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Abstract: 

We evaluate the usefulness of high-frequency fundamental factor exposures of five US 

equities, between 2013 and 2017, as features for classifying and predicting the binary 

movements of the same stocks in 5-minute and 20-day intervals using Convolutional Neural 

Networks (CNN). After plotting rolling factor betas (Market, HML, SMB) and the close 

price of a given stock in the corresponding intervals, these time series are converted into 

images as Gramian Angular Difference Fields (GADF) and then concatenated to be fed to 

the CNN as input. Two types of convolutional neural networks are trained on these images 

and used for a binary classification task of determining whether the close price is likely to 

increase or decrease in the consecutive time unit. For comparison, the same analysis is 

conducted with technical indicators (RSI, EMA, %K) and a combination of the two (Market, 

HML, RSI). The results of this paper show moderate performance of the trained CNN, 

achieving a maximum accuracy on test data of 54.7% for a 20-day interval using images 

with a combination of both technical indicators and fundamental factors. For further 

research, we suggest using a longer forecast and classification horizon, and exploring 

alternate ways to linear regression for high-frequency beta estimation for fundamental 

factors. 
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1. Introduction 

The potential gains of successful 

predictions of the stock market have led 

people to attempt to forecast stock prices for 

many decades. The commonly held view 

since the early 1960s, via the capital asset 

pricing model (Sharpe, 1964) and efficient 

market hypothesis (Fama, 1970), is that 

returns are proportional to the asset’s 

exposure to general market risk and that all 

publicly available information about an asset 

is incorporated into its price immediately 

upon release. The consequence is that 

arbitrage, i.e., risk-free returns, cannot be 

achieved and that one cannot beat the market 

in the long term. The capital asset pricing 

model has been extended by Fama and 

French (Fama & French, 1993) to include 

two other factors that drive returns beside the 

market in aggregate, namely having a high 

book-to-market ratio and being a smaller 

sized firm.  Since then, many factors have 

been proposed, tested and rejected in the 

“factor zoo” (Feng, Giglio, & Xiu, 2020).  

In the short term, asset pricing theory is less 

useful as price movements are characterized 

by high dimensionality, e.g., in the form of 

idiosyncratic events, large orders, rumors or 

irrational trading. However, the emergence of 

statistical analysis and machine learning tools 

has helped researchers in discerning useful 

information from noise and has instigated the 

scientific community to explore many new 

tools to understand and capture returns in the 

short term (Kara, Boyacioglu, & Baykan, 

2011).  Deep learning and neural networks 

have during the last 10 years played an 

integral part in this pursuit (Hu, Zhao, & 

Khushi, 2021) (Sezer, Gudelek, & 

Ozbayoglu, 2020). Our intention with this 

paper is to shed light on the intersection 

between long term and short-term stock price 

predictions. With the help of high-frequency 

versions of Fama and French’s three factors, 

normally used to predict asset prices in the 

long term, and the promising feature 

extraction capabilities of convolutional 

neural networks (CNN), shown to effectively 

predict asset returns in the short term, we 

hope to uncover the respective contributions 

of statistical analysis versus fundamental 

analysis to the predictability of one-

directional movements of short-term stock 

prices. 

2. Literature Review 

2.1 Deep learning in asset pricing 

Research aiming to predict asset prices 

using deep learning has risen exponentially 

since 2015, as mapped out by Hu et al. (Hu, 

Zhao, & Khushi, 2021) and Sezer et al. 

(Sezer, Gudelek, & Ozbayoglu, 2020). This 

likely stems from the increased attention 

these methods have gained following their 

success in other fields of science alongside 

the democratization of deep learning 

algorithms from tools like Keras. Most 

commonly, the exercise is to forecast a single 

financial time series from its own history to 

predict the subsequent rise or drop in value, 

and thereafter construct profitable trading 

strategies with successful such algorithms. 

The majority of deep learning models 

evaluated by Sezer et al. outperformed 

machine learning models.  

Due to the volatility and non-linearity of 

stock prices in the short term, deep learning 

is well-suited to handle this issue and most 

researchers use high-frequency data windows 
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of hours or days to make consecutive 

predictions. Sezer et al. (Sezer, Gudelek, & 

Ozbayoglu, 2020), whose paper mapped 140 

deep learning publications in financial time 

series prediction from 2005 to 2019, showed 

that memory-based recurring neural 

networks (RNN) was the most popular model 

and was used in 62% of papers; a natural 

choice because of the ordinal nature of time 

series. CNN follows and was used in 21% of 

the papers, of which a total of 11 attempted 

to predict stock price movements. Other 

papers quantify financial news sentiment and 

analyze this along historical stock prices with 

deep learning for movement predictions 

(Ding, Zhang, Liu, & Duan, 2015) (Cai, 

Feng, Deng, Ming, & Shan, 2018) (Kraus & 

Feuerriegel, 2017) (Maqsood, o.a., 2020). 

Most research using CNN on images of time 

series has been done in the last three years 

and has shown great results. In ten of the 

papers reviewed by Hu et al. (Hu, Zhao, & 

Khushi, 2021), the accuracy of CNN-based 

stock prediction models averages ~70% and 

range from 55% to 95% – significantly higher 

than guessing. Correspondingly, RNN 

achieved a ~68% average accuracy, LTSM 

~67%, and DNN ~68%. Di Persio & Honchar 

find their CNN to outperform MLP and RNN 

by 1.5% accuracy (Di Persio & Honchar, 

2016). Gunduz et al. find their CNN to 

consistently predict intraday stock 

movements on the Istanbul stock exchange 

with 55% accuracy. Without accounting for 

trading costs and other constraints, any model 

whose predictions are correct more than 50% 

of times can be considered profitable.  

In the majority of CNN, technical indicators 

have been used as explanatory variables for 

stock price forecasting (Gunduz, Yaslan, & 

Cataltepe, 2017) (Liu, Zeng, Yang, & Carrio, 

27–28 August 2018) (Gudelek, Ozbayoglu, 

& Boluk, 2017) (Ozbayoglu & Sezer, 2018) 

(Sim, Kim, & Ahn, 2019) and did, in their 

respective simulations, outperform the 

common buy-and-hold strategies. Technical 

factors are often constructed in the short term 

and include moving averages, RSI, 

Williams %R, etc. However, technical 

factors do not necessarily provide additional 

explanatory value. Sim et al. (Sim, Kim, & 

Ahn, 2019) found that their best model was a 

CNN with only the close price as input 

(accuracy ~65%), as opposed to models with 

up to nine technical indicators (accuracy 

<60%). They hypothesize that this is due to 

many technical indicators being similar in 

appearance to the stock price, thus adding no 

spatial information for the CNN to process.  

Besides handling spatial information 

especially well, CNN is also a time invariant 

neural network and does not account for the 

order of information, like e.g. RNN. Due to 

the noise and little correlation between short 

term returns, CNN would arguably lose less 

predictive power when used for short term 

predictions. As a consequence, it is common 

to use daily observations or even minutes like 

Selvin et al. (Selvin, Ravi, Gopalakrishnan, 

& Menon, 2017) or Sim et al. (Sim, Kim, & 

Ahn, 2019).  

A less common approach used by some 

(Hoseinzade & Haratizadeh, 2019) (Enke & 

Zhong, 2016) is to include economic 

variables as inputs, including world indices, 

foreign exchange rates, commodities, futures 

and data from big companies. Hoseinzade & 

Haratizadeh (Hoseinzade & Haratizadeh, 

2019) use both 2D and 3D input tensors; the 

last dimension being different markets to 
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account for individual traits of each stock 

index.  They include a total of 82 economic 

and technical variables in their CNN input. 

They benchmarked the CNN performance 

against other literature algorithms: an ANN 

being fed features extracted by PCA in Enke 

& Zhong (Enke & Zhong, 2016), a shallow 

ANN classifying on technical indicators 

(Kara, Boyacioglu, & Baykan, 2011), and a 

CNN being fed technical indicators only 

(Gunduz, Yaslan, & Cataltepe, 2017). Their 

own algorithms averaged an F-measure of 

~0.5 over several world indices compared to 

~0.42, ~0.42 and ~0.39 for their benchmark 

models. The authors conclude that adding 

more variables did not improve predictability 

(in the case of the 3D model, separating 

models per market also worsened 

performance), but that the depth of their 

network was the cause for outperforming 

others.  

Another aspect that needs consideration is the 

presentation of inputs to neural networks for 

optimal performance. Gramian Angular 

Fields (GAF) is a method of encoding time 

series into images proposed by Wang & 

Oates in 2015 (Wang & Oates, 2015), 

developed as a means for computer vision to 

classify time series more efficiently after its 

success with image recognition. Feeding the 

time series as GAF to the CNN provides 

several advantages (Chen & Tsai, 2020), 

including: (1) preserving temporal 

dependency as time increases when moving 

from top-left to bottom-right; (2) it contains 

intertemporal correlations; (3) the original 

data is stored in the primary diagonal of the 

picture and one can theoretically reconstruct 

the time series from high-level features 

learned by the deep network. Chen & Tsai 

(Chen & Tsai, 2020) also suggest using 

candlesticks as input images for GAF, which 

is then fed to the CNN, as this yields greater 

spatial variety to the images and improved 

their model’s performance. Sezer & 

Ozbayoglu (2020) emphasize the weight 

CNN places on local features and adjacent 

pixels, and therefore suggest that one should 

choose neighboring data points and 

presentation carefully. 

An alternate, useful way to present 

explanatory variables to CNN is using 

dummies variables and labelling them as “1” 

if their values pass some threshold, and “0” 

otherwise. Yang et al. obtained better results 

from their CNN when presenting continuous 

technical indicators as binary trend signals 

(Yang, Zhai, & Tao, 2020). Unlike this 

approach, which exhibits the values and 

intertemporal correlations of a single variable 

during some lags, some research papers 

(Ozbayoglu & Sezer, 2018) (Hoseinzade & 

Haratizadeh, 2019) construct matrices where 

one dimension represents lagged time values 

and the other represents the values of 

different indicators each day. It is our idea, 

inspired by Sim et al. (Sim, Kim, & Ahn, 

2019), that the spatial uniqueness of linear, 

continuous graphs can contribute to CNN 

performance and we choose to follow this 

method.  

2.2 Deep learning with fundamental factors 

The literature is sparse in this specific field 

of research. In the review of Hu et al., one 

paper used neural networks and fundamental 

factors to predict asset price movements. Abe 

& Nakamaya (Abe & Nakamaya, 2018) use 

deep learning and accounting ratios to predict 

the one-month-ahead stock returns in the 
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cross-section of the Japanese stock market 

from 2002 to 2016. They extract fundamental 

information about stocks from their quarterly 

reports (e.g., book-to-market ratio, ROIC, 

current ratio, Sales-to-price, etc.), and update 

their factors once every month. Their models 

are fully connected feed-forward deep neural 

networks benchmarked against shallow 

networks and found that deep versions 

outperform the shallow ones marginally.   

Zhou (Zhou, 2019) develops a novel two-

layered LSTM recurrent neural network and 

MLP model combination to predict the next 

day’s return from 80 days of past returns, 

along 15 annual accounting figures (ROE, 

investment-to-capital, etc.), for 99% of listed 

US firms between 1981 and 2017. Seventeen 

stock portfolios are constructed based on 

fundamental factors whose 80 days’ past 

returns are being fed to a CNN to create a 

trading strategy that goes long (short) the 

three portfolios with highest probability of 

having a positive (negative) return on the 81st 

day. Realized annualized returns before 

trading costs of 34.33% are obtained during 

this time period. Zhou also notes that returns 

diminish after 2010, supposedly because of 

the democratization of deep learning 

algorithm trading that have traded away such 

arbitrage opportunities. To our knowledge, 

no one has modeled individual stock returns 

from their exposure to fundamental factors, 

in the short term, with deep learning.  

Deep learning has also been used for 

improved fundamental factor construction. 

Feng et al. (Feng, Polson, & Xu, Deep 

Learning in Characteristics-Sorted Factor 

Models, 2019) consider factor models as 

deep learning architectures, in the way that 

(1) firm characteristics are inputs, (2) risk 

factors are hidden layers, and (3) excess 

returns are outputs. Using the improved and 

non-linear Fama French factors that their 

hidden layers represent, and kernel weights 

that represent beta exposures, they fit the 

cross-section of stock returns better than the 

original works. 

2.3 Hyperparameter and network 

optimization 

Neural networks contain several 

hyperparameters that need to be tuned for 

efficient learning and optimal performance. 

As hyperparameters cannot be learned during 

the training process, they need to be correctly 

specified in advance. Hyperparameters 

dictate the model’s complexity, speed of 

convergence, learning rate, capacity of the 

model and the training specifications in terms 

of batch size, number of epochs and certain 

types of activation functions.  

How has hyperparameter tuning been 

approached historically? Considering the 

atypical format of stock price pictures versus 

natural objects, hyperparameter tuning 

should be closely assessed. Some, including 

Di Persio & Honchar (2016), have used a 

sequential model-based optimization 

(SMBO) approach to tuning. In their case, 

they use a tree-structured Parzen Estimator.  

As a starting point, smaller kernel sizes are 

preferred over larger ones to capture more 

detailed, local information of images and 

feature maps. Secondly, kernels with odd 

dimensions are preferred as all the previous 

layer pixels are symmetrically positioned 

around the new centered pixel which 

alleviates the modeler of accounting for 

spatial distortions.   
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Many papers (Hoseinzade & Haratizadeh, 

2019) (Sim, Kim, & Ahn, 2019) (Chen & 

Tsai, 2020) (Di Persio & Honchar, 

2016) (Liu, Zhang, & Ma, 2017) (Sim, Kim, 

& Ahn, 2019) constructing CNN for financial 

predictions base their models on the 

classic LeNet-5 architecture, which consists 

of (1) a convolutional layer followed by a 

pooling layer, (2) another similar 

convolutional layered followed by a pooling 

layer, (3) a flattening layer, and (4) a fully 

connected output layer (LeCun, et al., 1989). 

When it comes to our data set, a type of 

financial time series, Hoseinzade & 

Haratizadeh (Hoseinzade & Haratizadeh, 

2019) argue that the 3 x 3 or 5 x 5 filters that 

are industry standard in image processing 

may not necessarily be the optimal choice. 

They consider the idea of candlesticks, which 

serve to combine several traits of a stock 

price at a moment in time into a single, higher 

level feature. Thus, a 1 x 82 kernel is 

constructed that strides across 82 input 

variables for each day. Their complete setup 

is as follows: a convolutional layer of eight 1 

x 82 filters, after which there are two 

convolutional layers with eight 3 × 1 filters, 

each followed by a layer of 2 × 1 max-

pooling, lastly followed by a flattening 

operation that is fed into a fully connected 

layer. A similar configuration is used by 

Yang et al. (Yang, Zhai, & Tao, 

2020) and Gunduz et al. (Gunduz, Yaslan, & 

Cataltepe, 2017), but where two 

convolutional operations are done on the 

input image in parallel that are the 

concatenated.    

 

Several papers (Yang, Zhai, & Tao, 

2020) (Yang, Zhu, & Huang, 2018) (Chen & 

Tsai, 2020) recommend not using any 

pooling operations as it mostly incurs 

information loss on financial markets data 

given their suspicion that such series may be 

truncated. This applies to dropout rates as 

well, an overfitting mitigant that should be 

set to zero in financial time series for best 

performance according to Sim et al. (Sim, 

Kim, & Ahn, 2019). 

The choice of optimizer is not uniform – 

Adam is used by many (Liu, Zhang, & Ma, 

2017), AdaDelta by others (Gunduz, Yaslan, 

& Cataltepe, 2017) (Gudelek, Ozbayoglu, & 

Boluk, 2017) (Di Persio & Honchar, 2016), 

and SGD is considered superior by some. 

Activation functions also vary from paper to 

paper, but most seem to prefer ReLU for 

hidden layers (Sim, Kim, & Ahn, 2019) and 

tanh (Liu, Zhang, & Ma, 2017), 

softmax (Sezer & Ozbayoglu, 2018) (Yang, 

Zhai, & Tao, 2020) or sigmoid for output. 

The intuitive basis for sigmoid or softmax 

activation is that it takes a value on the 

continuous scale from 0 to 1, which in our 

case can be interpreted as the probability of 

the stock to move upwards. Softmax can be 

considered even more intuitive as its outputs 

are mutually exclusive and sum up to one 

over the different classes.   

Chen & Tsai (Chen & Tsai, 2020) developed 

a CNN architecture especially tailored to 

interpret GAF as input. Their input and target 

variable for prediction is the EUR/USD 

foreign exchange rate in candlestick patterns 

from 2010 to 2017, and their experimental 

results achieve 90.7% accuracy.  They use 

Adam optimizer, batch size 64 and 300 

epochs. They observe that the 

simple LeNet architecture works well with 

the GAF-CNN and therefore mimic that 
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design; two convolutional layers with 16 

kernels and one fully connected layer with 

128 nodes. 

2.4 Contribution 

Fundamental factors, which consider the 

fundamental financial performance of 

companies as drivers of returns, have been 

found useful for predicting cross-sectional 

returns in the long term. Technical factors 

have instead been relied upon for the 

prediction of individual stock returns in the 

short term.  At the same time, CNN have not 

successfully harnessed technical factors as 

inputs for stock price predictions, 

speculatively due to their similarity in 

appearance to stock prices themselves; as 

discussed, CNN are good at processing 

spatial information. We take a new approach 

to address the shortcomings of both 

aforementioned topics. By continuously 

measuring a given stock’s exposure to high-

frequency estimations of the three Fama 

French factors, as constructed by Aït-Sahalia 

et al. (Aït-Sahalia, Kalnina, & Xiu, 2020), we 

generate fundamental features that are 

inherently linked to the stock price itself in 

the short term while also providing input that 

behaves dissimilar to the stock price, unlike 

technical factors. In this way, we hope to 

provide the spatial diversity that CNN are 

specialized to extract features from while 

uncovering the potential link between short 

term returns and fundamental factors. To 

benchmark the independent explanatory 

value of fundamental factors, we also train 

identical models on technical factors for 

comparison. To measure the joint 

informativeness of fundamental and 

technical factors, we also benchmark against 

a data set with a combination of fundamental 

and technical factors. 

3. Theoretical background 

3.1 Machine learning and neural networks 

Within artificial intelligence, machine 

learning is the concept of a computer learning 

to perform a specific task without being 

explicitly programmed to. This can be done 

in a supervised fashion, where algorithms are 

given already labeled data find patterns in 

(linear regression, logistic regression, 

support vector machines, etc.); in an 

unsupervised fashion, when the program 

finds structures in unlabeled data (K-means 

clustering, principal components analysis, 

etc.); or in reinforcement learning, where the 

machine learns from feedback in real and 

synthetic environments. Neural networks are 

a subset of algorithms within the machine 

learning space that stem from 

neurophysiological research in the mid-20th 

century when scientists began to understand 

the connectivity mechanisms inherent to 

neurons in biology and subsequently model 

them on computers. Neural networks pass 

information between nodes (“neurons”) and 

subsequently learn the importance of each 

connection for a specific prediction and 

adjust the value of these weights (“neural 

connections”) accordingly. The advantage of 

neural networks lies in their flexibility and 

ability to detect non-linear relationships in 

data.  

3.2 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) 

is one type of neural network that was 

developed for computer vision, inspired by 

the structure of the visual cortex of cats 
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(Lindsay, 2020). The first convolution of a 

CNN recognizes local edges and contours of 

raw input image, which is then passed on to 

sequential layers that combine these into 

features such as “ears” or “wheels”. The final 

layer classifies the image based on these 

features in aggregate, making predictions like 

“animal” or “car”. The prototype model was 

developed by  Fukushima in 1980 

(Fukushima, 1980) who was inspired by the 

aforementioned biological findings in the 

1950s. One of the most prominent CNN, and 

the first to be used commercially when banks 

deployed it to recognize hand-written letters, 

was developed by LeCun et al. in 1998 

(LeCun, Bottou, Bengio, & Haffner, 1998). 

Today, a variety of CNN configurations are 

available and applied.  

Components of a CNN 

CNN architectures come in many different 

variants, and the literature presents a variety 

of options for exploration. One of the most 

famous CNN architectures is the LeNet-5, 

which consists of convolutional layers, 

pooling layers and fully connected layers. 

Each convolutional layer picks up essential 

features of images, such as edges and shapes 

through kernels, which are then passed to 

pooling layers, that simplify and reduce the 

dimensions of the supplied images for 

quicker optimization of the neural network. 

The depth of convolutional layers varies 

greatly, but a common approach is to use 2 to 

5 convolutional layers. Following 

convolutional and pooling layers, fully 

connected layers and an output layer comes 

last to final generate the final prediction as 

global semantic information (Gu, et al., 

2018). 

Convolutional layer 

A convolutional layer in a neural network 

performs a convolutional operation on the 

input matrix. It is done by passing a filter to 

an input that results in an activation. In 

practical terms, the filter slides across the 

entire input image and passes on higher level 

information as specified by the activation 

function onto a feature map, which acts as 

input image for the next layer in the model. 

Each filter uses a shared set of weights that 

are optimized and updated during training of 

the neural network. A CNN thus learns the 

optimal weights of its filters given a specific 

data set. If input I is a 𝑁 × 𝑁 matrix, and a 

convolutional filter of size 𝐹 × 𝐹 (where 𝑁 >

𝐹) is applied on each entry of the matrix, a 

corresponding weight 𝑤 is generated. Then 

the output of the convolutional operation is 

calculated through equation (1): 

 

𝑣𝑖,𝑗
𝐼+1 = δ (∑ ∑ 𝑤𝑘,𝑚

𝐹−1

𝑚=0

𝐹−1

𝑘=0

𝑣𝑖+𝑘,𝑗+𝑚
𝐼 )       (1) 

 

In equation (1), δ represents an activation 

function, 𝑣𝑖,𝑗
𝐼+1 is the value at the 𝑖𝑡ℎ row and 

𝑗𝑡ℎ  column in the resulting output matrix I+1, 

and 𝑤𝑘,𝑚 is the weight assigned to the 

𝑘𝑡ℎ row and 𝑚𝑡ℎ column of the filter. 

Activation functions 

The activation function in a hidden layer 

is an essential part of neural networks. For 

hidden layers there are typically three types 

of activation functions used: Rectified Linear 

Activation (ReLU), sigmoid (σ) and 

Hyperbolic Tangent (tanh), whilst for output 
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layers, softmax (f) or sigmoid (σ) is most 

frequently employed: 

 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)             (2) 

𝜎(𝑥) =
1

1+𝑒−𝑥 
                           (3) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 
                   (4) 

         𝑓(𝑥) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

                         (5) 

 

The most common use of activation functions 

in convolutional neural networks is via the 

ReLU activation function to avoid issues 

with the vanishing gradient problem. 

Typically, the same activation function is 

used in all hidden layers. In the output layer 

for categorical classification, a softmax or 

sigmoid activation function is used. 

Batch normalization layer 

Batch normalization is a technique 

implemented in neural networks that 

standardizes the input that is passed onto the 

next layer. The standardization is important 

because during training the model is updated 

backwards, and since layers take input from 

previous layers, the inputs might alternate for 

each batch. The standardization is done by 

rescaling the input data to have a mean of 

zero and a standard deviation of 1. This 

results in subsequent layers not having to 

make assumptions about the distribution of 

the inputs when updating the weights. Batch 

normalization significantly reduces the 

number of epochs required to train the data, 

resulting in better performance. 

 

 

Pooling layer 

As overfitting is a reoccurring issue when 

training neural networks, pooling layers are 

used in convolutional neural networks to 

reduce the spatial size of the features and 

significantly reduce the numbers of 

parameters that need training. Essentially, a 

pooling layer reduces the dimensions of the 

feature maps. A pooling layer slides a filter 

of selected size, most commonly 2 × 2, 

across the input image and performs an 

operation on the selected values, most 

commonly max pooling or average pooling. 

Max pooling operation takes the maximum 

values from the input from the pooling filter 

input and average pooling takes the average 

value. Thus, given a 𝑁 × 𝑁 matrix that is 

passed to a pooling layer with a 𝑘 × 𝑘 

dimensional pooling filter is applied, the 

resulting matrix will have dimensions of  
𝑁

𝑘
×

𝑁

𝑘
. 

Flattening layer 

A flattening layer is placed between the 

last convolutional layers and the fully 

connected layers, in order transform the 

matrix into an array with a single column.  

Fully connected layer 

Fully connected layers perform two 

operations on the input that is passed to them. 

Firstly, a fully connected layer performs a 

linear transformation in the form of a dot 

product of input matrix values and weights, 

and secondly, applies a non-linear 

transformation: 

              𝑣𝑖
𝑗+1

= σ (∑ 𝑣𝑘
𝑗

𝑘

𝑤𝑘,𝑖
𝑗 )                (6) 
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In equation (6), 𝑣𝑖
𝑗+1

 represents the value of 

the 𝑖𝑡ℎ neuron at the 𝑗 + 1𝑠𝑡 layer, and 𝑤𝑘,𝑖
𝑗

 is 

a weight between the connections of the 𝑘𝑡ℎ 

neuron from the 𝑗𝑡ℎ  layer and the 𝑖𝑡ℎ neuron 

from the 𝑗 + 1𝑠𝑡 layer. 

Dropout layer 

Another remedy for overfitting in neural 

networks is the application of dropout layers. 

Small datasets or an abundance of layers will 

cause the neural network to learn statistical 

noise in the data and not generalize well to 

new, unseen data. One alternative is to train 

an ensemble of networks and average out the 

results, but this is computationally expensive 

and a dropout layer can instead reduce the 

complexity of the model by randomly 

selecting nodes to omit. Dropout layers are 

implemented on a per-layer basis. A hyper-

parameter with the probability of retaining a 

node must be specified. 

3.3 Gramian Angular Fields 

Gramian Angular Field (GAF) images are 

RGB-channel representations of univariate 

data.  A time series has first been converted 

into polar coordinates, whose angles by 

various operations have then been converted 

into a symmetry matrix, yielding a GAF.  

GAFs are constructed using a two-step 

approach. Initially, given a time series 𝑇 =

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}, the time series 𝑇 is rescaled 

using min-max scaling: 

 

𝑡𝑖,𝑠𝑐 =
 (𝑡𝑖   −  𝑚𝑎𝑥(𝑇)) + (𝑡𝑖 − 𝑚𝑖𝑛(𝑇))

𝑚𝑎𝑥(𝑇) − 𝑚𝑖𝑛(𝑇)
  (7) 

 

Given that the rescaled values of 𝑡𝑠𝑐
𝑖  lie 

between -1 and 1, we can apply the arccos 

operator resulting in values that are between 

0 and 𝜋. The second component required for 

converting rescaled values to polar 

coordinates are the time stamps which are 

obtained by dividing the time stamp 𝑖 by the 

total number of observations n, and saved as 

the radius for the polar representation: 

 

                {
𝜑𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑡𝑖,𝑠𝑐)

𝑟𝑖 = 𝑖/𝑛
                       (8) 

 

The GAF can take on the form of a difference 

operator or a summation operator denoted by 

Gramian Angular Difference Field (GADF) 

or Gramian Angular Summation Field 

(GASF) respectively, where the difference 

lies in the use of a cosinus operator when 

constructing the Gram matrix for the GASF 

and the sinus operator for the GADF. In this 

paper, GADF are used. 

Once the angles and radii are obtained, the 

second step of the time series to GAF 

transformation can be done: 

 

𝐺𝐴𝐷𝐹 = √𝐼 − 𝑇𝑠𝑐2´ · 𝑇𝑠𝑐 − 𝑇𝑠𝑐′ ·

√𝐼 − 𝑇𝑠𝑐2                                                  (9) 

 

𝐺𝐴𝐷𝐹 =

[
𝑠𝑖𝑛(𝜑1 + 𝜑1) ⋯ 𝑠𝑖𝑛(𝜑1 + 𝜑𝑛)

⋮ ⋱ ⋮
𝑠𝑖𝑛(𝜑𝑛 + 𝜑1) ⋯ 𝑠𝑖𝑛(𝜑𝑛 + 𝜑𝑛)

]     (10) 

 

It is important to note that number of 

channels of the input image must match the 
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depth of the convolutional kernel 

dimensions. If one uses GAF on the red-

green-blue (RBG) scale, the depth of the 

kernel matrix must be three; otherwise, it 

cannot capture the information between the 

color scales.  

3.4 Technical indicators  

Technical analysis of stock prices has 

been around for several decades, and first use 

of technical analysis for investing dates back 

to the late 18th century. Much research has 

monitored the performance of trades 

following the state of various technical 

indicators to show whether or not they carry 

predictive performance, or if they carry 

information on the momentum of supply and 

demand pressures on stocks. Brock, 

Lakonishok & LeBaron (1992) asserted that 

trading strategies based on moving average 

and trading-range breaks can be utilized to 

trade on future returns based on historical 

data. Hsu & Halgamuge (2007) used 

technical indicators and news flow to predict 

increases and decreases in stock prices and 

achieved 70% accuracy on their dataset. 

Shynkevich et al. (2017) use 10 technical 

indicators to evaluate if they contain 

information on the movement of future stock 

prices based on historical data. Their findings 

include that technical indicators indeed carry 

information on future stock prices and can be 

used to make predictions. Following the 

convention of several papers, and for 

benchmarking against our fundamental factor 

models, technical indicators will be evaluated 

as explanatory variables for binary stock 

price movements (Gunduz, Yaslan, & 

Cataltepe, 2017) (Liu, Zeng, Yang, & Carrio, 

27–28 August 2018) (Gudelek, Ozbayoglu, 

& Boluk, 2017) (Ozbayoglu & Sezer, 2018) 

(Sim, Kim, & Ahn, 2019). The following 

technical indicators have been used for 

experimentation in this study; however, not 

all were used as input features for the final 

models.  

Simple Moving Average 

The simple moving average (SMA) is an 

unweighted mean of the previous k data 

points. Suppose we have observed a time 

series 𝑡1, … , 𝑡𝑛 for close prices of a stock. 

The mean of the previous 𝑘 data points is 

calculated through equation (11) and is 

labeled 𝑆𝑀𝐴𝑘 

 

𝑆𝑀𝐴𝑘 =
𝑡𝑛−𝑘+1 + 𝑡𝑛−𝑘+2 + ⋯ + 𝑡𝑛

𝑘
    (11) 

 

Exponential Moving Average 

To address the issue of equal weighting, 

the exponential moving average (EMA) is 

employed by assigning a higher weight to 

recent observations. The weight for older 

observations decreases exponentially, but 

never reaches zero. The exponential moving 

average is calculated recursively according to 

the following formula for a given time series 

𝑡1, ⋯ , 𝑡𝑛, where 𝛼 represents a constant 

smoothing factor and 0 < 𝛼 < 1: 

 

𝐸𝑀𝐴𝑡 = 

{
𝑡1 , 𝑡 = 1

𝛼 × 𝑡𝑛 + (1 − 𝛼) × 𝐸𝑀𝐴𝑡−1 , 𝑡 > 1
            (12) 

 

A common choice for the smoothing 

coefficient 𝛼 is 2𝑘 + 1 , where 𝑘 is the 

selected window length (usually around 12 to 



11 

 

26 periods) which is used as input for the 

moving average convergence divergence 

indicator.  

Moving Average Convergence Divergence 

The moving average convergence 

divergence (MACD) is another technical 

indicator used in stock analysis looking for 

buy and sell signals. MACD uses long and 

short window EMA to find changes in an 

asset's momentum and trends. 

 

𝑀𝐴𝐶𝐷𝑛 = 𝐸𝑀𝐴𝑛(12) − 𝐸𝑀𝐴𝑛(26)      (13) 

 

The MACD is used together with a 9-length 

window EMA to find crossovers that are 

indicative of a buy or sell signal.  

Stochastic Oscillator 

The stochastic Indicator (%D) is another 

indicator that is used to gauge momentum 

and trends in stock trading. The stochastic 

indicator is calculated by first finding the 

”slow” indicator denoted by %𝐾: 

 

     %𝐾 = (
𝐶 − 𝐿14

𝐻14 − 𝐿14
) × 100                (14) 

 

This is followed by taking the three-period 

moving average denoted by %D. The 

stochastic indicator is bound between 0 and 

100.  

Relative Strength Index 

Relative strength index (RSI) is a measure 

of momentum that evaluates the magnitude 

of swings in stock prices to identify oversold 

or underbought stocks. RSI is typically used 

on a 14-period basis and has a scale between 

0 and 100. 

 

𝑅𝑆𝐼 = 100 −
100

1 +
average gain
average loss

        (15) 

 

The average gain is calculated in two steps. 

The first average gain and the first average 

loss is calculated as the sum of gains and 

losses over the past 14 periods divided by 14. 

Then the average gain and loss is calculated 

by: 

 

Average gain

=
[previous av. gain × 13 + current gain]

14
  (16) 

Average loss

=
[previous av. loss × 13 + current loss]

14
   (17) 

 

3.5 Fundamental factors 

Fundamental, systemic risk exposures of 

assets were first identified by William F. 

Sharpe, Jack Treynor, John Lintner and Jan 

Mossin, building on previous work of Harry 

Markowitz, during the development of the 

Capital Asset Pricing Model (CAPM). Stock 

returns were found to be closely related to 

their respective exposures to market risk. 

Subsequently, Eugene Fama and Kenneth 

French (Fama & French, Common risk 

factors in the returns on stocks and bonds, 

1993)  identified additional risk components 

in a given asset’s correlations with portfolios 

compromised of long positions in small-cap 

companies and short positions in large-cap 

companies, as well as portfolios with long 
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positions in high book-to-market value ratios 

and short companies with low book-to-

market value ratios. Subsequent research by 

Fama & French (2014) have identified 

additional risk factors, and with the work of 

Mark M. Carhart (1997), also the 

identification of the momentum factor. An 

overview of fundamental factors and their 

construction is provided below. 

Market 

The Market portfolio consist of the value-

weighted excess returns of all publicly traded 

stocks on the NYSE, AMEX and NASDAQ 

stock exchanges.  

SMB 

The Small-Minus-Big (SMB) portfolio is 

constructed by taking the equally weighted 

average returns of the top three deciles of 

small stocks minus the average returns of the 

three top deciles of large-cap stocks. 

SMB =
1

3
(Small Value + Small Nuetral +

Small Growth) −
1

3
(Big Value +

Big Neutral + Big Growth)                    (18) 

 

HML 

The High-Minus-Low (HML) portfolio is 

the equally weighted average returns for the 

top two deciles of stocks with high book-to-

market ratios minus the average returns of the 

top two deciles of stocks with small book-to-

market ratios. 

HML =
1

2
(Small Value + Big Value) −

1

2
(Small Growth + Big Growth)             (19) 

 

 

CMA 

Conservative-Minus-Aggressive (CMA) 

is the average return of two portfolios with 

conservative investments less the average 

return of two portfolios with aggressive 

investment policies. 

CMA =
1

2
(Small Conservative +

Big Conservative) −
1

2
(Small Aggressive +

Big Aggressive)                                       (20) 

 

RMW 

Robust-Minus-Weak (RMW) factor is 

constructed by taking the average returns of 

two portfolios with robust operating 

profitability less the average returns of two 

portfolios with weak operating profitability 

RMW =
1

2
(Small Robust + Big Robust) −

1

2
(Small Weak + Big Weak)                  (21) 

 

MOM 

The momentum factor specifies that 

holding stocks that have performed well in 

recent time periods will likely outperform the 

returns of last year’s worst performing 

stocks. Momentum factor is the average of 

the two high prior return portfolios less the 

average return on two portfolios with low 

prior returns. 

MOM =
1

2
(Small High + Big High) −

1

2
(Small Low + Big Low)                        (22) 
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4. Methodology 

4.1 Data 

For this paper, five publicly listed US 

equities from various industries were 

selected. These include ExxonMobil (ticker: 

XOM), one of the largest publicly traded oil 

and gas companies; Procter & Gamble 

(ticker: PG), international consumer goods; 

Netflix (ticker: NFLX), international media 

and technology company; J.P. Morgan 

(ticker: JPM), one of the largest US banks; 

and AT&T (ticker: T), the world’s largest 

telecommunications company. For the 

equities, 5-minute interval Open, High, Low, 

Close (OHLC) were obtained and their 

respective 5-minute returns calculated during 

the period January 1st 2013 to December 31st 

2017. Each stock yielded 98,202 

observations over the entire timespan which 

resulted in a total of 491,010 observations. 

Adjusted for non-trading days and public 

holidays pre-trading activity, the data set 

consisted of 1,259 trading days, with each 

having 78 five-minute OHLC value for each 

stock. 

To estimate the high-frequency betas of 

stocks with the fundamental factors Market, 

SMB, HML, CMA, RMW and MOM, 5-

minute high-frequency factor returns were 

obtained from the public website of Dacheng 

Xiu, one of the authors behind the estimation 

of high-frequency factors in the paper of Aït-

Sahalia et al. (Aït-Sahalia, Kalnina, & Xiu, 

2020). The dataset contains factor portfolio 

returns at the 5-minute interval for all traded 

stocks on the NYSE, AMEX and NASDAQ 

stock exchanges.  

4.2 Factor beta construction  

The five US stocks’ exposures to 

fundamental factors are estimated using a 

rolling window regression. Given a sample 

size 𝑇, a window of length 𝑚 is selected. 

Once selected, the dataset is divided into 

𝑁 =  𝑇 − 𝑚 + 1 sub-samples, and for each 

sub-sample, a regression is performed on the 

past 𝑚 observations, thus yielding beta 

coefficients for the 𝑚𝑡ℎ datapoint. The 

window is then rolled onto the 𝑚 + 1𝑠𝑡 

observation and the returns of the equities are 

regressed on the 2𝑛𝑑 to 𝑚 + 1𝑠𝑡 values of the 

fundamental factors. This process is repeated 

until the regressions reach the 𝑇𝑡ℎ value. 

Given a sample size of 98,202 datapoints for 

each US equity, the regressions result in 

98,202 minus m number of regression 

outputs. We select m = 100 for the 5-minute 

intervals, resulting in 98,102 regressions per 

stock. The regression is specified in equation 

(23).  

 

𝑟𝑖 = 𝛼𝑖 + 𝛽1,𝑖𝑀𝑎𝑟𝑘𝑒𝑡 + 𝛽2,𝑖𝑆𝑀𝐵 +

𝛽3,𝑖𝐻𝑀𝐿 + 𝛽4,𝑖𝐶𝑀𝐴 + 𝛽5,𝑖𝑅𝑀𝑊 +

𝛽6,𝑖𝑀𝑂𝑀 + 𝜀𝑖                                             (23) 

 

The results of the regression are displayed in 

Table I.  

4.3 Technical Factors  

In addition to estimating fundamental factor 

exposures, a set of technical indicators are 

calculated for model benchmarking. 

Technical indicators are factors and signals 

that are derived from the past values of the 

stock price itself. They are often used to 

analyze stock price patterns in order to make  
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Table I.  Linear estimations of high-frequency fundamental factors exposures 

Regression β coefficients and the R2 values for the rolling-window regressions over the entire data set for 

each stock and factor value. Each window consists of 100 consecutive 5-minute intervals, and values shown 

are averages per year (* 𝑝 ≤ 0.1  ** 𝑝 ≤ 0.05  *** 𝑝 ≤ 0.01). 

PG β Market β SMB β HML β RMW β CMA β MOM     R2 

2013 0.846** -0.307 -0.643 0.301 1.041 -0.003 39.6% 

2014    0.731** -0.178 -0.309 0.414 0.644 -0.353 35.3% 

2015 0.840** -0.178 -0.013 0.310 0.487 0.166 45.8% 

2016 0.792** -0.135 -0.184 0.207 0.714 0.485 38.8% 

2017 0.525 -0.201 -0.189 0.203 0.344 -0.270 24.1% 

Total 0.747** -0.200 -0.268 0.287 0.646 0.005 36.7% 

        

XOM β Market β SMB β HML β RMW β CMA β MOM     R2 

2013 1.006*** -0.232 0.259 0.248 0.265 -0.435 48.5% 

2014 1.114** -0.335 0.459 -0.084 0.139 -0.321 47.9% 

2015 0.916** -0.333 0.174 -0.051 -0.075 -0.852** 57.5% 

2016 0.918** -0.344 0.359 -0.693 0.176 0.022 49.4% 

2017 0.717** -0.261 0.312 -0.836** 0.076 -0.491 47.4% 

Total 0.934** -0.301 0.312 -0.283 0.116 -0.416 50.1% 

        

NFLX β Market β SMB β HML β RMW β CMA β MOM     R2 

2013 1.372 -0.230 -0.974 -0.775 -0.916 0.483 28.9% 

2014 1.150* -0.433 -0.688 -0.785 -1.186 0.265 40.6% 

2015 1.158* -0.284 -0.330 -0.350 -1.287 -0.237 34.5% 

2016 1.219* -0.318 -0.408 -0.222 -1.047 -0.097 35.1% 

2017 1.349* -0.140 -0.773 -0.236 -0.336 0.475 35.3% 

Total 1.250* -0.281 -0.634 -0.474 -0.954 0.178 34.9% 

        

T β Market β SMB β HML β RMW β CMA β MOM     R2 

2013 0.866** -0.303 -0.285 0.142 1.210 -0.390 35.9% 

2014 0.805** -0.174 0.033 0.292 0.314 -0.392 32.3% 

2015 0.788** -0.140 0.239 0.227 0.108 0.065 37.1% 

2016 0.850** -0.200 0.353 0.061 -0.028 0.537 35.5% 

2017 0.820* -0.248 0.434 0.200 -0.448 -0.678 26.3% 

Total 0.826 -0.213 0.155 0.184 0.231 -0.171 33.4% 

        

JPM β Market β SMB β HML β RMW β CMA β MOM     R2 

2013 1.243** -0.176 1.695** 0.259 -0.307 0.435 52.7% 

2014 1.294*** -0.079 0.803 -0.035 -0.006 -0.003 52.3% 

2015 1.385*** -0.010 0.973** -0.123 -0.055 0.382 63.4% 

2016 1.240*** -0.107 0.969** 0.065 -0.380 -0.402 64.7% 

2017 1.301*** -0.127 1.151** 0.017 -0.336 0.531 57.6% 

Total 1.292*** -0.100 1.118* 0.036 -0.217 0.188 58.2% 
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stock price predictions based on e.g., 

momentum or moving averages. For this 

paper, three technical indicators were 

selected: 

• EMA(12) – exponential moving average 

with a window length of 12 

• RSI(14) for a period 14 intervals 

• %K – for a 3-period average of a %D 

estimated for 14 intervals 

The technical indicators are similarly 

calculated on a rolling basis through the 

entire dataset for each stock. 

4.4 Gramian Angular Field generation 

The pictures of time series of 5-minute 

close prices, technical indicators and beta 

values for fundamental factors are converted 

into Gramian Angular Difference Fields. See 

Fig. 1 for illustration. As the input for the 

CNN on 5-minute intervals, we use a window 

size of 26 such intervals (and window size 20 

for the daily intervals), graph these values for 

the close price and three factors, and convert 

these into four Gram matrices with the 

dimension of 26 × 26. The images are then 

labeled “LONG” or “SHORT” based on the 

subsequent rise or drop in stock price in the 

period following the last observation of the 

window. The model in this project will learn 

of the movements in stock price and the 

corresponding factors during the initial 1𝑠𝑡 

until 𝑡𝑡ℎ time step and make a prediction for 

the 𝑡 + 1𝑠𝑡 time step. The target variable will 

be an indicator function based on the 

following criteria: 

target = {
1, pricet+1 > pricet

0, pricet+1 < pricet
             (24) 

Given a target variable of 1, a “LONG” price 

recommendation is given, implying a long 

position in the asset is favorable during the 

interval between 𝑡 and 𝑡 + 1. If the target 

variable has a predicted value of 0, a 

“SHORT” price recommendation is given, 

implying a short position in the asset, 

alternatively not engaging in any position at 

all. 

The input to the CNN is constructed by 

concatenating GADF images of certain 

factors in a 2 × 2 matrix of images, which 

results in a 52 × 52 matrix of pixels. For 20-

day period, daily values of factors were 

aggregated using the mean and a rolling 

window of 20 days was used to create images 

that are 20 × 20 pixels. Each image that has 

been concatenated into a 2 × 2 matrix of 

images is labeled “LONG” or “SHORT” 

based on the subsequent close price. The 

exercise is to see if the pictures carry 

predictive information on the stock price 

when predicting its subsequent will rise or 

drop in price. 

The generated images are stored in 

directories categorized as “LONG” with a 

target variable of 1 or “SHORT” with a target 

variable of 0, based on the condition 

explained in the previous paragraph. The full 

image dataset is then divided into a training 

set containing 70% of all images and a test set 

containing 15% of all images. A subsample 

of 17.65% of the train set is set aside for 

validation during training (15% of the whole 

dataset).  
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Figure 1. Converting close price and factor beta time series into GAF. Time series are first converted into 

polar coordinates and then transformed into a GAF, with the corresponding values rescaled to a RGB 

representation and each pixel corresponding to a value of the gram matrix. The input fed to the CNN 

network consists of four concatenated GAF images where each pixel represents the value of a factor or the 

close price at each unit of time. In the illustration, which is 26 consecutive 5-minute intervals, four images 

of pixel size 26 × 26 are concatenated into a single image with pixel dimensions of 52 × 52. In the case 

of 20-day intervals, the dimensions of a single image are 20 x 20. 

 

4.5 CNN Configuration & Parameters 

We create two different CNN for 

comparison across our trials. The chosen 

architectures are, at the core, inspired by 

conventional models provided by literature. 

Firstly, convolutional layers with square 

kernels are deployed with ReLU activation, 

followed by max pooling, in turn followed by 

batch normalization layers for better 

generalization and prevention of overfitting. 

The second model is similar to the first, but 

has additional features inspired by the 

CNNPred models of Hoseinzade & 

Haratizadeh (2019), who use kernel sizes that 

reflect the dimensions of the input images. 

The configurations and rationales behind the 

models are detailed below. 

Single-Channel GAF 2D-CNN 

As our baseline model, the Single-Channel 

GAF 2D-CNN is based on the classic LeNet-

5 structure. It initially deploys three groups of 

layers, each containing a convolutional layer 

with ReLU activation, a max pooling layer 

and a batch normalization layer. The 

convolutional layers use 32 filters with kernel 

dimensions 3 x 3. This layer is followed by a 

max pooling operation of dimensions 2 x 2, 

thus reducing the feature maps to one fourth 

of the size of the input image. Finally comes 

a batch normalization layer. After this 

structure is repeated three times, a flattening 

layer follows to standardize output into a 

vector for the fully connected layers, in turn 

followed by a dropout layer to reduce model 

complexity with a hyperparameter of 0.5 for 

GAF InputPolarGraph
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the dropout rate. Following the dropout layer, 

there is a fully connected layer with 125 

nodes, after which another dropout layer with 

a 0.3 dropout rate is used. Finally, an output 

layer is activated with two nodes and a 

softmax activation function. The output 

results in mutually exclusive probabilities for 

the likelihood of an image belonging to the 

LONG or SHORT class. See Fig. 2 for an 

illustration of this architecture. 

Triple-Channel GAF 2D-CNN 

An alternate, novel configuration that will be 

used is what we call the Triple-Channel GAF 

2D-CNN. Unlike our single-channel baseline 

model, which extracts only one feature map 

from input GAF images through a square         

3 x 3 kernel, this architecture extracts three 

feature maps from the images; once with a      

3 x 3 square kernel, once with a horizontal 

vector kernel that slides downwards, and 

once with a vertical vector kernel that slides 

rightwards. The horizontal vector is of 

dimensions 26 x 1 or 20 x 1, depending on if 

we are using 5-minute or 20-day images. 

Similarly, the vertical vector is of dimensions 

1 x 26 or 1 x 20. As such, they are of the same 

height or width as half the input images 

themselves. Note that vectors use strides of 

the same dimensions as themselves, meaning 

they only cover each pixel once during their 

convolutional operation. The 3 x 3 kernel on 

the other hand, has strides 1 x 1 and therefore 

slides over each pixel nine times, and 

generates output feature maps of the same 

dimensions as its input feature map (or input 

image in the case of the first layer). The 

middle channel of the architecture, as shown 

in Fig. 3, which uses the 3 x 3 kernels, is 

identical in design to the Single-Channel 

GAF 2D-CNN architecture except for the 

removal of batch normalization and dropout 

layers. The similar design to the single-

channel CNN is intentional as we can then 

measure the marginal contribution of the 

additional vertical and horizontal channels. 

Finally, the output of all three channels is 

flattened and concatenated into a single 

vector that is used as input to a fully 

connected layer followed by a softmax-

activated output layer which predicts whether 

the stock will appreciate or depreciate at            

t + 1. 

We hope the Triple-Channel GAF 2D-CNN 

can capture additional spatial information 

that is unique to each of the four factors in the 

GAF input image. This is done in two ways: 

(1) the height of the vertical filter and the 

width of the horizontal filter are exactly the 

respective length and width of each pane in 

the GAF image, where each pane represents 

the time series of the factor betas or the 

closing price (see Fig. 1), which together with 

(2) having kernel strides set to their own 

dimensions ensures each filter never touches 

two panes at any given time. As a result, each 

pixel that these convolutional operations 

generate to form feature maps 3.1 and 2.1 in 

Fig. 3 can only come from a single pane, and 

exactly one fourth of the feature maps’ pixels 

come from each pane.
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Figure 2. Single-Channel GAF 2D-CNN. The architecture is a variation of the classical LeNet-5 

architecture, and consists of fourteen layers. First, three repetitions of the following layers are employed: a 

2D convolutional layer with 32 filters of dimensions 3 x 3 is followed by a max pooling layer of dimension 

2 x 2, which reduces the size of the convoluted images to a fourth, and lastly a batch normalization layer 

for regularization purposes. Second comes a flattening layer, followed by dropout layer, a fully connected 

layer with 125 nodes, another dropout layer, and finally an output layer with two nodes which is activated 

by a softmax function.   

 

 

 

Figure 3. Triple-Channel GAF 2D-CNN. This architecture is constructed in a way similar to the Single-

Channel GAF 2D-CNN, but has two additional channels that extract features from the input, no batch 

normalization layers and no dropout layers towards the end. The top channel is composed of a convolutional 

layer with 32 filters of dimensions 26 x 1 or 20 x 1, depending on the data set being used, followed by a 

flattening layer. The bottom channel is identical but horizontally oriented, consisting of a convolutional 

layer with 32 filters of dimensions 1 x 26 and 1 x 20, followed by a flattening layer. The intermediary output 

of all three channels is then concatenated and followed by two fully connected layers.  
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Loss Function 

The loss function is an integral part of any 

machine learning algorithm. Specifying a 

correct loss function is necessary for efficient 

optimization of the kernel weights and 

yielding accurate results. The loss function is 

used to calculate the gradient and 

subsequently update the weights of the model 

in the direction opposite of the gradient. This 

process is repeated until the algorithm 

reaches the minimum of the loss function, or 

alternatively when the incremental 

improvement in loss is below a certain 

threshold. Given the nature of the 

classification task, the selected loss function 

is categorical cross entropy loss with two 

classes. 

𝐶𝐸 = − ∑ 𝑡𝑖

𝐶=2

𝑖=1

𝑙𝑜𝑔(𝑓(𝑠𝑖)) 

 = −𝑡1𝑙𝑜𝑔(𝑓(𝑠1)) − (1 − 𝑡1) 𝑙𝑜𝑔(1 − 𝑓(𝑠1))       

(25)        

𝑓(𝑠1)  and 1 − 𝑓(𝑠1) are the scores from the 

output of the CNN passed through an 

activation function and 𝑡1 , 1 − 𝑡1 are the true 

binary value of the target variable. 

Optimizer 

One of the most common optimizers of 

neural networks is the Stochastic Gradient 

Descent (SGD) method. A gradient descent 

optimizer for a given neural network 

architecture is initiated on a given loss 

function that is dependent on the weights of 

kernels and operators in a neural network. 

The partial derivative of the gradient with 

respect to the weight is calculated, and the 

weights are updated in the opposite direction 

of the gradient in a higher dimensional space, 

consequently reducing the error of the model 

and improving its performance. Vanilla 

SGDs may encounter convergence issues 

near local minima, where the gradient is 

almost perpendicular to the minima and 

oscillates closely, thus taking a long time to 

reach the extreme point. Momentum 

introduces an inertia parameter that helps 

smooth out oscillations, thus drastically 

improving the speed of convergence and thus 

reducing the time needed to find the extreme 

point. An SGD optimizer with a momentum 

contribution has been employed in this paper. 

Derivations of the function can be found in 

the works of Ning Qian (Qian, 1999) and 

Sebastian Ruder (Ruder, 2016). 

4.6 Model Evaluation Metrics 

The primary metrics for evaluations of our 

classification task are based on confusion 

matrices and their corresponding metrics that 

are associated with it. The confusion matrix 

is an array of true classes and predicted 

classes, which shows how the distributed 

predictions perform against the true values. 

An illustration of a confusion matrix is 

provided in Fig. 4, with its associated terms. 

 

Figure 4. Confusion matrix illustration. 

Correctly predicted classes are along the main 

diagonal. 

Accuracy is defined as the number of correct 

predictions divided by the total number of 
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predictions. In our case, it gives an indication 

of how accurate the algorithm is at correctly 

predicting the movements of a stock if all 

classes are equally important. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   (26) 

Precision and recall are two other metrics that 

can be used in conjunction with accuracy. 

Precision gives a measure of how often 

something that is positive is predicted as 

positive. In this case, it tells us how many 

times we are correct in our prediction of a 

long position in an asset. The recall measure 

tells us the percentage of positives that were 

predicted as the positive class.  

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
              (27) 

               𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
                 (28) 

𝐹1 Score is a harmonic mean of precision and 

recall and as such accounts for both false 

positives and false negatives. 𝐹1 Score is used 

together with the accuracy to gauge 

performance of the model, and is especially 

useful if there is a sample imbalance, e.g. 

many more positive class occurrences than 

negative.  

               𝐹1  =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
             (29) 

5. Results  

The two models, Single-Channel GAF 

2D-CNN and Triple-Channel GAF 2D-CNN 

were trained and evaluated on six data sets of 

images. The first three data sets consist of 

GAF images of 5-minute interval data that 

represent four factors of different 

characteristics: technical indicators, 

fundamental factors, and a combination of 

the two: 

1. Technical: Close, EMA, %K, RSI 

2. Fundamental: Close, Market, SMB, 

HML 

3. Combination: Close, Market, HML, 

RSI 

The latter three datasets consist of images 

composed of mean-aggregated 20-day 

interval data, again with different factor betas 

depending on their characteristics: 

1. Technical: Close, EMA, %K, RSI 

2. Fundamental: Close, Market, SMB, 

HML. 

3. Combination: Close, Market, HML, 

RSI 

The 5-minute data sets consist of a total of 

18,795 GAF images, of which 9,049 are 

labeled “LONG” and 9,746 “SHORT” 

depending on the subsequent stock price 

movement. The data can thus be considered 

balanced across the two classes. The pictures 

are thereafter divided into a train, validation 

and test set, corresponding to 70%, 15% and 

15% of the original dataset respectively. The 

20-day data sets consist of a total of 6,180 

images with the same train, validation test 

split. During training, the data set is split into 

randomized batches of size 32 during each 

trial. Running the two models on the six 

datasets yields 12 different specifications. 

The number of epochs specified is the 

number of times the model trains on the entire 

data set. Between each epoch, an evaluation 

is done on the validation data set enabling 

monitoring of the training process and 

generalization of the model. Each model is 

trained on each dataset for five trials, after        

.  
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Table II. Average performance metrics of the trained CNN architectures 

Single-Channel and Triple-Channel GAF 2D-CNN were trained, validated and tested on each of the six 

data sets: per 5-minute and 20-day frequency and per factor composition on each image (fundamental, 

technical and a combination of the two). In total, 60 trials were completed with 20 epochs for training and 

batch sizes of 32. Performance metrics such as Precision, Recall, F1-score, Accuracy and the test-set loss 

are reported. Detailed metrics for each trial are presented in Appendix B.  

        Trial specifications           Test performance                 Train Performance 

                    

Time 

frame 
Factors 

CNN 

model 
 Avg. 

Precision 

Avg. 

Recall 

Avg. 

F1 

Avg. 

Accuracy 

Avg. 

Loss 
 Avg. 

Accuracy 

Avg. 

Loss 

                      

  Fundamental 
Single   0.498 0.501 0.573 0.501 0.717  0.592 0.691 

Triple  0.497 0.499 0.540 0.499 0.658  0.586 0.677 

                      

5 min Technical 
Single   0.504 0.515 0.641 0.515 0.714  0.546 0.706 

Triple  0.509 0.512 0.594 0.512 0.703  0.549 0.688 
                      

  Combination 
Single   0.501 0.507 0.581 0.507 0.711  0.589 0.714 

Triple  0.509 0.511 0.561 0.511 0.701  0.604 0.668 

                      

  Fundamental 
Single   0.508 0.510 0.473 0.510 0.922  0.681 0.773 

Triple  0.508 0.507 0.500 0.507 0.690  0.701 0.617 
                      

20 day Technical 
Single   0.499 0.499 0.450 0.499 0.846  0.629 0.771 

Triple  0.506 0.503 0.513 0.503 0.776  0.626 0.671 

                      

  Combination 
Single   0.484 0.483 0.434 0.483 0.906  0.699 0.773 

Triple  0.539 0.536 0.524 0.536 0.691  0.686 0.655 

            

 

which the results are aggregated and 

averaged. Results are displayed in Table II 

(see Appendix B for individual results in each 

trial). Among the trained models, the best 

predictive performance was achieved with 

the Triple-Channel GAF 2D-CNN on the 20-

day dataset with a combination of 

fundamental and technical factors 

(interestingly, this is also where the Single-

Channel GAF 2D-CNN performed the 

worst). Average test accuracy was 53.6%, 

with a training accuracy of 68.6%. Over the 

20 epochs during training and across the five 

trials, we saw continuous improvement in 

training accuracy (see Appendix A), gradual 

decrease of training and validation loss, and 

above 50% test accuracy for each of the five 

trials. The Single-Channel GAF 2D-CNN 
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model performed best on the 5-minute data 

set with technical factors, with an average 

accuracy of 51.5% and training accuracy of 

54.6% during the five trials. The results of 

this model are skewed towards “SHORT” 

predictions, as can be seen in the confusion 

matrix of this trial in Appendix A. This is a 

symptom of the model not being able to 

successfully extract relevant features and 

generalize to the test set. The model however 

had consistently high F-1 scores, as well as 

precision and recall values. The Triple-

Channel GAF 2D-CNN achieved similar 

results on this dataset with less skewed 

results. 

Both models performed poorly on the 5-

minute fundamental factors dataset, where 

Single-Channel GAF 2D-CNN and Triple-

Channel GAF 2D-CNN achieved 50.1% and 

49.9% accuracy respectively. Despite the 

training accuracy of approximately 60% and 

low loss scores on both the validation and 

train set, the models performed poorly on test 

sets. Both models achieved above average 

results on the 20-day fundamental factor 

dataset, with training accuracies around 70% 

and test accuracy of 51%.  

Conversely, we find that both architectures 

perform better with technical factors when 

predicting stock returns within minutes rather 

than after 20 days. For the 5-minute data set 

with technical factors, Single-Channel GAF 

2D-CNN and Triple-Channel GAF 2D-CNN 

achieved test accuracies of 51.5% and 51.2% 

and train accuracies of 54.6% and 54.9% 

respectively.  

For the data sets with a combination of 

technical and fundamental factors (Close, 

Market, HML, RSI), the results are rather 

inconclusive. On the 5-minute data sets, the 

two architectures performed better than with 

only fundamental factors, but worse than 

when using only technical factors. On the 20-

day data sets, the Single-Channel CNN 

performed worse than on any other data set, 

while the Triple-Channel CNN performed 

remarkably better than on any other data set.   

In general, the achieved training accuracies 

were much higher on the 20-day data sets 

(between 59.4% and 73.3% for all trials and 

both models) compared to 5-minute data sets 

(between 52.3% and 61.7%). At the same 

time, test accuracies did not improve but 

became more dispersed for 20-day data sets 

(average 50.6%, standard deviation 1.89%) 

compared to 5-minute data sets (average 

50.7%, standard deviation 0.82%). 

6. Discussion 

With regards to the different factor betas, 

it still seems fundamental factors are better at 

predicting stock returns in the longer term, 

relative to technical factors. Similarly, 

technical factors seem fit for predicting 

returns in the short term. This is in line with 

classical finance theory and the way the 

community model returns in each situation 

today. With regards to the two models, we 

found them to perform similarly across the 

different data sets except for the 20-day data 

set with a combination of fundamental and 

technical factors, where the Triple-Channel 

GAF 2D-CNN achieved tests accuracies 

consistently above 53%. Speculatively, the 

superiority of the triple-channel model could 

stem from the additional spatial information 

that the three, differently sized input kernels 

can extract. The combination of technical and 
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fundamental factors could arguably provide 

further spatiality, thus yielding better results. 

This shows that it is worth exploring CNN 

architectures and inputs outside of the 

conventional formats provided in literature.  

In general, the results did not show 

distinctive predictive performance among 

any data sets, but some trends emerged 

during different trials. One is that 

fundamental factors showed very little 

predictive power in the classification task, 

achieving average to slightly above average 

performance from the two models compared 

to simply guessing (would correspond to 

50% accuracy). There are some possible 

explanations to why the models were not able 

to extract useful features from images or 

generalize these well to the validation and 

test sets. 

A methodological procedure that may have 

interfered with the exercise is the initial 

factor construction. We employed rolling 

linear regressions on five-minute intervals 

with a sample size of 100 for each factor, for 

each regression. We obtained widely varying   

𝑅2 estimates (from 24% to 65%) and low 

significance levels for our beta estimates, 

besides for the Market factor. The scope was 

not like that of classical finance, i.e. to see if 

the factor returns provided some form of 

systemic, linear risk exposure to a given 

asset, but rather to see if there are non-linear 

relations between factor movements and the 

given stocks’ returns in the short term via 

deep learning. In the classical setting, we 

could conclude that we cannot be certain that 

the factors provide any systemic risk 

exposures, as they have shown low 

significance. However, in our setting, we 

obtain noisy beta estimates that we use for 

our exercise, and thus may use only noise as 

our “factor betas”. Some of this statistical 

noise is then learnt by the convolutional 

neural networks during training, resulting in 

worse generalization over the validation and 

test set. 

In this paper, we have utilized a classification 

criterion based on the directly subsequent 

period for classifying a picturized time series 

as “LONG” or “SHORT”. Although this is 

the most intuitive approach, it is worth 

considering longer forecasting horizons. 

Shynkevich et. al. (2017) suggests using the 

same forecast period as the window length 

for optimal results. This could mitigate the 

issue that arises from classifying images on 

the usually very minor price fluctuations 

observed on 5-minute stock data. For 

example, if a stock is trading at USD 74.14 at 

10:15 and then is trading at USD 74.15 at 

10:20, the original classification criteria 

would label the data as “LONG”, although 

the price increase is insignificant at ~0.01% 

and is likely just noise. This issue could also  

be resolved by using a multi-class 

classification task as opposed to the binary 

classification proposed in this paper, namely 

a “LONG”, “HOLD”, “SHORT” split. This 

could potentially improve predictive 

performance by setting higher absolute 

thresholds for stock returns to be labelled 

“LONG” or “SHORT”, and thus filing 

uninformative images into “HOLD”.  

Two issues encountered during trials include 

(1) the algorithm labeling all data points as 

belonging to a single class, either  all 

“SHORT” or all “LONG”, which can be seen 

in confusion matrices in Appendix B, and (2) 
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the inability of CNN to generalize training 

accuracy to validation and testing. Although 

training accuracy consistently grew over 

epochs (Appendix A) to accuracies of 60 to 

70%, and both training and validation loss 

decreased, any additional epochs that 

allowed the model to train to above 70% 

accuracy resulted in drastic increases in 

validation loss, implying severe overfitting. 

We saw only marginal improvement when 

adjusting for overfitting by employing 

pooling, batch normalization and dropout 

layers. The aforementioned implies that the 

model either learns well on the training set 

but is not able to generalize well to the test 

set (overfitting), or that the statistical noise in 

the data sets inhibit the models from learning 

informative features to make accurate 

classifications on the test set. 

7. Conclusion 

In this paper, two convolutional neural 

networks have been developed and trained on 

three different datasets of input features, at 

two data frequencies, in an attempt to classify 

equity time series into “LONG” and 

“SHORT” categories based on price 

appreciation or depreciation on a high-

frequency interval. The data sets were 

constructed by estimating high-frequency 

fundamental factor exposures of selected 

equities over a 5-year period and calculating 

technical indicators on a high-frequency level 

for each stock. Three datasets of GAF images 

were constructed for each type of factors – 

one for fundamental factors, one for technical 

factors, and one as a combination of the two, 

where four GAF images were concatenated 

into a 2 x 2 matrix of images that were used 

as input for the convolutional neural 

networks.  

The proposed CNN models improved 

relatively well on training data, reaching 

accuracies of 60 to 70%, and significantly 

decreasing the loss on both the training and 

validation set, however, the models were not 

able to generalize well to the test set, 

resulting in accuracies some percentage 

points above 50%, implying marginally 

better results than random guessing. 

The models trained on the 20-day 

fundamental factors performed better than 

the models trained on 5-minute fundamental 

factors, supporting the consensus that 

fundamental factors are primarily useful for 

long term return forecasting. Conversely, 

technical factors obtained better performance 

on the 5-minute frequency than on the 20-day 

frequency, as measured by the test set 

accuracy. The results of the combination data 

set of technical and fundamental factors 

remain inconclusive as the two models 

achieved contradicting results.  

For further research we would suggest using 

alternative methods for estimating the 

fundamental factor exposures at high 

frequencies to ensure correct beta estimates 

are used. As it currently is, noise in the 

estimates is internalized by the convolutional 

network, thus distorting our results. 

Furthermore, we would suggest using a 

higher percentage threshold for classifying 

time series, as some of the images classified 

as “LONG” or “SHORT” only saw 

movements in the closing price of 

approimately 0.01%. 
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Appendix A – Best performing trial confusion matrix and plot of accuracy and loss over train and validation set 
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Appendix B – Results from model training and evaluation 

Trial specifications  Test performance  

Train 

performance  Parameters 

Time 

frame 
Factors Architecture 

Trial 

# 
  Precision Recall F1 Accuracy Loss   Accuracy Loss   

Train 

# 

Validation 

# 

Test 

 # 

Epochs 

# 

CNN # of 

parameters 

                                      

5 min Fundamental Single-Channel 1  0.501 0.504 0.589 0.504 0.711  0.578 0.688  13 053 2 797 2 943 20 163 961 

  GAF 2D-CNN 2  0.490 0.493 0.550 0.493 0.723  0.596 0.682       

   3  0.504 0.506 0.572 0.506 0.721  0.605 0.717       

   4  0.497 0.501 0.580 0.501 0.713  0.585 0.686       

   5  0.496 0.499 0.572 0.499 0.717  0.594 0.682       

                                 

                    

5 min Fundamental Triple-Channel  1  0.499 0.499 0.514 0.499 0.616  0.601 0.673  13 220 2 707 2 866 20 1 000 825 

  GAF 2D-CNN 2  0.500 0.500 0.511 0.500 0.687  0.581 0.678       

   3  0.501 0.503 0.550 0.503 0.671  0.578 0.679       

   4  0.488 0.492 0.573 0.492 0.666  0.572 0.682       

    5  0.498 0.500 0.554 0.500 0.650  0.598 0.673       

                                  

                    

5 min Technical Single-Channel 1  0.536 0.532 0.684 0.532 0.695  0.523 0.693  13 114 2 809 2 870 20 163 961 

  GAF 2D-CNN 2  0.496 0.511 0.622 0.511 0.732  0.558 0.715       

   3  0.495 0.505 0.590 0.505 0.727  0.563 0.714       

   4  0.515 0.518 0.661 0.518 0.694  0.534 0.694       

   5  0.480 0.509 0.646 0.509 0.723  0.554 0.713       

                                 

                    

5 min Technical Triple-Channel  1  0.498 0.506 0.614 0.506 0.706  0.551 0.688  13 263 2 715 2 815 20 1 000 825 

  GAF 2D-CNN 2  0.510 0.515 0.612 0.515 0.703  0.547 0.689       

   3  0.510 0.515 0.612 0.515 0.716  0.553 0.688       

   4  0.516 0.513 0.523 0.513 0.675  0.553 0.687       

    5  0.508 0.513 0.609 0.513 0.716  0.543 0.689       
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5 min Combination Single-Channel 1  0.506 0.513 0.592 0.513 0.713  0.592 0.712  13 197 2 827 2 769 20 163 961 

  GAF 2D-CNN 2  0.488 0.494 0.559 0.494 0.710  0.594 0.715       

   3  0.498 0.504 0.578 0.504 0.710  0.589 0.713       

   4  0.502 0.508 0.586 0.508 0.707  0.576 0.712       

   5  0.510 0.515 0.589 0.515 0.715  0.592 0.719       

                                 

                    

5 min Combination Triple-Channel  1  0.513 0.513 0.530 0.513 0.681  0.614 0.665  13 295 2 722 2 776 20 1 000 825 

  GAF 2D-CNN 2  0.511 0.512 0.536 0.512 0.698  0.612 0.660       

   3  0.503 0.509 0.596 0.509 0.715  0.567 0.683       

   4  0.507 0.510 0.571 0.510 0.680  0.611 0.669       

    5  0.509 0.513 0.575 0.513 0.731  0.617 0.663       
                                   

                    

20 days Fundamental Single-Channel 1  0.502 0.501 0.478 0.501 0.925  0.679 0.777  4 367 934 879 20 119 961 

  GAF 2D-CNN 2  0.504 0.511 0.380 0.511 0.894  0.659 0.785       

   3  0.510 0.510 0.527 0.510 0.935  0.701 0.747       

   4  0.503 0.502 0.497 0.502 0.965  0.669 0.794       

   5  0.523 0.525 0.480 0.525 0.890  0.699 0.761       

                                 

                    

20 days Fundamental Triple-Channel  1  0.507 0.506 0.542 0.506 0.787  0.733 0.592  4 386 897 897 20 763 673 

  GAF 2D-CNN 2  0.540 0.533 0.605 0.533 0.760  0.727 0.594       

   3  0.500 0.506 0.355 0.506 0.356  0.688 0.629       

   4  0.496 0.494 0.512 0.494 0.353  0.674 0.641       

    5  0.498 0.497 0.489 0.497 1.195  0.684 0.631       
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20 days Technical Single-Channel 1  0.486 0.493 0.376 0.493 0.868  0.619 0.764  4 356 933 891 20 119 961 

  GAF 2D-CNN 2  0.512 0.513 0.445 0.513 0.825  0.662 0.771       

   3  0.493 0.495 0.411 0.495 0.827  0.602 0.798       

   4  0.476 0.478 0.569 0.478 0.851  0.635 0.745       

   5  0.527 0.517 0.447 0.517 0.858  0.629 0.778       

                                 

                    

20 days Technical Triple-Channel  1  0.494 0.487 0.617 0.487 0.782  0.594 0.684  4 355 890 935 20 763 673 

  GAF 2D-CNN 2  0.500 0.508 0.286 0.508 0.844  0.644 0.664       

   3  0.515 0.508 0.575 0.508 0.721  0.637 0.666       

   4  0.513 0.507 0.562 0.507 0.817  0.631 0.666       

    5  0.507 0.505 0.524 0.505 0.715  0.623 0.676       

                                  

                    

20 days Combination Single-Channel 1  0.482 0.484 0.415 0.484 0.882  0.673 0.765  4 300 921 959 20 119 961 

  GAF 2D-CNN 2  0.474 0.472 0.461 0.472 0.921  0.710 0.789       

   3  0.489 0.491 0.535 0.491 0.913  0.732 0.756       

   4  0.488 0.484 0.422 0.484 0.904  0.725 0.774       

   5  0.488 0.482 0.338 0.482 0.910  0.657 0.781       

                                 

                    

20 days Combination Triple-Channel  1  0.548 0.547 0.545 0.547 0.784  0.704 0.743  4 339 884 897 20 763 673 

  GAF 2D-CNN 2  0.541 0.536 0.475 0.536 0.635  0.667 0.643       

   3  0.532 0.530 0.494 0.530 0.406  0.686 0.630       

   4  0.544 0.541 0.620 0.541 0.718  0.674 0.639       

   5  0.530 0.527 0.485 0.527 0.912  0.698 0.619       
                                   

 

 


