for long sequences of data, including financial time series. This class of networks is 

an extension to the methodology suggested by Gu et al. (2020), and it has been widely used 

in modern applications of machine learning, including finance. For example, we refer to 

Huang et al. (2021) where LSTM networks are used in the context of portfolio optimization, 

and Ouyang et al. (2019) where the networks are applied to forecast returns of commodity 

futures. 

3.5 Hyperparameter Optimization 

A crucial distinction between the more conventional methods from financial econometrics 

and machine learning techniques is that the latter require a much more careful approach to 

the choice of model parameters. While such common models as, for example, the Vector 

Autoregression (VAR) can be optimized by minimizing information criteria for different lag 
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lengths and experimenting with variable ordering to produce more realistic impulse 

response functions, the range of parameters is significantly larger in machine learning. Apart 

from tuning the parameters that regulate how fast or how slow the model “learns” the 

dependencies within the data, the researcher is free to decide how much time and “freedom” 

they are willing to give the model to learn. Besides, one has to remember that even the 

shallowest models will quickly overfit if they are given the freedom to, so multiple 

regularization techniques and parameters have to be considered in order to avoid this issue. 

All these considerations are taken into account through the so-called model 

hyperparameters, and multiple studies have shown that the choice of these 

hyperparameters can have an immense impact on how the models perform both in and out 

of sample.  

Technically, one can come up with an infinite number of potential models based on their 

hyperparameter values; however, estimating such a large number of models is neither 

computationally feasible nor effective. This way, preliminary research is required to narrow 

down the hyperparameter search space to make the potential array of models estimable for 

optimization algorithms. Our approach to hyperparameter optimization consists of two 

stages: during the first stage we narrow down the search space based on previous academic 

research in this field, while in the second stage we use the Keras Tuner algorithm to evaluate 

different model specifications and test their out of sample predictive accuracy. Besides, the 

algorithms will not be heavily restricted by the hyperparameter range: both shallow and 

deep, regularized and unregularized models will be tested. Hyperparameter ranges for each 

class of models can be found in Table 5. 

As we mentioned previously, an important contribution of the current master thesis is that 

we are aiming to review the approach to hyperparameter optimization in the context of asset 

pricing suggested by Gu et al. (2020) and Struck and Cheng (2020). The structure of our data 

set allows for a more rigorous optimization process and model hyperparameter search, and 

we will combine tuning algorithms with the findings from previously published academic 

research in order to deliver the optimal model specification. This way, the first step of our 

hyperparameter search is to use findings from Gu et al. (2020) to narrow down the range of 

model hyperparameters that are expected to deliver optimal performance. By narrowing 
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down the range of potential hyperparameters we reduce the computational costs, which will 

allow us to conduct an exhaustive cross-evaluation of model parameters within the pre-

specified range. As opposed to Gu et al (2020) who worked with significantly larger data set 

and tested fewer model specifications due to high computational costs, we can afford to run 

more models over a significantly smaller data set without any extreme computational power 

requirements.  

3.6 Regularization 

In this section we outline regularization techniques, which are additional measures used to 

prevent neural networks from overfitting. Consistently with Gu et al. (2020), we use the l1 

and l2 norms as our first technique. Gu et al. (2020) argue that early stopping can be 

implemented instead of l2 regularization in order to sacrifice marginal improvements in 

accuracy for a dramatically lower computational time. While this decision is justified by a 

significantly larger size of the sample, the decrease in computational requirements would be 

miniscule in our case. Thus, we implement both the l1 and l2 regularization in order to obtain 

more accurate estimates of optimal hyperparameters. We proceed with a more formal 

description of these regularization techniques, referring to Hull (2020) and Oppermann 

(2020) for the technical details. Further details and derivations can be found in Deisenroth 

et al. (2020). 

Formally, l1 and l2 norms add penalizing terms to the loss function of the neural network: 

 Ω(𝑊) = ||𝑊||1 = ∑ ∑ |𝑤𝑖𝑗|

𝑗𝑖

 (21) 

in the case of l1 regularization, and 

 Ω(𝑊) = ||𝑊||2
2 = ∑ ∑ 𝑤𝑖𝑗

2

𝑗𝑖

 (22) 

in the case of l2 regularization. These regularization terms are used to adjust the gradient of 

the initial loss function: 

 ∇𝑊�̂�(𝑊) = α × sign(W) + ∇𝑤𝐿(𝑊) (23) 
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 ∇𝑊�̂�(𝑊) = αW + ∇𝑤𝐿(𝑊) (24) 

in the case of l1 and l2 regularization respectively.  

This way, similar to conventional Lasso and Ridge regressions, l1 and l2 regularization forces 

the weights of neurons in hidden layers to converge to zero if their contribution to the 

reduction of loss is insignificant. This “insignificance” is in turn regulated by the alpha 

parameter of each norm: the larger the alpha, the higher the required “contribution” of the 

neuron. By construction, an incorrect choice of the alpha parameter can either make the 

model too simple and shallow by leaving too few hidden neurons or keep the model 

unregularized as all hidden neurons will qualify as sufficiently strong. Thus, the l1 and l2 

alphas will enter our hyperparameter optimization process as two separate parameters.  

Another important regularization technique used in this thesis is the dropout ratio, 

introduced and discussed in Srivastava et al. (2014). The idea behind the dropout is self-

explanatory: part of the neurons in each layer is deactivated at random, which reduces the 

complexity of the model. The tunable parameter can be thus interpreted as a probability that 

a neuron within a layer is deactivated during the forward-propagation process. Thus, a 

dropout ratio of 0.5 implies that one half of neurons in each layer is expected to be 

deactivated. Apart from reducing the complexity of the model, the dropout ratio prevents the 

network from “focusing” on a particular subset of neurons: by introducing a noise 

component, the dropout forces the neural network to use all available neurons. This way, the 

model becomes more robust as the network is forced to increase weights of all neurons, but 

not only those that lead to a good in-sample fit.  

Finally, another regularization technique consistent with Gu et al. (2020) is early stopping: 

this is a callback that prevents the model from further training if there are no reductions 

observed in the validation loss function. We will not be using early stopping in our 

hyperparameter optimization phase in order to obtain the most accurate values of 

parameters; however, early stopping will be implemented when we evaluate the models on 

test data. The parameter associated with early stopping is called patience – this parameter 

sets the maximum number of consecutive epochs during which the model is “free” to show 

stability or increases in the value of the loss function.  For example, a patience of 5 would 
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imply that the callback will stop the model from further training if it has not shown decreases 

in training/validation loss during five consecutive epochs. Apart from significantly reducing 

estimation time, early stopping allows us to cut off unnecessary epochs and prevent the 

model from overfitting in case the optimal out of sample performance was achieved before 

the pre-set number of epochs expired. The patience parameter will be set to 5 in all 

forecasting exercises and will not be tunable, which is consistent with Gu et al. (2020).  

3.7 Keras Tuner and Bayesian Optimization 

After narrowing down the ranges of potential hyperparameters, we rely on algorithms to 

find the optimal combinations. Specifically, we will be using an adjusted version of the 

Bayesian Optimization tuner, which is part of a Python package called Keras. By default, the 

Bayesian Optimization tuner is not capable of optimizing such parameters as the number of 

epochs, number of hidden layers, and batch size; however, due to the flexibility of the 

algorithms within the package the tuner can be easily adjusted to take these parameters into 

account.  

The basis of each tuner is consecutive testing of multiple model specifications, followed by a 

comparison of out of sample performance. The simplest forms of tuners are Random Search 

and Grid Search: the former selects 𝑛 random combinations of hyperparameters and returns 

the best performing one(s), while the latter relies on an exhaustive, “grid” search of all 

possible combinations. The main drawback of these tuners is that they require an extreme 

number of iterations to converge to optimal hyperparameters. For example, with just five 

hyperparameters and four potential values for each, the Grid Search would have to test 1,024 

neural networks which, given a more complex architecture, can take weeks. Thus, more 

optimal ways to tune hyperparameters and find the optimal values are required to make the 

task computationally feasible, reducing the number of required iterations. 

For this reason, we will be using the Bayesian Optimization tuner, referring to the works by 

Shahriari et al. (2015) and Dewancker et al. (n.d.) to describe its main advantages and the 

key principles behind the tuner. The tuner consists of two main components: a probabilistic 

surrogate model and a loss function that describes the optimality of hyperparameter 
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combinations. The former is used to describe the distributions of hyperparameters, serving 

as an approximator of the objective function which gives the tuner guidance on which 

parameters can yield higher accuracy. The latter evaluates the chosen hyperparameters and 

provides an estimate of how the model performs on validation data. This way, the main 

advantage of Bayesian optimization is that we use the knowledge from past iterations to 

choose combinations of hyperparameters in the next iterations. This allows us to 

outstandingly decrease the number of iterations required to achieve optimal values, 

significantly reducing the computational costs.  

While the Bayesian tuner will be used to find optimal hyperparameters for our neural 

networks, tree-based methods will be optimized using the Grid Search algorithm, which is 

consistent with Gu et al. (2020). The reason for this choice is that tree-based methods imply 

a much smaller number of tunable hyperparameters, and they are significantly easier to 

estimate and handle than neural networks. Thus, despite the large number of model 

specifications tested by the Grid Search, the computational costs are even lower than those 

of neural network tuning via Bayesian optimization.  

3.8 Contributions to the Literature  

Despite the fact that a significant part of the current thesis is an attempt to combine the 

methodologies by Gu et al (2020) and Guidolin and Pedio (2020), there are several important 

deviations from these studies that have to be mentioned. The first one is the 

training/validation/test data split: while Guidolin and Pedio (2020) use a 50/50 split and Gu 

et al (2020) choose the 30/20/50 one, the training/validation/ test data split is 60/15/25 in 

the current thesis. The rationale behind this choice is the fact that machine learning models 

require more data compared with more conventional econometric techniques (see for 

example van der Ploeg et al. (2014)). Given that we work with monthly data, a 50/50 split 

would yield a training subsample of only 189 observations, which would be insufficient to 

correctly train the employed machine learning models and capture the complex 

dependencies between the returns of futures and predictor variables.  



31 
 

Another deviation from Gu et al. (2020) is that we do not follow the pyramid rule suggested 

by Masters (1993) when determining the optimal number of neurons in our neural 

networks. While multiple studies confirm the efficiency of this approach, our goal is to give 

the optimization algorithms as much freedom as possible when determining the optimal 

hyperparameters, including the number of hidden layers and neurons. However, we also aim 

to control this freedom by adding more ways to regularize neural networks. For example, Gu 

et al. (2020) claim that l2 regularization is neglected in favor of early stopping, which allows 

them to dramatically reduce computational requirements at a cost of marginal decreases in 

accuracy. Computational costs are a significantly smaller problem in this thesis, so we will 

use both l1 and l2 regularization, combined with the dropout parameter. 

4. Data 

In this section we describe the structure of the dataset, explaining three categories of 

predictor variables used in the current thesis. We closely follow the study by Guidolin and 

Pedio (2020) who analyze monthly series of commodity futures returns, borrowing and 

extending their list of variables and returns series.  

4.1 Commodity Series 

The futures contracts under consideration include the following set of commodities: Light 

Crude Oil, Corn, Soybeans, Wheat, Coffee, Cocoa, Sugar, Cotton No.2, Gold, Silver, Platinum, 

Frozen Orange Juice, Lumber, and Live Cattle. We will be using monthly data on the returns 

of these commodity futures, and our sample window spans the period from January 31, 1989 

to June 30, 2020. The data was downloaded from Thomson Reuters Eikon. 

Consistently with Guidolin and Pedio (2020) and Fuertes et al. (2015), we follow the 

common approach that focuses on fully collateralized positions. This allows us to make the 

series of futures returns consistent with those of other asset classes, where long positions 

imply an initial outflow of money for an investor. Besides, the absence of leverage eliminates 

the risk of unintentional liquidation of investors’ positions. This sample period captures the 
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start of the COVD-19 pandemic, which had a significant impact on financial markets and led 

to black swan-like price changes. As this period will be included in the test subsample, the 

ability of trained models to accurately predict such dramatic price changes is of particular 

interest. Next, we will describe the predictor variables, broadly divided into three categories: 

Macroeconomic Factors, Commodity-Specific Factors, and Miscellaneous Factors. 

4.2 Macroeconomic Factors 

The first class of predictor variables is Macroeconomic Factors: 132 macroeconomic 

variables reduced to seven factors using Principal Component Analysis were borrowed from 

Ludvigson & Ng (2009). The underlying variables represent different indicators of 

macroeconomic health and stability of the U.S. economy, such as personal income, industrial 

production indices, treasury bill rates of different maturities, etc. The choice of these factors 

is consistent with Guidolin and Pedio (2020), and macroeconomic factors have been used in 

the analysis of commodity futures returns in such studies as, for example Daskalaki et al. 

(2013). The data is freely available on Sydney Ludvigson’s official website.  

4.3 Commodity-Specific Factors 

The set of commodity-specific factors is borrowed from Guidolin & Pedio (2020), and a 

similar set of factors (with the exception of Net Trading) was analyzed in Daskalaki et al. 

(2013). These factors are the Hedging Pressure (HP), Basis, and the Net Trading (NT). The 

data used to construct these factors was downloaded from Bloomberg and weekly 

“Commitment of Trader” (COT) reports which publish the data on the number and size of 

positions across commodity futures in the United States. The COT classification allows us to 

distinguish between different categories of trades, such as commercial and non-commercial.  

Guidolin and Pedio (2020) analyze potential increases in forecasting power for returns of 

commodity futures from these commodity-specific factors. The authors find that models that 

incorporate these factors do not show improvements in forecasting power when compared 

with models that only assume macroeconomic factors. While this conclusion might make the 

inclusion of commodity-specific factors appear redundant, the authors also find that 
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strategies that assume commodity-specific predictors outperform other strategies in high-

volatility regimes. This suggests that commodity-specific factors can improve the analyzed 

models during the period of market downturns, which gives us an important reason to 

include these factors in our analysis.  

Hedging Pressure (HP) is defined as the total number of short positions for hedging 

purposes, less the total number of long positions for hedging purposes, divided by the total 

number of hedge positions at time t. However, consistently with Guidolin and Pedio (2020), 

the number of total hedge positions is replaced by total open interest at time 𝑡.  

 

 
𝐻𝑃𝑗,𝑡 =  

#𝑠ℎ𝑜𝑟𝑡ℎ𝑒𝑑𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑡 − #𝑙𝑜𝑛𝑔ℎ𝑒𝑑𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑡

𝑇𝑜𝑡𝑎𝑙#ℎ𝑒𝑑𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑡
 (25) 

Basis is calculated as the relative difference between the prices of two portfolios of 

commodity futures 𝑗: one of these portfolios has a negative basis while the other has a 

positive one. This way, if the prices of futures contracts increase with time to maturity, the 

basis is positive. The futures curves used to construct this factor were downloaded from 

Bloomberg.  

 
𝐵𝑎𝑠𝑒𝑗,𝑡 =  

𝐹𝑗,𝑡 − 𝐹𝑗,𝑡+1

𝐹𝑗,𝑡
 (26) 

The NT factor is the ratio of change in net long positions in a futures contract over open 

interest. This factor allows us to capture demand for commodity futures contracts: a high NT 

would indicate that the number of long positions is growing over time. 

 
𝑁𝑇𝑗,𝑡 =  

#𝑛𝑒𝑡𝑙𝑜𝑛𝑔𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑡 − #𝑛𝑒𝑡𝑙𝑜𝑛𝑔𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑡−1

𝑂𝑝𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑗,𝑡−1
 (27) 

Finally, the Momentum Factor is constructed by estimating a series of AR(𝑝), 𝑝 𝜖 {1, 2, … , 12} 

models over the series constructed by taking the simple average returns of all commodities 

analyzed within this thesis. This allows us to consider the aggregate momentum of 

commodity futures over different horizons, capturing both long- and short-term momentum 

patterns.  
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These factors are calculated both separately for each commodity and on an aggregate level. 

We include these factors along with the average return of the fourteen futures as predictor 

variables.  

4.4 Miscellaneous Factors 

The first set of factors we include is the Fama-French 5 Factors, introduced in Fama and 

French (2015). Multiple studies have explored the links between commodity markets and 

equities, yielding ambiguous results. For example, while Chong and Miffre (2010) argue that 

there has been a decrease in correlations between commodity futures and equity indices, 

Creti et al. (2013) and de Boyrie and Pavlova (2016) contradict this result by showing a high 

degree of variation and time-dependency in such correlations. While the results are 

ambiguous, the literature has shown that the links between equities and commodities do 

exist and vary in strength over time. This way, in line with Blocher et al. (2016), we will be 

using the 5 factors by Fama and French (2015) to capture the explanatory power of equities 

and to further explore the links between commodity futures and equity markets.  

Another factor is the lagged value of returns, which is an additional proxy for momentum. As 

mentioned previously, momentum has already been taken into account by running a family 

of AR(𝑝), 𝑝 𝜖 {1, 2, … , 12} models on the series of average returns of the fourteen commodity 

futures analyzed in this thesis, consistently with Guidolin & Pedio (2020). However, 

consistently with Struck and Cheng (2020), we take the lagged return of each commodity 

futures contract to add a more commodity-specific momentum component. While moving 

averages of several lags are also suggested by the authors, the limited sample size of this 

study forces us to use predictor variables that would not lead to significant losses in the 

number of available observations.  

4.5 Transformations of Data 

The only transformation used in the current thesis is scaling; according to Bhandari (2020), 

scaling significantly improves the performance of ML methods and thus cannot be neglected. 
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The contribution of scaling is most apparent in models that rely on gradient descent (such 

as neural networks): 

 
𝜃𝑗 ≔ 𝜃𝑗 − 𝛼

1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

 (28) 

The values of independent variables 𝑥 will affect the step size of the gradient descent; thus, 

the step sizes will vary unless the independent variables are of the same scale, which can 

slow down the convergence to optimal parameter values at best, and make this convergence 

impossible at worst. More intuitively, algorithms will give preference to independent 

variables of larger magnitude and variation, and this preference will not be guided by 

fundamental reasons and/or dependencies observed in the data. This way, the distribution 

of weights of independent variables will be suboptimal, leading to lower forecasting ability 

of the chosen model.  

For this reason, we will standardize all the predictor variables using the StandardScaler() 

function from the Python package called scikit-learn: 

 
𝑋𝑖

′ =  
𝑋𝑖 −  �̅� 

𝜎𝑠
 (29) 

However, a common mistake is to scale the variables prior to splitting the data into the 

training/test subsamples. Since our goal is to make the forecasting conditions as realistic as 

possible, our models have to be isolated from any possible foresight into the test part of the 

sample. This condition can be easily violated by scaling the predictor variables using the full 

sample mean and variance of these variables, which will make the experiment unrealistic. 

To avoid this issue, the test subsample will be scaled using the mean and the variance of 

variables from the training subsample, which is a common practice in ML.  

Elaborating on the topic of preventing the model from having a foresight, we use the values 

available to investors at the beginning of each month to forecast the next month’s returns. 

This way, all models used in the current thesis share the same structure: 

 �̃�𝑡 = 𝑓(𝑋𝑡−1) (30) 
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4.6 Simulation Exercises 

Prior to applying the algorithms to forecast the returns of commodity futures, we run a 

simulation exercise that allows us to make sure that the algorithm does not contain any 

logical errors and is capable of capturing simple dependencies in the data despite the limited 

size of the sample. We generate five random variables and create the following dependency 

between them: 

 𝑦 = 𝑥1 − 5𝑥2 ∗ 0.5𝑥3 + 1.5𝑥4 + 𝑎~𝑈(0,1)𝑥5 (31) 

 

Where 𝑥1 ~ U(0,1), 𝑥2~N(5,2), 𝑥3 is the inverse of the cumulative probability density 

function of the standard normal distribution, where a uniformly distributed random variable 

acts as “probability”, 𝑥4~N(10, 4), and 𝑥5~U(0,5). 𝑥5 is also multiplied by a uniformly 

distributed random variable to add a noise component to the equation. 

We find that after hyperparameter tuning, both the Feedforward neural networks and LSTM 

models capture this simple dependency almost perfectly (Figure 1 and Figure 2), which 

allows us to conclude that the algorithms do not contain logical errors and can be tested on 

more complex dependence structures. It is also worth mentioning that the Bayesian Tuner 

algorithm found optimal hyperparameters after only 15 runs or less, while we will be using 

125-150 runs of the tuner when optimizing the models for commodity series.  

5. Empirical Results 

The purpose of this section is to describe the performance of our hyperparameter tuning 

algorithms and to assess the out of sample forecasting performance of the optimal ML 

models. We also describe the results of our portfolio exercise and summarize the findings of 

our approach to dimensionality reduction.  
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5.1 Out of Sample Accuracy and Model Specifications 

In this section we summarize the out of sample forecasting performance of the analyzed 

machine learning models and compare it with the AR(1) benchmark. We run three different 

tree-based methods on three separate sets of predictor variables (“kitchen sink”, five 

principal components, and ten principal components) and two types of neural networks on 

four sets of predictor variables (“kitchen sink, five principal components, ten principal 

components, and five key variables selected by the Decision Tree Regressor). Thus, we are 

analyzing the performance of 17 models, excluding the benchmark AR(1).  

Our first finding is consistent with the one by Gu et al. (2020): according to the Keras Tuner 

algorithm, most commodity series are best predicted by shallower models with fewer 

parameters and a relatively relaxed regularization. Indeed, most of our optimal neural 

networks contain one or two hidden layers, and the optimal tree-based methods are 

significantly below the upper bound of allowed complexity. An interesting result is that some 

optimal neural networks do not even include a hidden layer, which makes them identical to 

simple linear regressions. These results are also consistent with our initial expectations 

since the complexity of the model directly correlates with the size of the analyzed dataset. 

The robustness of this finding is confirmed by a relatively large range of regularization 

parameters: one could argue that a more complex model would imply heavier regularization, 

and the algorithm simply chose shallower models in order to avoid overfitting. However, 

since the range of potential regularizing terms was large, the algorithm had the “freedom” to 

test deep and heavily regularized models, and the properties of the Bayesian tuner allowed 

it to adjust regularization to avoid both overfitting and underperformance. Given that the 

search space spanned the set of values that would successfully prevent the deeper models 

from overfitting, we can conclude that shallower models do indeed perform better in the 

context of forecasting commodity futures returns, and this result is consistent with the one 

found by Gu et al. (2020) in the case of equities.   

As in Guidolin and Pedio (2020), we do not find any evidence of consistent outperformance 

of ML techniques: most of our forecasts converge to the unconditional mean, indicating that 

most of the time the models cannot capture the complex dependencies between commodity 
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futures and explanatory variables, given the adopted research design. Despite the fact that 

some models do not converge to the long-run mean, their forecasts fluctuate in a relatively 

small range, exhibiting a significantly lower degree of volatility compared with the targeted 

series of returns. Considering the fact that the models did capture simpler dependencies 

within our simulation exercise, we conclude that data-hungry ML techniques are not suitable 

for this kind of analysis, and more conventional econometric techniques that rely on a 

significantly smaller number of parameters can show better performance.  

According to the RMSFE metric, the benchmark AR(1) model showed the lowest forecast 

error in three out of fourteen cases – the best performance of any individual model under 

our consideration. Out of the 11 remaining commodity futures series, tree-based methods 

showed the lowest forecast error in 4 cases, and neural networks in 7. It is also worth 

mentioning that apart from the benchmark AR(1), only two models showed the lowest 

forecast error in more than one case: these models are Random Forests with the full set of 

predictor variables and LSTM with 5 principal components. Given our discussion about the 

curse of dimensionality, this performance of random forests might appear surprising, since 

dimensionality reduction techniques were not used. However, it is worth mentioning that 

random forests rely on variable selection algorithms: a tunable number of variables is 

selected at random to train each separate tree within the forest. This way, a large number of 

predictor variables was an advantage rather than a disadvantage for the random forest, since 

it allowed for higher diversification among learners and a larger set of available information 

that did not overcomplicate the overall model. In the case of LSTM, fewer variables allowed 

the network to focus on understanding the dependency rather than optimizing the weights 

of all predictor variables, which was highly beneficial given the limited size of the sample.  

The results suggested by the MAFE metric are slightly different: although the AR(1) still 

shows the smallest error in 3 cases out of 14, the same overall performance is achieved by 

AdaBoost with 10 principal components. Two more models return the lowest error more 

than once in the case of MAFE: Feedforward Neural Network with 5 variables selected by the 

decision tree regression, and LSTM with 5 principal components.  A full summary of model 

performance with respect to the accuracy metrics can be found in Table 8 and Table 9.   
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5.2 Portfolio Exercise 

After evaluating the out of sample forecast accuracy metrics, we proceed with an application 

of the best performing models on a portfolio level. Our experiment borrows from the one 

conducted by Gu et al. (2020): the forecasted returns are sorted from highest to lowest, and 

we assume a long position in the top four commodities and a short position in the bottom 

four commodities. Given a generally positive correlation between commodity futures (Table 

2), we also place a restriction that the long position is only assumed if the forecasted value 

is positive, and vice versa. Next, we create the forecast tables for two portfolios. The first 

(ML) portfolio combines the forecasts of the best-performing models (including AR(1)), 

while the second portfolio is based solely on AR(1) forecasts. 

We find that the ML portfolio significantly outperforms the benchmark in terms of 

cumulative return. According to our experiment, the ML portfolio yields a 63.60% return 

over the period from September 30, 2012 to April 30, 2020 as opposed to a 6.57% return 

generated by the benchmark portfolio over the same period. Despite a better performance 

of the ML portfolio, there are several issues related to the robustness of the given 

experiment, and the main one lies in sample selection. Since most forecasts converged to the 

long-term mean, some commodities were only selected because of their better long-term 

performance, but not accurate forecasts. One example of such a commodity is lumber: this 

futures contract landed among the “top-performers” in most cases; however, the “optimal” 

model failed to capture the volatility of its returns. Besides, given the fact that we fail to 

provide undisputable evidence that any particular ML method can consistently outperform 

the benchmark, future outperformance of the ML portfolio is questionable. Thus, despite the 

fact that the ML portfolio yielded a higher out of sample return compared with the 

benchmark, the lack of robustness and the disability of some optimal models to capture the 

volatility patterns make the strategy practically inapplicable. A comparison of the 

performance of these portfolios can be found in Table 10 and Figure 3.  
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6. Conclusion 

The purpose of this thesis was to test the out of sample forecasting power of machine 

learning models applied to model commodity futures returns. Our goal was also to analyze 

the approach to hyperparameter optimization suggested by Gu et al. (2020) and investigate 

whether modern tuning algorithms can suggest a better approach to choosing the most 

suitable architectures of ML models. Moreover, we extended the proposed set of models by 

adding Long Short-Term Memory networks that were proven successful in modeling various 

time series, including financial data. Finally, consistently with Gu et al. (2020), we 

constructed a portfolio of commodity futures based on the forecasts of the optimal ML 

models for each commodity and compared the out of sample performance of this portfolio 

with that of a portfolio suggested by the benchmark AR(1) model. 

Our first finding is that each commodity requires separate modelling and hyperparameter 

tuning. Despite the fact that commodity futures are mostly driven by common factors and 

the correlation among the returns is generally positive, our experiment showed that 

different factors have a different impact on different commodities, and thus different model 

specifications and predictors are required to accurately forecast returns. This can be 

detected not only in the fact that the optimal models are generally different for each 

commodity, but also in the fact that the optimal predictor variables suggested by the decision 

tree regression do differ. Indeed, we find that commodities such as corn and silver are more 

forecastable from momentum and aggregate commodity factors, while light crude oil and 

lumber are mostly anticipated by the general macroeconomic outlook. A surprising finding 

is that the Fama-French factors were chosen by the decision tree regression as one of the five 

key variables in 6 cases out of 14, indicating that the linkages between commodity markets 

and equities are indeed strong, which can be used for forecasting purposes. While the 

academic research still debates about the strength and consistency of the linkages between 

the two asset classes (see Chong and Miffre, 2010 and Boyrie and Pavlova, 2016), we argue 

that equity factors improve the forecasting power in our case.  

Similar to Guidolin and Pedio (2020), we find that neither tree-based methods nor neural 

networks are capable of consistently outperforming the benchmark AR(1). Given the 
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complexity of the dynamic dependence patterns between commodity futures and the 

predictors analyzed in this thesis, we believe the sample window is not sufficiently large to 

efficiently capture this dependence, which leads a large number of models to mean revert to 

the unconditional mean (or to values extremely close to it) as their implied forecast. Despite 

this fact, ML methods outperform the benchmark in 11 cases out of 14 according to both 

accuracy metrics; however, this outperformance is rarely (if ever) robust and we cannot 

recommend using our methodology in real world investment applications. Despite the fact 

that the ML methods allowed us to construct a portfolio whose cumulative out of sample 

return is around 57 percentage points larger than that of the benchmark portfolio, the 

robustness of this outperformance remains questionable. 

Despite our failure to let a consistently better out of sample forecasting accuracy emerge, we 

believe that our thesis extends the existing body of research by introducing a consistent 

approach to hyperparameter tuning and model selection, compared with those suggested in 

Gu et al. (2020) and Struck and Cheng (2020). Algorithms such as the Keras tuner allow us 

to test the out of sample performance of a significantly larger number of architectures, which 

brings us closer to the optimal model specification. While the one “optimal” ML model is 

impossible to find, tuning algorithms allow us to make a significantly more educated choice 

of model specifications, ensuring the strongest possible out of sample performance. When 

structured and applied correctly, optimization algorithms find the right balance between 

shallow and deep, highly regularized and relaxed neural networks, taking their out of sample 

performance as the main criterion. This is confirmed by the results of our simulation exercise 

(Figures 1 and 2), which show that even despite the limited sample size the models can 

capture simple dependencies in the data after only fifteen tests conducted by the tuner.  

We believe that further tests of our approach on larger sets of data would be beneficial, since 

the probability to find higher portfolio gains and forecasting power using this approach is by 

definition larger when compared against the approach that assumes default 

hyperparameters that do not imply any optimization with respect to the analyzed dataset. 

Indeed, our approach targets optimal out of sample performance based on the patterns 

observed in the training subsample, while models that assume default hyperparameters do 

not use the training subsample to identify the optimal hyperparameters, which makes these 



42 
 

models suboptimal.  The sole drawback of the tuner algorithms is their high computational 

costs: the average computer can spend weeks searching for the optimal model if an 

unreasonably large search space and a large amount of data is analyzed. However, as we 

showed in this thesis, guided tuning algorithms such as the Bayesian tuner, combined with 

search space limitations suggested by earlier research can make the task computationally 

feasible, especially for new, fast machines.  

A useful potential extension of this thesis is an adaptation of the suggested methodology to 

a larger sample and a different frequency of observations. While neural networks are known 

to be “data-hungry” and to perform best on significantly larger datasets, the low frequency 

of observations is arguably the main reason why the models failed to deliver accurate out of 

sample forecasts and capture the volatility patterns exhibited by the commodity series. 

While it is true that some predictors (such as commodity specific factors, for example) can 

be measured weekly at most, a larger focus could be put on predictor variables generated 

from the series of returns themselves, such as momentum and volatility estimates with 

longer rolling windows, as suggested in the study by Struck and Cheng (2020). While higher 

frequency data is also characterized by more noise and short-term fluctuations (discussed 

e.g. by Shiller, 2013), it also gives ML techniques more opportunities to learn and capture 

patterns, which can arguably mitigate the effect of short-term volatility. 

Besides, a higher frequency would also enable the researcher to study interactions between 

predictors which, as argued by Gu et al. (2020), lead to higher predictive power in the case 

of equities. Another potential extension would be to test the same methodology on a 

classification problem: instead of forecasting the magnitude of returns, neural networks and 

hyperparameter optimization algorithms could be used to forecast the probabilities of 

upward/downward movements in futures prices. Leung et al. (2000) find that conventional 

classification models such as logit and probit lead to higher utility gains compared with 

models that aim to predict the magnitude of returns, and Dixon et al. (2016) find potential 

risk-adjusted portfolio gains from using deep neural networks to forecast the sign of asset 

returns. 

  



43 
 

 

End of Master Thesis I 
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MASTER THESIS II 
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7. Extension: Classification Problem 

In this section we extend the employed methodology by reformulating the objective of the 

thesis into a classification problem. In other words, instead of forecasting the exact scale of 

price deviations of commodity futures, we will now focus on the direction of price changes, 

transforming the returns into a set of binary variables that take the value of one if the return 

is nonnegative and zero otherwise. As we mentioned previously, multiple studies (such as 

Leung et al., 2000) show increased efficiency of classification models when compared against 

regression-based approaches, both in terms of forecasting power and potential portfolio-

level gains. 

Given the inability of our models to consistently outperform the AR(1) benchmark when 

forecasting the exact scale of commodity futures price changes, it is still uncertain whether 

the same classes of models can outperform such benchmark classification models as logit 

and probit. Thus, we will compare the forecasting accuracy of benchmark logit models with 

that of the two types of neural networks used in the thesis: feedforward neural networks and 

LSTM.  Although the analysis will be limited to neural networks, we will be using the same 

sets of predictor variables, which gives us a total of eight networks. 

7.1 Introduction and Adjustments to the Methodology 

Consistently with Leung et al. (2000), we will be using logit as our benchmark model; 

however, in order to make the comparison as full and transparent as possible, we will be 

using four versions of logit models based on the sets of predictor variables. This way, the 

performance of neural networks will be compared against that of four benchmark logit 

models with the following sets of predictor variables: full set, five first principal components, 

ten first principal components, and five key features selected by decision tree regressor. The 

same sets of predictor variables will be used in feedforward and LSTM neural networks for 

consistency, which gives us a total of four benchmark models and eight neural networks. We 

will rely on studies by Leung et al. (2000) and Dixon et al. (2016) when adapting our 

methodology to the classification case. However, the core methodology, set of variables, and 
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design of the portfolio exercise will remain consistent with Gu et al. (2020) and Guidolin and 

Pedio (2020).  

As the first step of the analysis, we implement several adjustments to the methodology in 

order to approach the classification problem in a more consistent and accurate way. Namely, 

we start by substituting the Huber loss function used in the original exercise with binary 

cross-entropy, which is a more common choice in classification exercises (Dixon et al., 2020).  

According to Godoy (2018), binary cross-entropy is a loss function of the following form: 

 
𝐻𝑝(𝑞) = −

1

𝑁
∑ 𝑦𝑖log (

𝑁

𝑖=1

𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)log (1 − 𝑝(𝑦𝑖)) (32) 

Where 𝑦𝑖 is the value of the dependent variable on date 𝑖 and 𝑝(𝑦𝑖) is the probability that the 

dependent variable takes the value of 1 on date 𝑖. This loss function uses natural logarithms 

of forecasted probabilities to penalize the model for large deviations from the actual, 

observable value of the dependent variable, which makes binary cross-entropy a more 

suitable choice for classification exercises than the classic MSE or Huber loss.  

Besides, we use the sigmoid activation function in the output layer of each of our neural 

networks: this bounds the output of neural networks between 0 and 1, allowing us to 

interpret the output as probabilities of upward futures price movements. Given that 

Tensorflow and Keras use the linear activation function by default, the use of sigmoid allows 

us to get a smoother distribution of forecasts in the tails, since the linear activation function 

can return both negative “probabilities” and “probabilities” above one.  

 
𝑆(𝑥) =  

1

1 + 𝑒−𝑥
 (33) 

Finally, we use the ratio of correct forecasts to total forecasts (hereafter Accuracy) as our key 

performance metric, as opposed to RMSFE and MAFE in the original exercise: the choice of 

this metric is consistent with Leung et al. (2000) and Dixon et al. (2016). Probabilities of 0.5 

and above will be considered as upward movement forecasts, and these forecasts will be 

compared with the binary dependent variables from the test subsample. 
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The first step of the analysis is to re-run the set of optimization algorithms in order to find 

the optimal hyperparameters for the set of analyzed neural networks. Given the set of 

adjustments implemented in the methodology and the overall goal of the exercise, it would 

be unreasonable to expect the initial sets of hyperparameters to deliver an optimal 

performance, so re-estimating hyperparameter values is a vital step in ensuring that the 

neural networks are optimized for the new task. Thus, we use 100-125 runs of the Bayesian 

optimization tuner in order to find new optimal hyperparameters for each neural network 

(see Table 11 for optimal hyperparameter combinations). Consistently with our initial 

methodology, we are using an ensemble of five neural networks to estimate forecasted 

probabilities: this allows us to minimize the contribution of randomness inherent to all 

network-based methods.  

After estimating the probability forecasts, we reconstruct the portfolio exercise discussed by 

Gu et al. (2020), adapting it to the new, classification problem. Namely, we retrieve the 

probabilities of upward price movements from the best-performing model for each 

commodity futures, assuming a long position in the top four commodities and a short 

position in the bottom four commodities based on the retrieved probabilities. Thus, 

forecasted probabilities determine the choice of assets to be included in the portfolio, and 

the preference is given to the more “certain” forecasts. The performance of this ML portfolio 

is compared with that of four benchmark portfolios constructed based on the forecasted 

probabilities retrieved from the four benchmark logit models. Besides, given the generally 

positive correlation between commodity futures (Table 2), the original restriction is still in 

place: a long (short) position can be assumed only if the forecasted probability of an upward 

price movement is above (below) 0.5. Finally, we assume that all commodity futures 

contracts within each portfolio have equal absolute weights.  

7.2 Empirical Results 

In this section we describe the out of sample performance of the analyzed neural networks 

relative to the benchmark logit models and discuss the results of our portfolio exercise.  
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One of the very first observations is that the learning process of our neural networks is far 

from smooth. Well-trained neural networks are expected to consistently maximize 

validation accuracy and minimize validation loss as the number of epochs increases; 

however, in our case these indicators exhibit an unreasonable degree of volatility, suggesting 

that models cannot capture the complex dependencies between the observable time series. 

Similarly to our initial exercise, a significant portion of networks converges to long-run mean 

probability forecasts, failing to adapt the forecasts to changes in predictor variables.  This 

finding is consistent with our initial regression-based exercise, which suggests that the 

analyzed data frequency does not provide a sufficient number of observations to ensure a 

smooth training process.  

We also find that consistently with the original regression exercise, ML models fail to 

regularly outperform the benchmark models based on out of sample forecast accuracy 

metrics, which can be seen from Table 12. Logit models maximize the out of sample forecast 

accuracy in five cases out of fourteen, suggesting that more conventional econometric 

techniques cannot be neglected in modelling return series of commodity futures. It is also 

worth mentioning that all best-performing models show a consistent accuracy of at least 

50%, suggesting that a combination of the analyzed methods can generate positive expected 

returns in real-world investing applications; however, further robustness checks are 

required. 

Despite the failure to consistently outperform the benchmark models in terms of forecast 

accuracy, the results of our portfolio exercise show evidence of a significant outperformance 

of the ML portfolio. Namely, the ML portfolio generates a 37.9% return over the testing 

period from September 2012 to June 2020, while the best-performing benchmark portfolio 

generates the return of 19.64%. The best-performing benchmark portfolio is based on the 

forecasts of logit models that use five optimal DTR variables as the set of predictors; this 

portfolio is followed by the ten principal component benchmark portfolio, the “kitchen sink” 

benchmark portfolio, and finally the five principal component portfolio which is the only 

portfolio that generated a negative cumulative return over the testing period. Surprisingly, 

while the ML portfolios outperform the benchmark in both regression and classification 

stages of the analysis, we find that the classification-based portfolio generates a lower 
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absolute return over the testing period. Indeed, the returns generated by the regression-

based ML portfolio are larger by 25.7 percentage points, which is inconsistent with the study 

by Leund et al. (2000), who find higher portfolio level gains from the use of classification-

based models.  

All other findings are expectedly consistent with our initial regression-based exercise. 

Namely, our hyperparameter tuning algorithms still rely on shallower model specifications, 

and the set of optimal predictor variables suggested by the decision tree regression is similar 

to the one used in the case of regression-based methods.  

7.3 Conclusion 

The purpose of this extension was to compare the out of sample performance of ML 

algorithms with that of a set of benchmark models to see whether consistent benchmark 

outperformance and increased portfolio-level gains could be obtained. The extension 

focuses on binary classification and forecasted probabilities of price movements rather than 

the magnitude of returns. Thus, we compared the performance of two classes of neural 

networks (feedforward networks and LSTM) with a set of benchmark logit models using 

both out of sample forecast accuracy metrics and aggregate portfolio performance.  

Our main finding is that the set of analyzed ML techniques cannot consistently outperform 

conventional benchmark models in both cases: while the AR(1) benchmark model was 

selected as the optimal model in three cases out of fourteen in the regression part of the 

thesis, different kinds of logit models outperform the ML techniques in five cases out of 

fourteen in the classification part. The lack of training consistency indicates that the current 

sample size is insufficient to accurately capture the complex dependencies between 

commodity futures and predictors, allowing us to conclude that higher frequency data has to 

be analyzed in order to ensure that the training process of data-hungry ML algorithms is 

conducted smoothly. The biggest empirical problem was the observed tendency of neural 

networks to converge to their long-run forecasts, exhibiting minor deviations from these 

long-run probabilities. This problem is similar to the one observed in the regression part of 

the thesis, where forecasts would converge to sample mean returns, rather than 
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probabilities of upward price movements. Considering a highly volatile training process of 

the analyzed neural networks, we believe that using a larger sample of higher frequency data 

(as suggested by Struck and Cheng, 2020) could be useful in solving this issue. Besides, 

higher frequency data would allow us to focus on rolling window volatility and mean return 

estimates that were proven successful in forecasting returns of commodity futures (Struck 

and Cheng, 2020). Finally, Gu et al. (2020) argue that interactions between predictor 

variables carry information useful for forecasting returns of equities, and higher data 

frequency data would enable us to test similar interactions in the case of commodity futures.   

Despite the failure to consistently outperform the benchmark, we find significant portfolio-

level gains from the use of ML models in both regression and classification parts of the thesis 

(Figure 3 and Figure 4 respectively). Surprisingly, we find smaller portfolio level gains in the 

classification part of the thesis, which contradicts the finding by Leung et al. (2000) who 

claim that classification-driven investment decisions lead to higher potential portfolio-level 

returns. However, it is important to mention that given the observed failure to consistently 

outperform the benchmark models and the tendency of the analyzed ML models to converge 

to their ergodic mean forecasts, these potential gains have to be treated with caution, and 

their application in real-world investment decisions is limited.  

This way, a final potential extension would be the application of the analyzed ML techniques 

on higher frequency data, which would provide the data-hungry neural networks with a 

more suitable environment to operate in. Despite covering a relatively large time period 

(namely, from 1989 to 2020), we use monthly frequency which gives us a total of 377 

observations, which is shown to be insufficient to ensure a smooth training process of the 

analyzed neural networks. Thus, it would be useful to test the applied ML algorithms on 

higher frequency data to see whether a larger number of observations can increase the 

forecasting power of the analyzed neural networks and ensure a smoother training process.   
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Table 1 
  

Descriptive Statistics for Commodity Futures Returns and Factors 
            

Panel A Commodity Futures Returns 

  
Mean Median 

Standard 
Deviation 

Skewness Excess Kurtosis 

Light Crude Oil 0.0068 0.0077 0.0961 0.6137 6.8628 

Corn 0.0031 0.0000 0.0739 0.2241 0.7525 

Soybeans 0.0025 -0.0002 0.0676 -0.2984 1.2123 

Wheat 0.0035 -0.0020 0.0802 0.6784 2.5456 

Coffee 0.0038 -0.0096 0.1021 1.0520 3.2504 

Cocoa 0.0044 0.0000 0.0827 0.4072 0.8372 

Sugar 0.0038 -0.0020 0.0855 0.2799 1.0797 

Cotton 0.0030 0.0044 0.0756 0.1008 0.3717 

Gold 0.0049 0.0004 0.0440 0.1609 1.2003 

Silver 0.0061 -0.0017 0.0796 0.1742 0.9695 

Platinum 0.0034 0.0037 0.0610 0.1511 6.9707 

Frozen Orange Juice 0.0034 -0.0001 0.0903 0.5575 1.1142 

Lumber 0.0055 0.0030 0.0820 0.2845 0.4934 

Live Cattle 0.0018 0.0028 0.0468 -0.6000 2.8585 

            

            

Panel B Hedging Pressure 

  
Mean Median 

Standard 
Deviation 

Skewness Excess Kurtosis 

Light Crude Oil 0.0660 0.0512 0.1060 0.1091 -0.6767 

Corn 0.0178 0.0247 0.1295 -0.1814 -0.6744 

Soybeans 0.0931 0.1124 0.1627 -0.1701 -0.7748 

Wheat 0.0168 -0.0080 0.1514 0.4941 -0.6627 

Coffee 0.1218 0.1252 0.1629 -0.0093 -1.0584 

Cocoa 0.1313 0.1338 0.1565 -0.0764 -0.5274 

Sugar 0.1553 0.1705 0.1885 0.0184 -0.6801 

Cotton 0.0908 0.1093 0.2226 -0.2890 -0.8171 

Gold 0.2145 0.3031 0.2778 -0.6497 -0.8482 

Silver 0.3871 0.3930 0.1598 -0.1588 -0.4378 

Platinum 0.4488 0.4864 0.2349 -0.6253 -0.4085 

Frozen Orange Juice 0.1828 0.2256 0.2606 -0.3952 -0.6611 

Lumber 0.0712 0.0498 0.1988 0.0950 -0.7914 

Live Cattle 0.0701 0.0629 0.1072 0.0136 -0.9274 
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Table 1 (continued) 
  

Descriptive Statistics for Commodity Futures Returns and Factors 
            

Panel C Basis 

  
Mean Median 

Standard 
Deviation 

Skewness Excess Kurtosis 

Light Crude Oil -0.0020 -0.0023 0.0231 -2.5719 19.3927 

Corn -0.0200 -0.0240 0.0307 3.5431 21.0297 

Soybeans -0.0020 -0.0077 0.0218 2.7195 9.4695 

Wheat -0.0204 -0.0248 0.0306 1.5734 4.1569 

Coffee -0.0170 -0.0211 0.0293 1.8336 5.9854 

Cocoa -0.0108 -0.0098 0.0201 0.0424 1.2058 

Sugar -0.0024 -0.0055 0.0492 -0.0141 4.2124 

Cotton -0.0102 -0.0146 0.0389 2.0637 12.8607 

Gold -0.0025 -0.0023 0.0018 -0.6308 -0.1248 

Silver 0.0008 -0.0026 0.0502 13.5710 182.8021 

Platinum 0.0360 -0.0007 0.1758 4.9210 23.2381 

Frozen Orange Juice -0.0089 -0.0095 0.0288 0.7264 0.7839 

Lumber -0.0205 -0.0162 0.0451 -0.0972 0.5998 

Live Cattle 0.0030 0.0004 0.0362 0.4075 -0.0789 

            

            

Panel D Net Trading 

  
Mean Median 

Standard 
Deviation 

Skewness Excess Kurtosis 

Light Crude Oil 0.0074 0.0043 0.0506 0.2870 1.2997 

Corn 0.0060 -0.0002 0.0746 -0.0267 8.2348 

Soybeans 0.0074 0.0094 0.0819 -0.3725 3.9093 

Wheat 0.0071 0.0005 0.0910 0.1013 4.4926 

Coffee 0.0112 0.0206 0.0981 0.2754 0.5015 

Cocoa 0.0072 0.0099 0.0784 -0.1107 1.0623 

Sugar 0.0078 0.0062 0.0782 -0.1134 0.2407 

Cotton 0.0098 0.0119 0.1024 0.1827 1.3654 

Gold 0.0073 0.0003 0.0944 0.4213 1.2585 

Silver 0.0056 0.0032 0.0814 0.4144 2.6158 

Platinum 0.0093 0.0086 0.1081 0.3042 1.1899 

Frozen Orange Juice 0.0056 0.0020 0.1095 0.4082 0.7570 

Lumber 0.0085 -0.0054 0.1506 1.8085 11.0145 

Live Cattle 0.0074 0.0031 0.0754 0.1642 0.3888 
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Table 1 (continued) 
  

Descriptive Statistics for Commodity Futures Returns and Factors 
            

Panel E Aggregate Commodity Factors 

  
Mean Median 

Standard 
Deviation 

Skewness Excess Kurtosis 

Hedging Pressure 0.0986 0.1004 0.0754 -0.3121 -0.2061 

Basis -0.0053 -0.0074 0.0145 2.0420 6.8304 

Net Trading 0.0043 0.0036 0.0413 -1.5402 15.5081 
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Table 2 
  

Correlation Matrix of Commodity Series 
                              

  

Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar 

Cotton 
No.2 

Gold Silver Platinum 
Orange 

Juice 
Lumber 

Live 
Cattle 

Light Crude 
Oil 1.00 0.10 0.14 0.07 0.04 0.15 0.11 0.16 0.18 0.25 0.27 0.04 0.17 0.12 

Corn 0.10 1.00 0.67 0.62 0.18 0.17 0.12 0.32 0.17 0.22 0.13 0.15 0.11 -0.01 

Soybeans 0.14 0.67 1.00 0.45 0.19 0.11 0.10 0.36 0.17 0.17 0.17 0.13 0.16 -0.01 

Wheat 0.07 0.62 0.45 1.00 0.18 0.10 0.09 0.19 0.16 0.12 0.09 0.12 0.13 0.05 

Coffee 0.04 0.18 0.19 0.18 1.00 0.14 0.12 0.10 0.17 0.19 0.16 0.15 0.06 -0.06 

Cocoa 0.15 0.17 0.11 0.10 0.14 1.00 0.14 0.14 0.16 0.20 0.16 0.06 0.08 0.00 

Sugar 0.11 0.12 0.10 0.09 0.12 0.14 1.00 0.12 0.11 0.13 0.23 0.07 0.11 0.09 

Cotton No.2 0.16 0.32 0.36 0.19 0.10 0.14 0.12 1.00 0.09 0.14 0.28 0.06 0.20 0.02 

Gold 0.18 0.17 0.17 0.16 0.17 0.16 0.11 0.09 1.00 0.72 0.46 0.07 0.12 -0.04 

Silver 0.25 0.22 0.17 0.12 0.19 0.20 0.13 0.14 0.72 1.00 0.56 0.06 0.17 0.01 

Platinum 0.27 0.13 0.17 0.09 0.16 0.16 0.23 0.28 0.46 0.56 1.00 0.03 0.18 0.10 

Orange Juice 0.04 0.15 0.13 0.12 0.15 0.06 0.07 0.06 0.07 0.06 0.03 1.00 0.02 0.02 

Lumber 0.17 0.11 0.16 0.13 0.06 0.08 0.11 0.20 0.12 0.17 0.18 0.02 1.00 0.09 

Live Cattle 0.12 -0.01 -0.01 0.05 -0.06 0.00 0.09 0.02 -0.04 0.01 0.10 0.02 0.09 1.00 
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Table 3 
  

Shares of In-Sample Variance Explained by the First 10 Principal Components 
                      

  1 2 3 4 5 6 7 8 9 10 

Light Crude Oil 0.2549 0.3443 0.4232 0.4884 0.5409 0.5903 0.6291 0.6664 0.7014 0.7343 

Corn 0.2557 0.3504 0.4278 0.4960 0.5499 0.5995 0.6412 0.6810 0.7169 0.7507 

Soybeans 0.2561 0.3466 0.4215 0.4891 0.5410 0.5892 0.6296 0.6687 0.7053 0.7406 

Wheat 0.2556 0.3425 0.4157 0.4795 0.5300 0.5766 0.6181 0.6575 0.6936 0.7286 

Coffee 0.2557 0.3421 0.4137 0.4786 0.5354 0.5856 0.6266 0.6651 0.6995 0.7315 

Cocoa 0.2560 0.3402 0.4133 0.4787 0.5324 0.5796 0.6205 0.6591 0.6931 0.7267 

Sugar 0.2551 0.3382 0.4107 0.4749 0.5258 0.5732 0.6160 0.6550 0.6885 0.7205 

Cotton 0.2549 0.3402 0.4147 0.4806 0.5349 0.5833 0.6230 0.6606 0.6950 0.7274 

Gold 0.2570 0.3602 0.4402 0.5040 0.5551 0.6041 0.6428 0.6803 0.7133 0.7452 

Silver 0.2559 0.3464 0.4185 0.4830 0.5340 0.5813 0.6220 0.6606 0.6947 0.7270 

Platinum 0.2557 0.3492 0.4290 0.4962 0.5519 0.5989 0.6391 0.6761 0.7103 0.7411 

Orange Juice 0.2552 0.3404 0.4133 0.4767 0.5293 0.5777 0.6190 0.6568 0.6914 0.7227 

Lumber 0.2557 0.3425 0.4214 0.4839 0.5355 0.5828 0.6244 0.6615 0.6966 0.7276 

Live Cattle 0.2546 0.3370 0.4091 0.4720 0.5234 0.5728 0.6158 0.6545 0.6894 0.7213 
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Table 4 
  

Optimal Variables Selected by Decision Tree Regressor 
 

The table reports the five predictor variables that carry the highest explanatory power 

according to the Decision Tree Regressor, ranked from highest to lowest. CMA, RMW, Mkt-

Rf, SMB are Fama-French factors, F# are macroeconomic factors (Ludvigson and Ng, 

2009), L(commodity) are lagged returns of respective commodity futures, _aggr implies 
that the aggregate commodity factors are used.  

  1 2 3 4 5 

Light Crude Oil CMA F7 basis HP_aggr AR(2) 

Corn AR(10) AR(11) Mkt-Rf NT basis_aggr 

Soybeans basis F2 AR(11) AR(10) F1 

Wheat AR(5) NT_aggr RMW L(Wheat) basis_aggr 

Coffee F1^3 HP F4 AR(5) SMB 

Cocoa AR(10) AR(11) basis F6 AR(3) 

Sugar L(Sugar) basis_aggr AR(12) AR(9) F1^3 

Cotton No.2 NT_aggr basis F2 F1 HP_aggr 

Gold F3 F1 AR(5) avg_rend AR(1) 

Silver AR(10) AR(5) basis_aggr SMB F4 

Platinum NT_aggr F1 basis AR(11) F1^3 

Orange Juice Basis_aggr AR(4) NT_aggr AR(3) F6 

Lumber NT_aggr F7 AR(7) F6 F2 

Live Cattle CMA AR(7) F5 F7 AR(12) 
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1 Number of layers including the input layer but excluding the output layer. Only the networks estimated on five principal components 
and five optimal predictor variables include 1 layer as a potential hyperparameter value. Other networks are assumed to have at least one 
hidden layer.  

Table 5 
  

Search Space for Hyperparameter Optimization 

          

Neural Networks   Random Forests 

Hyperparameter Range/Value   Hyperparameter Range/Value 

Learning Rate (1e-6, 1e-1)   Maximum Depth {1, 2, 3 ,4, 5, 10} 

Batch Size {1, 2, 3, …, 7}   Maximum Number of Features {auto, sqrt, 3, 5, 7, 10, 20, 34} 

Number of Epochs {min=3, max=103, step=4}   Minimum Samples per Leaf {2, 4, 8, 12} 

Dropout Rate {0, 0.25, 0.5}   Number of Estimators {50, 100, 200, 250} 

Number of Layers* {1, 2, …, 5}1       

Number of Neurons per Layer {min=3, max=33, step=3}   Boosting Algorithms 

L1 rate (1e-8, 1e-3)   Hyperparameter Range/Value 

L2 rate (1e-8, 1e-3)   Number of Estimators {20, 35, 50, 100, 150} 

Loss Function Huber   Learning Rate {0.1, 0.25, 0.5, 0.75, 1} 

Optimizer Adam       

Activation Function ReLU       

Ensemble 5       

Early Stopping Patience 5       

Tuner Simulations {125, 150}       
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Table 6  
Optimal Hyperparameters: Tree-Based Methods  

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel A Random Forests, Full Set of Variables 

Max. Depth 1 1 1 1 1 1 3 1 2 2 10 2 3 4 

Max. Features sqrt 20 auto 34 5 34 sqrt 3 5 7 3 sqrt 7 5 

Min. Samples/Leaf 4 2 4 12 4 12 2 4 12 4 8 12 12 2 

Estimators 50 50 250 100 100 50 50 50 50 50 50 200 50 100 

Panel B Random Forests, 5 Principal Components 

Max. Depth 1 1 2 2 1 1 5 1 1 3 2 1 3 1 

Max. Features sqrt auto sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt 

Min. Samples/Leaf 8 8 12 4 12 8 8 12 8 12 8 8 12 4 

Estimators 100 50 50 100 200 50 100 100 50 50 100 100 100 100 

Panel C Random Forests, 10 Principal Components 

Max. Depth 1 2 1 1 1 1 5 1 5 1 1 1 3 2 

Max. Features sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt sqrt auto sqrt sqrt sqrt 

Min. Samples/Leaf 12 8 8 12 12 12 4 4 12 12 4 8 12 4 

Estimators 50 50 50 100 50 100 100 50 100 50 200 100 100 100 

Panel D AdaBoost, Full Set of Variables 

Learning Rate 0.1 0.5 0.1 0.5 0.25 0.25 0.25 0.1 1 0.1 0.1 0.5 0.1 0.1 

Estimators 20 35 20 20 50 20 20 50 35 50 150 150 100 50 

Panel E AdaBoost, 5 Principal Components 

Learning Rate 0.1 0.25 0.25 0.1 0.5 0.1 0.25 0.25 0.1 0.1 1 0.1 0.1 0.25 

Estimators 35 20 100 50 35 50 100 20 150 100 35 35 35 20 

Panel F AdaBoost, 10 Principal Components 

Learning Rate 0.25 0.1 0.1 0.25 0.25 0.25 0.1 0.5 0.1 0.25 1 0.1 0.1 0.1 

Estimators 50 50 50 20 35 20 20 50 20 50 100 20 20 20 

Panel G XGBoost, Full Set of Variables 

Learning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 

Estimators 20 20 20 20 20 20 20 20 20 20 35 20 20 20 
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Table 6 (continued) 
  

Optimal Hyperparameters: Tree-Based Methods 

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel H XGBoost, 5 Principal Components 

Learning Rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Estimators 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

Panel I XGBoost, 10 Principal Components 

Learning Rate 0.0001 0.0001 0.0001 0.1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.25 

Estimators 1 50 150 1 1 1 150 1 1 1 1 150 1 1 
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Table 7  
Optimal Hyperparameters: Neural Networks 

 

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel A Feedforward Neural Network, Full Set of Variables 

Batch Size 2 1 1 1 5 6 1 1 2 6 1 7 3 5 

Epochs 67 83 19 95 23 99 91 103 99 83 99 79 95 31 

Dropout 
Rate 

0.5 0.25 0.25 0 0.25 0.25 0.5 0.5 0.5 0 0.25 0.25 0 0 

Learning 
Rate 

0.0067 0.0033 0.0028 0.0008 0.0115 0.0004 0.0048 0.0027 0.0024 0.0002 0.0014 0.0126 0.0064 0.0026 

Layers 2 3 2 2 4 3 3 2 2 5 2 5 2 3 

Units (1) 3 3 3 12 3 3 6 3 3 6 15 3 6 21 

Units (2) 15 3 3 15 6 12 18 24 27 9 27 6 12 33 

Units (3) - 6 - - 3 3 27 - - 27 - 33 - 30 

Units (4) - - - - 24 - - - - 15 - 3 - - 

Units (5) - - - - - - - - - 9 - 6 - - 

L1 Rate 0.000406 0.000417 8.25E-05 0.000386 0.000277 2.58E-07 0.000118 4.62E-06 0.000421 0.000134 0.000147 5.9E-07 0.000174 4.97E-05 

L2 Rate 0.000153 0.000359 0.000925 0.000353 0.000346 0.000698 0.000723 0.000377 0.000275 2.93E-05 0.000573 4.04E-05 0.000644 0.00052 

Panel B Feedforward Neural Network, 5 DTR Features 

Batch Size 6 4 7 2 6 7 4 5 7 3 3 1 7 2 

Epochs 91 35 67 59 91 39 63 99 103 47 51 47 67 59 

Dropout 
Rate 

0 0.5 0.25 0.5 0 0 0 0 0 0 0 0.5 0 0.25 

Learning 
Rate 

0.059777 0.069973 0.005635 0.038596 0.075986 0.048298 0.023968 0.002334 0.037206 0.015455 0.005227 0.014833 0.032392 0.007549 

Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 3 21 24 21 21 3 21 18 3 3 6 6 15 6 

Units (2) - - - - - - - - - - - - - - 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 1.48E-05 1.47E-05 8E-05 2.07E-05 1.21E-05 6.07E-05 9.75E-05 0.000141 3.32E-05 2.14E-05 4.93E-05 1.23E-05 1.59E-05 0.000123 

L2 Rate 0.000322 0.000168 0.000373 0.000543 0.000962 0.000168 0.000139 0.000577 0.000189 9.93E-05 0.000522 0.000596 0.000626 0.000473 
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Table 7 (continued) 
Optimal Hyperparameters: Neural Networks 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel C Feedforward Neural Network, 5 Principal Components 

Batch Size 7 4 7 7 2 7 7 6 7 3 7 4 5 1 

Epochs 103 95 75 99 99 67 103 95 99 67 83 103 91 103 

Dropout 
Rate 

0.5 0 0.5 0.25 0 0.25 0 0.25 0 0.5 0 0.25 0 0 

Learning 
Rate 

0.041703 0.024614 0.062995 0.021979 0.011303 0.080743 0.038358 0.056008 0.012172 0.029922 0.011816 0.011317 0.067003 0.049049 

Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 33 6 30 6 3 3 3 6 9 9 21 33 6 24 

Units (2) - - - - - - - - - - - - - - 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 0.000316 0.000267 0.000129 0.000393 0.000169 7.82E-06 0.000916 3.25E-07 0.000262 7.61E-05 0.000157 0.000208 4.59E-05 4.53E-05 

L2 Rate 1.24E-07 2.26E-05 0.000607 0.000702 0.000787 0.000728 9.85E-05 0.000703 0.000626 0.000188 0.000219 0.000309 0.000533 0.000742 

Panel D Feedforward Neural Network, 10 Principal Components 

Batch Size 6 5 6 1 6 7 3 7 3 5 1 3 2 5 

Epochs 35 39 63 27 91 99 67 47 83 87 11 99 63 11 

Dropout 
Rate 

0.5 0.5 0.5 0.25 0 0 0.25 0 0 0.5 0.5 0.5 0 0.5 

Learning 
Rate 

0.012269 0.007363 0.02419 0.001111 0.08209 0.047543 0.005024 0.004107 0.028876 0.0405 0.021503 0.068404 0.017511 0.017593 

Layers 4 2 2 3 3 2 2 2 2 2 2 3 3 2 

Units (1) 3 30 27 3 6 15 6 6 3 9 12 21 9 3 

Units (2) 27 3 18 6 3 3 6 3 18 9 9 9 12 18 

Units (3) 6 - - 6 6 - - - - - - 30 3 - 

Units (4) 33 - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 6.74E-06 3.86E-05 3.02E-07 0.00037 2.18E-06 1.62E-06 4.83E-05 0.000229 1.68E-05 1.86E-05 2.07E-06 8.94E-08 6.39E-06 4.03E-05 

L2 Rate 0.000296 0.000402 0.00072 0.000888 0.000156 0.000925 0.000656 0.000843 0.000958 0.000603 0.000189 0.000108 0.000133 0.000768 
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Table 7 (continued)   
Optimal Hyperparameters: Neural Networks 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel E LSTM, Full Set of Variables 

Batch Size 1 1 4 1 1 7 1 1 2 1 1 2 7 1 

Epochs 3 3 71 7 83 103 3 7 91 3 103 11 103 99 

Dropout 
Rate 

0.5 0 0.5 0.5 0 0 0 0.5 0 0.25 0.5 0.5 0.5 0 

Learning 
Rate 

0.043119 0.005572 0.006083 0.000503 0.016084 0.028182 0.004613 0.002188 0.002704 0.01497 0.018451 0.002798 0.000656 0.003354 

Layers 2 2 2 4 2 4 2 2 2 2 2 2 2 2 

Units (1) 3 3 3 3 3 3 3 3 6 3 3 3 12 3 

Units (2) 6 12 3 9 3 3 9 3 33 30 3 33 3 3 

Units (3) - - - 3 - 3 - - - - - - - - 

Units (4) - - - 18 - 3 - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 2.17E-05 0.000194 0.000195 0.000863 3.01E-05 2.4E-05 0.000102 0.00028 1.39E-05 3.21E-05 6.49E-05 0.000157 0.000444 2.9E-05 

L2 Rate 0.000764 0.000766 0.000469 0.000818 0.000643 0.00053 0.000955 0.000223 4.36E-05 0.000895 0.000577 0.000238 0.000384 0.000225 

Panel F LSTM, 5 DTR Features 

Batch Size 2 2 7 2 6 7 7 7 7 1 5 6 7 3 

Epochs 99 19 27 75 39 67 83 7 11 3 15 87 75 99 
Dropout 

Rate 
0 0.25 0.5 0 0.5 0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.5 0.25 

Learning 
Rate 

0.004456 0.021682 0.019293 0.002263 0.022597 0.022494 0.092257 0.028752 0.047458 0.014502 0.006075 0.011711 0.002071 0.005718 

Layers 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 6 6 3 3 6 3 15 3 3 3 3 9 6 15 

Units (2) 21 - - - - - - - - - - - - - 

Units (3) 3 - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 4.66E-05 1.04E-05 1.03E-05 0.000682 3.09E-05 4.87E-05 1.13E-05 3.62E-05 3.41E-05 2.34E-05 0.000342 3.6E-05 7.77E-05 2.46E-05 

L2 Rate 0.000787 0.000544 0.000814 0.000726 0.000923 0.000461 0.000415 0.000713 0.000406 0.000844 0.000202 0.000195 0.000739 0.000507 
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Table 7 (continued) 
  

Optimal Hyperparameters: Neural Networks 
                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel G LSTM, 5 Principal Components 

Batch Size 6 3 1 7 6 1 1 6 6 1 7 6 1 2 

Epochs 103 99 19 99 67 47 103 103 87 103 19 47 103 63 

Dropout 
Rate 

0.25 0.5 0.5 0 0.5 0 0 0 0 0.25 0 0.5 0.5 0.5 

Learning 
Rate 

0.011969 0.040869 0.041703 0.044532 0.09315 0.011587 0.004446 0.095951 0.008284 0.09862 0.053503 0.019933 0.026645 0.001143 

Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 15 9 3 3 33 3 3 33 12 3 3 3 3 24 

Units (2) - - - - - - - - - - - - - - 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 0.000132 0.000013 2.13E-05 0.000276 3.02E-07 0.000494 0.000462 1.87E-06 5.45E-05 6.06E-06 0.000116 1.36E-05 4.64E-05 9.23E-05 

L2 Rate 0.000252 0.000286 1.24E-07 0.000812 0.000105 0.000495 0.000849 0.000226 0.000719 0.000995 1.06E-05 0.00063 0.000146 6.46E-05 

Panel H LSTM, 10 Principal Components 

Batch Size 1 2 7 6 2 1 1 3 3 1 1 1 4 7 

Epochs 3 31 91 3 47 103 11 91 67 87 59 103 3 103 

Dropout 
Rate 

0 0 0.5 0 0 0 0 0.5 0 0 0 0.5 0.5 0 

Learning 
Rate 

0.023557 0.002516 0.014143 0.042705 0.00036 0.057369 0.018593 0.0097 0.00442 0.008642 0.012524 0.04099 0.010541 0.007191 

Layers 3 5 2 2 2 2 2 2 2 2 2 2 2 5 

Units (1) 3 3 3 3 3 3 3 9 3 3 3 3 3 3 

Units (2) 3 3 12 3 12 3 12 3 6 3 3 3 3 6 

Units (3) 3 3 - - - - - - - - - - - 3 

Units (4) - 3 - - - - - - - - - - - 6 

Units (5) - 18 - - - - - - - - - - - 3 

L1 Rate 0.000107 0.000185 1.32E-05 1.99E-05 0.000875 5.88E-06 6.64E-06 1.49E-05 0.000282 1.36E-05 4.64E-05 3.46E-05 2.39E-05 1.47E-05 

L2 Rate 1.24E-07 0.000812 0.000706 0.000495 0.000984 0.000198 8.56E-05 0.000259 7.73E-05 0.00063 0.000989 0.000339 0.000685 0.000351 
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Table 8 
  

Root Mean Square Error Out of Sample Forecast Performance (RMSFE) 
 

This table reports the out of sample RMSFE of the analyzed models against the AR(1) benchmark. The OOS forecasts cover the period from 
September 30, 2012 to June 30, 2020.  
                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel A Benchmark 

AR(1) 0.1157 0.0627 0.0600 0.0765 0.0838 0.0675 0.0699 0.0634 0.0420 0.0734 0.0604 0.0854 0.0868 0.0559 

Panel B Tree-Based Methods 

Random Forests (Full) 0.1167 0.0631 0.0595 0.0757 0.0837 0.0689 0.0679 0.0627 0.0413 0.0734 0.0622 0.0866 0.0879 0.0563 

Random Forests (5 PC) 0.1177 0.0630 0.0600 0.0767 0.0843 0.0691 0.0684 0.0633 0.0416 0.0741 0.0612 0.0869 0.0900 0.0557 

Random Forests (10 PC) 0.1170 0.0634 0.0591 0.0768 0.0838 0.0695 0.0699 0.0630 0.0421 0.0732 0.0609 0.0871 0.0877 0.0554 

AdaBoost (Full) 0.1173 0.0628 0.0620 0.0775 0.0908 0.0677 0.0690 0.0627 0.0408 0.0731 0.0614 0.0900 0.0892 0.0559 

AdaBoost (5 PC) 0.1174 0.0638 0.0620 0.0775 0.0943 0.0695 0.0695 0.0632 0.0419 0.0748 0.0603 0.0892 0.0910 0.0552 

AdaBoost (10 PC) 0.1171 0.0660 0.0616 0.0778 0.0880 0.0694 0.0696 0.0627 0.0410 0.0754 0.0608 0.0890 0.0882 0.0548 

XGBoost (Full) 0.1193 0.0639 0.0604 0.0766 0.0859 0.0696 0.0723 0.0635 0.0412 0.0741 0.0631 0.0864 0.0887 0.0572 

XGBoost (5 PC) 0.1168 0.0655 0.0588 0.0773 0.0846 0.0682 0.0697 0.0633 0.0413 0.0733 0.0619 0.0876 0.0878 0.0555 

XGBoost (10 PC) 0.1170 0.0629 0.0601 0.0770 0.0837 0.0691 0.0692 0.0633 0.0414 0.0731 0.0608 0.0866 0.0864 0.0560 

Panel C Neural Networks 

Feed-Forward NN (Full) 0.1165 0.0624 0.0594 0.0771 0.0842 0.0691 0.0689 0.0616 0.0413 0.0732 0.0607 0.0869 0.0866 0.0555 

Feed-Forward NN (5 PC) 0.1178 0.0609 0.0629 0.0765 0.0867 0.0724 0.0689 0.0632 0.0423 0.0721 0.0675 0.0882 0.0887 0.0557 

Feed-Forward NN (10 PC) 0.1173 0.0621 0.0591 0.0771 0.0866 0.0705 0.0687 0.0632 0.0412 0.0790 0.0610 0.0867 0.0883 0.0555 

Feed-Forward NN (5 Var.) 0.1163 0.0621 0.0581 0.0813 0.0839 0.0695 0.0689 0.0634 0.0430 0.0729 0.0619 0.0900 0.0868 0.0563 

LSTM (Full) 0.1164 0.0621 0.0608 0.0769 0.0835 0.0689 0.0691 0.0632 0.0412 0.0721 0.0602 0.0867 0.0864 0.0556 

LSTM (5PC) 0.1171 0.0650 0.0591 0.0804 0.0837 0.0690 0.0687 0.0647 0.0422 0.0720 0.0611 0.0872 0.0863 0.0555 

LSTM (10PC) 0.1164 0.0639 0.0609 0.0769 0.0837 0.0784 0.0696 0.0632 0.0412 0.0729 0.0622 0.0873 0.0875 0.0559 

LSTM (5 Variables) 0.1181 0.0625 0.0643 0.0777 0.0833 0.0695 0.0729 0.0634 0.0412 0.0721 0.0604 0.0869 0.0865 0.0555 
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Table 9 
  

Mean Absolute Error Out of Sample Forecast Performance (MAFE) 
 

This table reports the out of sample MAFE of the analyzed models against the AR(1) benchmark. The OOS forecasts cover the period from 
September 30, 2012 to June 30, 2020. 
                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Frozen 
Orange 

Juice 
Lumber 

Live 
Cattle 

  Benchmark 

AR(1) 0.0770 0.0479 0.0463 0.0595 0.0612 0.0542 0.0542 0.0497 0.0333 0.0574 0.0494 0.0661 0.0677 0.0424 

  Tree-Based Methods 

Random Forests (Full) 0.0784 0.0486 0.0465 0.0581 0.0616 0.0559 0.0535 0.0493 0.0330 0.0582 0.0511 0.0665 0.0687 0.0432 

Random Forests (5PC) 0.0787 0.0482 0.0473 0.0585 0.0622 0.0559 0.0530 0.0496 0.0332 0.0586 0.0501 0.0667 0.0690 0.0424 

Random Forests (10PC) 0.0786 0.0480 0.0461 0.0592 0.0613 0.0560 0.0544 0.0491 0.0338 0.0574 0.0498 0.0671 0.0685 0.0423 

AdaBoost (Full) 0.0784 0.0477 0.0485 0.0593 0.0713 0.0557 0.0535 0.0488 0.0324 0.0578 0.0504 0.0693 0.0699 0.0428 

AdaBoost (5PC) 0.0788 0.0491 0.0490 0.0596 0.0744 0.0565 0.0536 0.0496 0.0333 0.0593 0.0495 0.0691 0.0699 0.0420 

AdaBoost (10PC) 0.0787 0.0508 0.0491 0.0600 0.0645 0.0561 0.0542 0.0485 0.0324 0.0603 0.0490 0.0680 0.0685 0.0415 

XGBoost (Full) 0.0793 0.0492 0.0473 0.0586 0.0659 0.0574 0.0579 0.0484 0.0328 0.0592 0.0500 0.0677 0.0699 0.0437 

XGBoost (5PC) 0.0782 0.0497 0.0462 0.0597 0.0621 0.0550 0.0543 0.0496 0.0327 0.0572 0.0507 0.0670 0.0682 0.0424 

XGBoost (10PC) 0.0786 0.0480 0.0465 0.0593 0.0612 0.0557 0.0537 0.0497 0.0328 0.0573 0.0498 0.0667 0.0675 0.0428 

  Neural Networks 

Feed-Forward NN (Full) 0.0783 0.0476 0.0458 0.0594 0.0623 0.0557 0.0531 0.0489 0.0327 0.0568 0.0497 0.0671 0.0692 0.0422 

Feed-Forward NN (5PC) 0.0792 0.0471 0.0492 0.0589 0.0648 0.0580 0.0532 0.0497 0.0334 0.0556 0.0564 0.0669 0.0691 0.0427 

Feed-Forward NN (10PC) 0.0789 0.0473 0.0455 0.0594 0.0662 0.0564 0.0525 0.0495 0.0325 0.0649 0.0500 0.0667 0.0695 0.0423 

Feed-Forward NN (5 Var.) 0.0784 0.0473 0.0446 0.0629 0.0587 0.0572 0.0524 0.0491 0.0336 0.0566 0.0507 0.0694 0.0681 0.0426 

LSTM (Full) 0.0781 0.0473 0.0472 0.0593 0.0607 0.0558 0.0534 0.0499 0.0327 0.0551 0.0491 0.0668 0.0675 0.0423 

LSTM (5PC) 0.0781 0.0503 0.0455 0.0621 0.0610 0.0562 0.0521 0.0502 0.0338 0.0552 0.0501 0.0669 0.0672 0.0424 

LSTM (10PC) 0.0781 0.0491 0.0472 0.0593 0.0611 0.0633 0.0543 0.0498 0.0324 0.0571 0.0512 0.0672 0.0687 0.0424 

LSTM (5 Variables) 0.0793 0.0477 0.0505 0.0599 0.0595 0.0558 0.0583 0.0497 0.0324 0.0551 0.0494 0.0671 0.0676 0.0424 
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Table 10 
  

Comparison of Performance of the ML Portfolio Against the Benchmark, by Month 
              

Date Return (ML) 
Return 

(Benchmark) 
Portfolio 

Value (ML) 

Portfolio 
Value 

(Benchmark) 

Cumulative 
Return (ML) 

Cumulative 
Return 

(Benchmark) 
9/30/2012 -0.2424% -0.0686% 997.58 999.31 -0.2424% -0.0686% 

10/31/2012 1.4492% -0.9858% 1012.03 989.46 1.2032% -1.0537% 
11/30/2012 0.6804% -0.4484% 1018.92 985.03 1.8918% -1.4974% 
12/31/2012 2.7448% 0.3342% 1046.89 988.32 4.6885% -1.1683% 
1/31/2013 -1.0313% 0.5914% 1036.09 994.16 3.6088% -0.5837% 
2/28/2013 1.0074% -0.2015% 1046.53 992.16 4.6526% -0.7840% 
3/31/2013 -0.1302% -0.8006% 1045.16 984.22 4.5163% -1.5783% 
4/30/2013 1.4535% -1.1489% 1060.35 972.91 6.0354% -2.7091% 
5/31/2013 -0.0989% -1.8203% 1059.31 955.20 5.9306% -4.4801% 
6/30/2013 2.0270% -1.1103% 1080.78 944.59 8.0778% -5.5406% 
7/31/2013 3.6344% 2.0107% 1120.06 963.59 12.0058% -3.6413% 
8/31/2013 -2.5600% 0.8851% 1091.38 972.12 9.1385% -2.7884% 
9/30/2013 1.6073% -0.4240% 1108.93 967.99 10.8927% -3.2006% 

10/31/2013 0.6029% 0.1281% 1115.61 969.23 11.5612% -3.0766% 
11/30/2013 2.2535% 0.5035% 1140.75 974.11 14.0753% -2.5885% 
12/31/2013 -0.9407% -0.7192% 1130.02 967.11 13.0022% -3.2891% 
1/31/2014 -0.6943% 0.0387% 1122.18 967.48 12.2177% -3.2517% 
2/28/2014 -2.4536% -2.3957% 1094.64 944.31 9.4643% -5.5695% 
3/31/2014 0.0661% -0.9805% 1095.37 935.05 9.5366% -6.4953% 
4/30/2014 -1.8513% -0.6213% 1075.09 929.24 7.5087% -7.0762% 
5/31/2014 2.0445% -0.2323% 1097.07 927.08 9.7067% -7.2921% 
6/30/2014 1.3607% -0.2561% 1112.00 924.71 11.1995% -7.5295% 
7/31/2014 2.7008% -0.1546% 1142.03 923.28 14.2028% -7.6724% 
8/31/2014 1.1303% -0.2921% 1154.94 920.58 15.4937% -7.9421% 
9/30/2014 1.8744% -1.6576% 1176.59 905.32 17.6585% -9.4680% 

10/31/2014 -1.4300% 1.1241% 1159.76 915.50 15.9760% -8.4503% 
11/30/2014 1.9619% 1.0492% 1182.51 925.10 18.2514% -7.4897% 
12/31/2014 1.7603% 1.7572% 1203.33 941.36 20.3329% -5.8641% 
1/31/2015 -0.1596% 0.9726% 1201.41 950.51 20.1408% -4.9486% 
2/28/2015 0.8886% -0.5069% 1212.08 945.70 21.2084% -5.4304% 
3/31/2015 0.9141% 1.3278% 1223.16 958.25 22.3164% -4.1748% 
4/30/2015 -1.1885% -2.4559% 1208.63 934.72 20.8627% -6.5282% 
5/31/2015 0.3161% -0.5053% 1212.45 930.00 21.2447% -7.0004% 
6/30/2015 1.1512% -1.1275% 1226.41 919.51 22.6405% -8.0490% 
7/31/2015 -2.3334% -0.1162% 1197.79 918.44 19.7789% -8.1559% 
8/31/2015 -1.1302% -0.9961% 1184.25 909.29 18.4251% -9.0707% 
9/30/2015 0.1759% -0.7801% 1186.33 902.20 18.6334% -9.7801% 

10/31/2015 2.4092% 2.2020% 1214.91 922.07 21.4915% -7.7934% 
11/30/2015 -0.4394% -1.8630% 1209.58 904.89 20.9577% -9.5112% 
12/31/2015 0.9369% 0.7651% 1220.91 911.81 22.0910% -8.8188% 
1/31/2016 0.0173% -0.7056% 1221.12 905.38 22.1121% -9.4622% 
2/29/2016 -0.6078% -1.1424% 1213.70 895.04 21.3699% -10.4965% 
3/31/2016 1.4204% 2.9370% 1230.94 921.32 23.0938% -7.8678% 
4/30/2016 2.8583% 3.9320% 1266.12 957.55 26.6122% -4.2451% 
5/31/2016 3.3834% 3.8695% 1308.96 994.60 30.8959% -0.5399% 
6/30/2016 -5.2088% 0.8554% 1240.78 1003.11 24.0778% 0.3109% 
7/31/2016 -1.2343% -1.9381% 1225.46 983.67 22.5463% -1.6333% 
8/31/2016 0.7401% -0.5665% 1234.53 978.10 23.4533% -2.1905% 
9/30/2016 1.7098% 2.7087% 1255.64 1004.59 25.5641% 0.4588% 

10/31/2016 -0.8309% -2.1285% 1245.21 983.21 24.5208% -1.6794% 
11/30/2016 1.8476% -0.3979% 1268.22 979.29 26.8215% -2.0707% 
12/31/2016 0.7000% -0.5331% 1277.09 974.07 27.7092% -2.5928% 
1/31/2017 -2.4172% -0.3866% 1246.22 970.31 24.6222% -2.9694% 
2/28/2017 0.2981% -1.4613% 1249.94 956.13 24.9938% -4.3873% 
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Table 10 (continued) 
  

Comparison of Performance of the ML Portfolio Against the Benchmark, by Month 
              

Date Return (ML) 
Return 

(Benchmark) 
Portfolio 

Value (ML) 

Portfolio 
Value 

(Benchmark) 

Cumulative 
Return (ML) 

Cumulative 
Return 

(Benchmark) 

3/31/2017 1.0799% 0.6969% 1263.44 962.79 26.3435% -3.7209% 

4/30/2017 2.0644% -0.0334% 1289.52 962.47 28.9518% -3.7530% 

5/31/2017 0.1057% 1.1242% 1290.88 973.29 29.0881% -2.6710% 

6/30/2017 2.7981% 0.6783% 1327.00 979.89 32.7001% -2.0109% 

7/31/2017 -1.2715% 0.5629% 1310.13 985.41 31.0128% -1.4593% 

8/31/2017 1.6063% -0.6851% 1331.17 978.66 33.1173% -2.1344% 

9/30/2017 1.9932% 0.4111% 1357.71 982.68 35.7705% -1.7321% 

10/31/2017 1.1248% -0.0119% 1372.98 982.56 37.2977% -1.7438% 

11/30/2017 0.0475% 0.3056% 1373.63 985.57 37.3630% -1.4435% 

12/31/2017 0.0685% 0.5427% 1374.57 990.91 37.4570% -0.9086% 

1/31/2018 2.2251% 1.3951% 1405.16 1004.74 40.5156% 0.4738% 

2/28/2018 0.8375% -1.3307% 1416.92 991.37 41.6924% -0.8632% 

3/31/2018 -3.1069% -1.4588% 1372.90 976.91 37.2901% -2.3093% 

4/30/2018 1.4462% 0.3672% 1392.76 980.49 39.2757% -1.9506% 

5/31/2018 0.9880% -0.8704% 1406.52 971.96 40.6517% -2.8040% 

6/30/2018 0.1567% -0.2555% 1408.72 969.48 40.8720% -3.0524% 

7/31/2018 -0.4700% -0.7397% 1402.10 962.31 40.2100% -3.7695% 

8/31/2018 1.4146% -0.3750% 1421.93 958.70 42.1933% -4.1304% 

9/30/2018 0.9576% 0.7151% 1435.55 965.55 43.5550% -3.4448% 

10/31/2018 0.6266% -2.8508% 1444.54 938.03 44.4545% -6.1974% 

11/30/2018 2.3776% 1.7610% 1478.89 954.54 47.8890% -4.5455% 

12/31/2018 1.1481% 2.5025% 1495.87 978.43 49.5868% -2.1568% 

1/31/2019 0.6958% -0.9453% 1506.28 969.18 50.6276% -3.0817% 

2/28/2019 0.9289% 0.3883% 1520.27 972.95 52.0269% -2.7054% 

3/31/2019 -0.0405% 0.0735% 1519.65 973.66 51.9653% -2.6339% 

4/30/2019 0.1090% -0.0865% 1521.31 972.82 52.1309% -2.7181% 

5/31/2019 0.3744% 0.8702% 1527.01 981.28 52.7005% -1.8716% 

6/30/2019 1.3567% 1.4065% 1547.72 995.09 54.7722% -0.4914% 

7/31/2019 -1.0819% 0.1600% 1530.98 996.68 53.0977% -0.3322% 

8/31/2019 -0.3191% -0.9483% 1526.09 987.23 52.6092% -1.2773% 

9/30/2019 1.6885% 3.1565% 1551.86 1018.39 55.1860% 1.8389% 

10/31/2019 0.7455% 0.8812% 1563.43 1027.36 56.3429% 2.7363% 

11/30/2019 0.3934% 1.2190% 1569.58 1039.89 56.9579% 3.9887% 

12/31/2019 0.2205% 0.6995% 1573.04 1047.16 57.3040% 4.7161% 

1/31/2020 0.4824% 0.3764% 1580.63 1051.10 58.0627% 5.1103% 

2/29/2020 -0.5032% 0.6095% 1572.67 1057.51 57.2673% 5.7510% 

3/31/2020 3.4015% 1.5500% 1626.17 1073.90 62.6168% 7.3901% 

4/30/2020 3.7081% 4.0529% 1686.47 1117.43 68.6468% 11.7426% 

5/31/2020 -4.4465% -5.8269% 1611.48 1052.31 61.1480% 5.2314% 

6/30/2020 1.5236% 1.2683% 1636.03 1065.66 63.6033% 6.5661% 
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Table 11 
Optimal Hyperparameters: Neural Networks, Classification Problem 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel A Feedforward Neural Networks, Full Set of Features 

Batch Size 1 1 3 7 1 7 1 4 1 1 1 1 1 1 

Epochs 99 103 103 103 103 103 103 103 103 99 103 51 103 47 

Drop Rate 0 0.5 0.5 0.5 0 0.5 0.5 0 0.25 0.5 0.5 0 0.5 0 

Learning 
Rate 

0.0814 0.0603 0.0508 0.0587 0.0419 0.0417 0.0803 0.0594 0.0587 0.0419 0.0339 0.0355 0.0462 0.0802 

Layers 5 1 1 1 5 1 1 5 5 5 1 5 1 5 

Units (1) 3 33 3 3 3 3 3 3 6 3 33 3 3 3 

Units (2) 3 - - - 3 - - 3 12 18 - 6 - 3 

Units (3) 12 - - - 3 - - 3 3 27 - 3 - 3 

Units (4) 3 - - - 3 - - 3 3 3 - 3 - 3 

Units (5) 30 - - - 3 - - 3 3 33 - 18 - 12 

L1 Rate 1.4E-05 0.000996 9.18E-05 0.000865 0.000446 0.000968 0.000739 0.000311 0.000166 6.86E-05 0.000155 5.6E-05 4.14E-06 0.000104 

L2 Rate 1.24E-07 0.000116 0.000437 0.000378 0.000693 1.24E-07 0.000116 0.000437 0.000561 0.00076 0.000722 0.000708 0.000896 0.000288 

Panel B Feedforward Neural Networks, 5 Principal Components 

Batch Size 1 1 7 4 1 7 1 2 1 7 7 7 7 7 

Epochs 39 99 99 103 103 103 103 103 103 103 103 103 103 103 

Drop Rate 0.5 0 0 0 0.5 0.5 0 0.25 0.25 0.25 0.5 0.5 0 0 

Learning 
Rate 

0.007202 0.025242 0.058352 0.032399 0.023809 0.060678 0.019776 0.023165 0.079134 0.059837 0.026645 0.032043 0.094235 0.009855 

Layers 1 1 1 1 1 1 1 1 5 1 1 1 1 1 

Units (1) 9 33 12 6 33 3 3 33 3 3 3 33 3 33 

Units (2) - - - - - - - - 3 - - - - - 

Units (3) - - - - - - - - 3 - - - - - 

Units (4) - - - - - - - - 6 - - - - - 

Units (5) - - - - - - - - 3 - - - - - 

L1 Rate 0.000175 0.000477 0.000894 0.000465 0.000504 0.000699 0.000443 7.34E-05 1.24E-05 1.36E-05 4.64E-05 0.000363 1.89E-05 0.000136 

L2 Rate 0.000874 0.000812 0.000706 0.000495 0.000258 0.000474 0.000689 0.000616 0.000736 0.000357 0.000146 5.51E-05 0.000334 1.24E-07 
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Table 11 (continued) 
Optimal Hyperparameters: Neural Networks, Classification Problem 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel C Feedforward Neural Networks, 10 Principal Components 

Batch Size 5 7 5 7 7 6 1 7 1 1 7 1 7 1 

Epochs 103 103 99 103 103 75 103 103 103 27 103 71 87 103 

Drop Rate 0 0.5 0 0 0 0 0 0 0.25 0 0.5 0 0 0.5 

Learning 
Rate 

0.067838 0.022287 0.027246 0.043727 0.091023 0.033562 0.035775 0.08433 0.056282 0.08612 0.099373 0.033059 0.085143 0.065114 

Layers 2 2 2 2 2 2 2 2 2 2 2 5 2 5 

Units (1) 3 3 3 3 3 6 3 3 3 3 3 6 3 3 

Units (2) 9 18 6 3 3 24 3 3 3 3 33 3 3 3 

Units (3) - - - - - - - - - - - 3 - 3 

Units (4) - - - - - - - - - - - 9 - 3 

Units (5) - - - - - - - - - - - 3 - 3 

L1 Rate 0.00072 0.00021 0.000493 0.000863 3.01E-05 0.000273 0.000576 0.00042 0.000314 0.000199 0.000243 2.46E-05 0.000313 2.9E-05 

L2 Rate 1.24E-07 0.000524 0.000469 0.00079 3.69E-05 0.000814 0.000813 0.000692 0.000625 0.000634 0.000888 0.000426 0.000232 0.000652 

Panel D Feedforward Neural Networks, 5 DTR Features 

Batch Size 2 6 1 7 1 7 6 7 1 1 1 3 5 3 

Epochs 39 99 99 91 83 51 103 35 103 103 103 91 103 95 

Drop Rate 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 

Learning 
Rate 

0.007198 0.007056 0.074026 0.008354 0.066448 0.009882 0.002582 0.037287 0.058316 0.007174 0.008146 0.05308 0.018667 0.00206 

Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 9 9 9 21 3 24 33 6 3 3 6 6 6 12 

Units (2) - - - - - - - - - - - - - - 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 0.000751 0.000185 0.000311 0.000259 0.000281 0.000733 0.00024 0.000484 0.000254 0.000611 0.00018 0.000267 0.000811 9.75E-05 

L2 Rate 0.000355 0.000808 0.000395 0.000846 2.78E-05 7.25E-07 0.000135 0.00097 0.000161 0.00066 0.000812 0.000807 0.000836 0.000907 
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Table 11 (continued) 
Optimal Hyperparameters: Neural Networks, Classification Problem 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel E LSTM, Full Set of Features 

Batch Size 1 1 4 1 1 7 1 1 2 1 1 2 7 1 

Epochs 3 3 71 7 83 103 3 7 91 3 103 11 103 99 

Drop Rate 0.5 0 0.5 0.5 0 0 0 0.5 0 0.25 0.5 0.5 0.5 0 

Learning 
Rate 

0.043119 0.005572 0.006083 0.000503 0.016084 0.028182 0.004613 0.002188 0.002704 0.01497 0.018451 0.002798 0.000656 0.003354 

Layers 2 2 2 4 2 4 2 2 2 2 2 2 2 2 

Units (1) 3 3 3 3 3 3 3 3 6 3 3 3 12 3 

Units (2) 6 12 3 9 3 3 9 3 33 30 3 33 3 3 

Units (3) - - - 3 - 3 - - - - - - - - 

Units (4) - - - 18 - 3 - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 2.17E-05 0.000194 0.000195 0.000863 3.01E-05 2.4E-05 0.000102 0.00028 1.39E-05 3.21E-05 6.49E-05 0.000157 0.000444 2.9E-05 

L2 Rate 0.000764 0.000766 0.000469 0.000818 0.000643 0.00053 0.000955 0.000223 4.36E-05 0.000895 0.000577 0.000238 0.000384 0.000225 

Panel F LSTM, 5 Principal Components 

Batch Size 7 1 7 7 1 5 1 1 1 1 1 3 1 7 

Epochs 47 3 103 103 103 35 103 103 103 103 103 19 103 39 

Drop Rate 0.5 0 0 0 0.5 0.5 0.5 0 0 0 0.5 0 0.5 0.5 

Learning 
Rate 

0.060144 0.022287 0.049586 0.043727 0.02688 0.04882 0.027211 0.084637 0.017472 0.067778 0.010384 0.051351 0.012481 0.065114 

Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Units (1) 9 3 33 3 3 3 3 3 18 18 3 3 33 3 

Units (2) - - - - - - - - - - - - - - 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 0.000691 0.000194 0.000508 0.000113 3.01E-05 0.000536 0.000576 0.000186 0.000394 0.000119 0.000275 1.66E-05 0.000444 2.9E-05 

L2 Rate 1.24E-07 0.000562 0.000386 0.000956 0.000643 0.000674 0.000392 0.000877 0.00026 0.000904 0.000888 2.75E-05 0.000629 0.000103 
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Table 11 (continued) 
Optimal Hyperparameters: Neural Networks, Classification Problem 

                              

  
Light 
Crude 

Oil 
Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 

Orange 
Juice 

Lumber 
Live 

Cattle 

Panel G LSTM, 10 Principal Components 

Batch Size 6 5 6 6 3 2 7 7 7 1 7 1 7 1 

Epochs 11 103 71 103 99 27 103 71 103 103 7 103 103 83 

Drop Rate 0 0.5 0 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0.25 0.5 

Learning 
Rate 

0.008897 0.000681 0.00861 0.000226 0.02688 0.06871 0.014154 0.008891 0.031355 0.068276 0.083542 0.006701 0.043727 0.001758 

Layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Units (1) 30 30 9 3 3 24 33 30 33 33 27 33 33 30 

Units (2) 6 3 30 9 33 33 33 33 3 33 33 33 33 24 

Units (3) - - - - - - - - - - - - - - 

Units (4) - - - - - - - - - - - - - - 

Units (5) - - - - - - - - - - - - - - 

L1 Rate 2.66E-05 0.000194 0.000126 0.000751 3.01E-05 0.000629 0.000315 0.000436 0.000314 0.00072 0.000414 0.000508 0.000889 0.000305 

L2 Rate 0.000188 0.000766 0.000643 0.00068 0.000521 0.000373 0.000576 0.000223 0.00026 1.24E-07 0.00059 0.000469 0.000251 3.69E-05 

Panel H LSTM, 5 DTR Features 

Batch Size 3 3 4 4 3 1 6 3 1 7 2 7 7 6 

Epochs 11 87 95 91 39 3 51 87 3 103 55 103 103 99 

Drop Rate 0.5 0 0.5 0 0.25 0.25 0.5 0 0.5 0.5 0 0 0.5 0 

Learning 
Rate 

0.009637 0.02016 0.005664 0.009733 0.043727 0.065647 0.003848 0.011836 0.095114 0.012857 0.009294 0.010384 0.015412 0.033473 

Layers 1 1 1 1 1 4 1 1 5 1 1 1 1 1 

Units (1) 30 3 9 6 24 15 21 9 9 21 21 3 33 6 

Units (2) - - - - - 3 - - 3 - - - - - 

Units (3) - - - - - 3 - - 3 - - - - - 

Units (4) - - - - - 3 - - 3 - - - - - 

Units (5) - - - - - - - - 3 - - - - - 

L1 Rate 0.000507 0.000231 0.000438 0.000443 0.000863 0.000189 0.000949 0.000828 0.000839 0.000394 0.000421 0.000275 0.00075 0.000149 

L2 Rate 0.000143 0.000401 3.76E-05 0.000469 0.000994 0.000645 0.000869 0.000625 0.000475 0.000625 0.000327 0.000577 0.000723 0.000719 
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Table 12 

Out of Sample Forecast Accuracy (Classification) 
 

This table reports the out of sample forecast accuracy of the analyzed neural networks against the four logit benchmark models. The OOS 
forecasts cover the period from September 30, 2012 to June 30, 2020. 

                              

  
Light 
Crude 
Oil 

Corn Soybeans Wheat Coffee Cocoa Sugar Cotton Gold Silver Platinum 
Orange 
Juice 

Lumber 
Live 
Cattle 

Panel A Benchmark Logit Models 

Logit (Full) 37.23% 48.94% 39.36% 60.64% 56.38% 52.13% 48.94% 58.51% 45.74% 36.17% 44.68% 50.00% 44.68% 46.81% 

Logit (5PC) 46.81% 47.87% 40.43% 54.26% 53.19% 47.87% 42.55% 50.00% 51.06% 39.36% 48.94% 46.81% 39.36% 47.87% 

Logit (10PC) 53.19% 42.55% 47.87% 51.06% 48.94% 54.26% 55.32% 57.45% 50.00% 37.23% 41.49% 46.81% 43.62% 48.94% 

Logit (5 Var.) 45.74% 52.13% 46.81% 51.06% 54.26% 57.45% 54.26% 53.19% 38.30% 45.74% 44.68% 52.13% 40.43% 45.74% 

Panel B Neural Networks 

Feedforward NN (Full) 48.94% 48.94% 45.74% 52.13% 58.51% 47.87% 58.51% 46.81% 50.00% 55.32% 44.68% 48.94% 50.00% 51.06% 

Feedforward NN (5PC) 50.00% 56.38% 46.81% 42.55% 39.36% 48.94% 40.43% 47.87% 50.00% 40.43% 44.68% 42.55% 44.68% 53.19% 

Feedforward NN (10PC) 50.00% 50.00% 51.06% 56.38% 40.43% 51.06% 42.55% 53.19% 50.00% 55.32% 44.68% 48.94% 45.74% 51.06% 

Feedforward NN (5 
Var.) 

48.94% 46.81% 54.26% 48.94% 58.51% 51.06% 57.45% 53.19% 50.00% 54.26% 44.68% 48.94% 44.68% 48.94% 

LSTM (Full) 48.94% 43.62% 53.19% 52.13% 40.43% 45.74% 43.62% 51.06% 54.26% 51.06% 44.68% 45.74% 41.49% 47.87% 

LSTM (5PC) 50.00% 55.32% 54.26% 51.06% 58.51% 45.74% 40.43% 46.81% 55.32% 55.32% 44.68% 51.06% 36.17% 51.06% 

LSTM (10PC) 53.19% 44.68% 45.74% 52.13% 58.51% 45.74% 43.62% 51.06% 50.00% 55.32% 44.68% 48.94% 44.68% 52.13% 

LSTM (5 Var.) 48.94% 43.62% 54.26% 52.13% 58.51% 45.74% 42.55% 53.19% 50.00% 55.32% 55.32% 48.94% 44.68% 48.94% 
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Figure 1 

Simulation Exercise: Performance of Feedforward Neural Network 

 

Figure 2 

Simulation Exercise: Performance of Long Short-Term Memory Network 
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Figure 3 

Out of Sample Performance: ML Portfolio and Benchmark Portfolio 
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Figure 4 

Out of Sample Performance: ML Portfolio and Benchmark Portfolios (Classification Problem) 
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