

CLASSIFYING STOCK RETURNS USING

HIGH-FREQUENCY FUNDAMENTAL

FACTORS AND CONVOLUTIONAL

NEURAL NETWORKS

A study on five U.S. equities between 2013 and 2017

AXEL KOTNIK

DENIS DVINSKIKH

MFIN Thesis

Stockholm School of Economics

2021

CLASSIFYING STOCK RETURNS USING HIGH-FREQUNCY FUNDAMENTAL FACTORS

AND CONVOLUTIONAL NEURAL NETWORKS

Abstract:

We evaluate the usefulness of high-frequency fundamental factor exposures of five US

equities, between 2013 and 2017, as features for classifying and predicting the binary

movements of the same stocks in 5-minute and 20-day intervals using Convolutional Neural

Networks (CNN). After plotting rolling factor betas (Market, HML, SMB) and the close

price of a given stock in the corresponding intervals, these time series are converted into

images as Gramian Angular Difference Fields (GADF) and then concatenated to be fed to

the CNN as input. Two types of convolutional neural networks are trained on these images

and used for a binary classification task of determining whether the close price is likely to

increase or decrease in the consecutive time unit. For comparison, the same analysis is

conducted with technical indicators (RSI, EMA, %K) and a combination of the two (Market,

HML, RSI). The results of this paper show moderate performance of the trained CNN,

achieving a maximum accuracy on test data of 54.7% for a 20-day interval using images

with a combination of both technical indicators and fundamental factors. For further

research, we suggest using a longer forecast and classification horizon, and exploring

alternate ways to linear regression for high-frequency beta estimation for fundamental

factors.

Keywords:

Convolution neural networks, technical indicators, fundamental factors, high-frequency stock

prices, classification, prediction

Authors:

Axel Kotnik (24179)

Denis Dvinskikh (41924)

Supervisor:

Riccardo Sabbatucci, Assistant Professor, Department of Finance

Examiner:

Dong Yan, Assistant Professor, Department of Finance

Master Thesis

Master Program in Finance

Stockholm School of Economics

© Axel Kotnik and Denis Dvinskikh, 2021

Table of Contents

1. Introduction ... 1

2. Literature Review ... 1

2.1 Deep learning in asset pricing .. 1

2.2 Deep learning with fundamental factors .. 3

2.3 Hyperparameter and network optimization ... 4

2.4 Contribution .. 6

3. Theoretical background .. 6

3.1 Machine learning and neural networks .. 6

3.2 Convolutional Neural Networks ... 6

3.3 Gramian Angular Fields .. 9

3.4 Technical indicators ... 10

3.5 Fundamental factors .. 11

4. Methodology .. 13

4.1 Data ... 13

4.2 Factor beta construction .. 13

4.3 Technical Factors ... 13

4.4 Gramian Angular Field generation .. 15

4.5 CNN Configuration & Parameters ... 16

4.6 Model Evaluation Metrics .. 19

5. Results.. 20

6. Discussion .. 22

7. Conclusion .. 24

1

1. Introduction

The potential gains of successful

predictions of the stock market have led

people to attempt to forecast stock prices for

many decades. The commonly held view

since the early 1960s, via the capital asset

pricing model (Sharpe, 1964) and efficient

market hypothesis (Fama, 1970), is that

returns are proportional to the asset’s

exposure to general market risk and that all

publicly available information about an asset

is incorporated into its price immediately

upon release. The consequence is that

arbitrage, i.e., risk-free returns, cannot be

achieved and that one cannot beat the market

in the long term. The capital asset pricing

model has been extended by Fama and

French (Fama & French, 1993) to include

two other factors that drive returns beside the

market in aggregate, namely having a high

book-to-market ratio and being a smaller

sized firm. Since then, many factors have

been proposed, tested and rejected in the

“factor zoo” (Feng, Giglio, & Xiu, 2020).

In the short term, asset pricing theory is less

useful as price movements are characterized

by high dimensionality, e.g., in the form of

idiosyncratic events, large orders, rumors or

irrational trading. However, the emergence of

statistical analysis and machine learning tools

has helped researchers in discerning useful

information from noise and has instigated the

scientific community to explore many new

tools to understand and capture returns in the

short term (Kara, Boyacioglu, & Baykan,

2011). Deep learning and neural networks

have during the last 10 years played an

integral part in this pursuit (Hu, Zhao, &

Khushi, 2021) (Sezer, Gudelek, &

Ozbayoglu, 2020). Our intention with this

paper is to shed light on the intersection

between long term and short-term stock price

predictions. With the help of high-frequency

versions of Fama and French’s three factors,

normally used to predict asset prices in the

long term, and the promising feature

extraction capabilities of convolutional

neural networks (CNN), shown to effectively

predict asset returns in the short term, we

hope to uncover the respective contributions

of statistical analysis versus fundamental

analysis to the predictability of one-

directional movements of short-term stock

prices.

2. Literature Review

2.1 Deep learning in asset pricing

Research aiming to predict asset prices

using deep learning has risen exponentially

since 2015, as mapped out by Hu et al. (Hu,

Zhao, & Khushi, 2021) and Sezer et al.

(Sezer, Gudelek, & Ozbayoglu, 2020). This

likely stems from the increased attention

these methods have gained following their

success in other fields of science alongside

the democratization of deep learning

algorithms from tools like Keras. Most

commonly, the exercise is to forecast a single

financial time series from its own history to

predict the subsequent rise or drop in value,

and thereafter construct profitable trading

strategies with successful such algorithms.

The majority of deep learning models

evaluated by Sezer et al. outperformed

machine learning models.

Due to the volatility and non-linearity of

stock prices in the short term, deep learning

is well-suited to handle this issue and most

researchers use high-frequency data windows

2

of hours or days to make consecutive

predictions. Sezer et al. (Sezer, Gudelek, &

Ozbayoglu, 2020), whose paper mapped 140

deep learning publications in financial time

series prediction from 2005 to 2019, showed

that memory-based recurring neural

networks (RNN) was the most popular model

and was used in 62% of papers; a natural

choice because of the ordinal nature of time

series. CNN follows and was used in 21% of

the papers, of which a total of 11 attempted

to predict stock price movements. Other

papers quantify financial news sentiment and

analyze this along historical stock prices with

deep learning for movement predictions

(Ding, Zhang, Liu, & Duan, 2015) (Cai,

Feng, Deng, Ming, & Shan, 2018) (Kraus &

Feuerriegel, 2017) (Maqsood, o.a., 2020).

Most research using CNN on images of time

series has been done in the last three years

and has shown great results. In ten of the

papers reviewed by Hu et al. (Hu, Zhao, &

Khushi, 2021), the accuracy of CNN-based

stock prediction models averages ~70% and

range from 55% to 95% – significantly higher

than guessing. Correspondingly, RNN

achieved a ~68% average accuracy, LTSM

~67%, and DNN ~68%. Di Persio & Honchar

find their CNN to outperform MLP and RNN

by 1.5% accuracy (Di Persio & Honchar,

2016). Gunduz et al. find their CNN to

consistently predict intraday stock

movements on the Istanbul stock exchange

with 55% accuracy. Without accounting for

trading costs and other constraints, any model

whose predictions are correct more than 50%

of times can be considered profitable.

In the majority of CNN, technical indicators

have been used as explanatory variables for

stock price forecasting (Gunduz, Yaslan, &

Cataltepe, 2017) (Liu, Zeng, Yang, & Carrio,

27–28 August 2018) (Gudelek, Ozbayoglu,

& Boluk, 2017) (Ozbayoglu & Sezer, 2018)

(Sim, Kim, & Ahn, 2019) and did, in their

respective simulations, outperform the

common buy-and-hold strategies. Technical

factors are often constructed in the short term

and include moving averages, RSI,

Williams %R, etc. However, technical

factors do not necessarily provide additional

explanatory value. Sim et al. (Sim, Kim, &

Ahn, 2019) found that their best model was a

CNN with only the close price as input

(accuracy ~65%), as opposed to models with

up to nine technical indicators (accuracy

<60%). They hypothesize that this is due to

many technical indicators being similar in

appearance to the stock price, thus adding no

spatial information for the CNN to process.

Besides handling spatial information

especially well, CNN is also a time invariant

neural network and does not account for the

order of information, like e.g. RNN. Due to

the noise and little correlation between short

term returns, CNN would arguably lose less

predictive power when used for short term

predictions. As a consequence, it is common

to use daily observations or even minutes like

Selvin et al. (Selvin, Ravi, Gopalakrishnan,

& Menon, 2017) or Sim et al. (Sim, Kim, &

Ahn, 2019).

A less common approach used by some

(Hoseinzade & Haratizadeh, 2019) (Enke &

Zhong, 2016) is to include economic

variables as inputs, including world indices,

foreign exchange rates, commodities, futures

and data from big companies. Hoseinzade &

Haratizadeh (Hoseinzade & Haratizadeh,

2019) use both 2D and 3D input tensors; the

last dimension being different markets to

3

account for individual traits of each stock

index. They include a total of 82 economic

and technical variables in their CNN input.

They benchmarked the CNN performance

against other literature algorithms: an ANN

being fed features extracted by PCA in Enke

& Zhong (Enke & Zhong, 2016), a shallow

ANN classifying on technical indicators

(Kara, Boyacioglu, & Baykan, 2011), and a

CNN being fed technical indicators only

(Gunduz, Yaslan, & Cataltepe, 2017). Their

own algorithms averaged an F-measure of

~0.5 over several world indices compared to

~0.42, ~0.42 and ~0.39 for their benchmark

models. The authors conclude that adding

more variables did not improve predictability

(in the case of the 3D model, separating

models per market also worsened

performance), but that the depth of their

network was the cause for outperforming

others.

Another aspect that needs consideration is the

presentation of inputs to neural networks for

optimal performance. Gramian Angular

Fields (GAF) is a method of encoding time

series into images proposed by Wang &

Oates in 2015 (Wang & Oates, 2015),

developed as a means for computer vision to

classify time series more efficiently after its

success with image recognition. Feeding the

time series as GAF to the CNN provides

several advantages (Chen & Tsai, 2020),

including: (1) preserving temporal

dependency as time increases when moving

from top-left to bottom-right; (2) it contains

intertemporal correlations; (3) the original

data is stored in the primary diagonal of the

picture and one can theoretically reconstruct

the time series from high-level features

learned by the deep network. Chen & Tsai

(Chen & Tsai, 2020) also suggest using

candlesticks as input images for GAF, which

is then fed to the CNN, as this yields greater

spatial variety to the images and improved

their model’s performance. Sezer &

Ozbayoglu (2020) emphasize the weight

CNN places on local features and adjacent

pixels, and therefore suggest that one should

choose neighboring data points and

presentation carefully.

An alternate, useful way to present

explanatory variables to CNN is using

dummies variables and labelling them as “1”

if their values pass some threshold, and “0”

otherwise. Yang et al. obtained better results

from their CNN when presenting continuous

technical indicators as binary trend signals

(Yang, Zhai, & Tao, 2020). Unlike this

approach, which exhibits the values and

intertemporal correlations of a single variable

during some lags, some research papers

(Ozbayoglu & Sezer, 2018) (Hoseinzade &

Haratizadeh, 2019) construct matrices where

one dimension represents lagged time values

and the other represents the values of

different indicators each day. It is our idea,

inspired by Sim et al. (Sim, Kim, & Ahn,

2019), that the spatial uniqueness of linear,

continuous graphs can contribute to CNN

performance and we choose to follow this

method.

2.2 Deep learning with fundamental factors

The literature is sparse in this specific field

of research. In the review of Hu et al., one

paper used neural networks and fundamental

factors to predict asset price movements. Abe

& Nakamaya (Abe & Nakamaya, 2018) use

deep learning and accounting ratios to predict

the one-month-ahead stock returns in the

4

cross-section of the Japanese stock market

from 2002 to 2016. They extract fundamental

information about stocks from their quarterly

reports (e.g., book-to-market ratio, ROIC,

current ratio, Sales-to-price, etc.), and update

their factors once every month. Their models

are fully connected feed-forward deep neural

networks benchmarked against shallow

networks and found that deep versions

outperform the shallow ones marginally.

Zhou (Zhou, 2019) develops a novel two-

layered LSTM recurrent neural network and

MLP model combination to predict the next

day’s return from 80 days of past returns,

along 15 annual accounting figures (ROE,

investment-to-capital, etc.), for 99% of listed

US firms between 1981 and 2017. Seventeen

stock portfolios are constructed based on

fundamental factors whose 80 days’ past

returns are being fed to a CNN to create a

trading strategy that goes long (short) the

three portfolios with highest probability of

having a positive (negative) return on the 81st

day. Realized annualized returns before

trading costs of 34.33% are obtained during

this time period. Zhou also notes that returns

diminish after 2010, supposedly because of

the democratization of deep learning

algorithm trading that have traded away such

arbitrage opportunities. To our knowledge,

no one has modeled individual stock returns

from their exposure to fundamental factors,

in the short term, with deep learning.

Deep learning has also been used for

improved fundamental factor construction.

Feng et al. (Feng, Polson, & Xu, Deep

Learning in Characteristics-Sorted Factor

Models, 2019) consider factor models as

deep learning architectures, in the way that

(1) firm characteristics are inputs, (2) risk

factors are hidden layers, and (3) excess

returns are outputs. Using the improved and

non-linear Fama French factors that their

hidden layers represent, and kernel weights

that represent beta exposures, they fit the

cross-section of stock returns better than the

original works.

2.3 Hyperparameter and network

optimization

Neural networks contain several

hyperparameters that need to be tuned for

efficient learning and optimal performance.

As hyperparameters cannot be learned during

the training process, they need to be correctly

specified in advance. Hyperparameters

dictate the model’s complexity, speed of

convergence, learning rate, capacity of the

model and the training specifications in terms

of batch size, number of epochs and certain

types of activation functions.

How has hyperparameter tuning been

approached historically? Considering the

atypical format of stock price pictures versus

natural objects, hyperparameter tuning

should be closely assessed. Some, including

Di Persio & Honchar (2016), have used a

sequential model-based optimization

(SMBO) approach to tuning. In their case,

they use a tree-structured Parzen Estimator.

As a starting point, smaller kernel sizes are

preferred over larger ones to capture more

detailed, local information of images and

feature maps. Secondly, kernels with odd

dimensions are preferred as all the previous

layer pixels are symmetrically positioned

around the new centered pixel which

alleviates the modeler of accounting for

spatial distortions.

5

Many papers (Hoseinzade & Haratizadeh,

2019) (Sim, Kim, & Ahn, 2019) (Chen &

Tsai, 2020) (Di Persio & Honchar,

2016) (Liu, Zhang, & Ma, 2017) (Sim, Kim,

& Ahn, 2019) constructing CNN for financial

predictions base their models on the

classic LeNet-5 architecture, which consists

of (1) a convolutional layer followed by a

pooling layer, (2) another similar

convolutional layered followed by a pooling

layer, (3) a flattening layer, and (4) a fully

connected output layer (LeCun, et al., 1989).

When it comes to our data set, a type of

financial time series, Hoseinzade &

Haratizadeh (Hoseinzade & Haratizadeh,

2019) argue that the 3 x 3 or 5 x 5 filters that

are industry standard in image processing

may not necessarily be the optimal choice.

They consider the idea of candlesticks, which

serve to combine several traits of a stock

price at a moment in time into a single, higher

level feature. Thus, a 1 x 82 kernel is

constructed that strides across 82 input

variables for each day. Their complete setup

is as follows: a convolutional layer of eight 1

x 82 filters, after which there are two

convolutional layers with eight 3 × 1 filters,

each followed by a layer of 2 × 1 max-

pooling, lastly followed by a flattening

operation that is fed into a fully connected

layer. A similar configuration is used by

Yang et al. (Yang, Zhai, & Tao,

2020) and Gunduz et al. (Gunduz, Yaslan, &

Cataltepe, 2017), but where two

convolutional operations are done on the

input image in parallel that are the

concatenated.

Several papers (Yang, Zhai, & Tao,

2020) (Yang, Zhu, & Huang, 2018) (Chen &

Tsai, 2020) recommend not using any

pooling operations as it mostly incurs

information loss on financial markets data

given their suspicion that such series may be

truncated. This applies to dropout rates as

well, an overfitting mitigant that should be

set to zero in financial time series for best

performance according to Sim et al. (Sim,

Kim, & Ahn, 2019).

The choice of optimizer is not uniform –

Adam is used by many (Liu, Zhang, & Ma,

2017), AdaDelta by others (Gunduz, Yaslan,

& Cataltepe, 2017) (Gudelek, Ozbayoglu, &

Boluk, 2017) (Di Persio & Honchar, 2016),

and SGD is considered superior by some.

Activation functions also vary from paper to

paper, but most seem to prefer ReLU for

hidden layers (Sim, Kim, & Ahn, 2019) and

tanh (Liu, Zhang, & Ma, 2017),

softmax (Sezer & Ozbayoglu, 2018) (Yang,

Zhai, & Tao, 2020) or sigmoid for output.

The intuitive basis for sigmoid or softmax

activation is that it takes a value on the

continuous scale from 0 to 1, which in our

case can be interpreted as the probability of

the stock to move upwards. Softmax can be

considered even more intuitive as its outputs

are mutually exclusive and sum up to one

over the different classes.

Chen & Tsai (Chen & Tsai, 2020) developed

a CNN architecture especially tailored to

interpret GAF as input. Their input and target

variable for prediction is the EUR/USD

foreign exchange rate in candlestick patterns

from 2010 to 2017, and their experimental

results achieve 90.7% accuracy. They use

Adam optimizer, batch size 64 and 300

epochs. They observe that the

simple LeNet architecture works well with

the GAF-CNN and therefore mimic that

6

design; two convolutional layers with 16

kernels and one fully connected layer with

128 nodes.

2.4 Contribution

Fundamental factors, which consider the

fundamental financial performance of

companies as drivers of returns, have been

found useful for predicting cross-sectional

returns in the long term. Technical factors

have instead been relied upon for the

prediction of individual stock returns in the

short term. At the same time, CNN have not

successfully harnessed technical factors as

inputs for stock price predictions,

speculatively due to their similarity in

appearance to stock prices themselves; as

discussed, CNN are good at processing

spatial information. We take a new approach

to address the shortcomings of both

aforementioned topics. By continuously

measuring a given stock’s exposure to high-

frequency estimations of the three Fama

French factors, as constructed by Aït-Sahalia

et al. (Aït-Sahalia, Kalnina, & Xiu, 2020), we

generate fundamental features that are

inherently linked to the stock price itself in

the short term while also providing input that

behaves dissimilar to the stock price, unlike

technical factors. In this way, we hope to

provide the spatial diversity that CNN are

specialized to extract features from while

uncovering the potential link between short

term returns and fundamental factors. To

benchmark the independent explanatory

value of fundamental factors, we also train

identical models on technical factors for

comparison. To measure the joint

informativeness of fundamental and

technical factors, we also benchmark against

a data set with a combination of fundamental

and technical factors.

3. Theoretical background

3.1 Machine learning and neural networks

Within artificial intelligence, machine

learning is the concept of a computer learning

to perform a specific task without being

explicitly programmed to. This can be done

in a supervised fashion, where algorithms are

given already labeled data find patterns in

(linear regression, logistic regression,

support vector machines, etc.); in an

unsupervised fashion, when the program

finds structures in unlabeled data (K-means

clustering, principal components analysis,

etc.); or in reinforcement learning, where the

machine learns from feedback in real and

synthetic environments. Neural networks are

a subset of algorithms within the machine

learning space that stem from

neurophysiological research in the mid-20th

century when scientists began to understand

the connectivity mechanisms inherent to

neurons in biology and subsequently model

them on computers. Neural networks pass

information between nodes (“neurons”) and

subsequently learn the importance of each

connection for a specific prediction and

adjust the value of these weights (“neural

connections”) accordingly. The advantage of

neural networks lies in their flexibility and

ability to detect non-linear relationships in

data.

3.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN)

is one type of neural network that was

developed for computer vision, inspired by

the structure of the visual cortex of cats

7

(Lindsay, 2020). The first convolution of a

CNN recognizes local edges and contours of

raw input image, which is then passed on to

sequential layers that combine these into

features such as “ears” or “wheels”. The final

layer classifies the image based on these

features in aggregate, making predictions like

“animal” or “car”. The prototype model was

developed by Fukushima in 1980

(Fukushima, 1980) who was inspired by the

aforementioned biological findings in the

1950s. One of the most prominent CNN, and

the first to be used commercially when banks

deployed it to recognize hand-written letters,

was developed by LeCun et al. in 1998

(LeCun, Bottou, Bengio, & Haffner, 1998).

Today, a variety of CNN configurations are

available and applied.

Components of a CNN

CNN architectures come in many different

variants, and the literature presents a variety

of options for exploration. One of the most

famous CNN architectures is the LeNet-5,

which consists of convolutional layers,

pooling layers and fully connected layers.

Each convolutional layer picks up essential

features of images, such as edges and shapes

through kernels, which are then passed to

pooling layers, that simplify and reduce the

dimensions of the supplied images for

quicker optimization of the neural network.

The depth of convolutional layers varies

greatly, but a common approach is to use 2 to

5 convolutional layers. Following

convolutional and pooling layers, fully

connected layers and an output layer comes

last to final generate the final prediction as

global semantic information (Gu, et al.,

2018).

Convolutional layer

A convolutional layer in a neural network

performs a convolutional operation on the

input matrix. It is done by passing a filter to

an input that results in an activation. In

practical terms, the filter slides across the

entire input image and passes on higher level

information as specified by the activation

function onto a feature map, which acts as

input image for the next layer in the model.

Each filter uses a shared set of weights that

are optimized and updated during training of

the neural network. A CNN thus learns the

optimal weights of its filters given a specific

data set. If input I is a 𝑁 × 𝑁 matrix, and a

convolutional filter of size 𝐹 × 𝐹 (where 𝑁 >

𝐹) is applied on each entry of the matrix, a

corresponding weight 𝑤 is generated. Then

the output of the convolutional operation is

calculated through equation (1):

𝑣𝑖,𝑗
𝐼+1 = δ (∑ ∑ 𝑤𝑘,𝑚

𝐹−1

𝑚=0

𝐹−1

𝑘=0

𝑣𝑖+𝑘,𝑗+𝑚
𝐼) (1)

In equation (1), δ represents an activation

function, 𝑣𝑖,𝑗
𝐼+1 is the value at the 𝑖𝑡ℎ row and

𝑗𝑡ℎ column in the resulting output matrix I+1,

and 𝑤𝑘,𝑚 is the weight assigned to the

𝑘𝑡ℎ row and 𝑚𝑡ℎ column of the filter.

Activation functions

The activation function in a hidden layer

is an essential part of neural networks. For

hidden layers there are typically three types

of activation functions used: Rectified Linear

Activation (ReLU), sigmoid (σ) and

Hyperbolic Tangent (tanh), whilst for output

8

layers, softmax (f) or sigmoid (σ) is most

frequently employed:

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (2)

𝜎(𝑥) =
1

1+𝑒−𝑥
 (3)

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (4)

 𝑓(𝑥) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

 (5)

The most common use of activation functions

in convolutional neural networks is via the

ReLU activation function to avoid issues

with the vanishing gradient problem.

Typically, the same activation function is

used in all hidden layers. In the output layer

for categorical classification, a softmax or

sigmoid activation function is used.

Batch normalization layer

Batch normalization is a technique

implemented in neural networks that

standardizes the input that is passed onto the

next layer. The standardization is important

because during training the model is updated

backwards, and since layers take input from

previous layers, the inputs might alternate for

each batch. The standardization is done by

rescaling the input data to have a mean of

zero and a standard deviation of 1. This

results in subsequent layers not having to

make assumptions about the distribution of

the inputs when updating the weights. Batch

normalization significantly reduces the

number of epochs required to train the data,

resulting in better performance.

Pooling layer

As overfitting is a reoccurring issue when

training neural networks, pooling layers are

used in convolutional neural networks to

reduce the spatial size of the features and

significantly reduce the numbers of

parameters that need training. Essentially, a

pooling layer reduces the dimensions of the

feature maps. A pooling layer slides a filter

of selected size, most commonly 2 × 2,

across the input image and performs an

operation on the selected values, most

commonly max pooling or average pooling.

Max pooling operation takes the maximum

values from the input from the pooling filter

input and average pooling takes the average

value. Thus, given a 𝑁 × 𝑁 matrix that is

passed to a pooling layer with a 𝑘 × 𝑘

dimensional pooling filter is applied, the

resulting matrix will have dimensions of
𝑁

𝑘
×

𝑁

𝑘
.

Flattening layer

A flattening layer is placed between the

last convolutional layers and the fully

connected layers, in order transform the

matrix into an array with a single column.

Fully connected layer

Fully connected layers perform two

operations on the input that is passed to them.

Firstly, a fully connected layer performs a

linear transformation in the form of a dot

product of input matrix values and weights,

and secondly, applies a non-linear

transformation:

 𝑣𝑖
𝑗+1

= σ (∑ 𝑣𝑘
𝑗

𝑘

𝑤𝑘,𝑖
𝑗) (6)

9

In equation (6), 𝑣𝑖
𝑗+1

 represents the value of

the 𝑖𝑡ℎ neuron at the 𝑗 + 1𝑠𝑡 layer, and 𝑤𝑘,𝑖
𝑗

 is

a weight between the connections of the 𝑘𝑡ℎ

neuron from the 𝑗𝑡ℎ layer and the 𝑖𝑡ℎ neuron

from the 𝑗 + 1𝑠𝑡 layer.

Dropout layer

Another remedy for overfitting in neural

networks is the application of dropout layers.

Small datasets or an abundance of layers will

cause the neural network to learn statistical

noise in the data and not generalize well to

new, unseen data. One alternative is to train

an ensemble of networks and average out the

results, but this is computationally expensive

and a dropout layer can instead reduce the

complexity of the model by randomly

selecting nodes to omit. Dropout layers are

implemented on a per-layer basis. A hyper-

parameter with the probability of retaining a

node must be specified.

3.3 Gramian Angular Fields

Gramian Angular Field (GAF) images are

RGB-channel representations of univariate

data. A time series has first been converted

into polar coordinates, whose angles by

various operations have then been converted

into a symmetry matrix, yielding a GAF.

GAFs are constructed using a two-step

approach. Initially, given a time series 𝑇 =

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}, the time series 𝑇 is rescaled

using min-max scaling:

𝑡𝑖,𝑠𝑐 =
 (𝑡𝑖   −  𝑚𝑎𝑥(𝑇)) + (𝑡𝑖 − 𝑚𝑖𝑛(𝑇))

𝑚𝑎𝑥(𝑇) − 𝑚𝑖𝑛(𝑇)
 (7)

Given that the rescaled values of 𝑡𝑠𝑐
𝑖 lie

between -1 and 1, we can apply the arccos

operator resulting in values that are between

0 and 𝜋. The second component required for

converting rescaled values to polar

coordinates are the time stamps which are

obtained by dividing the time stamp 𝑖 by the

total number of observations n, and saved as

the radius for the polar representation:

 {
𝜑𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑡𝑖,𝑠𝑐)

𝑟𝑖 = 𝑖/𝑛
 (8)

The GAF can take on the form of a difference

operator or a summation operator denoted by

Gramian Angular Difference Field (GADF)

or Gramian Angular Summation Field

(GASF) respectively, where the difference

lies in the use of a cosinus operator when

constructing the Gram matrix for the GASF

and the sinus operator for the GADF. In this

paper, GADF are used.

Once the angles and radii are obtained, the

second step of the time series to GAF

transformation can be done:

𝐺𝐴𝐷𝐹 = √𝐼 − 𝑇𝑠𝑐2´ · 𝑇𝑠𝑐 − 𝑇𝑠𝑐′ ·

√𝐼 − 𝑇𝑠𝑐2 (9)

𝐺𝐴𝐷𝐹 =

[
𝑠𝑖𝑛(𝜑1 + 𝜑1) ⋯ 𝑠𝑖𝑛(𝜑1 + 𝜑𝑛)

⋮ ⋱ ⋮
𝑠𝑖𝑛(𝜑𝑛 + 𝜑1) ⋯ 𝑠𝑖𝑛(𝜑𝑛 + 𝜑𝑛)

] (10)

It is important to note that number of

channels of the input image must match the

10

depth of the convolutional kernel

dimensions. If one uses GAF on the red-

green-blue (RBG) scale, the depth of the

kernel matrix must be three; otherwise, it

cannot capture the information between the

color scales.

3.4 Technical indicators

Technical analysis of stock prices has

been around for several decades, and first use

of technical analysis for investing dates back

to the late 18th century. Much research has

monitored the performance of trades

following the state of various technical

indicators to show whether or not they carry

predictive performance, or if they carry

information on the momentum of supply and

demand pressures on stocks. Brock,

Lakonishok & LeBaron (1992) asserted that

trading strategies based on moving average

and trading-range breaks can be utilized to

trade on future returns based on historical

data. Hsu & Halgamuge (2007) used

technical indicators and news flow to predict

increases and decreases in stock prices and

achieved 70% accuracy on their dataset.

Shynkevich et al. (2017) use 10 technical

indicators to evaluate if they contain

information on the movement of future stock

prices based on historical data. Their findings

include that technical indicators indeed carry

information on future stock prices and can be

used to make predictions. Following the

convention of several papers, and for

benchmarking against our fundamental factor

models, technical indicators will be evaluated

as explanatory variables for binary stock

price movements (Gunduz, Yaslan, &

Cataltepe, 2017) (Liu, Zeng, Yang, & Carrio,

27–28 August 2018) (Gudelek, Ozbayoglu,

& Boluk, 2017) (Ozbayoglu & Sezer, 2018)

(Sim, Kim, & Ahn, 2019). The following

technical indicators have been used for

experimentation in this study; however, not

all were used as input features for the final

models.

Simple Moving Average

The simple moving average (SMA) is an

unweighted mean of the previous k data

points. Suppose we have observed a time

series 𝑡1, … , 𝑡𝑛 for close prices of a stock.

The mean of the previous 𝑘 data points is

calculated through equation (11) and is

labeled 𝑆𝑀𝐴𝑘

𝑆𝑀𝐴𝑘 =
𝑡𝑛−𝑘+1 + 𝑡𝑛−𝑘+2 + ⋯ + 𝑡𝑛

𝑘
 (11)

Exponential Moving Average

To address the issue of equal weighting,

the exponential moving average (EMA) is

employed by assigning a higher weight to

recent observations. The weight for older

observations decreases exponentially, but

never reaches zero. The exponential moving

average is calculated recursively according to

the following formula for a given time series

𝑡1, ⋯ , 𝑡𝑛, where 𝛼 represents a constant

smoothing factor and 0 < 𝛼 < 1:

𝐸𝑀𝐴𝑡 =

{
𝑡1 , 𝑡 = 1

𝛼 × 𝑡𝑛 + (1 − 𝛼) × 𝐸𝑀𝐴𝑡−1 , 𝑡 > 1
 (12)

A common choice for the smoothing

coefficient 𝛼 is 2𝑘 + 1 , where 𝑘 is the

selected window length (usually around 12 to

11

26 periods) which is used as input for the

moving average convergence divergence

indicator.

Moving Average Convergence Divergence

The moving average convergence

divergence (MACD) is another technical

indicator used in stock analysis looking for

buy and sell signals. MACD uses long and

short window EMA to find changes in an

asset's momentum and trends.

𝑀𝐴𝐶𝐷𝑛 = 𝐸𝑀𝐴𝑛(12) − 𝐸𝑀𝐴𝑛(26) (13)

The MACD is used together with a 9-length

window EMA to find crossovers that are

indicative of a buy or sell signal.

Stochastic Oscillator

The stochastic Indicator (%D) is another

indicator that is used to gauge momentum

and trends in stock trading. The stochastic

indicator is calculated by first finding the

”slow” indicator denoted by %𝐾:

 %𝐾 = (
𝐶 − 𝐿14

𝐻14 − 𝐿14
) × 100 (14)

This is followed by taking the three-period

moving average denoted by %D. The

stochastic indicator is bound between 0 and

100.

Relative Strength Index

Relative strength index (RSI) is a measure

of momentum that evaluates the magnitude

of swings in stock prices to identify oversold

or underbought stocks. RSI is typically used

on a 14-period basis and has a scale between

0 and 100.

𝑅𝑆𝐼 = 100 −
100

1 +
average gain
average loss

 (15)

The average gain is calculated in two steps.

The first average gain and the first average

loss is calculated as the sum of gains and

losses over the past 14 periods divided by 14.

Then the average gain and loss is calculated

by:

Average gain

=
[previous av. gain × 13 + current gain]

14
 (16)

Average loss

=
[previous av. loss × 13 + current loss]

14
 (17)

3.5 Fundamental factors

Fundamental, systemic risk exposures of

assets were first identified by William F.

Sharpe, Jack Treynor, John Lintner and Jan

Mossin, building on previous work of Harry

Markowitz, during the development of the

Capital Asset Pricing Model (CAPM). Stock

returns were found to be closely related to

their respective exposures to market risk.

Subsequently, Eugene Fama and Kenneth

French (Fama & French, Common risk

factors in the returns on stocks and bonds,

1993) identified additional risk components

in a given asset’s correlations with portfolios

compromised of long positions in small-cap

companies and short positions in large-cap

companies, as well as portfolios with long

12

positions in high book-to-market value ratios

and short companies with low book-to-

market value ratios. Subsequent research by

Fama & French (2014) have identified

additional risk factors, and with the work of

Mark M. Carhart (1997), also the

identification of the momentum factor. An

overview of fundamental factors and their

construction is provided below.

Market

The Market portfolio consist of the value-

weighted excess returns of all publicly traded

stocks on the NYSE, AMEX and NASDAQ

stock exchanges.

SMB

The Small-Minus-Big (SMB) portfolio is

constructed by taking the equally weighted

average returns of the top three deciles of

small stocks minus the average returns of the

three top deciles of large-cap stocks.

SMB =
1

3
(Small Value + Small Nuetral +

Small Growth) −
1

3
(Big Value +

Big Neutral + Big Growth) (18)

HML

The High-Minus-Low (HML) portfolio is

the equally weighted average returns for the

top two deciles of stocks with high book-to-

market ratios minus the average returns of the

top two deciles of stocks with small book-to-

market ratios.

HML =
1

2
(Small Value + Big Value) −

1

2
(Small Growth + Big Growth) (19)

CMA

Conservative-Minus-Aggressive (CMA)

is the average return of two portfolios with

conservative investments less the average

return of two portfolios with aggressive

investment policies.

CMA =
1

2
(Small Conservative +

Big Conservative) −
1

2
(Small Aggressive +

Big Aggressive) (20)

RMW

Robust-Minus-Weak (RMW) factor is

constructed by taking the average returns of

two portfolios with robust operating

profitability less the average returns of two

portfolios with weak operating profitability

RMW =
1

2
(Small Robust + Big Robust) −

1

2
(Small Weak + Big Weak) (21)

MOM

The momentum factor specifies that

holding stocks that have performed well in

recent time periods will likely outperform the

returns of last year’s worst performing

stocks. Momentum factor is the average of

the two high prior return portfolios less the

average return on two portfolios with low

prior returns.

MOM =
1

2
(Small High + Big High) −

1

2
(Small Low + Big Low) (22)

13

4. Methodology

4.1 Data

For this paper, five publicly listed US

equities from various industries were

selected. These include ExxonMobil (ticker:

XOM), one of the largest publicly traded oil

and gas companies; Procter & Gamble

(ticker: PG), international consumer goods;

Netflix (ticker: NFLX), international media

and technology company; J.P. Morgan

(ticker: JPM), one of the largest US banks;

and AT&T (ticker: T), the world’s largest

telecommunications company. For the

equities, 5-minute interval Open, High, Low,

Close (OHLC) were obtained and their

respective 5-minute returns calculated during

the period January 1st 2013 to December 31st

2017. Each stock yielded 98,202

observations over the entire timespan which

resulted in a total of 491,010 observations.

Adjusted for non-trading days and public

holidays pre-trading activity, the data set

consisted of 1,259 trading days, with each

having 78 five-minute OHLC value for each

stock.

To estimate the high-frequency betas of

stocks with the fundamental factors Market,

SMB, HML, CMA, RMW and MOM, 5-

minute high-frequency factor returns were

obtained from the public website of Dacheng

Xiu, one of the authors behind the estimation

of high-frequency factors in the paper of Aït-

Sahalia et al. (Aït-Sahalia, Kalnina, & Xiu,

2020). The dataset contains factor portfolio

returns at the 5-minute interval for all traded

stocks on the NYSE, AMEX and NASDAQ

stock exchanges.

4.2 Factor beta construction

The five US stocks’ exposures to

fundamental factors are estimated using a

rolling window regression. Given a sample

size 𝑇, a window of length 𝑚 is selected.

Once selected, the dataset is divided into

𝑁 = 𝑇 − 𝑚 + 1 sub-samples, and for each

sub-sample, a regression is performed on the

past 𝑚 observations, thus yielding beta

coefficients for the 𝑚𝑡ℎ datapoint. The

window is then rolled onto the 𝑚 + 1𝑠𝑡

observation and the returns of the equities are

regressed on the 2𝑛𝑑 to 𝑚 + 1𝑠𝑡 values of the

fundamental factors. This process is repeated

until the regressions reach the 𝑇𝑡ℎ value.

Given a sample size of 98,202 datapoints for

each US equity, the regressions result in

98,202 minus m number of regression

outputs. We select m = 100 for the 5-minute

intervals, resulting in 98,102 regressions per

stock. The regression is specified in equation

(23).

𝑟𝑖 = 𝛼𝑖 + 𝛽1,𝑖𝑀𝑎𝑟𝑘𝑒𝑡 + 𝛽2,𝑖𝑆𝑀𝐵 +

𝛽3,𝑖𝐻𝑀𝐿 + 𝛽4,𝑖𝐶𝑀𝐴 + 𝛽5,𝑖𝑅𝑀𝑊 +

𝛽6,𝑖𝑀𝑂𝑀 + 𝜀𝑖 (23)

The results of the regression are displayed in

Table I.

4.3 Technical Factors

In addition to estimating fundamental factor

exposures, a set of technical indicators are

calculated for model benchmarking.

Technical indicators are factors and signals

that are derived from the past values of the

stock price itself. They are often used to

analyze stock price patterns in order to make

14

Table I. Linear estimations of high-frequency fundamental factors exposures

Regression β coefficients and the R2 values for the rolling-window regressions over the entire data set for

each stock and factor value. Each window consists of 100 consecutive 5-minute intervals, and values shown

are averages per year (* 𝑝 ≤ 0.1 ** 𝑝 ≤ 0.05 *** 𝑝 ≤ 0.01).

PG β Market β SMB β HML β RMW β CMA β MOM R2

2013 0.846** -0.307 -0.643 0.301 1.041 -0.003 39.6%

2014 0.731** -0.178 -0.309 0.414 0.644 -0.353 35.3%

2015 0.840** -0.178 -0.013 0.310 0.487 0.166 45.8%

2016 0.792** -0.135 -0.184 0.207 0.714 0.485 38.8%

2017 0.525 -0.201 -0.189 0.203 0.344 -0.270 24.1%

Total 0.747** -0.200 -0.268 0.287 0.646 0.005 36.7%

XOM β Market β SMB β HML β RMW β CMA β MOM R2

2013 1.006*** -0.232 0.259 0.248 0.265 -0.435 48.5%

2014 1.114** -0.335 0.459 -0.084 0.139 -0.321 47.9%

2015 0.916** -0.333 0.174 -0.051 -0.075 -0.852** 57.5%

2016 0.918** -0.344 0.359 -0.693 0.176 0.022 49.4%

2017 0.717** -0.261 0.312 -0.836** 0.076 -0.491 47.4%

Total 0.934** -0.301 0.312 -0.283 0.116 -0.416 50.1%

NFLX β Market β SMB β HML β RMW β CMA β MOM R2

2013 1.372 -0.230 -0.974 -0.775 -0.916 0.483 28.9%

2014 1.150* -0.433 -0.688 -0.785 -1.186 0.265 40.6%

2015 1.158* -0.284 -0.330 -0.350 -1.287 -0.237 34.5%

2016 1.219* -0.318 -0.408 -0.222 -1.047 -0.097 35.1%

2017 1.349* -0.140 -0.773 -0.236 -0.336 0.475 35.3%

Total 1.250* -0.281 -0.634 -0.474 -0.954 0.178 34.9%

T β Market β SMB β HML β RMW β CMA β MOM R2

2013 0.866** -0.303 -0.285 0.142 1.210 -0.390 35.9%

2014 0.805** -0.174 0.033 0.292 0.314 -0.392 32.3%

2015 0.788** -0.140 0.239 0.227 0.108 0.065 37.1%

2016 0.850** -0.200 0.353 0.061 -0.028 0.537 35.5%

2017 0.820* -0.248 0.434 0.200 -0.448 -0.678 26.3%

Total 0.826 -0.213 0.155 0.184 0.231 -0.171 33.4%

JPM β Market β SMB β HML β RMW β CMA β MOM R2

2013 1.243** -0.176 1.695** 0.259 -0.307 0.435 52.7%

2014 1.294*** -0.079 0.803 -0.035 -0.006 -0.003 52.3%

2015 1.385*** -0.010 0.973** -0.123 -0.055 0.382 63.4%

2016 1.240*** -0.107 0.969** 0.065 -0.380 -0.402 64.7%

2017 1.301*** -0.127 1.151** 0.017 -0.336 0.531 57.6%

Total 1.292*** -0.100 1.118* 0.036 -0.217 0.188 58.2%

15

stock price predictions based on e.g.,

momentum or moving averages. For this

paper, three technical indicators were

selected:

• EMA(12) – exponential moving average

with a window length of 12

• RSI(14) for a period 14 intervals

• %K – for a 3-period average of a %D

estimated for 14 intervals

The technical indicators are similarly

calculated on a rolling basis through the

entire dataset for each stock.

4.4 Gramian Angular Field generation

The pictures of time series of 5-minute

close prices, technical indicators and beta

values for fundamental factors are converted

into Gramian Angular Difference Fields. See

Fig. 1 for illustration. As the input for the

CNN on 5-minute intervals, we use a window

size of 26 such intervals (and window size 20

for the daily intervals), graph these values for

the close price and three factors, and convert

these into four Gram matrices with the

dimension of 26 × 26. The images are then

labeled “LONG” or “SHORT” based on the

subsequent rise or drop in stock price in the

period following the last observation of the

window. The model in this project will learn

of the movements in stock price and the

corresponding factors during the initial 1𝑠𝑡

until 𝑡𝑡ℎ time step and make a prediction for

the 𝑡 + 1𝑠𝑡 time step. The target variable will

be an indicator function based on the

following criteria:

target = {
1, pricet+1 > pricet

0, pricet+1 < pricet
 (24)

Given a target variable of 1, a “LONG” price

recommendation is given, implying a long

position in the asset is favorable during the

interval between 𝑡 and 𝑡 + 1. If the target

variable has a predicted value of 0, a

“SHORT” price recommendation is given,

implying a short position in the asset,

alternatively not engaging in any position at

all.

The input to the CNN is constructed by

concatenating GADF images of certain

factors in a 2 × 2 matrix of images, which

results in a 52 × 52 matrix of pixels. For 20-

day period, daily values of factors were

aggregated using the mean and a rolling

window of 20 days was used to create images

that are 20 × 20 pixels. Each image that has

been concatenated into a 2 × 2 matrix of

images is labeled “LONG” or “SHORT”

based on the subsequent close price. The

exercise is to see if the pictures carry

predictive information on the stock price

when predicting its subsequent will rise or

drop in price.

The generated images are stored in

directories categorized as “LONG” with a

target variable of 1 or “SHORT” with a target

variable of 0, based on the condition

explained in the previous paragraph. The full

image dataset is then divided into a training

set containing 70% of all images and a test set

containing 15% of all images. A subsample

of 17.65% of the train set is set aside for

validation during training (15% of the whole

dataset).

16

Figure 1. Converting close price and factor beta time series into GAF. Time series are first converted into

polar coordinates and then transformed into a GAF, with the corresponding values rescaled to a RGB

representation and each pixel corresponding to a value of the gram matrix. The input fed to the CNN

network consists of four concatenated GAF images where each pixel represents the value of a factor or the

close price at each unit of time. In the illustration, which is 26 consecutive 5-minute intervals, four images

of pixel size 26 × 26 are concatenated into a single image with pixel dimensions of 52 × 52. In the case

of 20-day intervals, the dimensions of a single image are 20 x 20.

4.5 CNN Configuration & Parameters

We create two different CNN for

comparison across our trials. The chosen

architectures are, at the core, inspired by

conventional models provided by literature.

Firstly, convolutional layers with square

kernels are deployed with ReLU activation,

followed by max pooling, in turn followed by

batch normalization layers for better

generalization and prevention of overfitting.

The second model is similar to the first, but

has additional features inspired by the

CNNPred models of Hoseinzade &

Haratizadeh (2019), who use kernel sizes that

reflect the dimensions of the input images.

The configurations and rationales behind the

models are detailed below.

Single-Channel GAF 2D-CNN

As our baseline model, the Single-Channel

GAF 2D-CNN is based on the classic LeNet-

5 structure. It initially deploys three groups of

layers, each containing a convolutional layer

with ReLU activation, a max pooling layer

and a batch normalization layer. The

convolutional layers use 32 filters with kernel

dimensions 3 x 3. This layer is followed by a

max pooling operation of dimensions 2 x 2,

thus reducing the feature maps to one fourth

of the size of the input image. Finally comes

a batch normalization layer. After this

structure is repeated three times, a flattening

layer follows to standardize output into a

vector for the fully connected layers, in turn

followed by a dropout layer to reduce model

complexity with a hyperparameter of 0.5 for

GAF InputPolarGraph

17

the dropout rate. Following the dropout layer,

there is a fully connected layer with 125

nodes, after which another dropout layer with

a 0.3 dropout rate is used. Finally, an output

layer is activated with two nodes and a

softmax activation function. The output

results in mutually exclusive probabilities for

the likelihood of an image belonging to the

LONG or SHORT class. See Fig. 2 for an

illustration of this architecture.

Triple-Channel GAF 2D-CNN

An alternate, novel configuration that will be

used is what we call the Triple-Channel GAF

2D-CNN. Unlike our single-channel baseline

model, which extracts only one feature map

from input GAF images through a square

3 x 3 kernel, this architecture extracts three

feature maps from the images; once with a

3 x 3 square kernel, once with a horizontal

vector kernel that slides downwards, and

once with a vertical vector kernel that slides

rightwards. The horizontal vector is of

dimensions 26 x 1 or 20 x 1, depending on if

we are using 5-minute or 20-day images.

Similarly, the vertical vector is of dimensions

1 x 26 or 1 x 20. As such, they are of the same

height or width as half the input images

themselves. Note that vectors use strides of

the same dimensions as themselves, meaning

they only cover each pixel once during their

convolutional operation. The 3 x 3 kernel on

the other hand, has strides 1 x 1 and therefore

slides over each pixel nine times, and

generates output feature maps of the same

dimensions as its input feature map (or input

image in the case of the first layer). The

middle channel of the architecture, as shown

in Fig. 3, which uses the 3 x 3 kernels, is

identical in design to the Single-Channel

GAF 2D-CNN architecture except for the

removal of batch normalization and dropout

layers. The similar design to the single-

channel CNN is intentional as we can then

measure the marginal contribution of the

additional vertical and horizontal channels.

Finally, the output of all three channels is

flattened and concatenated into a single

vector that is used as input to a fully

connected layer followed by a softmax-

activated output layer which predicts whether

the stock will appreciate or depreciate at

t + 1.

We hope the Triple-Channel GAF 2D-CNN

can capture additional spatial information

that is unique to each of the four factors in the

GAF input image. This is done in two ways:

(1) the height of the vertical filter and the

width of the horizontal filter are exactly the

respective length and width of each pane in

the GAF image, where each pane represents

the time series of the factor betas or the

closing price (see Fig. 1), which together with

(2) having kernel strides set to their own

dimensions ensures each filter never touches

two panes at any given time. As a result, each

pixel that these convolutional operations

generate to form feature maps 3.1 and 2.1 in

Fig. 3 can only come from a single pane, and

exactly one fourth of the feature maps’ pixels

come from each pane.

18

Figure 2. Single-Channel GAF 2D-CNN. The architecture is a variation of the classical LeNet-5

architecture, and consists of fourteen layers. First, three repetitions of the following layers are employed: a

2D convolutional layer with 32 filters of dimensions 3 x 3 is followed by a max pooling layer of dimension

2 x 2, which reduces the size of the convoluted images to a fourth, and lastly a batch normalization layer

for regularization purposes. Second comes a flattening layer, followed by dropout layer, a fully connected

layer with 125 nodes, another dropout layer, and finally an output layer with two nodes which is activated

by a softmax function.

Figure 3. Triple-Channel GAF 2D-CNN. This architecture is constructed in a way similar to the Single-

Channel GAF 2D-CNN, but has two additional channels that extract features from the input, no batch

normalization layers and no dropout layers towards the end. The top channel is composed of a convolutional

layer with 32 filters of dimensions 26 x 1 or 20 x 1, depending on the data set being used, followed by a

flattening layer. The bottom channel is identical but horizontally oriented, consisting of a convolutional

layer with 32 filters of dimensions 1 x 26 and 1 x 20, followed by a flattening layer. The intermediary output

of all three channels is then concatenated and followed by two fully connected layers.

19

Loss Function

The loss function is an integral part of any

machine learning algorithm. Specifying a

correct loss function is necessary for efficient

optimization of the kernel weights and

yielding accurate results. The loss function is

used to calculate the gradient and

subsequently update the weights of the model

in the direction opposite of the gradient. This

process is repeated until the algorithm

reaches the minimum of the loss function, or

alternatively when the incremental

improvement in loss is below a certain

threshold. Given the nature of the

classification task, the selected loss function

is categorical cross entropy loss with two

classes.

𝐶𝐸 = − ∑ 𝑡𝑖

𝐶=2

𝑖=1

𝑙𝑜𝑔(𝑓(𝑠𝑖))

 = −𝑡1𝑙𝑜𝑔(𝑓(𝑠1)) − (1 − 𝑡1) 𝑙𝑜𝑔(1 − 𝑓(𝑠1))

(25)

𝑓(𝑠1) and 1 − 𝑓(𝑠1) are the scores from the

output of the CNN passed through an

activation function and 𝑡1 , 1 − 𝑡1 are the true

binary value of the target variable.

Optimizer

One of the most common optimizers of

neural networks is the Stochastic Gradient

Descent (SGD) method. A gradient descent

optimizer for a given neural network

architecture is initiated on a given loss

function that is dependent on the weights of

kernels and operators in a neural network.

The partial derivative of the gradient with

respect to the weight is calculated, and the

weights are updated in the opposite direction

of the gradient in a higher dimensional space,

consequently reducing the error of the model

and improving its performance. Vanilla

SGDs may encounter convergence issues

near local minima, where the gradient is

almost perpendicular to the minima and

oscillates closely, thus taking a long time to

reach the extreme point. Momentum

introduces an inertia parameter that helps

smooth out oscillations, thus drastically

improving the speed of convergence and thus

reducing the time needed to find the extreme

point. An SGD optimizer with a momentum

contribution has been employed in this paper.

Derivations of the function can be found in

the works of Ning Qian (Qian, 1999) and

Sebastian Ruder (Ruder, 2016).

4.6 Model Evaluation Metrics

The primary metrics for evaluations of our

classification task are based on confusion

matrices and their corresponding metrics that

are associated with it. The confusion matrix

is an array of true classes and predicted

classes, which shows how the distributed

predictions perform against the true values.

An illustration of a confusion matrix is

provided in Fig. 4, with its associated terms.

Figure 4. Confusion matrix illustration.

Correctly predicted classes are along the main

diagonal.

Accuracy is defined as the number of correct

predictions divided by the total number of

20

predictions. In our case, it gives an indication

of how accurate the algorithm is at correctly

predicting the movements of a stock if all

classes are equally important.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (26)

Precision and recall are two other metrics that

can be used in conjunction with accuracy.

Precision gives a measure of how often

something that is positive is predicted as

positive. In this case, it tells us how many

times we are correct in our prediction of a

long position in an asset. The recall measure

tells us the percentage of positives that were

predicted as the positive class.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (27)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (28)

𝐹1 Score is a harmonic mean of precision and

recall and as such accounts for both false

positives and false negatives. 𝐹1 Score is used

together with the accuracy to gauge

performance of the model, and is especially

useful if there is a sample imbalance, e.g.

many more positive class occurrences than

negative.

 𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (29)

5. Results

The two models, Single-Channel GAF

2D-CNN and Triple-Channel GAF 2D-CNN

were trained and evaluated on six data sets of

images. The first three data sets consist of

GAF images of 5-minute interval data that

represent four factors of different

characteristics: technical indicators,

fundamental factors, and a combination of

the two:

1. Technical: Close, EMA, %K, RSI

2. Fundamental: Close, Market, SMB,

HML

3. Combination: Close, Market, HML,

RSI

The latter three datasets consist of images

composed of mean-aggregated 20-day

interval data, again with different factor betas

depending on their characteristics:

1. Technical: Close, EMA, %K, RSI

2. Fundamental: Close, Market, SMB,

HML.

3. Combination: Close, Market, HML,

RSI

The 5-minute data sets consist of a total of

18,795 GAF images, of which 9,049 are

labeled “LONG” and 9,746 “SHORT”

depending on the subsequent stock price

movement. The data can thus be considered

balanced across the two classes. The pictures

are thereafter divided into a train, validation

and test set, corresponding to 70%, 15% and

15% of the original dataset respectively. The

20-day data sets consist of a total of 6,180

images with the same train, validation test

split. During training, the data set is split into

randomized batches of size 32 during each

trial. Running the two models on the six

datasets yields 12 different specifications.

The number of epochs specified is the

number of times the model trains on the entire

data set. Between each epoch, an evaluation

is done on the validation data set enabling

monitoring of the training process and

generalization of the model. Each model is

trained on each dataset for five trials, after

.

21

Table II. Average performance metrics of the trained CNN architectures

Single-Channel and Triple-Channel GAF 2D-CNN were trained, validated and tested on each of the six

data sets: per 5-minute and 20-day frequency and per factor composition on each image (fundamental,

technical and a combination of the two). In total, 60 trials were completed with 20 epochs for training and

batch sizes of 32. Performance metrics such as Precision, Recall, F1-score, Accuracy and the test-set loss

are reported. Detailed metrics for each trial are presented in Appendix B.

 Trial specifications Test performance Train Performance

Time

frame
Factors

CNN

model
 Avg.

Precision

Avg.

Recall

Avg.

F1

Avg.

Accuracy

Avg.

Loss
 Avg.

Accuracy

Avg.

Loss

 Fundamental
Single 0.498 0.501 0.573 0.501 0.717 0.592 0.691

Triple 0.497 0.499 0.540 0.499 0.658 0.586 0.677

5 min Technical
Single 0.504 0.515 0.641 0.515 0.714 0.546 0.706

Triple 0.509 0.512 0.594 0.512 0.703 0.549 0.688

 Combination
Single 0.501 0.507 0.581 0.507 0.711 0.589 0.714

Triple 0.509 0.511 0.561 0.511 0.701 0.604 0.668

 Fundamental
Single 0.508 0.510 0.473 0.510 0.922 0.681 0.773

Triple 0.508 0.507 0.500 0.507 0.690 0.701 0.617

20 day Technical
Single 0.499 0.499 0.450 0.499 0.846 0.629 0.771

Triple 0.506 0.503 0.513 0.503 0.776 0.626 0.671

 Combination
Single 0.484 0.483 0.434 0.483 0.906 0.699 0.773

Triple 0.539 0.536 0.524 0.536 0.691 0.686 0.655

which the results are aggregated and

averaged. Results are displayed in Table II

(see Appendix B for individual results in each

trial). Among the trained models, the best

predictive performance was achieved with

the Triple-Channel GAF 2D-CNN on the 20-

day dataset with a combination of

fundamental and technical factors

(interestingly, this is also where the Single-

Channel GAF 2D-CNN performed the

worst). Average test accuracy was 53.6%,

with a training accuracy of 68.6%. Over the

20 epochs during training and across the five

trials, we saw continuous improvement in

training accuracy (see Appendix A), gradual

decrease of training and validation loss, and

above 50% test accuracy for each of the five

trials. The Single-Channel GAF 2D-CNN

22

model performed best on the 5-minute data

set with technical factors, with an average

accuracy of 51.5% and training accuracy of

54.6% during the five trials. The results of

this model are skewed towards “SHORT”

predictions, as can be seen in the confusion

matrix of this trial in Appendix A. This is a

symptom of the model not being able to

successfully extract relevant features and

generalize to the test set. The model however

had consistently high F-1 scores, as well as

precision and recall values. The Triple-

Channel GAF 2D-CNN achieved similar

results on this dataset with less skewed

results.

Both models performed poorly on the 5-

minute fundamental factors dataset, where

Single-Channel GAF 2D-CNN and Triple-

Channel GAF 2D-CNN achieved 50.1% and

49.9% accuracy respectively. Despite the

training accuracy of approximately 60% and

low loss scores on both the validation and

train set, the models performed poorly on test

sets. Both models achieved above average

results on the 20-day fundamental factor

dataset, with training accuracies around 70%

and test accuracy of 51%.

Conversely, we find that both architectures

perform better with technical factors when

predicting stock returns within minutes rather

than after 20 days. For the 5-minute data set

with technical factors, Single-Channel GAF

2D-CNN and Triple-Channel GAF 2D-CNN

achieved test accuracies of 51.5% and 51.2%

and train accuracies of 54.6% and 54.9%

respectively.

For the data sets with a combination of

technical and fundamental factors (Close,

Market, HML, RSI), the results are rather

inconclusive. On the 5-minute data sets, the

two architectures performed better than with

only fundamental factors, but worse than

when using only technical factors. On the 20-

day data sets, the Single-Channel CNN

performed worse than on any other data set,

while the Triple-Channel CNN performed

remarkably better than on any other data set.

In general, the achieved training accuracies

were much higher on the 20-day data sets

(between 59.4% and 73.3% for all trials and

both models) compared to 5-minute data sets

(between 52.3% and 61.7%). At the same

time, test accuracies did not improve but

became more dispersed for 20-day data sets

(average 50.6%, standard deviation 1.89%)

compared to 5-minute data sets (average

50.7%, standard deviation 0.82%).

6. Discussion

With regards to the different factor betas,

it still seems fundamental factors are better at

predicting stock returns in the longer term,

relative to technical factors. Similarly,

technical factors seem fit for predicting

returns in the short term. This is in line with

classical finance theory and the way the

community model returns in each situation

today. With regards to the two models, we

found them to perform similarly across the

different data sets except for the 20-day data

set with a combination of fundamental and

technical factors, where the Triple-Channel

GAF 2D-CNN achieved tests accuracies

consistently above 53%. Speculatively, the

superiority of the triple-channel model could

stem from the additional spatial information

that the three, differently sized input kernels

can extract. The combination of technical and

23

fundamental factors could arguably provide

further spatiality, thus yielding better results.

This shows that it is worth exploring CNN

architectures and inputs outside of the

conventional formats provided in literature.

In general, the results did not show

distinctive predictive performance among

any data sets, but some trends emerged

during different trials. One is that

fundamental factors showed very little

predictive power in the classification task,

achieving average to slightly above average

performance from the two models compared

to simply guessing (would correspond to

50% accuracy). There are some possible

explanations to why the models were not able

to extract useful features from images or

generalize these well to the validation and

test sets.

A methodological procedure that may have

interfered with the exercise is the initial

factor construction. We employed rolling

linear regressions on five-minute intervals

with a sample size of 100 for each factor, for

each regression. We obtained widely varying

𝑅2 estimates (from 24% to 65%) and low

significance levels for our beta estimates,

besides for the Market factor. The scope was

not like that of classical finance, i.e. to see if

the factor returns provided some form of

systemic, linear risk exposure to a given

asset, but rather to see if there are non-linear

relations between factor movements and the

given stocks’ returns in the short term via

deep learning. In the classical setting, we

could conclude that we cannot be certain that

the factors provide any systemic risk

exposures, as they have shown low

significance. However, in our setting, we

obtain noisy beta estimates that we use for

our exercise, and thus may use only noise as

our “factor betas”. Some of this statistical

noise is then learnt by the convolutional

neural networks during training, resulting in

worse generalization over the validation and

test set.

In this paper, we have utilized a classification

criterion based on the directly subsequent

period for classifying a picturized time series

as “LONG” or “SHORT”. Although this is

the most intuitive approach, it is worth

considering longer forecasting horizons.

Shynkevich et. al. (2017) suggests using the

same forecast period as the window length

for optimal results. This could mitigate the

issue that arises from classifying images on

the usually very minor price fluctuations

observed on 5-minute stock data. For

example, if a stock is trading at USD 74.14 at

10:15 and then is trading at USD 74.15 at

10:20, the original classification criteria

would label the data as “LONG”, although

the price increase is insignificant at ~0.01%

and is likely just noise. This issue could also

be resolved by using a multi-class

classification task as opposed to the binary

classification proposed in this paper, namely

a “LONG”, “HOLD”, “SHORT” split. This

could potentially improve predictive

performance by setting higher absolute

thresholds for stock returns to be labelled

“LONG” or “SHORT”, and thus filing

uninformative images into “HOLD”.

Two issues encountered during trials include

(1) the algorithm labeling all data points as

belonging to a single class, either all

“SHORT” or all “LONG”, which can be seen

in confusion matrices in Appendix B, and (2)

24

the inability of CNN to generalize training

accuracy to validation and testing. Although

training accuracy consistently grew over

epochs (Appendix A) to accuracies of 60 to

70%, and both training and validation loss

decreased, any additional epochs that

allowed the model to train to above 70%

accuracy resulted in drastic increases in

validation loss, implying severe overfitting.

We saw only marginal improvement when

adjusting for overfitting by employing

pooling, batch normalization and dropout

layers. The aforementioned implies that the

model either learns well on the training set

but is not able to generalize well to the test

set (overfitting), or that the statistical noise in

the data sets inhibit the models from learning

informative features to make accurate

classifications on the test set.

7. Conclusion

In this paper, two convolutional neural

networks have been developed and trained on

three different datasets of input features, at

two data frequencies, in an attempt to classify

equity time series into “LONG” and

“SHORT” categories based on price

appreciation or depreciation on a high-

frequency interval. The data sets were

constructed by estimating high-frequency

fundamental factor exposures of selected

equities over a 5-year period and calculating

technical indicators on a high-frequency level

for each stock. Three datasets of GAF images

were constructed for each type of factors –

one for fundamental factors, one for technical

factors, and one as a combination of the two,

where four GAF images were concatenated

into a 2 x 2 matrix of images that were used

as input for the convolutional neural

networks.

The proposed CNN models improved

relatively well on training data, reaching

accuracies of 60 to 70%, and significantly

decreasing the loss on both the training and

validation set, however, the models were not

able to generalize well to the test set,

resulting in accuracies some percentage

points above 50%, implying marginally

better results than random guessing.

The models trained on the 20-day

fundamental factors performed better than

the models trained on 5-minute fundamental

factors, supporting the consensus that

fundamental factors are primarily useful for

long term return forecasting. Conversely,

technical factors obtained better performance

on the 5-minute frequency than on the 20-day

frequency, as measured by the test set

accuracy. The results of the combination data

set of technical and fundamental factors

remain inconclusive as the two models

achieved contradicting results.

For further research we would suggest using

alternative methods for estimating the

fundamental factor exposures at high

frequencies to ensure correct beta estimates

are used. As it currently is, noise in the

estimates is internalized by the convolutional

network, thus distorting our results.

Furthermore, we would suggest using a

higher percentage threshold for classifying

time series, as some of the images classified

as “LONG” or “SHORT” only saw

movements in the closing price of

approimately 0.01%.

25

References

Abe, M., & Nakamaya, H. (2018). Deep Learning for Forecasting Stock Returns in the Cross-Section .

Advances in Knowledge Discovery and Data Mining, 273-284.

Aït-Sahalia, Y., Kalnina, I., & Xiu, D. (2020). High-frequency factor models and regressions. Journal of

Econometrics, 86–105.

Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic

Properties of Stock Returns (Vol. 45(5)).

Cai, S., Feng, X., Deng, Z., Ming, Z., & Shan, Z. (2018). Financial news quantization and stock market

forecast research based on CNN and LSTM. International Conference on Smart Computing and

Communication,. Tokyo: Springer: Berlin/Heidelberg.

Carhart, M. M. (1997). On persistance in mutual fund performance. The Journal of Finance, 52(1), 57-82.

Chen, J.-H., & Tsai, Y.-C. (2020). Encoding candlesticks as images for pattern classification using

convolutional neural networks. Taipei: arXiv:1901.05237v2 [cs.CE].

Chen, S., & Ge, L. (2019). Exploring the attention mechanism in LSTM-based Hong Kong stock price

movement prediction . Quantitative Finance, 1507–1515.

Di Persio, L., & Honchar, O. (2016). Artificial Neural Networks architectures for stock price prediction:

comparisons and applications. International Journal of Circuits, Systems and Signal Processing,

403-413.

Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep Learning for Event-Driven Stock Prediction. Twenty-

Fourth International Joint Conference on Artificial Intelligence. Buenos Aires.

Enke, D., & Zhong, X. (2016). Forecasting daily stock market return using dimensionality reduction.

Expert Systems With Applications, 126-139.

Fama, E. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance,

25(2), 383-417.

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of

Financial Economics, 33, 3-56.

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116,

1-22.

Fan, J., Xue, L., & Yao, J. (2017). Sufficient forecasting using factor models. Journal of Econometrics, 201,

292-306.

Feng, G., Giglio, S., & Xiu, D. (2020). Taming the Factor Zoo: A Test of New Factors. Journal of Finance,

75(3), 1327-1370.

Feng, G., Polson, N. G., & Xu, J. (2019). Deep Learning in Characteristics-Sorted Factor Models.

arXiv:1805.01104 Help | Advanced Search .

26

Fukushima, K. (1980). Neocognitron: A Self-organizing Neural Network Model for a Mechanism of

Pattern Recognition Unaffected by Shift in Position. Tokyo: NHK Broadcasting Science Research

Laboratories.

Gu, J., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., & Chen, T. (2018). Recent advances in convolutional

neural networks. Pattern Recognition, 77, 354-377.

Gudelek, U., Ozbayoglu, M., & Boluk, A. (2017). A deep learning based stock trading model with 2-D

CNN trend detection. IEEE Symposium Series on Computational Intelligence (SSCI).

ResearchGate.

Gunduz, H., Yaslan, Y., & Cataltepe, Z. (2017). Intraday prediction of Borsa Istanbul using convolutional

neural networks and feature correlations. Knowledge-Based Systems, 138–148.

Hoseinzade, E., & Haratizadeh, S. (2019). CNNpred: CNN-based stock market prediction using a diverse

set of variables. Expert Systems With Applications, 273–285.

Hu, Z., Zhao, Y., & Khushi, M. (2021). A Survey of Forex and Stock Price Prediction Using Deep

Learning. Applied System Innovation, 1-30.

Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index

movement using artificial neural networks and support vector machines: The sample of the

Istanbul Stock Exchange. Expert Systems with Applications, 5311–5319.

Kraus, M., & Feuerriegel, S. (2017). Decision support from financial disclosures with deep neural

networks and transfer learning. Decision Support Systems, 104, 38-48.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. D. (1989).

Backpropagation applied to handwritten zip code recognition. Neural computation, 1(44), 541-

551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document

Recognition. Institute of Electrical and Electronics Engineers. New Jersey.

Lindsay, G. W. (2020). Convolutional Neural Networks as a Model of the Visual System: Past, Present,

and Future. Journal of Cognitive Neuroscience., 1-15.

Liu, S., Zhang, C., & Ma, J. (2017). CNN-LSTM Neural Network Model for Quantitative Strategy

Analysis in Stock Markets. International Conference on Neural Information Processing.

Guangzhou: Springer:Berlin/Heidelberg,.

Liu, Y., Zeng, Q., Yang, H., & Carrio, A. (27–28 August 2018). Stock price movement prediction from

financial news with deep learning and knowledge graph embedding. Pacific Rim Knowledge

Acquisition Workshop. Nanjing.

Long, W., Lu, Z., & Cui, L. (2018). Deep learning-based feature engineering for stock price movement

prediction. Knowledge-Based Systems, 163-173.

Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., . . . Muhammad, K. (2020). A

local and global event sentiment based efficient stock exchange forecasting using deep learning.

International Journal of Information Management, 432-451.

27

Ozbayoglu, A. M., & Sezer, O. B. (2018). Algorithmic financial trading with deep convolutional neural

networks: Time series to image conversion approach. Applied Soft Computing, 525–538.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). redicting stock and stock price index movement

using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems

with Applications, 259–268.

Qian, N. (1999). On the Momentum Term in Gradient Descent Learning. 12(1), 145-151.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Selvin, S., Ravi, V., Gopalakrishnan, E. A., & Menon, V. K. (2017). Stock price prediction using LSTM,

RNN and CNN-sliding window model. 017 International Conference on Advances in Computing,

Communicationsand Informatics (ICACCI), . Manipal.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep

learning : A systematic literature review: 2005–2019. Applied Soft Computing Journal, 90,

106181.

Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk.

Journal of Finance, 19(3), 425-442.

Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017). Forecasting price

movements using technical indicators: Investigating the impact of varying input window length.

Neurocomputing, 264, 71-88.

Sim, H. S., Kim, H. I., & Ahn, J. J. (2019). Is Deep Learning for Image Recognition Applicable to Stock

Market Prediction? Complexity, 0-10.

Wang, Z., & Oates, T. (2015). Encoding Time Series as Images for Visual Inspection and Classification

Using Tiled Convolutional Neural Networks. University of Maryland Baltimore County.

Yang, C., Zhai, J., & Tao, G. (2020). Deep Learning for Price Movement Prediction Using Convolutional

Neural Network and Long Short-Term Memory. Mathematical Problems in Engineering, 0-13.

Yang, H., Zhu, Y., & Huang, Q. (2018). A multi-indicator feature selection for cnn-driven stock index

prediction. International Conference on Neural Informa- tion Processing (pp. 35-46). Berlin:

Springer.

Zhou, B. (2019). Deep learning and the cross-section of stock returns: Neural networks combining price

and fundamental information. SSRN Electron.

28

Appendix A – Best performing trial confusion matrix and plot of accuracy and loss over train and validation set

5-min fundamental factor dataset

Single-Channel GAF 2D-CNN

5-minute technical indicators dataset

Single-Channel GAF 2D-CNN

Triple-Channel GAF 2D-CNN Triple-Channel GAF 2D-CNN

520

525

Tr
u

e
La

b
el

Tr
u

e
La

b
el

571

590

525

Tr
u

e
La

b
el

Tr
u

e
La

b
el

29

484

Tr
u

e
La

b
el

Tr

u
e

La
b

el

5-min combination factor dataset

Single-Channel GAF 2D-CNN

20-day fundamental factors dataset

Single-Channel GAF 2D-CNN

Triple-Channel GAF 2D-CNN

Triple-Channel GAF 2D-CNN

Tr
u

e
La

b
el

190

193

661

Tr
u

e
La

b
el

672

30

216

20-day technical indicator dataset

Single-Channel GAF 2D-CNN

20-day combination factor dataset

Single-Channel GAF 2D-CNN

Triple-Channel GAF 2D-CNN Triple-Channel GAF 2D-CNN

Tr
u

e
La

b
el

163

174

484

Tr
u

e
La

b
el

190

164

Tr
u

e
La

b
el

Tr
u

e
La

b
el

193

31

Appendix B – Results from model training and evaluation

Trial specifications Test performance

Train

performance Parameters

Time

frame
Factors Architecture

Trial

 Precision Recall F1 Accuracy Loss Accuracy Loss

Train

Validation

Test

 #

Epochs

CNN # of

parameters

5 min Fundamental Single-Channel 1 0.501 0.504 0.589 0.504 0.711 0.578 0.688 13 053 2 797 2 943 20 163 961

 GAF 2D-CNN 2 0.490 0.493 0.550 0.493 0.723 0.596 0.682

 3 0.504 0.506 0.572 0.506 0.721 0.605 0.717

 4 0.497 0.501 0.580 0.501 0.713 0.585 0.686

 5 0.496 0.499 0.572 0.499 0.717 0.594 0.682

5 min Fundamental Triple-Channel 1 0.499 0.499 0.514 0.499 0.616 0.601 0.673 13 220 2 707 2 866 20 1 000 825

 GAF 2D-CNN 2 0.500 0.500 0.511 0.500 0.687 0.581 0.678

 3 0.501 0.503 0.550 0.503 0.671 0.578 0.679

 4 0.488 0.492 0.573 0.492 0.666 0.572 0.682

 5 0.498 0.500 0.554 0.500 0.650 0.598 0.673

5 min Technical Single-Channel 1 0.536 0.532 0.684 0.532 0.695 0.523 0.693 13 114 2 809 2 870 20 163 961

 GAF 2D-CNN 2 0.496 0.511 0.622 0.511 0.732 0.558 0.715

 3 0.495 0.505 0.590 0.505 0.727 0.563 0.714

 4 0.515 0.518 0.661 0.518 0.694 0.534 0.694

 5 0.480 0.509 0.646 0.509 0.723 0.554 0.713

5 min Technical Triple-Channel 1 0.498 0.506 0.614 0.506 0.706 0.551 0.688 13 263 2 715 2 815 20 1 000 825

 GAF 2D-CNN 2 0.510 0.515 0.612 0.515 0.703 0.547 0.689

 3 0.510 0.515 0.612 0.515 0.716 0.553 0.688

 4 0.516 0.513 0.523 0.513 0.675 0.553 0.687

 5 0.508 0.513 0.609 0.513 0.716 0.543 0.689

32

5 min Combination Single-Channel 1 0.506 0.513 0.592 0.513 0.713 0.592 0.712 13 197 2 827 2 769 20 163 961

 GAF 2D-CNN 2 0.488 0.494 0.559 0.494 0.710 0.594 0.715

 3 0.498 0.504 0.578 0.504 0.710 0.589 0.713

 4 0.502 0.508 0.586 0.508 0.707 0.576 0.712

 5 0.510 0.515 0.589 0.515 0.715 0.592 0.719

5 min Combination Triple-Channel 1 0.513 0.513 0.530 0.513 0.681 0.614 0.665 13 295 2 722 2 776 20 1 000 825

 GAF 2D-CNN 2 0.511 0.512 0.536 0.512 0.698 0.612 0.660

 3 0.503 0.509 0.596 0.509 0.715 0.567 0.683

 4 0.507 0.510 0.571 0.510 0.680 0.611 0.669

 5 0.509 0.513 0.575 0.513 0.731 0.617 0.663

20 days Fundamental Single-Channel 1 0.502 0.501 0.478 0.501 0.925 0.679 0.777 4 367 934 879 20 119 961

 GAF 2D-CNN 2 0.504 0.511 0.380 0.511 0.894 0.659 0.785

 3 0.510 0.510 0.527 0.510 0.935 0.701 0.747

 4 0.503 0.502 0.497 0.502 0.965 0.669 0.794

 5 0.523 0.525 0.480 0.525 0.890 0.699 0.761

20 days Fundamental Triple-Channel 1 0.507 0.506 0.542 0.506 0.787 0.733 0.592 4 386 897 897 20 763 673

 GAF 2D-CNN 2 0.540 0.533 0.605 0.533 0.760 0.727 0.594

 3 0.500 0.506 0.355 0.506 0.356 0.688 0.629

 4 0.496 0.494 0.512 0.494 0.353 0.674 0.641

 5 0.498 0.497 0.489 0.497 1.195 0.684 0.631

33

20 days Technical Single-Channel 1 0.486 0.493 0.376 0.493 0.868 0.619 0.764 4 356 933 891 20 119 961

 GAF 2D-CNN 2 0.512 0.513 0.445 0.513 0.825 0.662 0.771

 3 0.493 0.495 0.411 0.495 0.827 0.602 0.798

 4 0.476 0.478 0.569 0.478 0.851 0.635 0.745

 5 0.527 0.517 0.447 0.517 0.858 0.629 0.778

20 days Technical Triple-Channel 1 0.494 0.487 0.617 0.487 0.782 0.594 0.684 4 355 890 935 20 763 673

 GAF 2D-CNN 2 0.500 0.508 0.286 0.508 0.844 0.644 0.664

 3 0.515 0.508 0.575 0.508 0.721 0.637 0.666

 4 0.513 0.507 0.562 0.507 0.817 0.631 0.666

 5 0.507 0.505 0.524 0.505 0.715 0.623 0.676

20 days Combination Single-Channel 1 0.482 0.484 0.415 0.484 0.882 0.673 0.765 4 300 921 959 20 119 961

 GAF 2D-CNN 2 0.474 0.472 0.461 0.472 0.921 0.710 0.789

 3 0.489 0.491 0.535 0.491 0.913 0.732 0.756

 4 0.488 0.484 0.422 0.484 0.904 0.725 0.774

 5 0.488 0.482 0.338 0.482 0.910 0.657 0.781

20 days Combination Triple-Channel 1 0.548 0.547 0.545 0.547 0.784 0.704 0.743 4 339 884 897 20 763 673

 GAF 2D-CNN 2 0.541 0.536 0.475 0.536 0.635 0.667 0.643

 3 0.532 0.530 0.494 0.530 0.406 0.686 0.630

 4 0.544 0.541 0.620 0.541 0.718 0.674 0.639

 5 0.530 0.527 0.485 0.527 0.912 0.698 0.619

