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Abstract

Extreme rainfalls cause large economic damage, they are also expected to become more frequent

due to climate change. To design efficient climate adaptation policy and insurance pricing,

it is necessary to assess which areas and properties are the most at risk. This study utilizes

detailed insurance claim data and weather observations from 795 weather stations in Sweden.

Many previous studies of extreme rainfall and the damage it brings are event-based. This thesis

contributes to the current literature by describing extreme rainfall risk and its sources, based

on events from every Swedish municipality between 2011-2020. The main findings are that the

number of extreme rainfalls during a year and the daily amount of rainfall, leads to more damages

but not larger damages. Furthermore, the result suggests that properties with a simpler type

of water connection or no connection seem to have smaller damages. Another finding is that

properties connected to a municipality-managed system are more frequently damaged.
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1. Introduction

According to IPCC’s Sixth Assessment Report, the number of heavy precipitation events has in-

creased on all continents since 1950. But only in Northern Europe can this also be attributed to

anthropogenic climate change with high certainty. If global warming reaches 2 degrees Celsius, IPCC

projects an intensification of heavy precipitation events with high confidence compared to 1995-2014

(Masson-Delmotte et al., 2021). Global warming will have many different effects on the earth’s cli-

mate. This thesis focuses on the anticipated increase of extreme precipitation events in Sweden. It is

difficult to attribute single events to a trend like climate change. However, during August 2021 two

extreme rainfalls led to flooding (i.e. pluvial flooding) in Sweden. This resulted in more than 250

million SEK in damage for one of the municipality-owned water companies (SVT, 2021a). In addi-

tion, the total amount paid out by insurance companies is estimated to be almost 500 million SEK

(Svensk Försäkring, 2021c). Fortunately, only material property was damaged during these events,

and only economic damage will be considered in this paper. But these events clearly demonstrate

that extreme rainfalls can lead to pluvial flooding and cause great destruction. It is therefore central

for policymakers and insurance companies to understand when heavy rainfalls cause damage and why.

This thesis aims at improving this understanding by investigating which areas and types of properties

are the most at risk.

In line with previous research, damage frequency and size are proxied with claim frequency and

severity. A claim is made when an insurance policyholder has incurred damage on insured property.

The claim severity equals the monetary amount the policyholder receives. I have decomposed total

economic risk from extreme rainfalls into these two components. This leads me to my two research

questions: (1) What impact does extreme rainfall have on claim frequency? And (2) what impact

does extreme rainfall have on claim severity? In addition, sources of extreme rainfall risk connected

to the building’s characteristics are also investigated. Extreme rainfall risk is analyzed through a

framework by Bouwer (2013). This framework identifies three components of extreme weather risk,

namely: Exposure, vulnerability and hazard probability.

To better assess the sources of extreme rainfall risk, data provided by the insurance company If

is carefully matched with data on the daily amount of rainfall from SMHI. SMHI stands for the

Swedish Meteorological and Hydrological Institute and is an expert agency reporting to the Ministry

of the Environment. By using Generalized Linear Models (GLM), claim severity and claim frequency

is estimated. GLM is commonly used within the insurance sector due to its flexibility. However, only

one previous study has estimated extreme precipitation risk with a GLM. I intend to contribute to

the current research field by demonstrating the appropriateness of GLMs in this setting. Another

contribution is the identification of new important risk sources.
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I hypothesize that an additional extreme rainfall over a local area and year will both increase the

claim severity and claim frequency. My main results are threefold. Firstly, a statistically significant,

robust and positive relationship between the number of claims and the number of extreme rainfalls

was found. Which aligns with previous research. This relationship increases in magnitude for stricter

definitions of an extreme rainfall event. Secondly, no overall statistically-significant relationship could

be found between the number of extreme rainfalls and claim severity. Only the strictest definition

(90mm/24 hours) yielded significant and robust results. Unexpectedly, the effect was negative. Which

probably can be attributed to several flaws in the model specification. This result does not align with

previous research. Thirdly, two sources of vulnerability to incur rainfall-caused damage are identified.

Properties with a simpler type of water connection or no connection seem to on average incur smaller

damages. While properties connected to a municipality-managed system are estimated to have a

higher claim frequency. Unexpectedly, the size of the floor area has neither an effect on the claim

frequency nor on the claim severity. Finally, maps of the average and weighted extreme rainfall risks

are presented.

The remainder of the paper is structured as follows. Section 2, summarises previous literature and

provides some background on the Swedish insurance industry. Section 3, lists the research questions

together with the hypotheses and sub-hypotheses. Section 4, provides an overview of the data and

how the data sources were matched. Section 5, motivates the choice of the econometric model and the

model specifications. The results are presented in section 6, followed by a set of robustness checks.

A visual presentation of risk heterogeneity between Swedish municipalities is also included. Section

7, discusses the results and their limitations. Finally, section 8 concludes the thesis.

2. Literature Review and Background

2.1 Climate Change and Extreme Weather Events

Many studies of trends in extreme weather event losses attribute it to climate change (McNamara and

Jackson, 2019). But evidence of increased hazard frequency and/or severity due to climate change

is often faulty or even lacking (Bouwer, 2013). Therefore, studies proving that hazards have become

more severe over time by linking them to larger economic damage are sometimes misleading. Bouwer

(2013) argues that an increased natural hazard severity might not stem from climate change, but

rather from increased exposure (e.g., higher population density and asset value). With more valuable

assets located in a certain area, damages will seem larger even if the frequency and severity of extreme

weather events remain constant. In other words, omitting exposure from the analysis can lead to a

false upward trend in economic damage caused by natural hazards. Another problem with studies

only including meteorological variables when estimating the economic cost of hazards is that changes

in vulnerability are not captured. Vulnerability can e.g., be assessed based on the building’s age, type

of drainage system, if the property has a basement, or its distance to water (Gradeci et al., 2019).
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In contrast to exposure, omitting vulnerability from the analysis can both lead to an under- and

overestimation of historical costs depending on the geographic area studied (Mechler and Bouwer,

2015).

Extreme precipitation is a particular form of extreme weather. IPCC argues that extreme pre-

cipitation already has become more frequent in all land regions (Masson-Delmotte et al., 2021). They

also describe pluvial flooding, which is caused by extreme precipitation, as one of the big sources of

climate-related risk in northern Europe. However, these statements are questioned by some of the

previously mentioned researchers (Mechler et al., 2020). Whether or not extreme precipitation has

historically increased due to anthropogenic climate change is clearly controversial. However, most

researchers and IPCC both believe that climate change will make extreme weather and extreme pre-

cipitation more frequent in the future (Bouwer, 2013). I will therefore not attempt to attribute my

findings to climate change since my period of study is too short (10 years). But since many papers

equate historical trends in extreme precipitation with climate change, a clarification was deemed

necessary, and a risk-assessment useful for future climate adaptation policy.

2.2 Costs of Extreme Weather Events

Losses due to extreme weather events are usually grouped into three categories: direct, indirect, and

macroeconomic (Mechler and Bouwer, 2015). Direct losses are often physical and immediate, such

as damage to property and loss of life. Indirect losses can be found in the aftermaths of an extreme

weather event, such as damage to the local economy e.g. production loss or years of education lost.

The final type of damage, macroeconomic, is similar to indirect losses but affects the economy on

a higher scale (e.g., country-level). To gain a holistic understanding of damage made by extreme

weather events and specifically pluvial flooding all three aspects are needed. However, due to the

inherent complexity of analyzing indirect effects, only direct damages are often analyzed. Direct

damage can in turn both be economic and non-economic. A research review of loss and damage

due to climate change notes that it is more common to discuss both economic and non-economic

costs than just one of the types (McNamara and Jackson, 2019). Narrowing down the scope to home

insurances and extreme weather events, the most researched type of hazard is flooding (i.e., both

fluvial and pluvial flooding). The great majority of this research is made on events in either the US

or in Europe (Lucas et al., 2021), which could partly stem from a funding bias. Another probable

contributing factor is data availability. Insurance industries in the US and Europe have collected long

time series of claims data, which is a popular type of data to use when estimating the economic costs

of extreme weather events.
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2.3 Pluvial Flooding

Pluvial flooding can be defined as “... flooding that results from rainfall-generated overland flow

and ponding before the runoff enters any watercourse, drainage systems or sewer, or cannot enter it

because the network is full to capacity.” (Falconer et al., 2009). Hence, whether heavy precipitation

causes pluvial flooding depends not only on the duration or amount of rain, but also on the vulner-

ability of the area. Since data on precipitation is more accessible than detailed data on abnormal

water-levels due to pluvial flooding, extreme precipitation is often used as a proxy for pluvial flooding

(Frame et al., 2020).

The definition of extreme precipitation differs between authors. However, most agree that the re-

lationship between damage (e.g. number of claims) and weather variables (e.g. precipitation) is

nonlinear. Most use various forms of tipping point measurements when defining weather-conditions

leading to damage (Lyubchich and Gel, 2017). Pastor-Paz et al. (2020), define a day with extreme

precipitation as when the daily accumulated rain is within the 95th, 98th or 99th percentile of the

daily historical rainfall distribution in that area. By constructing local and yearly thresholds extreme

precipitation is relativized, and the emphasis is put on ‘extreme’. This definition implies that dam-

ages are caused by unusually much rain, and thus areas who often experience heavy rainfall are less

vulnerable than other dryer ones. Other authors define absolute conditions for extreme precipitation.

These conditions are often combinations of mm of rain and time. It is common to separate between

short and intensive rainfalls e.g., (>= 25 mm) during three hours, and longer but less intense rain-

falls e.g., (>67mm) during three days (Grahn and Nyberg (2017), Botzen et al. (2010)). As described

by the definition of pluvial flooding provided above, the threshold for extreme precipitation should

capture scenarios when the drainage systems are insufficient and the redundant water causes damage.

This absolute definition either implicitly assumes that all areas have similar drainage capacity or

requires good covariates capturing variation in vulnerability.

Extreme precipitation can also cause different types of damages depending on the building’s con-

struction, drainage systems and the duration of the rainfall. Shorter (1-10h) and intense rainfalls

tend to cause damage on property close to the main sewers in urban areas. Rainfalls that last for

several days cause more evenly spread out claims, without a connection to the area’s topography

(Sörensen and Mobini, 2017). In a study by Spekkers et al. (2015), the type of damage caused by

intense precipitation is investigated. They found that the most common types of precipitation-caused

damage on residential property are roof- and wall leakage, followed by blocked roof gutters, melting

snow and sewer flooding. Sewer flooding caused the most expensive claims. Roof leakage is unlikely

to result from pluvial flooding but rather as a result of the rain itself, illustrating that extreme pre-

cipitation and pluvial flooding are not synonymous but rather that the former is a prerequisite of the

latter. This thesis will both include damages directly caused by extreme precipitation and indirectly
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through pluvial flooding. Another important confounding factor when estimating damages, is the

amount of rain the day(s) before the extreme precipitation event. Even if a rainfall is extreme it

might not cause any damage if the soil and drainage systems were dry the day before (Torgersen

et al., 2015).

Bouwer (2013) presents a framework for quantifying economic damage from extreme weather events.

The framework consists of three components; exposure, vulnerability and hazard probability. The

former two concepts does not only contribute to an accurate estimation of the relationship between

hazard severity and climate change as discussed above. They can also in combination with hazard

probability identify the magnitude of the damage and which location is damaged the most. Following

Bouwer (2013) exposure is defined as ”...the presence of people and assets in areas subject to the

occurrence of natural hazards”. And vulnerability is defined as ”...the susceptibility to loss and dam-

age, including the capacity to anticipate, cope with, resist, and respond to impacts”. Lastly, hazard

probability is the likelihood that a location will be subject to an extreme weather event.

Risk = Exposure× V ulnerability ×Hazard probability (1)

By decomposing extreme weather risk, information about risk heterogeneity between demographic,

geographic and social groups can be obtained. Identifying heterogeneity in extreme weather risk, is

central in designing efficient climate adaptation policy. Since the largest marginal benefit can often

be achieved by mitigating the risk for the most vulnerable ones (Hsiang et al., 2019).

2.4 Pluvial Flooding in Scandinavia

The still very limited selection of research conducted on pluvial flooding in Scandinavia has primarily

been made by researchers from the Centre for Climate and Safety at Karlstad University. In two

studies written by researchers from Karlstad University, insurance claim data on residential prop-

erty from Länsförsäkringar is utilized. These studies argue that private insurance payouts due to

flood damage on residential property have steadily increased over the past 25 years in Sweden, but

with large yearly variation (Grahn and Nyberg (2017), Grahn and Olsson (2019)). Another finding

made is that the majority of flood-related claims were reported during the summer. Similar find-

ings were also found in the Norwegian city Fredrikstad, where 79 percent of flooding compensation

during 2006 - 2012 were connected to events that occurred between July and September (Torgersen

et al., 2015). One explanation of the skewed distribution of claims is snow. It is snowing in large

parts of Scandinavia during the winter months, and this type of precipitation does not translate

into pluvial flooding. It is therefore common to only investigate the connection between extreme

precipitation and damage during the summer months. Grahn and Olsson (2019) estimated a 4-16

percentage increase in yearly damages caused by pluvial flooding to residential property, given one

additional extreme rainfall event per year. However, since they utilized aggregated insurance data,
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only 304 observations were used in the estimation. They used >6mm/15min as the threshold for

extreme rainfall. In an earlier paper by Grahn and Nyberg (2017) data at the residential building

level was used. They defined extreme rainfall based on three criteria, a daily, one over 9 respectively

3 hours. They estimated 42 percent higher claim severity on movable goods if the damage were

made by extreme rainfall. Damage to the property’s structure was estimated 65 percent larger if it

was caused by extreme rainfall. The latest study on pluvial flooding in Sweden was conducted on a

single extreme rainfall over the Swedish city Malmö in 2014. Their main finding was that the type

of sewer system (separate or combined) is an important determinant of which property is damaged

by an extreme precipitation event. But they could not detect any difference in average claim size

(Mobini et al., 2021). In contrast to other studies of extreme precipitation in Sweden, could this study

(only considering Malmö) not detect any trend in the number of claims related to heavy precipitation.

Residential Property Insurance in Sweden

Residential property insurances often have at least two components. One part insuring the property it-

self [Swedish: byggnadsförsäkring] and the other part insures movable goods [Swedish: lösöresförsäkring].

It is very common to purchase both components from the same insurance company, and the poli-

cyholder seldom switches insurance provider. When comparing the number of detached houses in

2017 with the number of detached property insurance policies in 2017, the insurance take-up rate

is almost 85 percent. However, the definitions of a detached house or a ”villa” may differ between

the data sources (SCB (2018), Svensk Försäkring (2021b)). In addition, Grahn and Nyberg (2017)

assumes that the insurance take-up rate is almost 100 percent since it is a requirement for using the

property as collateral in a house mortgage. As of today, residential property insurances in Sweden

always cover damage caused by extreme precipitation events equal to or larger than 1mm/minute or

50mm/24 hours. The water must have either entered the building on the ground floor level through

e.g. a window or a door or through the sewer system (Konsumenternas (2021)). However, the in-

dustry organization Svensk Försäkring believes that Swedish insurance companies will refuse to offer

insurance coverage to property in certain areas in the future (SVT, 2021b). This development has

already begun in the Netherlands, where approximately 40 percent of the insurance companies no

longer offer residential property insurance with severe local precipitation coverage (Botzen, 2010).

Since the fundamental rule of insurance is that the damage must be unanticipated, more frequent

extreme precipitation events make property insurance increasingly difficult and expensive. Another

important consideration is that many properties are connected to the municipality-owned sewer-

and water system. Hence, damage inflicted to property due to under-sized sewer systems should

be compensated by the municipalities and not the private insurance companies. The economic risk

of increasingly severe and frequent extreme precipitation events is shared by insurance companies,

property owners and municipalities.
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2.5 My Contribution

In the following section, I will explain my contribution to the existing literature on loss and damage

from extreme weather events. More specifically, how I am contributing to the literature on flood risk

assessment as outlined by Gradeci et al. (2019). In their review of this interdisciplinary research field,

they pinpointed access to reliable insurance claim data as the main challenge. They argue that the

lack of high-quality data makes it impossible to match damage and hazard with sufficient accuracy. In

addition, the lack of a consistent classification of damages makes it difficult to identify which damages

have been caused by pluvial flooding versus fluvial flooding. Thus, one contribution of this thesis

is the usage of a detailed insurance claim data set. In contrast to similar papers, I have been able

to match the insurance data to the weather data rather accurately. Adding on, the claims included

in my data set exclusively stem from damages caused by heavy rainfall. These two advantages will

allow me to contribute with a more accurately identified relationship between extreme rainfall and

economic damage.

In a research review on home insurances against extreme weather events by Lucas et al. (2021),

it is stated that approximately a fourth of the published papers stems from Environmental Sci-

ence. The second most frequent research field is Social Sciences, followed by the category Economics,

Econometrics and Finance. Since this is a thesis within economics, the contribution will be focused

on climate adaptation policy guidance. In contrast to similar papers only considering meteorological

variables (e.g, Haug et al. (2011), I am including covariates capturing heterogeneity in vulnerability,

exposure and hazard probability. By identifying sources of vulnerability connected to certain building

characteristics or geographical areas, I aim to contribute with valuable insights for future policy work.

My thesis contributes to current literature in three more aspects. Firstly, to my knowledge only

one previous paper has analyzed the economic costs of extreme weather using a Generalized Linear

Model (GLM), which is very suitable for modeling insurance data. Instead, a common choice of

method when modeling claim severity is OLS (Pastor-Paz et al. (2020), Grahn and Nyberg (2017)

and Grahn and Nyberg (2014)). By assuming Gamma distributed standard errors which is common

practice within the insurance industry, I intend to contribute with an alternative econometric model

that better describes the true distribution of the dependent variable (see section 5.1.1.). Secondly, I

am including and comparing a set of both absolute thresholds and station-specific thresholds. Previ-

ous research has only either used one definition or a set of either absolute or relative thresholds. In my

opinion, a comparison between the two types of thresholds will yield valuable insight on which type

is preferred and how they differ. Lastly, many previous studies have only investigated damages from

extreme rainfall based on a single event. Thus, analyzing properties from every Swedish municipality

and controlling for e.g, type of water connection will provide novel insights.
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3. Hypotheses

This paper aims to identify sources of extreme rainfall risk and analyze the relationship between haz-

ard and damage. This is achieved by investigating differences across geographical areas and building

characteristics. The overall risk has two components, namely how often the damage occurs and how

large the damage is when it occurs. Damage frequency is proxied with claim frequency and damage

severity is proxied with claim severity. Two research questions are designed to answer how these two

components are affected by extreme rainfall events. The sub-hypotheses aim at investigating hetero-

geneity in extreme rainfall risk. They are based on what previous literature has identified as sources

of vulnerability, exposure and hazard probability. The motivation for dividing total risk into these

two components is that the frequency and severity can be affected oppositely by the same factor. A

house with a low standard is more likely to incur damage if subjected to a hazard. But the size of

the damage may be smaller since the building and the content within the building are less expensive.

Thus, it is not obvious if the overall riskiness is larger or smaller for a house with low standard versus

a house with high standard. Ohlsson and Johansson (2010) also suggests a decomposition of total

risk, since claim frequency can often be predicted with larger certainty. Claim severity is usually

much harder to predict.

Research question 1: What impact does extreme rainfall have on claim frequency?

[H1] : Claim frequency increases with the number of extreme rainfalls.

To accurately test and estimate this relationship is not as trivial as it might seem at a first glance.

As concluded by Gradeci et al. (2019), matching damages with the correct weather conditions has

been a main challenge in previous literature. I expect to find a statistically significant and positive

relationship between these two variables. Furthermore, I also expect this relationship to remain after

controlling for heterogeneity in extreme rainfall risk e.g. geographical area, and building character-

istics. In previous literature, claim frequency is estimated to increase with 4-16 percent (Grahn and

Olsson, 2019) and 24-57 percent (Pastor-Paz et al., 2020) with an additional extreme rainfall. These

results are not directly comparable since they both consider different geographical areas and do not

utilize the same definition of extreme rainfall. Thus an important robustness check is to test this

hypothesis with a set of different extreme rainfall thresholds.

[H1a] : Claim frequency increases with the average floor area.

[H1b] : Claim frequency is higher if the property has no or a low standard water system.

[H1c] : Claim frequency is higher if the property is connected to a municipality-managed water system

than if it is connected to a private water system.

[H1d] : Claim frequency is lower for a residential property than for holiday homes.
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These four hypotheses are designed to disentangle heterogeneity connected to the property’s vul-

nerability. Hypothesis H1a is based on evidence from previous literature. Studies find that damages

caused by extreme rainfall can be found on the roof, the ground floor walls and in the basement

(Spekkers et al. (2015) Gradeci et al. (2019)). But to claim compensation from a Swedish insurance

company, damages must be made by water entering from either the ground floor or the sewer system.

Hence, I conclude that the average floor area is the best proxy for capturing vulnerability since it is

often proportional to the size of the basement, ground floor wall area and the number of windows

and doors.

Sub-hypothesis H1c and H1d build on the assumption that a property has the same type of water

system and sewer system. Several studies identify the type of sewer system and sewer capacity as im-

portant determinants of property damage (Mobini et al. (2021), Sörensen and Mobini (2017), Spekkers

et al. (2015)). Systems with lower capacity or both collect sewers from households and stormwater are

found to have higher vulnerability. I hypothesize that properties connected to municipality-managed

systems are more vulnerable than properties connected to private systems. An argument is that

municipality-managed systems are usually connected to many properties and hence lower sewage ca-

pacity is plausible. Another argument is that municipality-managed systems can be combined while

this is rarely the case for private systems. Another assumption is that the type of water connection

holds information about the property’s overall standard. If the property is not connected to any water

system or only has access to water during the summer, I assume that they have a lower standard. A

lower standard is in turn connected to higher vulnerability. However, if being connected to a water

system is a large risk factor then the opposite relationship will be found. I believe that the overall

lower standard will overpower a potential risk increase from being connected to a high-quality system.

The effect of not having a high standard water system is probably larger for residential homes than

holiday homes. Hence, I am both running separate regressions for residential- and holiday homes,

and interactions in the main model. Lastly, H1d builds on the same reasoning as H1b. I expect

that residential property is built more robust than holiday homes and thus has a lower vulnerability

leading to a lower claim frequency.

Research question 2: What impact does extreme rainfall have on claim severity?

[H2] : Claim severity increases with the number of extreme rainfalls.

[H2a] : Claim severity increases with the average floor area.

[H2b] : Claim severity is lower if the property has no or a low standard water system.

[H2c] : Claim severity is larger for a residential property than for holiday homes.

Given that a property is damaged, the size of the damage depends on the property’s vulnerabil-
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ity. Previous literature has established that there is a positive and significant relationship between

claim size and extreme weather events. Grahn and Nyberg (2017) estimate that damage on movables

is on average 42 percent higher if the damage was caused by extreme rainfall, and 92 percent higher if

the extreme rainfall damaged the property’s structure. Pastor-Paz et al. (2020) also detect a positive

relationship between claim size and the number of extreme weather events for all three types of daily

thresholds (95th, 98th and 99th). I form the hypothesis that the number of extreme rainfalls during

a year increases claim severity. Hence, that the damage function is non-linear and that the marginal

damage increases with the number of extreme rainfalls. It seems likely that the vulnerability to incur

a water damage increases after an extreme rainfall since it often removes natural obstacles such as

sand, gravel and vegetation. This makes it easier for the rainwater to reach the property. There is

also evidence that heavy rainfalls saturate the ground which makes an additional extreme rainfall

more potent (Sörensen and Mobini (2017), Grahn and Nyberg (2014)). However, claim severity could

also decrease with the number of extreme rainfalls. This could be the case if property-owners or

municipalities take measures in preventing damage from an additional hazard, as a response to the

first one. For example, by digging better ditches or investing in new sewer systems. This would break

the assumption of independent observations, which is further discussed in section 5.1.3. These three

sub-hypothesis are very similar to the sub-hypothesis in research question 1, and they build on the

same literature. In contrast to claim frequency, a property with an overall lower standard is expected

to have a lower claim severity. And holiday homes are also expected to have lower claim severity than

residential property since it is intuitive that the property’s standard and content are less expensive.

4. Data

4.1 Insurance Data

The data has been provided by the insurance company If. It contains information on Swedish

structure- and content insurance policies held by private policyholders between 2011 and 2020. There

are observations of insured objects located in every Swedish municipality. It contains information on

both the type of property insured and claim history. As previously explained, this type of insurance is

often divided into two parts. One part insuring the property itself (structure), and one part insuring

the movable goods inside (content). In an effort to narrow down the thesis’ scope three important lim-

itations have been imposed. (1) Only properties with data on both content- and structure insurance

policies will be included. In other words, if the policyholder only has either a content- or structure

insurance policy at If, they will be excluded. This limitation only has a marginal effect on the sample

size and is done to maintain consistency. This gives each policyholder the same weight which will

prove important in the method section. (2) Another limitation imposed is to exclude apartments

from the data. Apartments are often located in urban areas where local infrastructure is central in

understanding when and how heavy precipitation causes damage (Mobini et al., 2021). Additional

support for excluding apartments is that rainfall-caused damage manifests itself very differently. Even
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if only the ground floor is damaged in an apartment all residents are affected. Hence the complex-

ity increases in terms of insurance payout and responsibility. Especially when considering rented

apartments. The types of properties included in the sample are therefore; single-family detached

houses, multi-family detached houses, townhouses and cottages. The properties can both function as

residential- and holiday homes. Limitations 1 and 2 together restrict the sample to only owner-owned

properties. This is advantageous since if the policyholder also owns the property and the movables

inside he or she will claim when the damage is perceived to be of significance, both in relation to the

policyholder’s living standard and the deductible. It is less straightforward when the policyholder of

the structural policy is not living in the property themselves, since they might be either unaware of

the damage or less willing to claim since they are not personally affected. By excluding apartments

and policyholders with only either a content or a structure insurance policy, I have tried to ensure

that all policyholders have homogeneous incentives to claim. (3) The third limitation is that only

claims based on rainfall-caused damage will be included. The claim categorization has been made

by the insurance company. This will rule out damages made by other types of precipitation such as

snow.

4.1.1 Insurance Policy Characteristics

The insurance data can broadly be divided into insurance policy characteristics and building char-

acteristics. The data set provided by the insurance company includes information about how much

compensation (in SEK) was paid out following a claim. I inflation-adjusted claim cost to the 2010

price level by using Statistic Sweden’s customer price index (SCB, 2021b). I also truncated the claim

cost data at the 99.5th percentile. This is common practice when working with insurance data since

few but large outlier values are common. The share of policyholders that have claimed compensation

for damage caused by extreme rainfalls is very low. The claim frequency per insurance policy and

year is less than 0.1 percent. The probability slightly differs between municipalities but the regional

variation is largely driven by a few extreme events that caused a lot of pluvial flooding e.g., the

flooding of Malmö in 2014. It is also extremely uncommon for a policyholder to claim compensation

for several different rain-related damages.

4.1.2 Building Characteristics

Building characteristics are included in the analysis to describe heterogeneity in vulnerability and

exposure as suggested by among others Mechler and Bouwer (2015). The average floor area is con-

structed by dividing the total living area by the number of floors. The data also includes information

about the type of water system the property is connected to and if it is a holiday home or a residential

building. Lastly, a variable constructed by the insurance company is included. This variable indicates

if the property has a certain characteristic that makes it more probable to incur a water damage. I am

referring to this variable as the ”vulnerability characteristic”. I decided to include this factor despite

no more information about it can be presented. The main motivation is that it greatly improves the

11



model’s fit. Buildings with a total living area larger than 500 square meters were excluded since those

few outlier properties would have skewed the estimation.

The unique identifier in this data set is the policy number. A new policy number is created if a

new customer purchases an insurance and vice versa. The property insurances included in this data

are often kept for many years. However, when a customer moves or if they switch insurance company

the policy number disappears. A customer could also come back to the insurance company which

increases the complexity further. Systematic attrition could therefore be a problem. Attrition is

systematic when the reason for dropping out is related to the response variable (Wooldridge, 2010).

Being damaged by an extreme rainfall could make the policyholder more willing to move away if

he/she thinks it is dangerous to stay or difficult in any other way. The policyholder might also switch

insurer if they are dissatisfied with the compensation. But it may also be the case that the policy-

holder is more inclined to stay since he or she must repair the damage, or are very happy with the

insurance money they received. In an effort to assess if the data suffers from systematic attrition, I

estimated the probability of staying until 2020 conditional on whether the policyholder has claimed

or not. I also included station area controls. I found that policyholders that have claimed were a lot

more likely to stay until 2020. In addition, when visually comparing the attrition rates in the (1)

full data set, (2) station areas where someone has claimed and (3) claiming policyholders, no large

differences were found. The great majority were still customers in 2020. Hence, systematic attrition

does not seem to be an issue here.

4.2 Meteorological Data

Data on daily accumulated precipitation between 2011 and 2020 was gathered from SMHI’s open

API (SMHI, 2021). 842 weather stations were active during the period of interest. However, only 462

stations were active during the entire period (2011-2020). The location of SMHI’s weather stations

can be seen in figure 1 below.

Figure 1: Active Weather Stations (2011-2020)

Since an extreme precipitation event neither affects the entire population nor only one property at

a time, the unit of study is based on the area surrounding each weather station (henceforth station
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area). I assume that all properties with station x as its closest station are subject to extreme rain

when the station is. Determining each property’s shortest Haversine distance1 to a weather station is

done with a ball tree nearest neighbor method. The matching is done with SWEREF99 coordinates

and performed by the Python library scikit-learn (Pedregosa et al., 2011). The ball tree nearest neigh-

bor method was recommended by Tenkanen and Heikinheimo (2020), due to its memory efficiency.

The SWEREF99 coordinate system is harmonized with the European Terrestrial Reference System

(Lantmäteriet, 2021). I am matching along two dimensions, north and east. The closest and second

closest stations were mapped to each property. The mean and median distances to the closest station

were 7.9 km and 7.5 km, respectively. And the mean and median distances to the second closest

station were 14.1 km and 13.7 km, respectively. As previously mentioned, almost half of the active

weather stations started or stopped reporting weather data during 2011 and 2020. As a consequence,

if a station had a missing daily observation during a year, all daily observations during that year were

dropped and replaced with data from the second closest station. Only 3 percent of the properties

had missing values during the same year in both their closest and second closest stations. These

observations were omitted from the sample together with 6 properties where the closest active station

was more than 50 km away. After these adjustments, data from 795 stations are utilized. In figure

2a, the distribution of the distance to the nearest active station per property and year is displayed.

During the winter large parts of Sweden are covered with snow. Hence, precipitation during these

months is not rain but snow, which does not result in pluvial flooding. Since Sweden is relatively long,

winters in northern Sweden are very different from winters in the south. In contrast to previous stud-

ies of extreme precipitation in Scandinavia (e.g Grahn and Nyberg (2017), Grahn and Olsson (2019)),

I am not limiting the period of interest to the summer months. I find this necessary since the claims

in my data set are spread out over the year while Grahn and Nyberg (2017) among others found the

vast majority of their claims during the summer. This could stem from different claim classifications,

or potentially a larger share of policyholders located in southern Sweden in my data set. To single

out which days it was snowing and not raining, additional data on the type of precipitation from

SMHI’s open API was sourced. This data also spans from 2011 to 2020, but due to poor data quality,

it was aggregated per month and on the county level (25 counties). If it snows the majority of days

with precipitation in a month and county, then all days with precipitation are set to zero. Hence, the

remaining days with precipitation which are later used in the estimations only represent days with

rain. For more information about the types of precipitation and which county-month combinations

were set to zero, see Appendix. When only considering the daily rainfalls within the 95th percentile

per station, it is clear that large daily rainfalls are more frequent during the summer months. But

there are also heavy rainfalls (e.g. larger than 50mm) in the year’s last months. If I limited my study

to the summer months, these heavy rainfalls would not be taken into account while they still in fact

are both extreme and rainfalls.

1The Haversine formula calculates the distance between two points on a sphere, based on their longitude and latitude
values.
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Figure 2: Closest Active Stations (2011-2020)

(a) Distance to the Closest Active Station (b) Extreme rainfalls per Month

4.2.1 Defining Extreme Rainfall Events

As described earlier, previous studies have defined extreme precipitation in many different ways.

Since this thesis investigates extreme precipitation from an economic angle, it is important that the

definition describes an amount of precipitation capable of causing damage and thus costs. The liter-

ature review found that both absolute and relative definitions of extreme precipitation events have

been used in previous literature. Since this definition most likely will heavily affect what results and

conclusions I can draw from this analysis, a set of both relative and absolute thresholds will be used.

Adding on, only daily precipitation thresholds will be used since they are most commonly used in the

literature and used by practitioners.

Two absolute thresholds will be employed, 90mm and 50mm of precipitation over 24 hours. The

former threshold of 90mm, is defined by SMHI who states that at this level of precipitation damage

to vulnerable areas is likely (SMHI, 2012). The latter threshold of 50mm, is the definition of a heavy

rainfall [Swedish: skyfall] used by the insurance company who provided the data. In addition to the

absolute thresholds three relative definitions of an extreme precipitation event are included. Inspired

by Pastor-Paz et al. (2020) area-specific precipitation threshold values based on the 95th, 98th and

99th percentiles were calculated. In similarity to their study, my thresholds are also only based on

days that had precipitation. But in contrast, my thresholds are not yearly but based on precipitation

during the entire period (2011-2020). The reason is that extreme rain does not occur in every area

and year, hence some yearly thresholds would be very low in certain areas and not represent rainfalls

that cause material damage. See table 1 below for average thresholds and the number of extreme

rainfalls per weather station (795 stations) between 2011 and 2020 in Sweden.
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Table 1: Average Number of Extreme Precipitation Events per Station

90mm 50mm 99th 98th 95th

Average Threshold (mm) 90.0 50.0 24.7 19.9 13.9

Max Threshold (mm) 90.0 50.0 37.2 30.5 23.0

Min Threshold (mm) 90.0 50.0 14.6 11.8 8.4

# of extreme rainfalls (2011-2020) 17 523 10 525 21 106 51 354

4.2.2 Linking the Independent Variable of Interest to the Dependent Variables

In order to estimate the causal relationship between an extreme weather event and economic damage,

the two variables must be linked together over two dimensions, spatial and temporal. As mentioned

above, the matching of stations and property was made with a ball-tree nearest neighbor approach.

Hence, I am implicitly assuming that the weather station with the closest radius distance to a certain

property is that property’s closest match. The median distance between the closest active station

and property is 7.8km. One assumption is therefore that an extreme precipitation event affects an

area with a radius of at least 7.8km. Another assumption is that the shape of the area affected by

heavy precipitation is circular, which clearly is a strong assumption. In reality is the size and shape

of the affected area are determined by a set of meteorological variables such as temperature, wind

speed and the area’s topography (SMHI, 2017). Analyzing these factors is outside the scope of this

economics thesis. Therefore, I am assuming that the distance is sufficiently short and a ball-tree ap-

proach sufficiently accurate to enable a causal analysis of extreme precipitation and economic damage.

The second dimension is time. As seen in the summary statistics table above, the data is aggre-

gated on a yearly level. Therefore it is hard to assess if an extreme precipitation event and a claim

that occurred during the same year are related or not. A yearly aggregation was needed since it would

not have been practical to perform regressions on the disaggregated data set since it is too large. The

insurance data both contain information on when the claim was made and when the policyholder

believes the damage was made. In table 2 below the percentage of claims with at least one extreme

weather event occurring in the same station area within 1, 5 or 10 days before or after is presented.

The three safety margins of 1, 5, and 10 days are used to take reporting errors into account.

Table 2: Mapping Claims to Extreme Precipitation Events

% of claims with at least one extreme 90mm 50mm 99th 98th 95th
precipitation event within...

1 day 0.5 25 49 51 61
5 days 0.5 26 49 61 73
10 days 0.5 27 56 65 80

# of ext. events (2011-2020) 17 523 10 525 21 106 51 354
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The range of selected thresholds is very broad, from 90mm/24 hours which was only recorded 17

times by the selected weather stations, to the 95th station-specific threshold, which defined 51 354

station/days as extreme between 2011-2020. The percentage of claims with an extreme weather

within 1-10 days also differs a lot between thresholds. Three possible explanations to why the rate

is not one hundred percent are: (1) Smaller precipitation events than the defined threshold values

cause damage. Hence, the water damage does not stem from an extreme precipitation event, but

rather a regular rainfall or a very long period of rain. (2) The closest station does not accurately

represent the property’s weather. (3) The reporting error is larger than 10 days which seems unlikely

since the share of claims with an extreme event within 1 day is not drastically smaller than the same

measurement within 10 days.

The following two figures illustrate the percentage change in the variable of interest2 and the depen-

dent variables. The black lines are based on the yearly number of extreme weather events recorded by

the active weather stations. The red lines are based on the total number of extreme weather events

or total claim cost. The peak in claim cost and the number of claims in 2014 is largely driven by the

flooding of Malmö which is the event studied by Sörensen and Mobini (2017). A third of the claims

during this year are made in Sk̊ane, while the other two-thirds are geographically spread out. The

fact that the number of extreme rainfalls and claim data follow each other so well is not obvious or

causal. If an extreme rainfall affects a densely populated area more claims can be expected than if

the same hazard affects a more sparsely populated area. However, these plots indicate that there is

a positive relationship. The absolute threshold of 50mm seems to best follow the peak in claims and

claim cost during 2014, but this is necessarily not causal

Figure 3: Yearly Variation in Variables of Interest

(a) Relative Thresholds (b) Absolute Threshold

2The highest threshold of 90mm of rain per 24 hours is not included since there are no events that intense during
some of the years. Hence a percentage change plot is very uninformative.
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4.2.3 Summary Statistics

In the following summary statistics table, data per station area and year is presented. The data set

spans 10 years and there are on average approximately 644 weather station areas per year.

Table 3: Summary Statistics

Variables Mean St.Dev. Min Max N

Dimensions:

Year 2011 2020 6 443
Station area 102180 99270 6 443
Average Values:

Share Residential 0.5 0.3 0 1 6 443
Share w. Vuln ch 0.3 0.1 0 0.7 6 443
Share w. Quality con 0.8 0.2 0 1 6 443
Average Floor Area 92.1 16.6 15.0 144.3 6 443
Claim Frequency 0.0 0.0 0 0.2 6 443
Average Claim Cost* (truncated) 32.2 484.3 0 30 446 6 443
# Extreme Rainfalls (90mm) 0.0 0.1 0 1 6 443
# Extreme Rainfalls (50mm) 0.0 0.3 0 3 6 443
# Extreme Rainfalls (99th) 1.6 1.3 0 9 6 443
# Extreme Rainfalls (98th) 3.3 1.9 0 11 6 443
# Extreme Rainfalls (95th) 10.0 3.2 0 22 6 443
Average Water System Type 1 3 6 443
Summed Values:

Number of Insured Properties 464.1 1123.8 1 21 125 6 443

* Average Claim Cost per Property Insured

4.3 External Validity

A key question is if the insurance company’s customers can be seen as a representative selection of

the population since they are not randomly selected. If they are systematically different from the

population this will limit the generalizability of the thesis’ findings. As mentioned in the combined

background and literature review, almost all Swedish households both have a content- and structure

insurance. Hence, there is no strong adverse selection problem connected to purchasing this type of

insurance. However, there might be a selection problem connected to who purchases their insurance

from this specific company. The insurance data is provided by If. If’s market share within private

property insurance was in 2019-2020 between 16 and 18 percent (Svensk Försäkring, 2021a). It is

therefore important to investigate if the properties within the sample are systematically different from

the others in a way that impacts the frequency and/or severity of the damages caused by extreme

rainfall.

An argument in favor of strong external validity is the fact the data is geographically diverse. There

are several observations from every municipality in Sweden which in part accounts for the most im-
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portant factor affecting the number of extreme rainfalls, namely geographic location. One way to

at least partially test for this is to compare the median household living area at the municipality-

level, between the sample and the population. If the surface that can be damaged is approximately

the same size, then the estimated effect of an extreme weather event can be assumed to hold some

external validity. Data on the population’s living area was collected from SCB (Statistics Sweden).

Only observations from households living in one- or two-dwelling buildings which were either tenant-

owned [Swedish: bostadsrätt ] or owner-occupied [Swedish: ägarrätt ] in 2018 were extracted to match

the sample (SCB, 2021b). Only observations on policies insuring residential houses from 2018 were

included from the sample to make a comparison possible. The municipality average living area in the

sample is 15-60 percent higher than the population’s. This implies that the properties in the sample

have a higher exposure than the population average in terms of square meters. An on average larger

living area could imply that the sample’s policyholders are richer than the municipality average. But

it could also indicate that they live in less densely populated areas. If they are richer that would imply

a lower vulnerability since the house’s standard is likely to be higher. But a wealthy policyholder

probably also has more expensive content inside the house, which increases its exposure. Hence, it is

unclear if this would increase or decrease total risk. If they instead live in less populated areas where

house prices in general are lower, then a larger living area must not imply a higher standard but

only an increased vulnerability from having a larger roof, floor area etc. It is therefore not entirely

clear how this difference affects the external validity. But since the sample also includes a large set

of smaller properties and the model controls for average floor area, external validity to the Swedish

population can still somewhat be achieved.

5. Method

5.1 Choice of Econometric Model

5.1.1 OLS vs GLM

The number of claims per policyholder and year is often Poisson distributed, which is also the case

in this data set. Almost all policyholders will never need to claim compensation for a damage, hence

almost all observations will have zero claims. Very few will claim once, and even fewer will claim

several times. Out of the observations with claims, the claim size is also not normally distributed. A

small share of the claims is much larger than the median claim. Despite that the data is truncated

at the 99.5th percentile, it follows a Gamma distribution. It is therefore not appropriate to assume

normally distributed errors, which is an assumption that must hold in order to construct accurate

confidence intervals and perform hypothesis testing with Ordinary least squares (OLS) (Wooldridge,

2010). Another advantage of using a GLM with a log-link function when estimating the probability

of a rare event occurring (i.e, claim frequency) is that the multiplicative model is easier to interpret

than an additive model. In addition, it is possible to use the log-link function despite that the depen-
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dent variable often is zero, since the log-link function transforms the mean of the dependent variable,

which is a linear function of the independent variables (Ohlsson and Johansson, 2010).

There are several examples of similar papers using OLS regressions to analyze claim severity (Pastor-

Paz et al. (2020),Grahn and Nyberg (2014) and Grahn and Nyberg (2017)). As previously argued,

assuming a positively skewed distribution of the standard errors will likely yield more accurate stan-

dard errors, than assuming normality. Hence, in contrast to many other similar studies I will not

employ an OLS when estimating claim severity, but instead employ a generalized linear model for

both the claim severity- and claim frequency models.

5.1.2 GLM

Generalized linear models (GLM) is a generalization of the ordinary linear model. The response

variable (Yi) follows an exponential dispersion model (EDM), which enables me to assume another

distribution of the standard error than the normal distribution. The GLM model is fitted with a max-

imum likelihood estimation. Broadly, this procedure assumes the optimal values for the parameters

by maximizing the probability of conforming with the observed data under the model’s restrictions

(Hastie et al., 2009). I have consciously chosen to not include any polynomials since overfitting the

model would heavily reduce the appropriateness of extrapolating my findings to the population. The

models are therefore rather parsimonious. The data is aggregated into cells since this reduces the

number of observations and hence improves the calculation speed considerably. The data is grouped

per year (t), station area (s) and building characteristics (b). The unique combination of these traits

is defined as a cell (i). There are 60 888 cells in the data. In table 4 below a clarification of what a

cell contains and consists of is made.

Table 4: The Building Blocks of a Cell (i)

Dimensions Cell Averages Cell Sums

Year Number of Extreme Rainfalls Claim Cost
Station Area Average Floor Area Number of Claims
Building Type Number of Policyholders
Type of Water Connection
Quality Connection
Vulnerability Characteristic

These cells are weighted in the estimation with the exposure variable (wi). In equation 1, the

probability distribution of an EDM is presented. The natural parameter θ depends on i, while the

dispersion parameter ϕ is constant, both parameters are determined by the assumed distribution of

the response variable. The distribution must belong to the exponential family of distributions (e.g,
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Normal-, Poisson- or Gamma distribution).

fYi
(yi; θi, ϕ) = exp

{
yiθi − b(θi)

ϕ/wi
+ c(yi, ϕ, wi)

}
(2)

and

µi=̇E(Yi) = b′(θi) (3)

V ar(Yi) = b′′(b′−1(µi))ϕ/wi (4)

Claim Frequency

Let Xi be the number of claims in cell i with weight wi, and further assume that Xi ∼ Poisson(λ).

This is a common assumption for claim frequency since most policyholders never claim. When

estimating claim frequency, wi represents the number of insured properties in cell i. Within the

insurance industry, wi is set to sum of shares of a year that the insurance policies have been active.

Since the focus of this thesis is not to perform a risk analysis of this specific insurance company’s

customer portfolio, but rather assess the economic risk of extreme rain for the population, wi is equal

to 1 per property and year regardless of the number of portfolio coverages (see section 4.1 for more

information about what type of insurance policies are included in the data set). Since I am more

interested in estimating the claim frequency on the policy-year level than on the cell level, the average

number of claims per cell is calculated Zi = Xi/wi. Zi is a transformation of the original Poisson

distributed Xi, therefore Ohlsson and Johansson (2010) refers to Zi as relatively Poisson distributed.

The EDM is adapted to a Poisson distribution in equation 2, together with its mean and variance.

fZi
(zi; θi) = exp

{
wi(ziθi − eθi) + c(zi, wi)

}
(5)

and

E(Zi) = eθi (6)

V ar(Zi) = eθi/wi (7)

Where c(zi,wi) = wizilog(wi) - log(wizi!), θi = log(µi), ϕ = 1 and b(θi) = eθi . In the Poisson dis-

tribution the dispersion parameter is equal to 1 and therefore is the variance equal to the weighted

mean. A common problem with Poisson models is overdispersion. As shown above, one assumption

of the Poisson is that the variance is equal to the weighted mean. This assumption is violated if

there is variation within each cell i. If each cell is not homogeneous, it is possible that the within-

cell variation is higher than the variance of the Poisson distribution i.e. the mean. Overdispersion

does not bias the estimates but downward bias the confidence intervals. If the model’s deviance is

considerably larger than the residual degrees of freedom, the model suffers from overdispersion. And

if the opposite is true, the model suffer from underdisperion (Ohlsson and Johansson (2010), Olsson

(2002)). I am testing if my Poisson models have this problem in the Method section below.
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Claim Severity

A different dispersion parameter is used in the severity estimation, and only policies with claims

are included since the response variable must be strictly positive. The weighting variable wi is also

different. Now, wi represents the number of claims in cell i. The total claim cost per cell i is Gi. I

am further assuming that Gi∼ Gamma(wiα, β) since the distribution is positively skewed and the

variance increases exponentially with the mean (see eq. 10). In similarity to the frequency estimation

above, I am not investing the aggregated response i.e. the number of claims per cell Gi. Rather I

am interested in Si = Gi/wi, which is the average claim cost per claim made in cell i. The density

function for claim severity is:

fSi
(si; θi, ϕ) = exp

{
(siθi + log(−θi)

ϕ/wi
+ c(si, ϕ, wi)

}
(8)

and

E(Si) = α/β (9)

V ar(Si) = (α/β)2ϕ/wi (10)

Where c(si, ϕ, wi) = log(wisi/ϕ)wi/ϕ-log(si)-logΓ(wi/ϕ), θi = −1/µi = −1/α
β , 1/α = ϕ > 0 and

b(θi) = −log(−θi). The index parameter α and the scale parameter β determine the shape of the

Gamma distribution. I am modelling with the Python package Statsmodels (Seabold and Perktold,

2010). In this package, the optimal values of α and β are selected automatically. As guidance in

selecting the candidate model for claim severity and claim frequency, AIC (Akaike’s Information

Criteria) statistics are calculated. This measurement of in-sample prediction error is based on the

model’s log-likelihood. The log-likelihood represents the logged and summed probability that each

independent outcome fits the data. Hence higher probabilities result in a less negative likelihood of

the actual data given the model’s constraints. To avoid overfitting the model, the AIC penalizes the

log-likelihood proportionally to the number of parameters used to estimate the model. The model

with the lowest AIC has the highest fit given the number of parameters used in the estimation (Hastie

et al., 2009).
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5.1.3 GLM Assumptions

Policy independence: The responses i.e. the number of claims or claim costs must be independent

of each other. Even though this is one of the basic assumptions of the GLM model it is often violated

in practice. This assumption is also violated in this setting since a single extreme rainfall affects

several insured properties. Ohlsson and Johansson (2010) argues that when analyzing the insurance

risk of an extreme and widespread catastrophe, other types of models are superior to the GLM. But

since the extreme precipitation events analyzed in this thesis are not geographically widespread but

rather very local, a GLM model is still preferable.

Time independence: The responses i.e. the number of claims or claim cost in year t, must be

independent of claims or claim cost in previous years. This assumption would be violated if the

policyholder improved the drainage system after the property incurred a rain-related damage. This

scenario is not unlikely, however extreme precipitation events are still very rare and thus the willing-

ness to invest in better drainage- or sewer systems could be limited since the risk of another event

has historically been small.

Homogeneity: An important feature of the GLM is exposure, which gives every unique cell a

certain weight. Hence, every observation in the model represents a unique combination of the pol-

icy’s characteristics which impacts its riskiness. The homogeneity assumption holds if all policies

in the same unique cell have the same level of risk i.e. have the same probability of claiming or

claiming equally large. This assumption would be violated if there is an omitted variable describing

risk heterogeneity within a unique cell. In a literature review of Gradeci et al. (2019), is the prop-

erty’s material presented as a possibly important explanatory variable. Since I can’t access data on

material type and it could impact the probability of claiming and claim size, this assumption would

be violated. However, this type of problem is hard to avoid since data access is always limited. With

the current selection of explanatory variables, I believe that this assumption holds, but these issues

should be kept in mind.

5.2 Models

I have constructed three specifications to answer my two research questions. Both claim frequency

and claim severity are estimated with these three sets of covariates. Henceforth I am shifting from

the cell annotation to a more recognizable format. As previously explained, each cell represents a

unique combination of year (t), station area (s) and building characteristics (b). Each unique combi-

nation is thus weighted with wbst. In the claim frequency estimation the dependent variable, number

of claims made by policies insuring property with characteristics b, in year t and station area s, is

represented by N claimsbst. Note that each cell is weighted by the number of insured properties.

While when estimating claim severity, the dependent variable is the total claim cost per property
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with characteristics b, in year t and station area s. It is represented by Claim costbst. Note that

each cell is weighted with the number of claims made. As previously explained and motivated, I am

estimating these GLM models with a log-linkage function. Hence the dependent variables are related

to the covariates through the following functions; µbst = E(N claimsbst) and ηbst = E(Claim costbst).

Specification 1

ln(µbst) = β0 + β1N extbst + β2V uln chbst + β3Avg floorareabst + γs + αt + ϵbst (11)

ln(ηit) = β0 + β1N extbst + β2V uln chbst + β3Avg floorareabst + αt + ϵbst (12)

N extbst represents the number of extreme rainfalls, and V uln chbst is an indicator variable equal

to 1 if the building has a certain characteristic that makes it more vulnerable to water damage.

Avg floorareabst represents the property’s average floor area. Lastly, γs and αt represents station

area and year dummy variables. The number of extreme rainfalls is random both at a local geo-

graphical level and over time. It is difficult to predict the exact geographical location of an extreme

rainfall and when it will happen. Hence there are no obvious factors impacting both the number of

extreme weather events and the number of claims/claim costs within a region and year. However, as

described earlier the likelihood of an extreme rainfall depends on the local topography, wind speed

and temperature. These meteorological factors likely influence how robust the property is built, since

it needs to endure the local weather conditions. Another possible problem could be if locations with

more extreme rainfalls also have more rain in general which makes it a less attractive settlement

area, leading to less valuable assets located in that region. This is not improbable and hence station

area controls are implemented to account for location-specific heterogeneity. However, since the claim

severity estimation by design only includes observations with a positive claim cost, and many station

areas only claim once station area fixed effects can’t be implemented. Thus it is possible that these

coefficients are biased, which is further discussed in section 7. The error term is represented by ϵbst.

Specification 2

The second specification also includes Quality conbst. Which is an indicator variable equal to

one if the property’s water connection is of high quality. The main motivation for not including

Quality conbst in the first specification is that I want to compare the specifications’ AIC values to

see if the additional control contributes to the overall model. Another reason is that Quality conbst

and Avg floorareabst are correlated and hence it is informative to only include the former first and

then both together.

ln(µbst) =β0 + β1N extbst + β2V uln chbst + β3Avg floorareabst+

β4Quality conbst + γs + αt + ϵbst

(13)
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ln(ηbst) =β0 + β1N extbst + β2V uln chbst + β3Avg floorareabst+

β4Quality conbst + αt + ϵbst

(14)

Specification 3

Specification 3 is an additional extension of specification 1. Two additional control variables are

included and interacted. Type conbts represents what type of water connection the property has. The

property can be connected to a municipality-managed water system which is the reference category,

or a private water system or have ”other” water system. Properties not connected or connected to

a very simple system are classified as ”other”. Build typebst is an indicator variable equal to 1 if

the building is a residential property, it is otherwise a holiday home. As explained in the Hypothesis

section. The different building types in combination with water connection types are likely differently

vulnerable. I e.g, expect that the difference in vulnerability between properties with ”other” versus

municipality-managed system to be larger for residential properties than holiday homes. It is therefore

interesting to interact these two variables with each other.

ln(µbst) =β0 + β1N extbst + β2V uln chbst + β3Avg floorareabst + β4Type conbst+

β5Build typebst + β6(Type conbst ×Build typebst) + γs + αt + ϵbst

(15)

ln(ηbts) =β0 + β1N extbts + β2V uln chbts + β3Avg floorareabts + β4Type conbts+

β5Build typebts + β6(Type conbts ×Build typebts) + αt + ϵbts

(16)

Standard Errors

The standard errors are clustered at the level of treatment i.e. at the station area level. I deem it

necessary to cluster the standard errors since it is likely that the residuals within each station area

are correlated. E.g, if one policyholder claims and receives compensation this might have spillover

effects on neighboring policyholders.

6. Results

The models are estimated using a log linkage function. I have therefore taken the exponential of

the coefficients and adjusted the standard errors accordingly. The coefficients in the following tables

should be interpreted as factors. E.g, in table 5 is the claim frequency estimated to increase approx-

imately 3.14 times with an additional extreme rainfall, all else equal. I have decided to use 50mm

of rain during 24 hours as my main definition of an extreme rainfall. However, all six models have

been estimated using the other four thresholds. The regression results for the other control variables

were very similar in magnitude, sign and significance level. I therefore deemed it sufficient to only

compare the threshold coefficients, which is done in section 6.3. Furthermore, I will mainly comment

on whether or not the two main hypotheses H1 and H2 can be supported. A brief analysis of the

sub-hypothesis will also be included.
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6.1 Claim Frequency

I am in the following section testing my hypothesis and sub-hypothesis connected to research question

1; What impact does extreme rainfall have on claim frequency?. The results in table 5 indicate that

the occurrence of an additional extreme rainfall increases the claim frequency by approximately 3.14

times. The estimate is significant at the 1 percent level. This supports my hypothesis and aligns

with findings of Pastor-Paz et al. (2020) and Grahn and Olsson (2019). A closer comparison will be

conducted below when the same thresholds are used. Shifting the focus to the building characteris-

tics. The effect of average floor area on claim frequency is statistically significant (<0.05) in the first

two specifications. However, the magnitude of the effect is in practice zero. The coefficient also loses

statistical power when controlling for building type. This is somewhat expected since the size of the

property is likely to be correlated with the type of building. Residential property is often larger than

holiday homes. Hence, there is no support for H1a. The vulnerability characteristic is significant at

the 1 percent level across all specifications. This characteristic is likely to be positively related to

Table 5: Claim Frequency Main Results

1 2 3

No. of Extreme Rainfalls (50mm) [H1] 4.14∗∗∗ 4.14∗∗∗ 4.13∗∗∗

(0.91) (0.91) (0.91)

Vulnerability Characteristic 5.45∗∗∗ 5.40∗∗∗ 5.24∗∗∗

(0.45) (0.44) (0.39)

Average Floor Area [H1a] 1.01∗∗∗ 1.00∗∗ 1.00
(0.00) (0.00) (0.00)

Quality Connection [H1b] 1.43∗∗

(0.25)

Private Connection [H1c] 0.79∗∗∗

(0.09)

Other Connection 0.52∗

(0.20)

Holiday Home [H1d] 0.46∗∗∗

(0.11)

Holiday Home × Private Connection 1.51∗

(0.35)

Holiday Home × Other Connection 1.56
(0.73)

Station Area Control: Yes Yes Yes
Year Control: Yes Yes Yes

N 60 688 60 688 60 688
AIC 9 719 9 717 9 698

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

the average floor area. Hence, some of the explanatory power within the average floor area might be

controlled for with the vulnerability characteristic dummy. However, I expect the average floor area

to explain the dependent variable through other channels not controlled for by the other independent
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variables. Furthermore, the coefficient for high-quality connection is statistically significant at the

5 percent level, indicating that properties with a higher standard also have higher claim frequency.

Which is the opposite to the expected relationship outlined in the sub-hypotheses. In turn, this

indicates that the variable may not be an adequate proxy of the building’s overall standard. Instead,

this indicates that being connected to a high-quality water system increases the risk of being dam-

aged. The third specification in table 5 includes controls for the type of connection, type of property,

and the two variables interacted. The base category in ”Holiday Home” is residential property. The

base category for private water connection and ”other” water connection is municipality-managed

(MM) connection. The estimated claim frequency for residential property with a private water con-

nection is 79 percent of the claim frequency for residential property connected to a MM network.

Or differently put, properties with a MM connection are estimated to have (1/0.79)≈ 27 percent

higher claim frequency than properties with a private connection. Which confirms my hypothesis.

Residential properties with a simpler type of water system or no water systems (coded as ”other”),

are estimated to also have lower claim frequency than the base category. However, this finding is

only indicative, since the estimate is only significant at the 10 percent level. Claim frequency for

residential property with a MM connection is estimated to be 117 percent (1/0.46) larger than claim

frequency for holiday homes with the same connection type. For an in-depth analysis of these unex-

pected results, see the Discussion section below. No estimates with a sufficiently high statistical level

were found for the two interactions. Specification 3 has the best fit when comparing AIC values. As

previously disused, overdispersion might be a problem when assuming a Poisson distribution. When

comparing the deviance with the degrees of freedom in each model, I unexpectedly find that my

models are underdispersed (deviance/df ≈ 0.1). Olsson (2002) states that underdispersion is very un-

common in practice, but preferable to overdispersion since the standard errors now are overestimated.

Holiday homes and residential properties may differ in several important aspects related to rain-

fall risk. E.g. where they are located within a station area, its standard, and type of policyholder.

To further investigate these differences, the same three specifications are fitted on two subsets of the

data based on building type. In table 6 it is evident that the number of extreme rainfalls and claim

frequency is positively related for both building types. The estimates are highly significant across the

three specifications (<0.01). But the estimated effect is larger in magnitude for residential property

(≈ 4.5) versus holiday homes (≈ 1.8). This indicates that holiday homes are more robust against

extreme rainfalls than residential property. Another interesting result is that the expected claim fre-

quency is only different per connection type for residential property. Thus the results in main table

5, were largely driven by the residential property data.
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6.2 Claim Severity

As mentioned in the methods section, these models are only run on a subset of the data including

only policy years with one or more claims. Moreover, in compliance with standard practice within the

insurance industry is the data truncated based on claim size. The top 99.5th largest claims are re-

moved since they are outlier values. In similarity to the frequency regression above, a log-link is used

in the Gamma regressions, and the coefficients and the standard errors in table 7 have been adjusted

in the same fashion as in table 5 and 6. In this section, I aim to answer the second research question:

What impact does extreme rainfall have on claim severity? Main hypothesis 2 is tested. The null

hypothesis that the number of extreme rainfalls does not affect claim severity cannot be rejected.

Further, I cannot reject the null hypotheses for any of the sub-hypotheses. However, a statistically

significant difference between a residential property with a simpler type of water connection versus

a municipality-managed system was found. The same relationship could not be found for holiday

homes.

Table 7: Claim Severity Main Results

1 2 3

No. of Extreme Rainfalls (50mm) [H2] 0.88 0.88 0.87
(0.10) (0.10) (0.10)

Vulnerability Characteristic 1.10 1.10 1.14
(0.14) (0.14) (0.15)

Average Floor Area [H2a] 1.00 1.00 1.00∗

(0.00) (0.00) (0.00)

Quality Connection [H2b] 1.00
(0.26)

Private Connection 0.80
(0.11)

Other Connection 0.23∗∗∗

(0.11)

Holiday Home [H1c] 1.06
(0.34)

Holiday Home × Private Connection 1.49
(0.65)

Holiday Home × Other Connection 4.74∗∗∗

(2.83)

Station Area Control: No No No
Year Control: Yes Yes Yes

N 924 924 924
AIC 23 162 23 164 23 158

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

As explained earlier, it is unfortunately not possible to control for station area fixed effects since

there is no time dimension for most of the observations in this subset of the data. This could pose
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some threats to the identification, such as differences in the local environment which both impact

the number of extreme rainfalls and claim cost. The AIC values are very similar indicating that the

model’s fit did not improve considerably when controlling for connection type. The model with the

lowest AIC value is specification 3.

Using the same motivation as in the claim frequency section, the data is divided by building type.

The results are presented in table 8 and are rather mixed. The number of extreme weather events

does not have a statistically significant effect (at the 5 percent level) on claim severity (i.e., average

claim size) for residential property. For holiday homes however, the result indicates a negative rela-

tionship. This contradicts findings of Pastor-Paz et al. (2020) and does not support hypothesis 2. A

more elaborate discussion can be found in section 7.
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6.3 Robustness Checks

The main focus of the robustness checks is on the independent variable of interest. I deem it likely

that the definition of an extreme rainfall will heavily impact the effect of an additional extreme rain-

fall on claim severity and claim frequency. In addition to this comparison, two model diagnostics

tests are performed. The first one assess the models’ robustness toward influential observations and

the second one analyze the residual deviance.

As seen in table 9, a statistically significant relationship at the 1 percent level, between the num-

ber of extreme rainfalls and claim frequency is estimated for all thresholds values. Therefore I can

conclude that the positive and statistical significant relationship is robust to the definition of an

extreme rainfall. The magnitude of the relationship increases with the strictness of the definition, as

expected. This is an additional indicator that the causal relationship between extreme rainfalls and

economic damage (claims) is captured. Grahn and Olsson (2019) estimated the marginal effect from

an additional extreme rainfall to be between 4 and 16 percent. This study also took place in Sweden,

but they utilized another definition of an extreme rainfall event, namely 6mm/15 min. Which indi-

cates that daily thresholds capture more destructive extreme rainfall events. Area-specific relative

thresholds were used in Pastor-Paz et al. (2020). However, they investigated extreme rainfalls in New

Zealand where the rainfalls are much intenser than in Sweden. In addition, they based the thresholds

on 1 year of data while I based them on 10 years of data. Despite these central differences, are

the magnitudes of the estimated marginal effects very similar. Pastor-Paz et al. (2020) found claim

frequency to increase with 24 (95th), 41 (98th) and 57 (99th) percent with an additional extreme

rainfall. While the results in table 9 show marginal increases of 18 (95th), 36 (98th) and 65 (99th)

percent. Suggesting that the yearly top percentile of daily rainfalls in New Zealand and the top

10-year percentile of daily rainfalls in Sweden have a similar impact on claim frequency. The lowest

AIC score and hence the best fit is achieved with model 3, using the 50mm threshold. This model is

selected as the claim frequency candidate model. The same threshold comparisons per building type

can be found in Appendix, table 13. The effect is larger in magnitude for residential property than

for holiday homes regardless of threshold value used.
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Table 9: Threshold Comparison - Frequency

1 2 3

No. of Extreme Rainfalls (90mm) 10.07∗∗∗ 10.10∗∗∗ 10.17∗∗∗

(7.26) (7.28) (7.37)
AIC 10 515 10 512 10 491

No. of Extreme Rainfalls (50mm) 4.14∗∗∗ 4.14∗∗∗ 4.13∗∗∗

(0.91) (0.91) (0.91)
AIC 9 719 9 717 9 698

No. of Extreme Rainfalls (99th) 1.65∗∗∗ 1.65∗∗∗ 1.64∗∗∗

(0.12) (0.12) (0.12)
AIC 9 768 9 765 9 746

No. of Extreme Rainfalls (98th) 1.36∗∗∗ 1.36∗∗∗ 1.35∗∗∗

(0.08) (0.08) (0.08)

AIC 10 043 10 040 10 022

No. of Extreme Rainfalls (95th) 1.18∗∗∗ 1.18∗∗∗ 1.18∗∗∗

(0.04) (0.04) (0.04)
AIC 10 161 10 158 10 138

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Every coefficient in this table stems from a separate regression.

In contrast to the frequency models, no unanimous strong evidence of a connection between the

number of claims and claim cost could be found. Although, the strictest threshold of 90mm and

surprisingly the 98th percentile threshold yield statistically significant estimates. Since there is a

maximum of one extreme rainfall within an area and year, should the coefficient of an extreme rainfall,

defined as 90mm, be interpreted as a dummy variable. Namely, how much larger the estimated

average claim size is if there has been an extreme rainfall event during the year. The estimated

effect is negative and statistically significant (<0.05), which implies that the average claim cost is

approximately (1/0.4) 1.5 times larger if there have been no extreme rainfalls in the area and year.

All of these results contradict hypothesis 2, and contrast to findings by Grahn and Nyberg (2017).

They found that extreme rainfalls caused approximately 42 percent larger damages than less intense

rainfalls. The lowest AIC value was found for specification 3, using the 98th percentile threshold value.

This is the claim severity candidate model. The same threshold comparisons per building type can

be found in Appendix, table 14. The results are mixed in terms of significance. Statistical significant

and slightly negative effects were found for residential property using the two lowest thresholds.

A negative effect was also found with the 90mm threshold. However, no significant estimate was

found for either building type when controlling for the type of water connection. Hence, the results’

robustness can be questioned.
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Table 10: Threshold Comparison - Severity

1 2 3

No. of Extreme Rainfalls (90mm) 0.43∗∗ 0.43∗∗ 0.39∗∗∗

(0.16) (0.16) (0.13)
AIC 23 160 23 163 23 156

No. of Extreme Rainfalls (50mm) 0.88 0.88 0.87
(0.10) (0.10) (0.10)

AIC 23 162 23 164 23 158

No. of Extreme Rainfalls (99th) 0.96 0.96 0.97
(0.04) (0.04) (0.04)

AIC 23 163 23 166 23 161

No. of Extreme Rainfalls (98th) 0.92∗∗∗ 0.92∗∗∗ 0.93∗∗∗

(0.02) (0.02) (0.02)
AIC 23 151 23 153 23 149

No. of Extreme Rainfalls (95th) 0.97∗ 0.97∗ 0.97∗

(0.01) (0.01) (0.01)
AIC 23 158 23 160 23 1534

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Every coefficient in this table stems from a separate regression.

Two additional tests were conducted on the candidate models. A potential threat to the robustness

of the findings is influential observations (Olsson, 2002). If an influential observation is deleted

or changes slightly it will affect the estimates. Cook’s Distance3 is calculated for the candidate

models. A rule of thumb is that observations with a value higher than 1 or a lot higher than the

other values are influential observations. Since there are large extreme rainfalls e.g. in Malmö 2014

this could pose a threat to the models’ robustness. In the frequency model, only one observation

had a distinctively large value. However, its Cook’s Distance equaled only 0.004. There were no

abnormally large values in the claim severity estimation at all. Hence, the estimations seem robust

to influential observations. Another way of assessing the finding’s robustness is to plot the deviance

residuals against the predicted values (Olsson, 2002). As seen in figure 5a, the deviance in the claim

frequency model is almost symmetric which is very positive. An optimal fit would yield small and

normally distributed deviances around 0. The model’s largest flaw is that it predicts claim frequencies

close to 0, while claim frequency estimated by the saturated model is either larger or smaller. It

also overestimates the claim frequency slightly when predicting higher claim frequencies. Plausible

explanations are that it lacks important covariates, the assumption that claim frequency is Poisson

distributed is faulty and/or that the linkage function is unsuitable. I believe that the first reason is

the most important one, which is a limitation of the model. However, the model still fits the data

well, the median deviance residual is very close to 0. In figure 5b, is the density of observations with

negative deviance slightly higher. Indicating that the proposed model overestimates claim severity

3Cooks’s Distance equals change in the estimated coefficients when removing one observation. The model is thus
refitted without one observation. If the change is very large in comparison to the other observations, and/or the full
model’s variance it is considered influential (Olsson, 2002).
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in comparison to the saturated model. The median deviance residual equals -0.73. Apart from that,

the Gamma model has a rather good fit.

Figure 4: Deviance Residual Plots

(a) Claim Frequency (50mm) (b) Claim Severity (98th)

6.4 Extreme Rainfall Risk

By multiplying the fitted values from the claim frequency and claim severity candidate models, the

risk factor is constructed. As previously explained, this is the risk of economic damage from ex-

treme rainfall events as outlined by Bouwer (2013). But since the candidate models utilize different

thresholds, I have decided to use the 50mm threshold for both the claim severity and claim frequency

models. My motivation is that claim frequency is expected to better describe the total risk than

claim severity. The hazard probability, vulnerability and exposure vary across Sweden. It is therefore

interesting to see how the relative risk differs geographically. I grouped the observations per munici-

pality and calculated the average risk. All values are normalized between 0 and 1. Figure (a) displays

regional differences in the average extreme rainfall risk. Figure (b) displays the relative number of

detached houses per municipality (SCB, 2021a). Lastly, figure (c) illustrates the weighted risk. The

weighted risk is calculated by multiplying the number of detached houses with the average risk level.

The highest estimated average risk can be found in the municipalities Grästorp, Vara and Malmö.

These results should however be interpreted with caution due to limitations discussed in section 7.1.

The general pattern is that municipalities close to the coast have a higher average risk. Especially

along the southeast coast. This pattern is strengthened in the weighted risk figure. When comparing

figure (a) and (b), it seems like the number of properties might be positively related to the average

risk. However, it is also possible that the causal channel is not running through ”property density”

but rather the distance to water. This is further discussed in next section.
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Figure 5: Municipality Differences

(a) Average Risk (b) No. of Detached Houses (c) Weighted Risk

7. Discussion

The results broadly support main hypothesis 1 and not main hypothesis 2. The number of extreme

rainfalls seems to be positively related to claim frequency. All thresholds were sufficiently high to

capture rainfalls so extreme that they caused economic damage. Employing the framework presented

by Bouwer (2013), hazard probability is captured by the number of extreme rainfalls. Exposure is

described by the weight variable, i.e. the number of policyholders. The relationship between claim

frequency and the number of extreme events is therefore not biased by changes in exposure. Which

has been a problem in previous research according to e.g. Bouwer (2013). The third factor, vulnera-

bility, is captured by building characteristics such as connection type, building type, and average floor

area. Several sources of vulnerability were discovered. The results suggest that residential properties

(RP) with a private connection or a simpler type of water system have lower claim frequency than

RP with a municipality-managed (MM) water system. The risk of being connected to a MM system

is likely to be higher in municipalities with under-sized sewer systems. However, it is not unlikely

that properties connected to a MM water system are different in other aspects too.

It is possible that these properties also are more often located in densely populated areas. Hence, a

contributing factor to higher vulnerability could be the level of urbanization. But since station area

controls are used, and the median diameter is only approximately 16km the level of urbanization is

already largely taken into account. Another finding is that holiday homes have a lower claim fre-

quency than RP, despite having a lower standard. This result is unexpected but could in part be

explained by the fact that holiday homes are often located in more sparsely populated areas than

RP. While this is certainly not the only explanation it is still a plausible one. An improvement of

the model would hence be to control for the level of urbanization at the property’s location. Many

properties are also located along the coasts, as seen in figure 6b. It is possible that RPs are more
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often located along the coasts within a station area than holiday homes. However, the opposite could

also be true. Regardless, it would be very advantageous to control for these two factors despite that

station area controls are already implemented. Another potential explanation for the relatively higher

vulnerability of RP is that water damages may be harder to detect if the policyholder is not at the

property during the event. Assuming this is the case, damages to holiday homes may sometimes go

unnoticed since the water has dried up before the policyholder visits.

The result does not support that there is a connection between an additional extreme rainfall and

claim cost. Admittedly, the estimated coefficient using the 98th percentile was statistically significant

at the 1 percent level. However, since neither a significant effect was found using the 95th nor the

99th threshold, the result is not very robust. Although the Cook’s distance plot did not indicate a

problem with influential observations, the significance is likely to disappear if another year of data

is included. A reason why no significant results were found is that only extreme rainfalls before the

damage contribute to claim severity. Since the number of extreme rainfalls includes hazards both

before and after damage the effect is probably diluted. Another improvement to better capture the

intended effect would have been to only include a dummy variable for the years with at least one

extreme rainfall in the local area. This would not be informative for the lower thresholds, but still

valuable if a sufficiently strict definition is used. Despite lacking robustness, the results from the

model with a 98th percentile threshold, suggest that the average claim cost slightly decreases with

the number of rainfalls. This indicates that there is a learning effect present. Property owners and/or

the municipality are thus more prepared and less vulnerable if hit again by an extreme rainfall in

the same year. However, these results are not robust. The same set of relative thresholds were used

in Pastor-Paz et al. (2020). But their study investigated extreme rainfalls in New Zealand. They

found a statistically significant and positive effect between the number of extreme rainfalls and claim

cost. However, both the building’s robustness and the size of extreme rainfalls are likely to differ a

lot between Sweden and New Zealand. The yearly average top percentile values for the 95th, 98th

and 99th percentile were 36, 52 and 66 respectively. In comparison, the same thresholds based on

10 years of data from Sweden were only 14, 20 and 25. Disregarding other differences, this indicates

that the hazards defined by the percentile thresholds are too low to distinguish rainfalls so extreme

that an additional one causes more extreme damage.

Extreme rainfalls defined as 90mm, seem however sufficiently large. These events are so rare that

the number of extreme rainfalls can be interpreted as a dummy variable. The results suggest that

the average claim cost in an area subject to an extreme rainfall is lower. The negative effect is unex-

pected. Since only 17 days with rainfalls larger or equal to 90mm were recorded during this 10 year

period by 795 stations it is possible that this result is statistical by chance. But if I give this result

the benefit of the doubt and interpret it causally, other aspects of rainfall than mm of rain during 24

hours seem to cause damage. A large share of the claims is made despite no extreme rainfalls in the
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station area within 5 days as demonstrated in table 2. This indicates that e.g, the rainfall’s duration

may be important as suggested in the literature review.

Another flaw of this model is the inability to control for station area-specific characteristics. Hence,

it is plausible that areas affected by these extreme rainfalls are not entirely random and thus they

are better prepared. This would explain why the estimated effect is negative. The only source of

heterogeneity in claim cost vulnerability was found for connection type. Properties with a simpler

or no water connection are also expected to have a lower average claim cost. This relationship can

be explained in two ways. Firstly, properties with ”other” connection types have an overall lower

standard. However, no support was found for this hypothesis as seen in table 7. Secondly, the type of

damage caused by malfunctioning sewer systems is a lot more expensive than other types of damages,

which is probable. Mobini et al. (2021) found that the number of damages were higher for certain

types of municipality-managed sewer systems, while no difference was found for the average damage

size. In similarity, I found differences in claim frequency but not in claim severity between MM and

private sewer systems. Which indicates that the type of damage is similar if it occurs.

7.1 Limitations

As briefly addressed throughout the thesis there are several limitations. Limitations connected to

the data are twofold. Firstly, the data does not include claims that were made but did not receive

any compensation. If this is common, then the treatment effect on claim frequency might be under-

estimated. While the treatment effect on claim severity is overestimated. However, I assume that

the insurance company has correctly assessed which properties have been damaged by rainfall. A

second limitation of the data is that damages caused by malfunctioning sewer systems managed by

municipalities should be compensated by the municipalities. Hence, the insurance company claims

compensation in turn from the municipality. If they receive money from the municipality the claim

is removed from the data set. But since properties connected to a municipality-managed system are

still estimated to have a higher claim frequency, this risk transfer is not perfect. Although, the ac-

tual risk of being connected to a municipality-managed system is likely underestimated in the models.

I concluded in the external validity section that the results could be generalized to the Swedish

population. This was partly due to an argument based on the average house size. However, the

results show that the average floor area does not impact extreme rainfall risk. Thus, this limits the

external validity of the findings since I cannot assess if there are any meaningful differences between

the sample and the population. Hence, figure 6 should be interpreted with caution. Lastly, the Pois-

son models suffer from underdispersion which is very rare and therefore suspect. The models struggle

to fit observations with low-frequency levels, which is a large share of the observations and naturally

limits the result’s credibility. Nonetheless, the median deviance residual is close to zero.

37



8. Conclusion

Extreme rainfall frequency and severity are expected to increase as a result of climate change. But

the exact location and timing of an extreme rainfall are hard to predict. Hence, it is of interest for

insurance companies and policy-makers to identify sources of extreme rainfall risk. By identifying

these sources, risk mitigation policies and insurance pricing models can be designed more efficiently.

Total extreme rainfall risk is divided into a frequency and a severity component. These components

are estimated using GLMs. Since the GLM framework does not require normally distributed errors it

is more preferable to the commonly used OLS. I thereby test if the number of extreme rainfalls and

building characteristics affect claim severity and/or claim frequency. One of the main findings is a

positive and highly significant relationship between the number of claims and the number of extreme

rainfalls. The magnitude of this relationship is heavily dependent on the definition of an extreme

rainfall. Hence, I can conclude that not only the number of events but also the amount of rain during

24 hours affect claim frequency.

To my knowledge, no prior studies have investigated differences in claim frequency between properties

connected to municipality-managed and private sewer systems. I am also unaware of papers investi-

gating this difference for claim severity. Despite that, the type of sewer system is identified as a main

risk factor in previous event-studies (Sörensen and Mobini (2017), Mobini et al. (2021), Spekkers et al.

(2015)). Ultimately, this thesis provides evidence that being connected to a municipality-managed

sewer system increases claim frequency by almost 27 percent, assuming that the type of sewer- and

water system are the same. However, I was not able to rule out the possibility that other omitted

factors such as property density or distance to water bias this estimate. By including better controls

for the local environment e.g. within a station area, more persuasive findings would have been at-

tained. This is therefore an important avenue for future research. Despite these concerns, station area

controls are imposed and a positive effect makes empirical sense. I therefore deem it likely that this

relationship exists. Hence, a proposal for future policy-making is to invest in municipality-managed

sewer systems to mitigate this type of risk.

The second main finding is that no robust relationship between an additional extreme rainfall and

claim severity was detected. However, very extreme rainfalls (90mm) are estimated to have a negative

effect on claim size. This result contradicts previous research. But since it is not possible to control

for station area-specific characteristics, a possible explanation is that areas affected by these events

are more prepared and hence less vulnerable. Another possible conclusion is that the size of the

damage is determined by other factors than the number of extreme rainfalls or mm of rain during

24 hours. Lastly, a lower average claim size is found for properties with only a simple- or no sewer

connection. Confirming that the risk of damage and the damage size depends on the type of sewer.

Whilst other intuitive building characteristics such as the floor area do not have an effect.
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from, https://www.svt.se/nyheter/inrikes/har-skulle-jag-definitivt-inte-kopa-hus-

skatteintakterna-styr-risk-att-du-blir-utan-forsakringsskydd-om-du-koper-fel-

hus.

41

https://www.scb.se/en/finding-statistics/statistics-by-subject-area/prices-and-consumption/consumer-price-index/consumer-price-index-cpi/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/prices-and-consumption/consumer-price-index/consumer-price-index-cpi/
https://www.scb.se/en/finding-statistics/statistics-by-subject-area/prices-and-consumption/consumer-price-index/consumer-price-index-cpi/
https://www.scb.se/en/finding-statistics/regional-statistics/regional-divisions/counties-and-municipalities/counties-and-municipalities-in-numerical-order/
https://www.scb.se/en/finding-statistics/regional-statistics/regional-divisions/counties-and-municipalities/counties-and-municipalities-in-numerical-order/
https://www.smhi.se/kunskapsbanken/meteorologi/regn/extrem-nederbord-1.23060
https://www.smhi.se/kunskapsbanken/meteorologi/regn/extrem-nederbord-1.23060
https://www.smhi.se/kunskapsbanken/meteorologi/nederbord-1.361
https://www.smhi.se/kunskapsbanken/meteorologi/nederbord-1.361
https://www.smhi.se/data/utforskaren-oppna-data/se-acmf-meteorologiska-observationer-nederbord-summa-1-dygn.
https://www.smhi.se/data/utforskaren-oppna-data/se-acmf-meteorologiska-observationer-nederbord-summa-1-dygn.
https://www.svenskforsakring.se/statistik/marknadsstatistik/forsakringsmarknaden/
https://www.svenskforsakring.se/statistik/statistikdatabas/
https://www.svenskforsakring.se/statistik/statistikdatabas/
https://www.svenskforsakring.se/aktuellt/nyheter/2021/nastan-en-halv-miljard-i-beraknat-skadebelopp-i-gavleborg-och-dalarna/
https://www.svenskforsakring.se/aktuellt/nyheter/2021/nastan-en-halv-miljard-i-beraknat-skadebelopp-i-gavleborg-och-dalarna/
https://www.svt.se/nyheter/lokalt/gavleborg/en-kvarts-miljard-kommer-oversvamningarna-kosta-gavle-kommun
https://www.svt.se/nyheter/lokalt/gavleborg/en-kvarts-miljard-kommer-oversvamningarna-kosta-gavle-kommun
https://www.svt.se/nyheter/inrikes/har-skulle-jag-definitivt-inte-kopa-hus-skatteintakterna-styr-risk-att-du-blir-utan-forsakringsskydd-om-du-koper-fel-hus
https://www.svt.se/nyheter/inrikes/har-skulle-jag-definitivt-inte-kopa-hus-skatteintakterna-styr-risk-att-du-blir-utan-forsakringsskydd-om-du-koper-fel-hus
https://www.svt.se/nyheter/inrikes/har-skulle-jag-definitivt-inte-kopa-hus-skatteintakterna-styr-risk-att-du-blir-utan-forsakringsskydd-om-du-koper-fel-hus


Tenkanen, H. and Heikinheimo, V. (2020). Automating GIS Pro, chapter Nearest neighbor anal-

ysis with large datasets. Department of Geosciences and Geography, University of Helsinki.

Retrieved 24-11-2021 from, https://autogis-site.readthedocs.io/en/2019/notebooks/L3/

nearest-neighbor-faster.html.

Torgersen, G., Bjerkholt, J. T., Kvaal, K., and Lindholm, O. G. (2015). Correlation between extreme

rainfall and insurance claims due to urban flooding – Case study fredrikstad, Norway. Journal of

Urban and Environmental Engineering, 9(2):127–138.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, volume 1 of MIT

Press Books. The MIT Press, 2 edition.

42

https://autogis-site.readthedocs.io/en/2019/notebooks/L3/nearest-neighbor-faster.html
https://autogis-site.readthedocs.io/en/2019/notebooks/L3/nearest-neighbor-faster.html


Appendix

Table 11: Type of Precipitation

Coded as.. Types of Precipitation Found English Translation
in SMHI’s Data Set

Rain Snöblandat regn Snow and rain mixed
Byar av snöblandat regn Flurries of snow and rain mixed
Regn Rain
Duggregn Drizzle
Regnskurar Rainfalls
Sm̊ahagel Small hail

Snow Snöhagel Snow hail
Kornsnö Snow grains
Snowfall Snowfall
Snöbyar Flurries with snowfall
Isn̊alar Type of ice hail
Ishagel Ice hail
Underkyld nederbörd Freezing Rain

Table 12: Months and Counties With Snow

Months When it Snowed the Majority Counties
of days with Precipitation
No months with snow 7,8,9,10,12,13,14
February 6
January, February 1,3,4,5,17,18,19
January, February, March and December 20,21,22
January, February, March, November and December 23,24
January, February, March, April, November and December 25

The county code used can be found on SCB’s website (SCB, 2021c). Unsurprisingly, counties in

southern Sweden have fewer months when it is snowing the majority of days with precipitation. Ad-

ditionally, counties located in the west also tend to have more months coded as ”snow”.

Regressions on holiday homes with the 90mm threshold are omitted in table 13 and 14. Only one

claim was made in the same year and station area as an 90mm rainfall, hence the claim severity and

claim frequency estimates reveal customer-specific information and can therefore not be included.

43



Table 13: Threshold Comparison Frequency

Residential Property Holiday Homes

1r 2r 3r 1h 2h 3h

No. of Extreme Rainfalls (90mm) 9.93∗∗∗ 9.93∗∗∗ 9.97∗∗∗ − − −
(7.31) (7.31) (7.34) (-) (-) (-)

AIC 8 792 8 791 8 783 - - -

No. of Extreme Rainfalls (50mm) 4.51∗∗∗ 4.50∗∗∗ 4.50∗∗∗ 1.89∗∗∗ 1.89∗∗∗ 1.75∗∗∗

(0.96) (0.96) (0.95) (0.42) (0.42) (0.49)
AIC 7 980 7 980 7 973 1 705 1 705 2 843

No. of Extreme Rainfalls (99th) 1.68∗∗∗ 1.68∗∗∗ 1.68∗∗∗ 1.36∗∗∗ 1.35∗∗∗ 1.43∗∗∗

(0.13) (0.13) (0.13) (0.09) (0.09) (0.12)
AIC 8 055 8 054 8 047 1 689 1 690 2 822

No. of Extreme Rainfalls (98th) 1.38∗∗∗ 1.38∗∗∗ 1.38∗∗∗ 1.17∗∗∗ 1.17∗∗∗ 1.18∗∗∗

(0.09) (0.09) (0.09) (0.06) (0.06) (0.06)

AIC 8 317 8 316 8 310 1 700 1 701 2 837

No. of Extreme Rainfalls (95th) 1.19∗∗∗ 1.19∗∗∗ 1.19∗∗∗ 1.07∗∗ 1.07∗∗ 1.07∗∗

(0.04) (0.04) (0.04) (0.03) (0.03) (0.04)
AIC 8 437 8 436 8 429 1 707 1 708 2 845

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 14: Threshold Comparison Severity

Residential Property Holiday Homes

1r 2r 3r 1h 2h 3h

No. of Extreme Rainfalls (90mm) 0.31∗∗∗ 0.31∗∗∗ 0.47 − − −
(0.11) (0.10) (1.68) (-) (-) (-)

AIC 19 688 19 684 19 610 - - -

No. of Extreme Rainfalls (50mm) 0.97 0.95 1.44∗ 0.60∗∗ 0.58∗∗ 0.34
(0.13) (0.13) (0.29) (0.13) (0.13) (0.75)

AIC 19 693 19 689 19 604 3 467 3 467 3 506

No. of Extreme Rainfalls (99th) 0.98 0.98 1.01 0.97 0.97 0.84
(0.04) (0.04) (0.07) (0.08) (0.08) (0.25)

AIC 19 693 19 689 19 610 3 472 3 474 3 511

No. of Extreme Rainfalls (98th) 0.94∗∗ 0.94∗∗ 1.00 0.90 0.91 0.79
(0.02) (0.02) (0.05) (0.07) (0.07) (0.55)

AIC 19 679 19 676 19 610 3 471 3 473 3 528

No. of Extreme Rainfalls (95th) 0.97∗∗ 0.97∗∗ 1.02 1.02 1.03 1.00
((0.01)) ((0.01)) ((0.03) (0.05) (0.06) (0.34)

AIC 19 679 1 9675 19 609 3 473 3 474 3 530

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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