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1 Introduction

The “Internet of Things” (IoT) has received, in recent years, a great deal of attention.

Even though there is no unique, standard definition of IoT, we usually think of it as

a network of “smart devices” with communication capabilities. The public attention

has focused on consumer technologies, such as wearables and self-driving cars, and its

implications for security and privacy. But there is also a wide-range of business and

industrial applications that are often overlooked and make up the bulk of the potential

value enabled by IoT. IoT technology enables devices and machines to communicate with

each other, with the physical world, and over the internet using different technologies,

such as mobile and fixed broadband, near-field communications, and radio-frequency

identification. It is currently employed in numerous applications, from healthcare sensors

to automated warehouses. The IoT will help firms in their transition to more automated

tasks, but will also provide large amounts of data to help make better business decisions.

While the number of IoT-connected devices has increased exponentially in the last decade,

adoption across countries seems to suffer from the same ‘digital divide’ that afflicted the

early days of the internet. Yet, developing countries are starting to catch up to their

wealthier counterparts.

Both consumer and business applications are expected to have an effect on the economy and

employment, but while some research on the impact of IoT on economic growth has started

to appear, its impact on the labor markets remains unexplored. Using data on cellular

Internet of Things connections in a panel of countries, this thesis aims at investigating

whether a significant relationship between IoT usage and employment outcomes exists.

Therefore, the main research question this paper aims to answer is: does the Internet of

Things have an effect on the unemployment rate, total employment, or employment by

sector? This thesis contributes to the limited literature on the economic impact of the

adoption of the Internet of Things. First of all, to the best of my knowledge, this is the

first paper to investigate and provide any evidence on the relationship between IoT usage

and labor outcomes. Secondly, within the literature on Information and Communication

technologies (ICT), it provides new evidence on the effect of specific ICT applications on

employment across countries.
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1 Introduction

Economists have long debated about the impact of technological change on labor demand.

From a theoretical standpoint, how new technologies affect demand depends on their

interaction with human labor, and the tasks and skills of workers affected. A general

equilibrium effect is hence unclear. The empirical evidence supports this view: new tasks

generated by technological change may displace some workers while generating increased

demand for others. This impact also largely depends on the technology considered. Within

the Information and Communication Technology (ICT) literature, ICTs such as broadband

and Internet seem to have a strong positive contribution to growth and development

(Bertschek et al., 2015), and productivity (Goodridge et al., 2019). The evidence on

their impact on employment is also positive: broadband availability is associated with

higher employment and population growth (Kolko, 2012), and has no impact on the

unemployment rate (Czernich, 2014). Recent, although scarce, evidence on Internet of

Things adoption points in the same direction of a positive effect: Edquist et al. (2021)

and Espinoza et al. (2020) both find a positive impact of IoT investment across countries.

Its relationship with labor outcomes, however, has not yet been tackled.

To explore this question, I construct a panel with more than 100 countries with data

for cellular Internet of Things connections and economic statistics. The panel spans

over the early years of IoT adoption (2010-2019). I use a two-way fixed effect Ordinary

Least Squares estimation to test whether a significant relationship between the usage of

IoT technologies and labor outcomes exists. I find a positive and significant association

between Internet of Things connections per 100 inhabitants and the employment level

only within OECD countries, and no relationship in the whole sample or non-OECD

countries. This result seems to be entirely driven by increased employment in the services

sector. Limited evidence of a negative relationship with industry employment in the

other two samples was also found. No correlation between IoT connections and the

unemployment rate was established, in any set of countries. In an attempt to establish a

causal relationship, a system GMM dynamic panel estimator is used. However, no causal

interpretation of the results can be made at this stage.

The rest of the thesis is organized as follows: section 2 provides background information on

the Internet of Things, its applications and diffusion. Section 3 discusses previous literature

on the effect of technological change, automation, information and communications
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technology on jobs and labor demand, as well as that on the economic impact of IoT.

Section 4 discusses the data and its sources. Section 5 describes the main empirical

approach, whose results are presented in section 6. Section 7 tests the robustness of the

main results. In section 8 further analyses are run. Section 9 discusses the results and

limitations. Section 10 concludes.

2 Background

Since the introduction of the Internet, there has been an exponential increase in the number

of devices connected. The number of mobile SIM cards has exceeded 10 billion worldwide

in the second quarter of 2021, of which more than 5 billion are used in smartphones

(GSMA, 2021). Each mobile subscriber has on average 1.5 SIM cards, and this number is

expected to rise as consumers buy and use more and more devices. The phenomenon is,

however, not limited to consumer products: new types of devices are emerging that allow

machines to be connected to one another in industrial and business settings (Höller et al.,

2014). In this scenario, it is useful to define a new paradigm, the Internet of Things.

2.1 Definition of IoT and Applications

There are a number of different definitions of the Internet of Things, and little consensus

even within the Information and Communication Technology (ICT) literature1. The

International Telecommunication Union (2012) refers to the Internet of Things as “A global

infrastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on existing and evolving interoperable information and

communication technologies”. The OECD (2016), instead, describes IoT as “an ecosystem

in which applications and services are driven by data collected from devices that sense

and interface with the physical world”.

In this thesis I will refer to the Internet of Things as a network of interconnected things, or

objects, with communication capabilities that can interact with each other, the physical

world and over the Internet. These objects include, but are not limited to, devices

1According to the OECD (2011), “ICT products must primarily be intended to fulfil or enable the
function of information processing and communication by electronic means, including transmission and
display”.
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2 Background

such as machines, computers, smartphones, and sensors that are capable of sending

and receiving data. Data transmission can be based on different technologies, such

as fixed telecommunications line protocols like Ethernet, wireless protocols including

Radio-frequency identification (RFID), Near-field communication (NFC) and Wi-Fi, or

cellular networks (European Commission, 2016). Höller et al. (2014) make a distinction

between machine-to-machine communication (M2M) and the Internet of Things. In

particular, Machine-to-machine connections allow communication between devices of the

same type and a specific application; a common deployment of M2M communication is

ATMs and point-of-sales terminals, besides industrial applications. While an IoT system

includes machine-to-machine connections, it also allows for the broad sharing of data and

connection of the devices directly to the Internet.

There is a wide range of industries and sectors in which IoT systems are employed.

Well-known applications are consumer goods and electronics, like tablets, video game

consoles, and smart watches, as well as smart home appliances such as internet-enabled

refrigerators, washing machines, lights and thermostats. Despite the extensive publicity

of consumer applications, Manyika et al. (2015) estimate that business-to-business uses

can generate nearly 70 percent of potential value enabled by IoT. These uses can be

found in healthcare, retail, industrial, transportation, and utilities settings. For instance,

healthcare IoT solutions include remote health monitoring, in which wearable sensors that

monitor oxygen or glucose levels transmit data from a patient to healthcare providers.

The retail sector was among the first ones to be affected, introducing automated checkout,

asset and inventory management systems in which items are often identified by RFID tags

that are tracked and traced. The IoT is also essential to the deployment of autonomous

or semi-autonomous machinery, including self-driving vehicles and advanced equipment.

Self-driving vehicles are not only consumer-marketed cars but also industrial and public

transport vehicles that can be self-driving or remotely controlled. Automated heavy

machinery is currently employed in a diverse set of industries such as mining, construction,

and deep-sea exploration. Other emerging applications include the smart grid, for the

management of energy production, and the development of smart cities, where multiple

urban infrastructures, such as utilities, heating and cooling, water, waste, and energy are

integrated through IoT systems (Höller et al., 2014).
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In general, the Internet of Things can help automate and monitor processes and tasks,

such as the production of goods and delivery of services, which are common in different

industries (Höller et al., 2014). However, the IoT is not only about automation: its

systems are able to collect and share large amounts of high-quality data via the Internet,

enabling businesses and governments to make better decisions. The collection of such

data will then be important for Artificial Intelligence (AI) applications, which can, for a

given set of human-defined objectives, make predictions, recommendations, or decisions

influencing real or virtual environments (OECD, 2019). In this context, factories can use

IoT sensors to constantly monitor machine performance and use AI applications on the

data to schedule maintenance only when necessary, reducing downtime and maintenance

costs, and extending the lives of machines (Hogan et al., 2016). For example, Volvo AB

is currently using IoT data and artificial intelligence in its diagnostic services to predict

maintenance issues and prevent breakdowns of its truck fleet (SAS, 2021).

According to Fleisch (2010), a fundamental value driver of the IoT is that it eliminates

real world-virtual world transaction costs. These so-called ‘media breaks’ occur when

information is transferred from one medium to another, such as from a bar code to a

warehouse management system. The elimination of such transaction costs is central to the

computerization of businesses and society: for instance, the introduction of accounting

information systems allowed all data to be entered just once, reducing the error resulting

from having all clerks manually transferring information from a piece of paper to a

calculator and then back to paper (Fleisch, 2010). It is therefore important to take into

account the ability of IoT systems to generate and distribute large volumes of data that

is then utilized in different applications, in addition to its potential for automation.

2.2 Adoption and Diffusion of IoT

Despite the Covid-19 pandemic has forced many firms to put on hold their IoT projects,

Kechiche et al. (2020) estimate that the Internet of Things market will be worth over

$900 billion in revenue by 2025, from $348 billion in 2019. IoT connections will double

to 24 billion by the same year. Figure 2.1 shows the number of cellular IoT connections

between 2010 and 2020 by region2.
2Unfortunately, data on the number of connections through other technologies is not available at the

country-level.
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2 Background

Figure 2.1: Number of cellular IoT connections by region (2010-2020).

Source: Author’s rendering of GSMA Intelligence Database (2021)

Figure 2.1 also shows the surge in the number of IoT connections in China since 2015.

In 2020, China accounted for more than two thirds of the total number of cellular IoT

connections, from 12.4% in 2010. The Chinese government has attached great importance

to IoT, making it a national strategy as early as 2009 and promoting the development

of IoT projects throughout the early 2010s (Li et al., 2018). Security and privacy

regulations, which have hindered the diffusion of IoT in Western countries, are laxer in

China, and Chinese consumers are less concerned about its implications (Kshetri, 2017).

The large scale adoption of IoT in China cannot, however, be exclusively attributed to

the efforts of the Chinese institutions. Kshetri (2017) argues that its large user base, the

innovative achievement of its firms, in terms of IoT-related patents and products, and

the technological expertise provided by multinationals all have played a role in China

becoming the largest IoT market. According to Ryberg (2019), the Chinese market growth

is driven by connected cars, payment terminals and industrial applications, and accelerated

by government investment in surveillance and security systems and smart cities. There is,

however, no data on each market segment’s share of total connections.

Relative to its population, the number of IoT connections in China is still large. Table 2.1

shows the number of IoT connections per 100 inhabitants over time for selected countries,

while figure 2.2 displays the distribution of connections per 100 inhabitants across the
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world in 2020. Sweden is currently the leader in connections per capita: IoT systems are

employed by government agencies in various applications, such as supervision of road

and rail safety and maintenance (Lindman and Saarikko, 2019), and for the development

of smart cities (Ahlgren et al., 2016), besides deployments in the private sector. There

also seems to be a stark disparity in the levels of IoT connections per capita between

developed and developing countries, proxied by membership status to the Organisation for

Economic Co-operation and Development (OECD). This is in line with past evidence on

what is now known as the ‘digital divide’, the cross-crountry disparity in terms of access

to Internet and computers (Warschauer (2003); Chinn and Fairlie (2007)). Still, lower

income countries have been catching up: in 2019, the average number of IoT connections

in OECD countries was just 2.6 times that of non-OECD countries, down from a factor

10 in 2010.

Table 2.1: Number of IoT connections per 100 inhabitants for selected countries and
regions

Country 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Australia 5.8 7.3 8.7 10.5 12.6 15.0 17.6 20.3 24.0 28.7 33.1
China 0.7 1.1 1.9 3.0 4.1 6.3 11.3 24.2 53.6 85.5 90.2
France 4.2 5.5 7.3 10.6 12.6 16.0 17.1 22.5 28.2 33.5 38.9
Germany 3.6 3.5 5.9 7.4 7.7 10.1 12.1 13.9 15.6 18.4 22.4
Italy 7.1 8.7 10.4 12.2 14.2 16.6 19.7 26.9 34.7 40.1 44.3
Japan 3.4 4.7 6.1 7.2 8.8 9.7 10.8 11.8 14.4 19.9 24.1
Netherlands 1.8 4.9 6.4 7.2 9.2 13.2 20.7 28.5 39.4 49.3 60.1
Sweden 21.4 28.3 37.5 49.9 58.5 64.4 83.2 111.0 125.1 146.4 176.2
U.K. 3.8 5.2 6.6 7.9 9.2 10.5 12.9 14.3 16.5 20.8 26.4
U.S.A 7.0 9.4 10.4 11.7 14.0 17.3 21.1 26.1 33.5 41.6 50.9

OECD 4.0 5.3 6.8 8.4 10.1 12.0 14.9 18.4 22.4 26.5 35.2
Non-OECD 0.4 0.7 1.3 2.5 4.2 5.5 7.9 9.5 11.0 12.5 13.5

World 1.1 1.5 2.3 2.5 3.1 4.1 5.6 8.9 15.3 22.2 24.2

Source: Author’s rendering of GSMA Intelligence Database (2021)

2.3 IoT Deployment, Jobs and Skills

The Internet of Things, with its multitude of applications, is leading firms to become more

and more automated, and provides them with high-resolution data. In their market survey

of almost 2,900 enterprises, Kechiche (2020) find that businesses are deploying IoT both
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2 Background

Figure 2.2: Number of cellular IoT connections per 100 inhabitants by country in 2020.

Note: Logarithmic scale. Source: Author’s rendering of GSMA Intelligence Database (2021)

to generate revenues and achieve cost savings, besides complying with new regulations.

Hogan et al. (2016) and Sivakumaran (2019) find that IoT deployment leads to increased

productivity, efficiency gains and cost reduction for businesses, and that the manufacturing

sector will be the main beneficiary of these gains. While economic benefits for businesses

are clear, the impact on jobs is less so. Automation through Internet of Things systems

could potentially decrease the need for human labor. In particular, low-skilled, routine

jobs may be at risk: for instance, with the advent of automated warehouse management,

robotic deliveries, and self-driving vehicles, many warehouse workers, deliverymen, and

drivers could be out of jobs. At the same time, the adoption of new technologies may

increase the demand for high-skilled workers to develop and work on such technologies.

Hogan et al. (2016) estimate that, in the U.K., the use of IoT and Big Data will foster

business creation, which in turn will lead to job creation and increased employment.

However, it may take some time for workers to acquire the skills needed in this new labor

market, and it is hard to predict which effect will prevail.

On the other hand, consumer devices are mostly used for leisure (tablets, smart TVs), or

to simplify everyday life (smart lights, home appliances). Consumer IoT will also likely

have its own economic impact, which is however outside of the scope of this thesis.
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3 Literature Review

This section summarizes previous academic literature on the impact of automation and

technological change on jobs, by presenting a theoretical framework for potential channels,

and the empirical evidence that supports these channels. It then focuses on the literature

on Information and Communication Technologies and the Internet of Things and their

effects on the economy and labor markets.

3.1 A Theoretical Framework

Since the Industrial Revolution, at the very least, workers have feared that new technologies

might make their jobs obsolete. The Luddites, a group of textile workers, hand-loom

weavers, and combers, worried they may become redundant, burned and destroyed the

machinery that was threatening them (see Sale (1995) for a more detailed discussion).

Economists have long discussed the effects of technological change on labor markets.

According to Say (1836), while innovation and machinery can displace workers in the

short term, machines themselves cannot be constructed without labor, thus generating

new employment opportunities. Technological progress also leads to a reduction in prices,

of which all consumers, including displaced workers, benefit. On the other hand, critics

such as John Maynard Keynes, who coined the term technological unemployment, believed

that unemployment resulting from labor-saving technologies would outpace the rate of

new jobs creation (Keynes, 1933).

Following the task-based framework of labor demand developed in Acemoglu and Restrepo

(2019), automation is defined as the adoption of new technologies that enable capital to be

substituted for labor. It can affect labor demand through three channels. First, through the

displacement effect: as automation enables capital to take over tasks previously performed

by labor, the labor share of value added and the demand for labor decrease. Secondly,

through the productivity effect, automation increases productivity by allowing a more

flexible distribution of tasks between labor and capital, contributing to the demand for labor

in non-automated tasks. Lastly, the reinstatement effect describes the establishment of

new tasks in which labor has a comparative advantage, positively contributing to the labor

share of value added and demand for labor. The displacement and reinstatement effects
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3 Literature Review

are then antipodes: going back to the Luddites, the mechanical loom may have displaced

weavers while simultaneously creating demand for loom-repairmen. The equilibrium effect

on aggregate demand for labor hence depends on how new technologies allocate tasks

across factors of production and which channel dominates. Applying the framework to

U.S. data, they find a slowdown in the growth of labor demand since 1987, which can

be explained by a strong displacement effect, driven by the expansion of automation,

and a weaker reinstatement effect resulting from a slower adoption of labor-reinstating

technologies and tasks.

Empirical evidence supports the framework and its channels: Karabarbounis and Neiman

(2014) find that, globally, half of the decrease in labor share of income can be explained by a

lower price of investment goods, attributed to advancements in computers and information

technologies. Brynjolfsson and Hitt (2003) find both short- and long-term increases in

productivity and output to be associated with computerization at the firm-level between

1987–1994. Finally, Autor et al. (2003) find that computerization leads to a shift in

tasks from routine manual and cognitive tasks, in which computer capital can substitute

workers, to nonroutine cognitive tasks, in which it cannot. There are various and extreme

estimates of the share of jobs that are at risk to be automated: Frey and Osborne (2017)

look at the risk of computerization of more than 700 occupations and find that 49% of

U.S. jobs could be automated within a decade or two. Looking at single tasks, rather

than occupations, Arntz et al. (2016) estimate that 9% of all jobs within OECD countries

are automatable, with some variation across countries. While Acemoglu and Restrepo

(2019) abstract from the skill levels of workers, Acemoglu and Restrepo (2020) expand

the task-based framework to include different skills among workers. Using U.S. industry

data, they show that displacement driven by automation is significantly associated with

an increase in the demand for skills. Reinstatement of workers due to new tasks is instead

associated with reduced demand for skills before 1987 and increased demand for skills

after 1987, depending on what skill level had a comparative advantage in the new tasks

generated.

As mentioned in section 2, the Internet of Things can help automate processes and tasks,

and can then be analyzed in light of this framework. However, the Internet of Things

is not only automation: the ability to collect data from the real world, and to share
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it over the Internet, is an essential characteristic of IoT systems. The IoT has then

the potential to provide large amounts of data to firms and enterprises to help them

make business decisions. According to Edquist et al. (2021), IoT can be considered a

complementary innovation based on Information and Communication technology (ICT),

much like the the electric motor was complementary to wider electrification. Bresnahan

and Trajtenberg (1995) define General Purpose Technologies (GPTs), such as the steam

engine and electricity, as key technologies in economic growth. They are characterized by

the potential for pervasive use in a wide range of sectors that generate and enable spillovers

and new opportunities for innovation, what they call ‘innovational complementarities’.

Due to its use in a wide range of industries and applications, ICT has been classified as a

GPT (see O’Mahony and Vecchi (2005), Venturini (2009), Venturini et al. (2013)). It is

then appropriate to explore the literature on the economic impact of ICT as well.

3.2 Evidence on the Adoption of ICTs

There is extensive literature on the impact of telecommunications on economic growth

and productivity (see for instance Oliner and Sichel (2000); Jorgenson et al. (2008);

O’Mahony and Vecchi (2005); Roller and Waverman (2001); Van Ark et al. (2008)).

Investment in telecommunications infrastructure, such as fixed line and mobile broadband,

has contributed significantly to income growth and regional development (see Bertschek

et al. (2015) and Vu et al. (2020) for surveys on the empirical evidence on economic

growth). Similarly, Goodridge et al. (2019) find evidence of a robust correlation between

ICT capital services and total factor productivity (TFP) growth in Europe and the U.S.,

with a stronger effect in the U.S.

Within the ICT literature, the empirical evidence on the impact on employment is mixed,

and much of the research on labor outcomes employs microdata on broadband availability

or adoption. Kolko (2012), for instance, uses ZIP code and county-level U.S. data and

finds that a higher number of broadband providers positively impacts employment and

population growth, and the effect is stronger in industries that rely more on IT and in

areas with lower population densities. Crandall et al. (2007) provides an early analysis on

the impact of broadband penetration on output and employment using U.S. state-level

data, and find that employment is positively and significantly associated with broadband
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use, though no causal link can be established. Atasoy (2013) find comparable results: at

the county-level, gaining access to broadband through federal policy programs is associated

with an increase in the employment rate, as a result of increased labor demand from

existing firms. In Europe, Czernich (2014) find that broadband internet availability in

German municipalities has no impact on the unemployment rate.

Cross-country analyses of these relationships are instead less common, due to limited

data availability. Biagi and Falk (2017) focus on different ICT activities and e-commerce

using firm-level data from ten European countries, and find ICT applications to be overall

neutral to employment. O’Mahony et al. (2008) compare the impact of ICT capital on the

demand for skilled labor in the U.S., the U.K. and France. They find strong evidence of

capital-skill complementarity for the highest skill groups and of capital-skill substitution

for the intermediate skill groups, while mixed evidence for the lowest skill groups.

Large part of these results points in the same direction, however in most cases they cannot

be interpreted as evidence of a causal effect. There is also evidence that the overall

economic impact of ICT technologies largely depends on which technology is considered,

and there is a differential effect between developed and developing countries (Stanley

et al., 2018).

3.3 Evidence on the Adoption of IoT

Besides the market and policy research described in section 2.3, there is limited academic

research on the economic impact of the Internet of Things, and it is mostly focused

on the effect on productivity and growth. Edquist et al. (2021) explore the impact of

IoT technologies on economic growth. Using early data for 82 countries on cellular IoT

connections, they find a strong and significant correlation between the change in IoT and

total factor productivity growth: a 10 percentage points increase in the growth of IoT

connections is associated with a 0.23 percentage points increase in TFP. They then use a

growth-accounting approach for longer run predictions and estimate total contribution of

IoT investment to growth between 0.01% and 0.99% per annum (2018-2030). Espinoza

et al. (2020) use the same growth-accounting approach and find a positive, yet small,

impact of the IoT on productivity at its early stage of development.
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There are, at the time of writing this thesis, no empirical studies on the relationship between

Internet of Things usage and labor outcomes. Given that an impact on productivity

and economic growth has already been detected in a cross-country setting by Edquist

et al. (2021), it is possible that spillovers on the demand for labor inputs have occurred.

Some very limited evidence at the firm-level is starting to appear. Balsmeier and Woerter

(2019) explore the influence of digitalization on jobs creation in Swiss firms across skill

levels. Using representative survey data on technologies adoption in the private sector,

they find that investment in digitalization is associated with higher employment of high-

skilled workers and lower employment of low-skilled workers, and the effect is driven

by firms that employ machine-based digital technologies, including IoT. However, their

measure of investment in digitalization is broadly defined, and the distinction between

firms that employ machine-based digital technologies and those which don’t is based on

the adoption of a wide-range of technologies, including robots, 3D printing and IoT. It

is therefore impossible to disentangle IoT from other innovations. In a working paper,

Kariel (2021) looks at firm-level theory and evidence on employment and productivity of

different automation technologies, including the Internet of Things. Through an event

study of Italian firms, the author finds a rise in employment and hours worked and in

the years following IoT adoption, among adopters. Still, this only provides evidence on

the introduction of IoT within a firm, and not on the intensity of usage. Together, these

two results point towards the direction of a positive relationship of IoT adoption and

employment at the firm level, but not conclusively so.

4 Data

This section describes the data used in the econometric analysis and its sources. All

variables are measured at the country-level.

4.1 Independent Variable

The independent variable of interest is Internet of Things usage, or penetration. Currently,

no data on IoT investment or capital equipment is available or can be estimated at the

country-level, however the number of mobile IoT connections is available. Following

Edquist et al. (2021), I employ the number of IoT connections over 100 inhabitants as a
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proxy, which allows for cross-country comparisons. Nevertheless, since the aim here is to

identify a relationship between IoT usage and labor outcomes, it makes intuitive sense to

relate this measure of IoT equipment, i.e. the number of IoT connection, to population

size.

The data on the number of Internet of Things connections and country population size

comes from the GSMA Intelligence Database, which collects industry data from mobile

operators. The GSMA Intelligence database describes IoT connections as “Total unique

SIM cards that have been registered on the mobile network at the end of the period enabling

mobile data transmission between two or more machines via cellular M2M (2G, 3G, 4G

or 5G) or Low-Power Wide-Area (LPWA) technologies. Licensed cellular IoT excludes

computing devices in consumer electronics such as e-readers, smartphones, dongles and

tablets” (GSMA, 2021). The database starts recording the number of IoT connections in

a country from the year mobile operators started offering M2M/LPWA services in that

country. Observations for previous years are therefore denoted as missing values, while the

real meaning behind these initial missing values is that no IoT connections were available

in the country or they were too few to be recorded. I thus replaced initial missing values

with zeroes.

As discussed in section 2.3, consumer IoT is outside of the focus of this thesis. Moreover,

the bulk of connected devices is in non-consumer devices (European Commission, 2016),

and consumer IoT mainly relies on Ethernet and Wi-Fi (Höller et al., 2014). There is

currently no data on the number of IoT devices connected through technologies other than

cellular, so the assumption is that they follow similar patterns in terms of penetration

and economic impact. Nevertheless, there are still reasons to choose mobile infrastructure,

and in particular LPWA, relative to other technologies, as it is safer to security threats,

more reliable and allows communication over greater distances (Sinha et al., 2017).

4.2 Dependent Variables

4.2.1 Unemployment Rate

The unemployment rate is defined as the number of unemployed persons over 15 years

of age as a percentage of the total number of persons in the labor force, and is provided
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by the International Labour Organization’s ILOSTAT database. The data includes the

observed unemployment rate collected by national authorities and ILO modelled estimates

when not available (International Labour Organization, 2021)3. As a robustness check, in

section 7, the unemployment level is used instead of the unemployment rate, also from

the ILOSTAT database. While the unemployment rate is harmonized in its definition

and comparable across countries, it is also a volatile indicator of the labor market and is

very sensible to business cycles (Pissarides (2009); Romer (1986)). I will then also employ

total employment as a dependent variable, which is generally less volatile.

4.2.2 Total Employment

Total employment is provided by the the Conference Board’s Total Economy Database,

and is defined as all persons engaged in some productive activity that fall within the

production boundary of the system of national accounts (employees, self-employed, unpaid

family workers and the military). To further try to identify the differential impacts of

the Internet of Things in different sectors, I will also divide total employment in three

different sectors: Agriculture, Industry, and Services, by multiplying the total number

of people engaged with the share of employment in each sector. Employment by sector

as a share of total employment is available from the World Bank’s World Development

Indicators database and is sourced from the International Labour Organization, ILOSTAT

database. Table 4.1 provides a description of which activities are included in each sector.

It is also possible to distinguish between the intensive and extensive margin of labor supply.

The extensive margin, total persons engaged, and the intensive margin, hours worked per

worker, have had diverging trends over time since the 1970s in OECD countries (Rogerson,

2006). Firms in different countries also have different incentives to adjust labor input

along the extensive and the intensive margin depending on the labor market institutions in

case of a shock (see Ohanian and Raffo (2012) and Bulligan et al. (2019)). However, hours

worked per worker change very little over time, due to cultural differences, institutional

constraints and regulations in national labor markets. For instance, Rogerson (2006)

finds that hours worked in Germany decreased by around 30% in the 50 years between

3According to the International Labor Organization, modelled estimates carry a high degree of
uncertainty for countries with limited official data. For this reason, I additionally estimated the econometric
analysis excluding modelled estimates. The results were comparable, so I will only include estimations
based on the balanced panel that includes ILO estimates.

15



4 Data

Table 4.1: Description of employment by sector

Sector Description

Agriculture Agriculture; hunting; forestry; fishing.

Industry Mining and quarrying; manufacturing, construction;
public utilities: electricity, gas, and water.

Services Wholesale and retail trade and restaurants and hotels;
transport, storage, and communications;
financing, insurance, real estate, and business services;
community, social, and personal services.

Source: World Bank (2021)

1955 and 2005, while Anglo-Saxon countries like the U.S., Canada and Australia in turn

experienced a modest increase during the same time. It is therefore extremely hard to

detect any effect due to new technologies, and especially in a short time frame. Given the

limited time period of my data and the scarce availability of country-level data on hours

worked per worker, I decided to estimate the relationship between IoT and employment

exclusively across the extensive margin.

4.3 Control Variables

Throughout the analysis, several control variables are used. Section 5 discusses in greater

detail the reasoning behind the inclusion of each control variable in the model. Here is a

brief description of each variable and its source.

A few macroeconomic indicators are included. Real GDP per capita in 2020 international

dollars, converted using Purchasing Power Parities, comes from Conference Board’s Total

Economy Database. The inflation rate, from the World Development Indicators database,

is measured as annual growth rate of the GDP implicit deflator, and shows the rate of price

change in the economy as a whole. A measure of international trade is also introduced. It

is defined as the sum of imports and exports of goods and services as a share of Gross

Domestic Product, and is from the World Bank’s World Development Indicators database.

Country-level demographic variables taken into account are the human capital index,

population density and working age population. The human capital index is taken from
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the Groningen Growth and Development Centre’s Penn World Table version 10.0, and is

constructed based on average years of schooling and returns to education (Feenstra et al.,

2015). Population density is defined as total population (from the GSMA Intelligence

Database) divided by land area in squared kilometers (from the World Bank’s World

Development Indicators database). The working-age population is defined as the share of

the population between the ages of 15 and 64 (from the World Bank’s World Development

Indicators database) times total population.

Finally, two ICT measures are included. Mobile broadband connections are defined as

total unique SIM cards (or phone numbers, where SIM cards are not used) excluding

cellular IoT connections and come from the GSMA Intelligence database. Data on fixed

broadband subscriptions comes from the International Telecommunications Union (ITU)

World Telecommunication/ICT Indicators database4. The ITU describes fixed broadband

subscriptions as “subscriptions to high-speed access to the public Internet, and includes

cable modem; DSL; fibre-to-the-home/building; other fixed (wired)-broadband subscriptions;

satellite broadband and terrestrial fixed wireless broadband. It excludes subscriptions

that have access to data communications (including the Internet) via mobile-cellular

networks, and includes both residential subscriptions and subscriptions for organizations”

(International Telecommunication Union, 2021). Both mobile and fixed broadband

connections or subscriptions are used in the analysis as per 100 inhabitants5.

4.4 Final Data

A panel of 107 countries and territories6 over ten years, from 2010 to 2019, is constructed.

It includes 36 OECD countries and 71 non-OECD countries; a full list of countries in the

sample can be found in appendix A. Some countries have become full OECD members

within the years considered in the panel: Chile, Slovenia, Israel and Estonia obtained

full membership in 2010; Latvia in 2016 and Lithuania in 2018. I will consider as OECD

4One exception is New Zealand in 2019, which is not available and is replaced with the value from
the OECD Broadband database (2019 Edition). Since the data is provided to the ITU by New Zealand’s
Ministry of Business, Innovation and Employment as it provided to the OECD, the 2019 measure is
comparable to earlier ones.

5Variables that are relative to population size (i.e. IoT connections, mobile broadband connections,
fixed broadband subscriptions, population density, working age population) were computed using the
same estimate for population size, with the exception of per capita GDP, which is used as is from the
original source.

6I will refer to them generally as countries, even though not all of them are sovereign states.
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countries all those which were full members as of 2019, independently of the year they

obtained full membership. The panel is slightly unbalanced as not all control variables are

available for each year and country. In particular, the measure of trade and the number

of fixed broadband subscriptions are missing for 2 and 17 year-country observations

respectively.

Table 4.2 shows descriptive statistics of the variables of interest for the full sample, while

table A.1 divides the sample between OECD and non-OECD countries. All variables show

sufficient variation, both across countries and over time.

Table 4.2: Descriptive statistics for the full sample (2010-2019)

Mean St. Dev. Min Max N

Unemployment rate (in %) 7.15 5.03 0.11 28.47 1,070
Unemployment (in thousands) 1,613 4,502 2 37,112 1,070
Employment (in thousands) 27,442 87,540 163 762,101 1,070
Employment in Agriculture (in thousands) 7,901 30,932 1 278,797 1,070
Employment in Industry (in thousands) 6,434 24,109 30 230,629 1,070
Employment in Services (in thousands) 13,107 35,441 120 355,838 1,070
Working-age population (in thousands) 41,636 129,489 216 1,024,188 1,070
IoT connections* 6.08 11.02 0 146.37 1,070
Per Capita GDP 26,956 24,073 813 120,408 1,070
Population Density 293.01 1,012.41 2.60 8,219.10 1,070
Inflation rate (in %) 5.13 12.84 -25.96 350.00 1,070
Trade (% of GDP) 91.27 65.53 16.14 442.62 1,068
Human Capital 2.74 0.68 1.17 4.35 1,070
Total mobile connections* 114.27 35.65 9.68 202.10 1,070
Fixed Broadband subscriptions* 15.34 13.77 0 46.65 1,053

*Connections and subscriptions expressed per 100 inhabitants.

5 Empirical Approach

5.1 Two-way Fixed Effects Estimation

Czernich et al. (2011) find two channels through which high-speed internet access via

mobile broadband can affect economic growth: its introduction in a country and its

penetration rate, measured as the share of the population that has subscribed to broadband.

Ideally, one would similarly exploit the roll out of IoT connections in a difference-in-

differences specification to estimate whether its introduction had a one-time effect on labor

18



outcomes. Unfortunately the data on IoT connections is only available from 2010, when

IoT connections had already reached 1% of total cellular (IoT and other) connections

worldwide and values as high as 13% in Sweden and 8% in Norway.

For this reason, I will focus on the penetration of the Internet of Things, defined as the

number of licensed cellular IoT connections per 100 inhabitants, in a two-way fixed effect

OLS estimation with continuous treatment.

First, to estimate the relationship between IoT penetration and unemployment, I will

regress the unemployment rate on IoT penetration using the following specification:

UnemploymentRit = β0 + β1IoT100it + γKit + ai + at + εit (5.1)

where UnemploymentRit is the unemployment rate in country i in year t, IoT100it is the

number of licensed IoT connections per 100 inhabitants, Kit is a vector of country-level

controls, ai captures country fixed effects and at are year fixed effects. The vector of

control variables Kit includes log real GDP per capita, the inflation rate, trade as a share

of GDP, the Human Capital Index, population density, the number of fixed broadband

subscriptions per 100 inhabitants and of mobile broadband connections, other than IoT

connections, per 100 inhabitants. In terms of control variables, I made a number of choices

over which controls to include following economic theory and previous empirical literature

on the impact of ICTs. The economic development of a country, proxied by GDP per

capita, could likely be determining both the unemployment rate and the usage of IoT

technologies. Inflation is included to account for a Phillips curve type of relationship with

the unemployment rate (Phillips, 1958). Trade as a percentage of GDP is included to

account for the effect of trade shocks and import competition on the labor market of a

country (see Autor et al. (2014), Autor et al. (2016) and Acemoglu et al. (2016) for an

in-depth discussion on the topic). Population density controls for the “thickness” of the

labor market over time, as job-seekers in densely populated areas have a higher chance of

finding a match with an employer (Moretti, 2011). Following Crandall et al. (2007), who

study the relationship between broadband deployment and employment within the U.S.,

a higher human capital index implies higher education of the people in a country and

should create a favorable business climate for businesses and higher demand for labor,

bringing down unemployment. Crandall et al. (2007) also include union membership rates
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across U.S. states, however there is limited data available on country-level union rates for

recent years.

Fixed and mobile broadband connections per 100 inhabitants are included to make sure

that the number of IoT connections is not just picking up the usage of broadband in a

country, which has its own impact on labor outcomes (see Bertschek et al. (2015); Atasoy

(2013); Jayakar and Park (2013)). Including the number of fixed broadband subscriptions

can also partly control for the fact that the number of IoT devices connected through fixed

broadband technologies, such as Wi-Fi, is not available. Given that cellular IoT relies on

the same technology and infrastructure as mobile broadband, it could be argued that the

number of mobile broadband connections is a bad control in this particular regression.

According to the definition by Angrist and Pischke (2008), “[...] Bad controls are variables

that are themselves outcome variables in the notional experiment at hand. That is, bad

controls might just as well be dependent variables too. Good controls are variables that we

can think of as having been fixed at the time the regressor of interest was determined. [...]

A second version of the bad control scenario involves proxy control, that is, the inclusion

of variables that might partially control for omitted factors, but are themselves affected

by the variable of interest.”. Neither version of bad controls seems to be the case here.

Conversely, mobile broadband infrastructure had largely already been determined by the

introduction of IoT; while some improvements (e.g. 4G and 5G technologies) have been

introduced in the panel of years considered, advancements in the technology are mostly

carried out upgrading or modifying the pre-existing cellular infrastructure (Edquist et al.,

2018).

Including country fixed effects accounts for unobservable time-invariant, country-level

factors that affect the outcome of interest, for instance slow-changing cultural and

institutional factors that determine long-term labor market outcomes. Given the short time

span of the panel, I did not control for any institutional or labor market characteristics,

which are going to be reflected in country fixed effects. Labor market policies and structural

reforms take time to be implemented, and for their effects to materialize (see for instance

Bouis et al. (2012)). On the other hand, year fixed effects instead account for unobservable

factors that vary across time but are common to all countries, such as global economic

trends and downturns. The coefficient of interest is β1, the OLS estimator, which shows

20



the change (in percentage points) of one additional IoT connection per 100 inhabitants on

the unemployment rate, ceteris paribus. As mentioned earlier, the unemployment rate is a

rather volatile measure of the labor market in a country. Besides, the unemployment rate,

defined as the number of people who are not currently employed but are looking for a job

as a percentage of the labor force, overlooks the number of discouraged workers, those who

are neither employed nor seeking employment. If the Internet of Things displaced workers

in certain occupations and these workers dropped out of the labor force, discouraged that

they would not be able to find a new job, this would not be reflected in specification 5.1.

Therefore, I will use total employment as an alternative dependent variable, which is a

more stable measure of the labor market. A second specification will be estimated as

follows:

Log(Employmentit) = β0 + β1IoT100it + γXit + ai + at + εit (5.2)

Moreover, it could potentially be the case that total employment is measured at a too

aggregate level to detect any effects, or that IoT has opposite effects on different sectors

of the economy, which balance out at the macro level. For these reasons, I will estimate a

third specification:

Log(Employmentit,j) = β0 + β1IoT100it + γXit + ai + at + εit (5.3)

where Log(Employmentit,j) is the log form of the total number of people employed in

country i in year t, and Log(Employmentit) is the log form of the total number of people

employed in country i in year t in sector j ∈ {Agriculture; Industry;Services}. The

vector of controls Xit is defined as in 5.1, plus the logarithm of working age population,

to control for the growth in the labor force. In the last two specifications the coefficient of

interest β1 can be interpreted as the expected change in log Employment (either total

or by sector): a 1 unit increase in the number of IoT connections per 100 inhabitants is

associated with approximately a (β1 ∗ 100)% change in the employment level, holding

everything else constant.

While Edquist et al. (2021) find similar results for the relationship between TFP growth

and IoT connections across countries, in the ICT literature there is evidence of a differential

effect of telecommunications across high- and low- income countries on GDP growth and

productivity (see Waverman et al. (2005); Lam and Shiu (2010); Thompson Jr and
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Garbacz (2007); Roller and Waverman (2001); Edquist et al. (2018)). Thus, I will estimate

the two specifications separately for the two samples of OECD and non-OECD countries,

in addition to the full sample. Of course, a distinction between high- and low-income, or

more or less developed, countries based on whether one is a full member of the OECD is

just as arbitrary as any. Nonetheless, this allows the results to be comparable to previous

ICT literature.

When dealing with panel data, there are different estimations that allow to remove

unobserved fixed effects. I have chosen to use a two-way fixed effects estimation, which

removes the unobserved effects by subtracting the time-averaged value of each dependent,

independent and control variable from the model, within a country. It then effectively

explains the variation around the mean of the independent variable in terms of variation

around the mean of the variables on the right hand side, and removes all time-invariant

unobserved factors that could bias the estimate of the coefficient of interest. An alternative

to the fixed effects model would be a random effects model, which subtracts only a fraction

of the time-average values of each variable. However, it relies on the assumption that

the unobserved effect is independent of all explanatory variables in all time periods

(Wooldridge, 2015), which I deem not to be the case here. Nevertheless, it is also

possible to use a Hausman (1978) specification test for fixed versus random effects. Under

all specifications estimated, the hypothesis that the country fixed effects are adequately

modeled by a random effects model was rejected, and therefore only fixed effects estimations

are presented.

Finally, it is worth discussing the approach to standard errors. Within all specifications,

standard errors are clustered at the country level, to account for potentially serially

correlated errors across years for a given country, given that there are enough clusters

(Bertrand et al., 2004).

5.2 Limitations

One problem with dividing total employment in the three different sectors (equation 6.3)

is that the dependent variable, IoT connections per 100 inhabitants, is the aggregate

measure of IoT penetration in a country and cannot be disaggregated into sectors. This will
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introduce measurement error and the coefficient obtained will be biased, in its magnitude,

relative to the true one. Still, the results, if any, will be informative of at least the direction

of the relationship.

While one must always be careful when interpreting any effect as causal, the specifications

outlined above are likely to suffer from endogeneity. In this case, one obvious threat

to a causal identification is simultaneity bias. As labor gets more expensive, when

the employment level is high, firms may in turn decide to invest more intensively in

machinery, automation, and in the Internet of Things in order to reduce their labor costs.

The specifications are also potentially subject to omitted variable bias: there may be

unobservable time-varying factors, correlated with the number of IoT connections that

determines the employment level. If this is the case, the coefficient of interest, β1, will be

biased.

One way to address possible endogeneity concerns described above is to use an instrumental

variable (IV) to debias the coefficient. An instrumental variable approach works by

using a third variable that affects the dependent variable only through the independent

variable of interest. Currently, no suitable instrument has been identified within the

literature on the economic impact of IoT. In the wider literature on Information and

communication technology, multiple instruments have been used to identify causal effects

of mobile broadband and internet access. Many of them build on prior infrastructure and

technologies on which mobile broadband relies on. For instance, Edquist et al. (2018) model

the maximum penetration level of mobile broadband as a linear function of the diffusion of

mobile phone infrastructure (cellular telephone subscriptions per 100 inhabitants in 2002)

and personal computers (fixed Internet subscribers per 100 inhabitants in 2002) before

the diffusion of mobile broadband. Kolko (2012) instruments broadband availability with

the slope of terrain, while Czernich (2014) uses distance from the main distribution frame,

i.e. the cable rack to which each individual household’s fibre is connected. None of them

appear to be relevant in this case.

While cellular IoT technology builds on pre-existing mobile broadband networks, this is

not a suitable instrument since mobile broadband is likely to have an effect on economic

development and employment on its own (see Prieger (2013)). I have attempted to find a

possible instrumental variable that exploits the exogenous variation in my independent
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variable. In particular, by instrumenting IoT connections with 5th generation (5G)

broadband network connections. The instrument appeared to be relevant, as data

transmission between machines can occur either via cellular networks (3G, 4G, or 5G)

or via LPWA, which can’t be used by 3G and 4G technologies (Chettri and Bera, 2020).

While the instrument is unlikely to be completely exogenous, the exclusion restriction

could potentially hold since IoT connections exclude smart devices, such as smartphones,

tablets and dongles. Thus, the only channel through which the number of 5G connections

may have an impact on employment is through the Internet of Things and machine to

machine data transmission outside consumer electronics. This was true up to 2020, since

4G devices are not able to use 5G networks, and the first commercial 5G applications,

such as smartphones, only started to become available in 2020. Nevertheless, I cannot run

such as estimation since data on 5G connections is only available for two years before 2020

and only for a handful of countries. While the IV estimator is consistent, it is still biased

in finite samples and needs asymptotic justification. Therefore, it is not a viable option.

A second way to address potential endogeneity, when an external instrumental variable is

not available, is to use dynamic panel data models. This approach is explored in section 8.

6 Main Results

6.1 Anticipatory Effects

In order to trust the results the two-way fixed effects OLS estimation, I first run a Granger

causality-type test as proposed by Angrist and Pischke (2008). The idea is to make sure

that Granger-causality runs from Internet of Things connections and not vice versa, i.e.

past levels of IoT connections may predict the dependent variable, while future ones may

not, conditional on country and year fixed effects and the control variables. I test this by

estimating the specifications outlined in section 5 with lags and leads of the independent

variable. Given the restricted time span of my panel, I chose to include two lags and one

lead:

UnemploymentRit = β0 + β1IoT100it−2 + β2IoT100it−1 + β3IoT100it

+β4IoT100it+1 + γKit + ai + at + εit

(6.1)
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Log(Employmentit) = β0 + β1IoT100it−2 + β2IoT100it−1 + β3IoT100it

+β4IoT100it+1 + γXit + ai + at + εit

(6.2)

Log(Employmentit,j) = β0 + β1IoT100it−2 + β2IoT100it−1 + β3IoT100it

+β4IoT100it+1 + γXit + ai + at + εit

(6.3)

where the dependent variable and the regressors are defined as before, i indexes the country

and t the year. If IoT connections Granger-cause employment or unemployment, future

values of the treatment in a country should not matter for employment or unemployment,

and β4 should not be statistically significantly different from zero. If this does not

hold, we may observe anticipatory effects. This would be the case if, for instance, firms

within a country started firing or employing workers based on their future plans for the

implementation of IoT solutions. While it is a useful check for the model at hand, Granger

causality alone is not sufficient for causal inference (Angrist and Pischke, 2008).

Table 6.1 reports the results of this test. There seem to be no anticipatory effects for the

unemployment rate and total employment. Looking at employment by sector, there seems

to be some evidence of anticipatory effects of IoT within employment in agriculture and

industry. Therefore, the estimates provided by these two specifications may be biased

and unreliable, though the coefficients on the two one-year lead are only significant at

the 10% level, which suggests that the relationship is not very strong or robust. Within

employment in services, instead, only the coefficients on lagged independent variables are

significant. Table B.1 in the appendix runs the same estimation, splitting the sample into

OECD and non-OECD countries. The conclusion is the same.

6.2 Two-way Fixed Effects Estimation

The results from the estimation of specification 5.1 are presented in table 6.2, with the

unemployment rate as dependent variable. Columns (1) and (2) show the relationship

between the unemployment rate and the number of cellular IoT connections per 100
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Table 6.1: Granger causality-type test

Log Employment in sector:

(1) (2) (3) (4) (5)
UnemploymentR LogEmployment Agriculture Industry Services

IoT100t−2 -0.133 0.000898 0.00718 -0.00304 -0.00527∗∗
(0.0805) (0.00173) (0.00495) (0.00296) (0.00240)

IoT100t−1 0.0525 0.000575 -0.00326 0.00269 0.00281∗∗
(0.0598) (0.00122) (0.00358) (0.00225) (0.00124)

IoT100t -0.0370 -0.000384 -0.00215 -0.000413 -0.00106
(0.0353) (0.000711) (0.00190) (0.00156) (0.000772)

IoT100t+1 0.0474 -0.000567 0.00191∗ -0.00159∗ 0.000764
(0.0309) (0.000419) (0.00103) (0.000915) (0.000775)

Constant 104.0∗∗∗ 8.308∗∗∗ 5.904∗ 3.638∗∗∗ 6.308∗∗∗
(22.77) (0.893) (3.039) (1.228) (0.933)

Sample Full Full Full Full Full
Number of countries 107 107 107 107 107
Controls Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Observations 741 741 741 741 741
R-squared 0.291 0.577 0.128 0.452 0.688
F-test (p-value) 7.87e-07 0 6.01e-05 0 0

Notes: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1

inhabitants in the full sample with and without controls, respectively. Columns (3) and

(4) estimate the model with controls separately for OECD and non-OECD countries.

The estimated coefficient of interest β1 is not significantly different from zero in any of

the samples. None of the specifications show any significant association between the

unemployment rate and the number of Internet of Things connections in a country at

either the 5% or 1% significance level.

Table 6.3 shows the results from the estimation with (log) total employment as dependent

variable. Column (1) shows a negative and significant, at the 5% level, raw correlation

between employment and IoT connections in the full sample. This association turns

insignificantly different from zero after controlling for additional covariates such as working-

age population, GDP, trade, inflation, human capital, population density and mobile and

fixed broadband connections (column (2)). There is, instead, a positive correlation when

estimating the relationship in the OECD sample alone, which is significantly different

from zero at the 1% significance level. The coefficient resulting from column (3) implies

that one additional IoT connection is associated with approximately a β1 ∗ 100 = 0.059%
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Table 6.2: Main results, unemployment rate

(1) (2) (3) (4)
UnemploymentR UnemploymentR UnemploymentR UnemploymentR

IoT100 -0.0241 -0.0141 0.00377 0.0195
(0.0154) (0.0181) (0.0109) (0.0169)

Constant 7.674∗∗∗ 96.80∗∗∗ 337.9∗∗∗ 57.39∗∗∗
(0.212) (22.85) (64.49) (14.66)

Sample Full Full OECD Non-OECD
Number of countries 107 107 36 71
Controls No Yes Yes Yes
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 1,070 1,051 360 691
R-squared 0.109 0.254 0.698 0.124
F-test (p-value) 1.28e-06 0.000268 0 0.00751

Notes: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1

(p = 0.003) increase in the employment level in a country, ceteris paribus, within OECD

members. It should be noted that in the years considered, the 10-year average number of

IoT connections per 100 inhabitants was 12.9 in the OECD sample, and grew, on average,

by 2.3 connections per year. A one-unit increase is therefore not negligible.

Table 6.3: Main results, total employment

(1) (2) (3) (4)
LogEmployment LogEmployment LogEmployment LogEmployment

IoT100 -0.00112∗∗ -0.000233 0.000589∗∗∗ -0.000810
(0.000558) (0.000417) (0.000181) (0.000741)

Constant 8.803∗∗∗ 8.647∗∗∗ 3.892∗∗∗ 9.294∗∗∗
(0.00640) (0.650) (0.716) (0.728)

Sample Full Full OECD Non-OECD
Number of countries 107 107 36 71
Controls No Yes Yes Yes
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 1,070 1,051 360 691
R-squared 0.581 0.629 0.864 0.618
F-test (p-value) 0 0 0 0

Notes: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1

Table 6.4 presents the results of specification 6.3, in which each column is the employment

in a specific sector of the economy: Agriculture (1), Industry (2), and Services (3). The

top panel estimates the model for the full set of countries, while the middle and bottom
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6 Main Results

panels present OECD and non-OECD samples separately. In column (1), the coefficients

of interest are positive in the top and middle panel, and negative in the bottom one, but

none of them are statistically different from zero. Therefore, no significant association

exists between IoT connections and employment in agriculture. Furthermore, the model

for agriculture seems to perform rather poorly in terms of R-squared, i.e. the independent

variables explain a low share of the variance in the dependent variable. A low R-squared

per se is not problematic (Wooldridge, 2015), but its value is particularly low when

comparing it to the other two specifications with different dependent variables. This

may indicate that employment in agriculture, and industry and services follow different

trajectories and are affected by very different factors.

While there was no detectable association between the penetration of IoT and employment

in the full sample of countries after including control variables (table 6.3), column (2)

shows a negative and significant relationship with industry employment at the 5% level.

Yet, this result is not supported by a negative and significant β1 in the OECD sample, and

it is loosely negatively correlated in the non-OECD sample, at the 10% level. However, it

is important to remember that the introduction of measurement error (through the total

number of IoT connections as independent variable) and the results of the Granger-type

causality test performed in section 6.1 suggest that this coefficient may be biased. In

fact, the estimated β1 is about four times larger than that found in table 6.3 for OECD

countries. This would imply that a 1 connection increase in the number of IoT connections

per 100 people is associated with a 0.20% decrease in industry employment, holding

everything else constant, which is rather large. Still, the directional result is of note.

Turning to the tertiary sector, no relationship is found with IoT penetration in the

full and non-OECD samples of countries. More interestingly, I find a positive and

strongly significant coefficient on the IoT penetration measure in the OECD sample:

β1 = 0.00051(p = 0.005). The interpretation of the coefficient is that, within OECD

countries, a 1 unit increase in the number of Internet of Things connections for 100

inhabitants is linked to approximately a 0.05% increase in the employment in the services

sector only. This is similar to the result found in table 6.3 with total employment as

dependent variable, where β1 = 0.000589. In fact, a Chi-square test cannot reject the null

hypothesis that the two coefficients are the same (χ2(1) = 0.82, p = 0.36).
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Table 6.4: Main results, employment by sector

Log Employment in sector:

(1) (2) (3)
Agriculture Industry Services

Panel A: Full sample

IoT100 0.00117 -0.00202∗∗ -0.000899
(0.00119) (0.000836) (0.000687)

Constant 6.951∗∗∗ 4.117∗∗∗ 6.276∗∗∗
(2.143) (1.116) (0.855)

Number of countries 107 107 107
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 1,051 1,051 1,051
R-squared 0.160 0.499 0.719
F-test (p-value) 5.65e-06 0 0

Panel B: OECD Countries

IoT100 0.000773 8.88e-05 0.000512∗∗∗
(0.000829) (0.000258) (0.000171)

Constant 5.460∗∗∗ -1.657 3.771∗∗∗
(1.997) (1.199) (0.838)

Number of countries 36 36 36
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 360 360 360
R-squared 0.248 0.687 0.897
F-test (p-value) 1.02e-05 0 0

Panel C: Non-OECD Countries

IoT100 -0.000379 -0.00248∗ 2.07e-05
(0.00191) (0.00135) (0.00136)

Constant 6.911∗∗∗ 4.859∗∗∗ 6.407∗∗∗
(2.592) (1.268) (0.935)

Number of countries 71 71 71
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 691 691 691
R-squared 0.170 0.521 0.732
F-test (p-value) 9.17e-05 0 0

Notes: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1
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7 Robustness Checks

To summarize, there seems to be no significant relationship between the unemployment

rate and the number of Internet of Things connections per 100 inhabitants, either in

the full sample or the separate samples for OECD and non-OECD countries. In the full

sample, some evidence of a negative relationship between IoT penetration and industry

employment, but not total employment, was found. Within OECD countries, there is

a positive and significant association between the number of IoT connections per 100

inhabitants and the level of employment: a one unit increase in the number of connections

is associated with approximately a 0.06% increase in the employment level. This seems to

be entirely driven by the growth of employment in the services sector in the same sample.

No relationship was found between Internet of Things connections and employment in the

agriculture sector, in any sample.

7 Robustness Checks

This section tests the robustness of the results presented in section 6 through estimating

different specifications. First, the unemployment level is used in place of the unemployment

rate to robustly check whether the absence of a significant relationship holds. Secondly,

the second and third specifications, with total employment and employment by sector as

dependent variables, are re-estimated after controlling for capital services.

7.1 Unemployment Level

The results shown in section 6 find no significant association between the unemployment

rate and the measure of Internet of Things penetration, in either the full sample or the two

sub-samples. Bartlett and Partnoy (2020) explore the “ratio problem” of linear regression

models in which the outcome variable is defined as a ratios, similarly addressed previously

outside the economic literature (see for instance Firebaugh and Gibbs (1985) and Kronmal

(1993)). According to Bartlett and Partnoy (2020), a linear regression such as the one

estimated in table 6.2, in which the dependent variable is defined as a ratio Y/n, can

lead to biased estimates simply because Y , the dependent variable, is scaled by n. The

bias can originate in measurement error and omitted variable bias, which arises when

the dependent variable is also correlated with 1/n. Given that in my specification the

number of IoT connections is also normalized by the population, which is likely to be
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highly correlated with the labor force, the estimation of the unemployment rate using a

linear regression could lead to bias. Table 7.1 reports the results for the main estimation

with the (log) total number of unemployed persons as dependent variable, which is once

again taken from the the International Labour Organization’s ILOSTAT database. Still,

none of the coefficients are statistically significant from zero.

Table 7.1: Robustness check, total unemployment

(1) (2) (3) (4)
LogUnemployment LogUnemployment LogUnemployment LogUnemployment

IoT100 -0.00433 -0.00349 0.00208 -0.000662
(0.00272) (0.00311) (0.00152) (0.00512)

Constant 6.076∗∗∗ 17.08∗∗∗ 36.65∗∗∗ 13.87∗∗∗
(0.0297) (3.261) (7.779) (2.994)

Controls No Yes Yes Yes
Sample Full Full OECD Non-OECD
Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Number of countries 127 112 36 76
Observations 972 832 350 482
R-squared 0.019 0.098 0.245 0.142
F-test (p-value) 0.000683 7.50e-05 0 0.00180

Note: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1

7.2 Controlling for Capital Services

As discussed in section 5.2, the specification estimated earlier are likely to suffer from

omitted variable bias. Most notably, I did not control for any measure of capital inputs.

While not decisively so, the evidence outlined in section 3 points towards the direction

of capital-labor substitution, at least in the short term (see, for instance, Autor et al.

(2003)). Capital input would also be correlated with Internet of Things penetration,

since capital-intensive countries are more likely to adopt IoT systems at a faster rate.

Capital services, defined as the flow of productive services provided by capital assets, is

generally considered a better measure of input than capital stock (Schreyer et al., 2003).

Additionally, developed and developing countries tend to invest in different types of capital

assets with different marginal products, making cross-country comparisons in capital

stocks harder (Inklaar et al., 2019), which is instead taken into account in the capital

services measure. This measure includes fixed assets, such as computer hardware, software

and databases, telecommunications, transport equipment, other machinery, non-residential
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7 Robustness Checks

construction, research and development and other intellectual property products (OECD,

2019). It also takes into account user costs per unit of capital services provided by each

asset type (Schreyer et al., 2003). Unfortunately, consistent and reliable measures of

capital services are hard to come across, and few countries produce them in their national

statistics. The Penn World Table (Feenstra et al., 2015) provides a volume index of capital

services estimated from national account variables which can be transformed into a level

variable as described in section C7. Still, this is just a proxy for capital services and it is

not entirely reliable. This measure is then normalized by population size, and the log of

this per capita capital services variable is included in the estimation.

Table 7.2 presents the results of the estimation of the model with total employment as

dependent variable. After controlling for capital services, the relationship between IoT

connections per 100 inhabitants and log total employment in a country remains positive

and significant, within OECD member states, and, additionally, the coefficient in the

non-OECD sample is negative and significant, although only at the 10% level. Table C.1

in the appendix reports the results dividing the employment level in the three sectors.

The results are generally in line with those presented in section 6. In the OECD sample,

the association between the measure of IoT penetration and employment in the services

sector is still positive and significant, at the 1% level, and the coefficient is slightly higher.

In the full sample, the number of IoT connections is again negatively and significantly, at

the 10% level, correlated with industry employment, though the magnitude is smaller:

a 1-unit increase in the number of IoT connections per 100 people is associated with an

approximate 0.141% decrease in industry employment, everything else equal. A similar

negative association is found in the non-OECD sample: a one-unit increase in the number

of connections is associated with approximately a 0.326% decrease in employment in the

industry sector. Besides the possible bias coming from the independent variable, discussed

in the previous section, it is also worth noticing that the sample is different from the

previous estimation.

7Note that this is not available for all non-OECD countries, so that number of countries in the full
sample decreases from 107 to 94. Appendix C2 lists the countries for which this measure is available.
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Table 7.2: Robustness check, total employment controlling for capital services

(1) (2) (3)
LogEmployment LogEmployment LogEmployment

IoT100 -1.59e-05 0.000615*** -0.00123*
(0.000477) (0.000190) (0.000675)

Constant 7.719*** 3.478*** 8.275***
(0.848) (0.782) (0.996)

Sample Full OECD Non-OECD
Number of countries 94 36 58
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 930 360 570
R-squared 0.625 0.867 0.615
F-test (p-value) 0 0 0
Note: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1

8 Further Analysis

While the results above present an interesting relationship, its causality is undermined by

potential endogeneity, as outlined in section 5.2. One way to address endogeneity, be it in

the form of omitted variable bias or simultaneity, is to use dynamic panel data models,

such as the Arellano-Bond (Arellano and Bond, 1991) and the Arellano–Bover (Arellano

and Bover, 1995) or Blundell–Bond (Blundell and Bond, 1998) Generalized Method of

Moments (GMM) estimators. These estimators have become widely used in the applied

literature in general, as well as in applications on the relationship between technological

change and ICTs, and employment (see O’Mahony et al. (2008); Van Roy et al. (2018);

Vu (2011)). Dynamic panel data models include past values of the dependent variable

to capture its short-run autoregressive behavior. Within this second methodology, I will

focus on employment as a dependent variable.

Roodman (2009a) sets a number of conditions under which such estimators are appropriate.

They include (i) a “large N, small T” panel; (ii) a linear functional relationship; (iii) a

dependent variable that is dynamic and depends on its past realizations; (iv) endogenous

independent variables; (v) individual fixed effects; and (vi) heteroskedasticity and

autocorrelation within individuals but not across them (Roodman, 2009a). Based on

the specification outlined in section 5, I believe my panel (N = 107, T = 10) to fulfill
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8 Further Analysis

all of these assumptions, and that it is reasonable to assume that the employment level

in a country is persistent and depends on its past values, especially in the short-term.

An additional assumption is that no external instrumental variable is available for the

endogenous variable of interest, which is satisfied as discussed in section 5.2.

8.1 Difference and System GMM Estimators

This section provides a brief introduction to the difference and system GMM estimators

following Roodman (2009a). Both estimators are designed to fit the following baseline

model:

yi,t = αyi,t−1 + βXi,t + µi + εi,t (8.1)

where the error is composed of a fixed effect term µi and an idiosyncratic term εi,t, and

Xi, t is a vector of all regressors. Applying ordinary least squares to this empirical model

is problematic, as the lagged term of the dependent variable yi,t−1 will be correlated

with the time-invariant fixed effect term µi of the error, generating “dynamic panel bias”

(Nickell, 1981). A first way to tackle this bias is to transform the data by taking first

differences of equation 8.1:

∆yi,t = α∆yi,t−1 + β∆Xi,t + ∆εi,t (8.2)

which removes the fixed effects. However, the term ∆yi,t−1 = yi,t−1−yi,t−2 is still potentially

correlated with ∆εi,t−1 = εi,t−1 − εi,t−2 through the term εi,t−1 and hence endogenous,

as well as any regressor in X that is not strictly exogenous (Roodman, 2009a). The

differenced-GMM estimator (Arellano and Bond, 1991) then uses all past values of the

untransformed endogenous variables y as instruments for the differenced term ∆yi,t. This

applies not only to the lagged dependent variable but also to any endogenous regressors in

X. Finally, the coefficients of interest α and β are estimated via a Generalized Method of

Moments (GMM), of which OLS and two-stage least squares (2SLS) are special cases (see

Hall (2004) or Wooldridge (2001) for a detailed description of the Generalized Method of

Moments).

A second approach to panel data bias is that of Arellano and Bover (1995), which

removes the fixed effects by differencing the instruments, instead of transforming the data.
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Therefore, while Arellano and Bond (1991) instruments differences with levels, Arellano

and Bover (1995) instruments levels with differences. Blundell and Bond (1998) exploits

these additional moment conditions by simultaneously estimating the instrumented levels

(eq. 8.1) and the differenced equation (eq. 8.2) in a system. Blundell and Bond (1998)

show, through Monte Carlo simulations, that this system-GMM estimator is less biased

than the difference-GMM estimator, in particular in two cases: when the sample is small,

and when the dependent variable is highly persistent8. If the endogenous variable is

highly persistent, its past levels convey little information about its future changes and

will therefore be weak instruments for the differenced equation. By estimating the levels

equation, it is also possible to include time-invariant variables, such as year dummies, in

a system-GMM estimation.

While GMM and dynamic panel models are useful tools in the presence of endogeneity,

they are also complex and their use involves many choices, resulting in a high number

of researcher degrees of freedom. Roodman (2009a) warns that the application of such

estimators may result in a ‘black box’9 situation and can easily generate invalid estimates.

Additionally, the cross sectional dimension of the panel may not be large enough, and the

typical concerns of an instrumental variable approach, in terms of relevance and validity,

still apply.

8.2 Estimation and Results

As an attempt to address endogeneity, I will apply a system-GMM estimator to the

following equations:

Log(Employmentit) = αLog(Employmentit−1) + β0 + β1IoT100it

+γXit + ai + at + εit

(8.3)

8Both apply in this case. Despite being large enough for a dynamic panel model estimation, the
cross-sectional and time series dimensions of the panel are both rather limited. Tables 8.1, D.1 and D.2
all show a high autoregressive coefficient α, which is always higher than 0.90.

9The Merriam-Webster dictionary defines a black box as “a usually complicated electronic device
whose internal mechanism is usually hidden from or mysterious to the user” (Merriam-Webster, 2021).
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8 Further Analysis

Log(Employmentit,j) = αLog(Employmentit−1,j) + β0 + β1IoT100it

+γXit + ai + at + εit

(8.4)

where both the right hand side and the left hand side are defined as before, and a 1-year

lag of the dependent variable is included. Post-estimation tests are conducted to check the

validity of the model. In particular, Arellano-Bond autocorrelation tests for differenced

residuals ∆εi,t are run. First-order autocorrelation, between ∆εi,t and ∆εi,t−1, is to be

expected because of the shared term εi,t−1, while second-order autocorrelation should

not be detected. In addition, since endogenous variables are instrumented with past

realizations, the Hansen test of overidentifying restrictions should be run to test for

validity of the instruments. In all estimations, Windmeijer finite sample correction is

applied (Windmeijer, 2005), and Windmeijer cluster-robust standard errors are reported,

which reduce the downward bias of traditional two-step GMM computed standard errors

(Roodman, 2009a).

Applying the estimation above to the sub-sample analysis carried out in section 6 poses

an additional concern because of the smaller samples (N). In particular, the number of

instruments has to be limited in order to avoid overfitting and instrument proliferation

(Roodman, 2009a). In this section, I will focus on baseline specifications 8.3 and 8.4 within

OECD countries, since it was the one for which the strongest evidence of a significant

association was found in the two-way fixed effect estimation. Estimations for the full set

of countries and non-OECD countries are available in appendix D.

Table 8.1 shows the results of the system GMM estimation where the endogenous variables

(the autoregressive term and the IoT measure) are instrumented with lags two and longer

in the level equation. As a general rule of thumb, Roodman (2009a) suggests that the

number of instruments should not outnumber the individuals, which is the case here.

Post estimation checks of Arellano-Bond second-order correlation are satisfied: the test

cannot reject the null hypothesis of no serial correlation, and therefore second lags of the

endogenous variables qualify as valid instruments. The null of overidentifying restrictions

is also not rejected by the Hansen test in any of the four specifications. However, the

p-value Hansen J statistic in column (1) is high (p = 0.914) which suggests that the number
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of the instruments may still be high, since the p-value goes to 1 as many instruments

are included (Roodman, 2009b). If this is the case, the GMM coefficients will be biased

towards OLS estimated ones that suffer from typical endogeneity bias (Roodman, 2009a).

This, together with the fact that the Arellano-Bond test fails to detect first-order serial

correlation in the differenced residuals, suggests that the model may not be correctly

specified.

Table 8.1: System GMM estimation, OECD sample

(1) (2) (3) (4)
LogEmployment LogAgricultureEmp LogIndustryEmp LogServicesEmp

LogEmploymentt−1 0.947∗∗∗
(0.0223)

LogAgricultureEmpt−1 0.994∗∗∗
(0.0328)

LogIndustryEmpt−1 0.909∗∗∗
(0.0616)

LogServicesEmpt−1 0.942∗∗∗
(0.0310)

IoT100 0.000532∗∗ 5.40e-05 0.000584∗∗ 0.000511∗
(0.000257) (0.000336) (0.000247) (0.000310)

Constant 0.726∗ 0.212 1.458∗ 0.478
(0.358) (0.887) (0.737) (0.305)

Observations 324 324 324 324
Number of countries 36 36 36 36
Controls Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AR(1) 0.131 0.000207 0.0392 0.0328
AR(2) 0.421 0.168 0.419 0.335
Hansen 0.914 0.553 0.702 0.558
Number of Instruments 35 35 35 35
Notes: Two-step system GMM estimation where the lag of the dependent variable and the endogenous
regressor are instrumented with lags 2 and longer for the transformed equation and lag 1 for the levels
equation, and instruments are collapsed. AR(1), AR(2) and Hansen report p-values for the respective
tests. Finite sample correction applied to all estimations, Windmeijer-corrected cluster–robust errors in
parentheses. Estimation run with the command ‘xtabond2’ in Stata. *** p<0.01, ** p<0.05, * p<0.1.

The results show that the coefficients for the IoT penetration variable are close to those

found in the two-way fixed effect estimation (tables 6.3 and 6.4). The coefficient of interest

is again significant in the estimation of (log) total employment, at the 5% significance

level, and in the estimation of (log) employment in services, though only at the 10% level.

In this system-GMM estimation, additionally, the coefficient on IoT connections in column

(3), with (log) industry employment as a dependent variable, is also significant at the

5% level, and similar in magnitude to the other two. However, given the misspecification

reported above, any conclusion on causal inference is out of reach. The results for the full
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9 Discussion

sample and the non-OECD sample are reported in table D.1 and D.2. In both cases, the

results support the evidence of no correlation between the measure of IoT penetration

and either total employment, employment in agriculture of services found in section 6.

Likewise, the negative correlation between industry employment and the measure of IoT

usage in the full sample of countries did not remain robust to this different specification.

9 Discussion

In this section I discuss the results presented in the previous sections, the limitations of

the analysis and opportunities for further research.

To summarize the results, I find that an increased penetration of Internet of Things,

defined as the number of cellular IoT connections per 100 inhabitants, is positively and

significantly associated with employment within OECD member countries: everything

else equal, a one connection increase is approximately associated with a 0.058% increase

in total employment, driven by a positive and significant relationship of similar magnitude

with employment in the services sector. This finding remains robust to the inclusion of

capital services as a control, though the evidence from the dynamic panel data estimation

was not conclusive. This effect is confined to higher income OECD countries, as no

analogous evidence was found in either the full sample or the non-OECD sample. In

the full sample, a negative correlation was found between the measure of IoT usage

and employment in the industry sector, and some evidence that this may be driven by

non-OECD countries, though no correspondence of this was found in the system-GMM

estimation. The magnitude of the effect, however, seems to be unlikely high due to bias

in the specification. No significant association was found between the number of cellular

Internet of Things connections and the other dependent variable, the unemployment rate.

I find the results on employment to be reasonable, both in scope and size, given the

limited years considered and the fact that OECD countries started out with a larger usage

of the Internet of Things and saw a more substantial growth in the number of connections

per capita.

It is interesting to notice that I find a positive and significant, at the 1% level, correlation

between IoT and total employment and employment in services, but not unemployment.
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Although it is not possible to provide any insight on the mechanisms through this analysis,

one possible explanation is that, as the usage of IoT technologies within a country increases,

new jobs are created and more people enter the labor force, in particular in the services

sector. To relate this to the theoretical framework presented in the literature review, this

could either be the result of increased productivity and increased demand for labor in

non-automated tasks, or the result of the creation of new tasks in which human labor

has a comparative advantage that offsets the displacement of workers in automated tasks.

Both of them seem to be viable channels. Edquist et al. (2021) already found a positive

association between IoT adoption and productivity, which, coupled with the results

presented above, supports the existence of a productivity effect. Yet it is also easy to see

how, in the early years of adoption, the Internet of Things could create new jobs and

demand for workers in the services sector, such as engineers and ICT specialist to work

on IoT deployment. This, instead, points towards the presence of a reinstatement effect,

as defined by Acemoglu and Restrepo (2019). The negative relationship with industry

employment is perhaps the intuitive result when looking at IoT as a tool for automation:

as IoT usage increases, capital substitutes labor in automated tasks within manufacturing.

If both apply, this may suggest that there are winners and losers of IoT implementation.

The results are also in line with previous literature within automation and Information and

communication technologies. Kolko (2012) find a positive, although limited, causal effect of

broadband availability on local employment, while Czernich (2014) finds broadband to be

neutral to unemployment. The differential effect between OECD and non-OECD member

countries is also a common theme in the literature (see Roller and Waverman (2001),

Edquist et al. (2018), Thompson Jr and Garbacz (2007)). Similarly, Autor et al. (2003)

find reduced employment in routine tasks (both manual and cognitive) and increased

employment in nonroutine cognitive tasks as a result of computerization. Finally, the

results point in a similar direction of increased employment among adopters as in the

preliminary firm-level evidence presented by Kariel (2021).

Overall, inferring causality in this context has proved a hard task, and applying a system

GMM estimator has proved inconclusive. It is worth noting that even if the variable of

interest, Internet of Things connections per 100 inhabitants, had been in fact exogenous,

a fixed effect model would identify the average effect on the treated (Collischon and Eberl,
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2020), those who selected into, in this case OECD countries. It would therefore still not

be possible to generalize the effect to the wider set of countries. Moreover, a fixed effect

OLS estimator will not be consistent in the presence of heterogeneity of treatment effect

across countries or over the years (Gibbons et al., 2019). A second limitation of this thesis

is the data used. While the data is of very high quality, it only includes IoT connections

that use cellular technology, and is only available at the country-level. There is, to my

knowledge and research, no available data on IoT connections based on other technologies,

such as Wi-Fi. While there is no current estimate of what market share each technology

has, the scope of this paper is nevertheless limited.

Further research within the economic impact of the Internet of Things is needed and

encouraged. In particular, much of the potential research on IoT relies on the availability

of new or more comprehensive data. The availability of data that is aggregated at a

smaller level, such as within a country or even firm-level data, would make it possible to

more precisely estimate the association that I have found and to potentially describe the

mechanisms that drive it. In particular, industry-level data would allow to more precisely

estimate within-sector effects. Obtaining within-country data for multiple countries would

allow for testing whether the effects are heterogeneous across countries. The results I

have found are estimated for a short panel; having a longer panel would prove useful in

identifying whether there are decreasing returns to its usage. Finally, finding a suitable

instrumental variable could provide insights on the causality of the relationship.

10 Conclusion

In this thesis, I first described a new technological paradigm known as the Internet of

Things, its trends and the wide range of applications that go beyond popular consumer

devices. The public discourse has thus far focused on its privacy and security implications,

and the evidence on its economic impact is still limited. Even so, early evidence suggests

the presence of a positive relationship between IoT usage and productivity and growth

across countries (Edquist et al. (2021), Espinoza et al. (2020)). Hence, it may be possible

for this positive impact on productivity to have spilled over the demand for labor inputs.

Throughout this paper, I first construct a panel of 107 developed and developing countries

40



across ten years, from 2010 to 2019, with country-level data on the number of mobile

IoT connections and economic variables. I define IoT penetration as the number of

mobile IoT connections over 100 inhabitants in a country, and study its relationship with

different labor outcomes. Applying a two-way fixed effects estimation, I find a positive

and significant relationship between IoT usage and the employment level in a country

within OECD countries in the years considered, after controlling for a number of economic

and demographic covariates. Under this specification, I find that an increase of one

connection per 100 inhabitants is associated to approximately a 0.059% increase in total

employment in a country for OECD member states, everything else equal. When breaking

down total employment into the three different sectors of the economy, the previous result

seems to be driven by a positive relationship between my measure of IoT penetration and

employment in the services sector in the same sample: a one unit increase in connections

per 100 inhabitants is associated with approximately a 0.051% increase in employment

in the services sector, ceteris paribus. No significant relationship was found with the

unemployment rate, either in the full sample of countries or the two restricted sub-samples,

while a negative and less robust relationship with industry employment in the full and

non-OECD sample was found.

The results are in line with previous empirical research within information and

communication technologies, which find a positive, or at least non-negative, impact

of ICTs on employment, and differential effects between OECD and non-OECD countries.

On the other hand, the negative result found within the industry sector is consistent with

the literature on automation, which reports varying degrees of capital-labor substitution.

Nevertheless, inferring causality from the estimation is challenging, given potential omitted

variable and simultaneity bias that affects my model. In an attempt to tackle causality,

a dynamic panel data model with a system-GMM estimator was applied. While the

magnitude was similar, a causal interpretation remains out of reach. Nonetheless, the

correlations presented are still somewhat informative of evidence from early adoption of

the technology.

This thesis is, to the best of my knowledge, the first empirical study to try and estimate a

relationship between the Internet of Things usage and labor outcomes in the early years

after its introduction. No policy recommendations can be set on the results, since no

41



10 Conclusion

causal mechanism has been identified. It is yet perhaps of interest to notice that despite

the recurring worry that new technologies and automation would make workers redundant,

limited supporting evidence was found in the case of IoT, at least in the short-run, and,

within higher income countries, only a positive relationship was established. The channels

through which this association takes place, as well as any country-heterogeneous effects

and micro-level evidence, are left to further research.
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Appendix

A Data

A1 List of countries

OECD Countries:

Australia; Austria; Belgium; Canada; Chile; Czechia; Denmark; Estonia; Finland; France;

Germany; Greece; Hungary; Iceland; Ireland; Israel; Italy; Japan; Latvia; Lithuania;

Luxembourg; Mexico; Netherlands; New Zealand; Norway; Poland; Portugal; Slovakia;

Slovenia; South Korea; Spain; Sweden; Switzerland; Turkey; United Kingdom; United

States of America.

Non-OECD countries and territories:

Albania; Algeria; Angola; Argentina; Armenia; Bahrain; Bangladesh; Bolivia; Botswana;

Brazil; Bulgaria; Burkina Faso; Cambodia; Cameroon; China; Colombia; Costa Rica;

Cote d’Ivoire; Croatia; Cyprus; Democratic Republic of the Congo; Dominican Republic;

Ecuador; Egypt; Ethiopia; Ghana; Hong Kong; India; Indonesia; Iran; Jamaica; Jordan;

Kazakhstan; Kenya; Kuwait; Kyrgyzstan; Madagascar; Malaysia; Mali; Malta; Mauritius;

Moldova; Morocco; Mozambique; Namibia; Niger; Nigeria; Pakistan; Paraguay; Peru;

Philippines; Qatar; Romania; Russian Federation; Rwanda; Saudi Arabia; Senegal;

Singapore; South Africa; Sri Lanka; Sudan; Tanzania; Thailand; Tunisia; Uganda; Ukraine;

United Arab Emirates; Uruguay; Vietnam; Zambia; Zimbabwe.
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A2 Summary tables

Table A.1: Descriptive statistics by sample (2010-2019)

Mean St. Dev. Min Max N

OECD Sample
Unemployment rate (in %) 7.83 4.50 2.01 27.47 360
Unemployment (in thousands) 1,190 1,943 5 15,100 360
Employment (in thousands) 16,283 27,318 163 159,073 360
Employment in Agriculture (in thousands) 768 1,425 3 6,882 360
Employment in Industry (in thousands) 3,745 5,857 30 31,671 360
Employment in Services (in thousands) 11,770 20,912 123 125,254 360
Working-age population (in thousands) 23,355 38,456 216 215,318 360
IoT connections∗ 12.85 15.65 0.56 146.37 360
Per Capita GDP 45,652 17,390 19,329 120,408 360
Population Density 138.69 136.34 2.91 525.50 360
Inflation rate (in %) 1.94 2.14 -2.96 16.49 360
Trade (% of GDP) 103.48 63.60 26.29 408.36 360
Human Capital 3.32 0.35 2.21 3.89 360
Total mobile connections∗ 125.14 22.16 72.83 181.37 360
Fixed Broadband subscriptions∗ 30.07 8.22 9.21 46.65 360

Non-OECD Sample
Unemployment rate (in %) 6.81 5.24 0.11 28.47 710
Unemployment (in thousands) 1,827 5,340 2 37,112 710
Employment (in thousands) 33,100 105,267 164 762,101 710
Employment in Agriculture (in thousands) 11,519 37,452 1 278,797 710
Employment in Industry (in thousands) 7,797 29,214 38 230,629 710
Employment in Services (in thousands) 13,785 40,879 120 355,838 710
Working-age population (in thousands) 50,905 155,810 286 1,024,188 710
IoT connections∗ 2.65 4.91 0 85.51 710
Per Capita GDP 17,476 21,286 813 115,064 710
Population Density 371.25 1,231.98 2.60 8,219.10 710
Inflation rate (in %) 6.74 15.44 -25.96 350.00 710
Trade (% of GDP) 85.06 65.67 16.14 442.62 708
Human Capital 2.44 0.61 1.17 4.35 710
Total mobile connections∗ 108.76 39.71 9.68 202.10 710
Fixed Broadband subscriptions∗ 7.68 9.04 0 45.93 693

*Connections and subscriptions expressed per 100 inhabitants.
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B Main Results

Table B.1: Granger causality-type test by sample

Log Employment in sector:

(1) (2) (3) (4) (5)
UnemploymentR LogEmployment Agriculture Industry Services

Panel A: OECD sample

IoT100t−2 0.203∗∗ -0.000330 -0.000161 -0.00286 -8.94e-05
(0.0763) (0.000717) (0.00423) (0.00170) (0.000745)

IoT100t−1 -0.0786∗∗ 0.000637 0.000606 0.000865 0.000517
(0.0328) (0.000537) (0.00326) (0.00171) (0.000539)

IoT100t -0.00798 -5.86e-05 -0.00236 0.000535 0.000140
(0.0236) (0.000345) (0.00246) (0.000621) (0.000544)

IoT100t+1 -0.0254 0.000149 0.00275∗∗∗ 0.000338 -0.000117
(0.0203) (0.000240) (0.00101) (0.000360) (0.000234)

Constant 304.9∗∗∗ 3.671∗∗∗ 7.738∗∗ -2.400 3.433∗∗∗
(72.11) (0.959) (3.221) (1.422) (1.033)

Sample OECD OECD OECD OECD OECD
Number of countries 36 36 36 36 36
Controls Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Observations 252 252 252 252 252
R-squared 0.729 0.870 0.228 0.670 0.890
F-test (p-value) 0 0 5.98e-06 4.21e-10 0

Panel A: Non-OECD sample

IoT100t−2 -0.751 -1.12e-05 0.0731∗∗ -0.0110 -0.0115
(0.454) (0.0125) (0.0322) (0.0207) (0.00935)

IoT100t−1 0.675 -0.00217 -0.103∗ 0.00433 -0.00327
(0.580) (0.0217) (0.0571) (0.0324) (0.0178)

IoT100t -0.377∗ 0.00154 0.0291 0.00384 -0.00107
(0.226) (0.00831) (0.0216) (0.0123) (0.00785)

IoT100t+1 0.162∗ -0.000941 0.000572 -0.00415 0.00323
(0.0933) (0.00156) (0.00427) (0.00254) (0.00228)

Constant 89.62∗∗∗ 8.833∗∗∗ 5.965 4.273∗∗∗ 6.802∗∗∗
(19.92) (1.010) (3.646) (1.358) (1.002)

Sample Non-OECD Non-OECD Non-OECD Non-OECD Non-OECD
Number of countries 71 71 71 71 71
Controls Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Observations 489 489 489 489 489
R-squared 0.222 0.545 0.136 0.464 0.706
F-test (p-value) 0.000122 0 8.44e-10 0 0

Note: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1
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C Robustness

C1 Capital services measure estimation

In order to construct a measure of capital services that is comparable across countries, I

use two variables available in the Penn World Table version 10.0 (Feenstra et al., 2015),

which are computed based on national account estimates. The first is an index of Capital

services at constant 2017 national prices, which is equal to 1 in 2017 for all countries and

other years are relative to 2017, and therefore proxies for growth in capital services. The

second variable used is Capital stock at constant 2017 national prices in 2017US$. The

capital service measure is then constructed by taking, for each country, the benchmark

value for capital stock in 2017 and multiplying it by the capital services index, i.e. the

share of capital services in each year relative to 2017. A similar imputation is used, among

others, by Edquist et al. (2018). By construction, this measure of capital services is

equal to capital stock in 2017 for each country, and it implies that the share of capital

services relative to capital stock is not changing over time. This is appropriate, since

capital services are assumed to be in fixed proportion to capital stock (OECD, 2009).

Nevertheless, it is still a proxy.

C2 Countries for which the capital services measure is available

Angola; Argentina; Armenia; Australia; Austria; Bahrain; Belgium; Bolivia; Botswana;

Brazil; Bulgaria; Burkina Faso; Cameroon; Canada; Chile; China; Colombia; Costa

Rica; Cote d’Ivoire; Croatia; Cyprus; Czechia; Denmark; Dominican Republic; Ecuador;

Egypt; Estonia; Finland; France; Germany; Greece; Hong Kong; SAR China; Hungary;

Iceland; India; Indonesia; Iran; Ireland; Israel; Italy; Jamaica; Japan; Jordan; Kazakhstan;

Kenya; Korea; South; Kuwait; Kyrgyzstan; Latvia; Lithuania; Luxembourg; Malaysia;

Malta; Mauritius; Mexico; Moldova; Morocco; Mozambique; Namibia; Netherlands;

New Zealand; Niger; Nigeria; Norway; Paraguay; Peru; Philippines; Poland; Portugal;

Qatar; Romania; Russian Federation; Rwanda; Saudi Arabia; Senegal; Singapore; Slovakia;

Slovenia; South Africa; Spain; Sri Lanka; Sudan; Sweden; Switzerland; Tanzania; Thailand;

Tunisia; Turkey; Ukraine; United Kingdom; United States of America; Uruguay; Zambia;

Zimbabwe.
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C3 Empirical estimation

Table C.1: Robustness check, employment by sector controlling for capital services

Log Employment in sector:

Agriculture Industry Services

Panel A: Full sample

IoT100 0.00144 -0.00141* -0.000460
(0.00128) (0.000755) (0.000497)

Constant 6.602*** 2.840** 4.800***
(2.086) (1.236) (1.132)

Number of countries 94 94 94
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 930 930 930
R-squared 0.163 0.502 0.747
F-test (p-value) 0.000187 0 0

Panel B: OECD Countries

IoT100 0.000911 0.000104 0.000550***
(0.000809) (0.000265) (0.000184)

Constant 3.230 -1.907 3.161***
(2.735) (1.421) (0.884)

Number of countries 36 36 36
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
R-squared 0.270 0.687 0.901
F-test (p-value) 7.02e-06 0 0

Panel C: Non-OECD Countries

IoT100 -3.48e-05 -0.00316*** -0.000805
(0.00227) (0.00117) (0.00124)

Constant 6.507** 3.451** 4.900***
(2.811) (1.484) (1.437)

Number of countries 58 58 58
Controls Yes Yes Yes
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 570 570 570
R-squared 0.175 0.528 0.748
F-test (p-value) 0.000936 0 0

Note: Cluster Robust standard errors in parentheses. ∗∗∗p<0.01,∗∗ p<0.05,∗ p<0.1
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D Further Analysis

Table D.1: System GMM estimation, full sample

(1) (2) (3) (4)
LogEmployment LogAgricultureEmp LogIndustryEmp LogServicesEmp

LogEmploymentt−1 0.987∗∗∗
(0.00411)

LogAgricultureEmpt−1 0.980∗∗∗
(0.00881)

LogIndustryEmpt−1 0.985∗∗∗
(0.00574)

LogServicesEmpt−1 0.987∗∗∗
(0.00425)

IoT100 0.000108 -8.66e-05 1.72e-05 9.91e-05
(9.57e-05) (0.000276) (0.000144) (0.000119)

Constant 0.128∗∗∗ 0.388∗∗∗ 0.148∗∗∗ 0.176∗∗∗
(0.0430) (0.143) (0.0492) (0.0420)

Observations 947 947 947 947
Number of countries 107 107 107 107
Controls Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AR(1) 0.000790 0.0146 0.00276 1.51e-06
AR(2) 0.0170 0.0776 0.796 0.0290
Hansen 0.529 0.504 0.413 0.333
Number of Instruments 105 105 105 105
Notes : Two-step system GMM estimation where the lag of the dependent variable and the endogenous
regressor are instrumented with lags 2 and longer for the transformed equation and lag 1 for the levels
equation. AR(1), AR(2) and Hansen report p-values for the respective tests. Finite sample correction
applied to all estimations, Windmeijer-corrected cluster–robust errors in parentheses. Estimation run
with the command ‘xtabond2’ in Stata. *** p<0.01, ** p<0.05, * p<0.1.

Table D.2: System GMM estimation, non-OECD sample

(1) (2) (3) (4)
LogEmployment LogAgricultureEmp LogIndustryEmp LogServicesEmp

LogEmploymentt−1 0.985∗∗∗
(0.0215)

LogAgricultureEmpt−1 0.932∗∗∗
(0.0342)

LogIndustryEmpt−1 0.981∗∗∗
(0.0348)

LogServicesEmpt−1 0.974∗∗∗
(0.0149)

IoT100 -0.000183 0.000134 -0.000507 -0.000105
(0.000821) (0.00151) (0.000786) (0.000832)

Constant 0.0880 1.195∗∗ 0.297 0.287∗
(0.276) (0.578) (0.291) (0.149)

Observations 623 623 623 623
Number of countries 71 71 71 71
Controls Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AR(1) 0.00369 0.0839 0.0201 1.32e-05
AR(2) 0.00382 0.204 0.831 0.0186
Hansen 0.936 0.167 0.536 0.939
Number of Instruments 35 35 35 35
Notes : Two-step system GMM estimation where the lag of the dependent variable and the endogenous
regressor are instrumented with lags 2 and longer for the transformed equation and lag 1 for the levels
equation, and instruments are collapsed. AR(1), AR(2) and Hansen report p-values for the respective
tests. Finite sample correction applied to all estimations, Windmeijer-corrected cluster–robust errors in
parentheses. Estimation run with the command ‘xtabond2’ in Stata. *** p<0.01, ** p<0.05, * p<0.1.
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