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Abstract

Transaction costs serve as an obstacle to competitive market exchanges in rural
and remote areas around the world. Improvements to transportation infras-
tructure are hypothesized to lower these costs and help alleviate poverty among
smallholder farmers. Yet, few empirical studies estimate the effect of improved
rural infrastructure on agricultural output, especially in the sub-Saharan con-
text. This thesis investigates whether rural road upgrades in northern Mozam-
bique have any short-term effects on agricultural output; specifically, we evaluate
the early effects of an ongoing World Bank project. By employing remote sens-
ing and machine learning methods, we identify rural road upgrades that took
place between 2018 and 2021. Using a differences-in-differences approach, we
find that areas in immediate proximity to roads that received an upgrade did
not experience changes in agricultural output, compared to areas that did not
receive an upgrade. We restrict the sample and find a significant increase in
agricultural output, although not robust. Future research should consider the
medium- and long-term impact of rural road upgrades for the complete picture
to emerge. While sole dependence on remote sensing data remains a challenge in
economics, it is a promising avenue for future research, particularly in contexts
where comprehensive survey data is lacking.
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1 Introduction

Good roads, canals, and navigable rivers, by diminishing the expense of
carriage, put the remote parts of the country more nearly upon a level
with those in the neighbourhood of the town. They are upon that
account the greatest of all improvements.

Adam Smith, The Wealth of Nations

Investments in transport infrastructure are important for economic development.
Historically, the introduction of large transportation networks in Western Europe,
Japan and the United States, happened simultaneously as these regions and coun-
tries experienced periods of rapid economic development (Banerjee et al. 2020).
Certainly, the direction of causality is difficult to discern, mainly due to endo-
geneity in infrastructure placement. Nevertheless, the topic warrants attention, as
low-income countries across the globe contemplate strategies to alleviate poverty
and increase economic output. While the idea of providing people with the oppor-
tunity to exit subsistence agriculture via increased agricultural commercialization
has gained traction as a means to this end (see e.g. World Bank n.d.), rural resi-
dents of the world face obstacles in the form of transportation costs to participate
in market exchanges (United Nations 2014; Agrilinks 2022). At the same time, tra-
ditional subsistence agriculture plays an important role in some communities, and
can be sustainable and climate friendly (United Nations 2022b).

Rural residents in regions that are less economically developed face limited access to
public services, goods and labor markets. In addition to increasing road safety, it is
commonly understood that rural road upgrades bring about various access-related
benefits to rural residents (Iimi et al. 2015, p. 5). Not only do rural road upgrades
increase market access, but also access to healthcare, finance, education, and other
important institutions (Yoshino et al. 2018, p. 191). Since 1996, Mozambique has
been one of the fastest growing countries in sub-Saharan Africa (Utrikespolitiska
institutet [The Swedish Institute of International Affairs] 2022). The discovery of
gas and coal increased foreign attention in recent years, and foreign investments in
mining and industries contributed to the country’s rapid economic growth (ibid.).
However, investments in transport infrastructure have been lagging, or at least they
have not accommodated foreign investors’ demands (ibid.). If sustained, such an
infrastructure gap could become a substantial hindrance to the country’s contin-
ued economic growth. Although the country has experienced economic growth,
the distribution of wealth has become more unequal, job opportunities have not
flourished, and other sectors of the economy have not seen the same development
(ibid.). One such sector is the agricultural sector, employing 80% of the population
and comprising 25% of GDP (ibid.; USAID 2022).
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The Nampula and Zambézia provinces of the northern1 Mozambique, jointly make
up one of the poorest2 regions in the world (the northern and rural populations
comprise the majority of the poor; see Utrikespolitiska institutet [The Swedish
Institute of International Affairs] 2022). Agricultural productivity in this region
has proven to be highly vulnerable to reoccurring climate shocks, exacerbating rural
poverty (Baez et al. 2019). The roads in this region are primarily dirt roads. As such,
road upgrades take the form of leveling or paving. In 2018, the World Bank approved
a grant of 150 million USD to the government of Mozambique to finance rural road
upgrades (hereafter referred to as "the World Bank project") in the Nampula and
Zambézia provinces. The combined population in the two provinces amounts to
about 11.75 million people in 2020, according to Statista (2021). The investment was
motivated with a theory that improved roads will increase market access, stimulate
agricultural intensification, and ultimately raise incomes for subsistence farmers,
lifting them out of poverty (World Bank, n.d.). There are a number of studies
investigating rural market accessibility, market participation and spatial economic
distribution in sub-Saharan Africa theoretically or empirically (see e.g. Aggarwal
et al. 2018; Olwande et al. 2015 Mather et al. 2013), although few empirical studies
consider the event of improved rural infrastructure and the economic implications
(Jedwab and Storeygard 2021 do this, but not only for explicitly rural contexts;
Casaburi et al. 2013 do this in Sierra Leone).

By leveraging remote sensing, our research paper aims to overcome the high costs
of data collection in less accessible regions. We contribute to the field by furthering
the usage of emerging techniques to collect data for quantitative assessment such
that other researchers may learn from our experiences, and by constructing a road
upgrade detection algorithm. Our models are tailored to publicly available data
sources and can be applied to any region in the world, which is also a contribution
on our side. Furthermore, we tap into an existing literature gap as we attempt
to estimate the effect of rural road upgrades on local agricultural intensification in
Mozambique, where agricultural intensification is defined as in increase in agricul-
tural output. Do rural road upgrades affect smallholder agricultural output? We
limit our study by asking the following research question: do rural road upgrades,
within the frames of the World Bank project, lead to increased agricultural out-
put in the short term? We measure agricultural output at the grid cell3 level and
only consider areas located in immediate proximity to the roads participating in the
World Bank project. Rural road upgrades are identified on a yearly basis, and our
years of study are 2018-2022.

In order to study the short term effects of rural road upgrades on agricultural output,
we propose an approach that uses panel data from 2018 to 2022 on the changes in

1Sometimes, Zambézia is referred to as a central province, see e.g. section 6.4.
2Both multidimensional and monetary poverty is high in Mozambique (United Nations 2021).
3We construct our own grid cells by considering areas adjacent to roads, that are large enough

to theoretically capture agricultural land.
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the normalized difference vegetation index (NDVI, defined in section 5.3) as well
as associated average precipitation in a difference-in-differences framework. More
specifically, we create a measure of agricultural NDVI, defined as the difference in
NDVI between the growing and planting season (see section 6.4). Exploiting the
World Bank project, we utilize information on all the roads participating in the
project across the provinces of Nampula and Zambézia. This allows us to construct
three sets of (overlapping) treatment and control groups, where our leveraging of
roads’ individual prioritization score and status as "selected" or "non-selected" for an
upgrade enables us to investigate observations from theoretically more comparable
groups in two restricted samples. Our findings differ between the primary sample
that encompasses all upgraded and non-upgraded roads, and the secondary samples
that restrict the treatment and control groups according to "selected for upgrade"
status and prioritization score. In essence, our findings from the main regressions
using the primary sample suggest that rural road upgrades cause no short-term
effects on agricultural NDVI, whereas our findings from the main regressions using
the secondary samples display economically as well as statistically significant short-
term effects on agricultural NDVI from rural road upgrades. The former finding
is robust to our sensitivity analysis, while the latter is not – as such, the findings
from our three different (sub)samples corroborate each other. All in all, our results
suggest that there are no short-term effects on agricultural NDVI from rural road
upgrades in Nampula and Zambézia. While it is possible that our study is set out
too early for us to detect any agricultural output effects, we also discuss changing
identification strategy such that the parallel trends assumption may be cast aside.

Our thesis is organized as follows: section 2 presents a review of previous research
and literature, section 3 introduces some background information about smallholder
farmers in Mozambique, section 4 presents the theoretical framework, section 5
describes our data collection process. Section 6 details our econometric specification
and considerations, section 7 presents descriptive statistics and our findings, section
8 discusses the interpretation of our results, and section 9 concludes.
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2 Previous Research

While the potential effects of rural road upgrades are vast, they are highly depen-
dent on contextual factors. For example, in terms of economic outcomes the Iimi
et al. (2015, p. 2) specifically points out that the effects of road upgrades on rural
firms’ profitability can depend on the level of motorization. Despite broad support
for the claim that road infrastructure plays an important role in economic develop-
ment, empirical evidence does not conclusively show this; just as economic benefits
may manifest themselves in different ways depending on context, they may not ma-
terialize at all (Peng and Chen 2021). Arguably, economic effects brought about by
(rural) road upgrades are heterogeneous with respect to the particular context at
hand.

The following review of previous literature will first present findings of the role of
transport infrastructure in economic development, and subsequently a deeper review
of the rural accessibility literature and the specificity of the Mozambican context.
Finally, it concludes by identifying an existing literature gap.

2.1 Transport infrastructure in economic development

As Glaeser and Kohlhase (2004) and Redding (2010) suggest, a “new regional eco-
nomics” or “new economic geography” literature emerged with Krugman’s seminal
1991 JPE paper (Krugman 1991). Maintaining traditional firm location literature
and central place theory, new regional economic models are underpinned by the
theoretical assumption of transportation costs (Krugman assume “iceberg costs”,
which build on previous work by Samuelson; see ibid., p. 489), such that transporta-
tion costs play a central role in understanding the benefits of proximity in economic
exchanges (Glaeser and Kohlhase 2004). In this emerging literature, understanding
both regional and urban development becomes a question of understanding shifting
transportation costs for people and for goods.

Important empirical work has focused on studying the economic development ef-
fects of major transportation network introductions in countries such as the United
States (Chandra and Thompson 2000; Donaldson and Hornbeck 2016; Michaels
2008), China (Banerjee et al. 2020; Baum-Snow et al. 2020; Faber 2014, India
(Alder 2019; Donaldson 2018), and Sweden (Lindgren et al. 2021). This research
has reached various conclusions. Chandra and Thompson (2000) operate from the
assumption that investments in infrastructure (highways specifically) may encour-
age specific industries of the region to gain a competitive advantage over other
regions and thereby increase these specific industries’ performances (ibid., p. 461).
A new highway is envisioned as bringing about reductions in transportation costs
(ibid., p. 463). They do find that highway interstate construction in the United
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States positively affects earnings in some industries in which transportation costs
decline, and that the effect is ambiguous for other industries (Chandra and Thomp-
son 2000, pp. 471–479). The authors also show that highways can change the spatial
allocation of economic activity by increasing it in counties where they are built, and
drawing it from adjacent counties where they do not pass through (ibid., p. 487).
Michaels (2008) tests the implications of a Heckscher-Ohlin model of trade on the
construction of interstate highways in the United States. The author finds that
trade brought about by highways in rural counties increased the relative demand
for the abundant factor of production, skilled workers, and reduced it where skill
was more scarce – which is in line with predictions of the model (ibid.). Banerjee
et al. (2020) study the impact of transportation infrastructure in regional economic
outcomes in China, and depart from the assumption that distance influences the
mobility of goods and factors of production. These assumptions are of particular
importance in the Chinese context, as in the post-1976 era, mobility of unskilled
labor was largely restricted in the country and mobility of rural capital was low
(ibid., pp. 8–9). The authors find that transportation infrastructure increased GDP
levels of sectors, but did not contribute to GDP growth, consistent with their model
(ibid.). In his 2019 study, Alder shows that the improved highway infrastructure
between major economic cities in India increased (albeit unequally among districts)
aggregate economic output (as measured by night light density) via increased mar-
ket access, where the Eaton and Kortum (2002) inspired Ricardian trade model
prediction of the estimate is not rejected by the empirical analysis (Alder 2019,
pp. 22–28). Donaldson and Hornbeck (2016) find that the provision of railroads
in the United States increased agricultural land value, consistent with their Eaton
and Kortum (2002) inspired model. Donaldson (2018) finds that the provision of
railroads in India decreased transaction costs and enabled regions to exploit a Ricar-
dian comparative advantage, increasing real income and also supporting the Eaton
and Kortum model. This may be juxtaposed to Faber (2014) who finds that Chi-
nese highway construction reduces industrial output in peripheral regions, which
corroborates the notion of a core-peripheral integration of trade (for the model,
see Krugman 1991). Baum-Snow et al. (2020) borrow from the New Economic
Geography (NEG) literature and from Eaton and Kortum (2002) inspired models
(such as the one used in Donaldson and Hornbeck 2016) alike in the formulation of
market access index, the key difference in this case being that the former assumes
limited population mobility whereas the latter assumes perfect population mobility
(Baum-Snow et al. 2020). The authors suggest that increased accessibility by road
infrastructure in China may increase prefectural specialization, as well as create a
distinctive pattern of economic “winners and losers” in more urban versus hinterland
prefectures (ibid.). They additionally find that increased domestic market access
has a negative effect on prefecture GDP and wages, for which they cannot draw sup-
port from an Eaton and Kortum (2002) nor NEG model (Baum-Snow et al. 2020).
Finally, a study by Lindgren et al. (2021) looks at the causal effect of transport
infrastructure on economic development in Sweden using historical data. The au-
thors find very strong effects on local economic development from the introduction
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of railways, with real income sharply increasing and population and agricultural
land value also increasing but in much smaller magnitude (Lindgren et al. 2021,
pp. 21–22).

The survey by Redding and Turner (2015) advances that the empirical body on the
role of transportation costs in spatial economic development can be summarized
quite readily. Perhaps unsurprisingly, they argue that the type of transportation
mode matters for the particular outcome variable of interest, that different trans-
portation modes are not interchangeable, and that institutions matter (ibid., p. 3).

A prominent feature in this field of study is the endogeneity issue of estimating
effects of transportation infrastructure on economic development. The challenge
posed by the fact that infrastructure placement is not random is oftentimes dis-
cussed (see e.g. Banerjee et al. 2020; Lindgren et al. 2021), meaning that much
emphasis is put on identifying an appropriate identification strategy. In fact, Lind-
gren et al. argue that overarching conclusions about railway infrastructure and
economic development are premature, as much research has used the two-way fixed
effects estimator that can be subject to substantial bias in cases of heterogeneity
in treatment (2021). Specifically, the studies by Donaldson (2018) and Donaldson
and Hornbeck (2016) are not robust to heterogeneity in treatment, according to
Lindgren et al. (2021).

2.2 Rural accessibility

Moving on to transport infrastructure in an explicitly rural context, there is a
growing body of research that estimates effects on economic development for ru-
ral households following rural access improvements (see e.g. Asher and Novosad
2020; Shamdasani 2021; Yoshino et al. 2018). This section starts by introducing
studies that have looked at rural accessibility, as well as the distribution of spatial
economic activity. Subsequently, we introduce different ways that agricultural deci-
sions is affected by increased rural accessibility. Firstly, there is empirical evidence
of shifting agricultural decisions as a consequence of increased accessibility, where
farming may become increasingly commercial, and/or modern-day input uptake
may increase. Secondly, there is empirical evidence of a reallocation of labor out of
agriculture and towards other sectors of employment for rural residents following
increased rural access. The reallocation of labor out of agriculture may take place
simultaneously as agricultural practices shift towards becoming more commercial,
as shown in Shamdasani (2021). After this, the section presents a study arguing
that reducing transaction costs alone may not be enough for smallholder farmers to
transition out of poverty, which is supported by the studies presented in section 2.3.
We additionally present two studies that consider (rural) road improvements and
economic development. Finally, the section presents a study that brings yet another
perspective on structural transformation in Sub-Saharan Africa, that diligently uses
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remote sensing techniques to arrive at its conclusion.

While the estimated effects from road upgrades differ across studies, the common
denominator among these is to depart from the assumption that road upgrades
reduce transportation costs, just as theorized in the “new regional economics” liter-
ature (for instance, see Aggarwal et al. 2018; Asher and Novosad 2020; Shamdasani
2021; Yoshino et al. 2018). Researchers have also shown effort to estimate this
mechanism. Aggarwal et al. (2018) quantify transportation costs in rural Tanzania
using a quantitative model and a combination of distance-to-market calculations,
survey data collected from transportation operators, and enumerator documented
road quality and travel times. Indeed, the quality of road is important for deter-
mining spatial access, and as the authors point out, little of the road network in
Tanzania is paved (ibid., pp. 5–6). Their model, calibrated to northern Tanzania,
suggests that there is an economically significant spatial heterogeneity in input and
output prices faced by farmers, and that farmers with better market access are
more likely to use fertilizer and sell maize than farmers with less favorable market
access (ibid., pp. 2, 11–13). Transportation costs are central in the 2003 study by
Fafchamps and Shilpi, where authors highlight the relationship between the extent
of geographical isolation and spatial division of labor in Nepal using a von Thünen
inspired model4. They find that households in proximity to cities (and markets)
are increasingly likely to be engaged in non-farm work, whereas the most remote
households practice subsistence agriculture for crops consumption and diversify in-
come by selling livestock (Fafchamps and Shilpi 2003, pp. 24–25). Households in
between these “extremes” engage in agricultural production for the market; per-
ishable agricultural goods are produced closer to the market in question, whereas
storable goods are produced further away (ibid., pp. 24–25). While their study does
not look at the event of increased rural accessibility, it informs us on the role of
households within the local economy, as a function of their proximity to the city.
Nepal is an interesting case study, as rural accessibility can be highly restricted,
leading to isolation from urban centers for some – residents of the Himalaya, for
instance (ibid., p. 24).

Suri (2011) suggests that hybrid seed adoption is lowest among the Kenyan farmers
who face the highest expected gross returns from acquiring hybrid seeds, because net
returns are not positive. This is because there is heterogeneity in costs of purchasing
the seeds, and high cost is correlated with high gross return (ibid.). High costs are
down to poor infrastructure, although Suri focuses on access to inputs using various
distance variables (as opposed to using travel time and road quality) (ibid., pp. 200–
202). The introduction of spatial heterogeneity as an explanation for hybrid seed
adoption stands in contrast to some of the leading preceding work on the topic, that

4von Thünen specifically argued that agricultural goods with high transportation costs would
be produced close to the city, whereas agricultural goods with lower transportation costs would be
produced further away. As such, economic activity would display concentric circles around cities
(Fafchamps and Shilpi 2003).
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had focused on treating the decision to adopt the input in a learning framework (Suri
2011, p. 163). Of course, learning about the usage of hybrid seeds may be facilitated
by access to markets and information exchanges.

There is empirical evidence to suggest that road upgrades improve the economic
conditions of rural households. In their study of feeder road improvement in Papua
New Guinea edited by Yoshino et al. (2018), the authors employ correlated random
effect estimates to a previous study by Gibson and Rozelle that used the year of
entry by the national highway network into a region as an instrument for travel
times on feeder roads to the nearest highway (ibid., p. 215: see the authors’ presen-
tation of Gibson and Rozelle, 2003). It is shown that road sealing increases average
consumption of households by 0.55% (ibid., pp. 217–218). They furthermore sug-
gest that road sealing has a positive effect on households’ market participation and
transformation towards commercial farming activities, although the estimates are
not statistically significant (ibid., pp. 219–221). Jacoby (2000) finds that the pro-
vision of access to markets by rural roads in Nepal would bring about substantial
benefits, with much of these going to poor households, although with persisting
income inequality (ibid., pp. 735–736). The author views agricultural land as an
asset: its net present value is then the discounted stream of maximal profits ob-
tained from cultivation (ibid., pp. 714–716). Where the asset is located such that
transportation costs to markets are lower (measured in hours of travel time), this
is reflected in its value (ibid.). The data indicates a negative relationship between
input use (chemical fertilizer) and distance to market, which means that there is a
relationship between access and the intensive margin of cultivation (ibid., p. 724).
Using ordinary least squares and a semiparametric instrumental variable set-up,
Jacoby shows that travel-time to markets is negatively associated with agricultural
land value (ibid., pp. 728–729). One caveat is that the model assumes prices across
markets are fixed; indeed, this is a plausible assumption where the representative ru-
ral village is small compared to markets, but perhaps not if the general equilibrium
is expected to shift following a rural road access program. The findings by Yoshino
et al. (2018) and Jacoby (2000) suggest that road upgrades may mediate positive
rural household market participation and increase agricultural productivity.

Some empirical evidence suggests that increasing rural access leads to a realloca-
tion of labor out of agriculture, due to increased labor mobility: the possibility
for rural residents to participate in labor markets located in more densely popu-
lated areas, such as towns (see e.g. Shamdasani 2021, p. 4). This phenomenon is
recorded in Shamdasani (ibid., pp. 8–10) and Asher and Novosad (2020, pp. 807–
818), who study the same road construction program in India, namely the Pradhan
Mantri Gram Sadak Yojana (PMGSY). Shamdasani (2021) employs a differences-
in-differences strategy and exploits the staggered implementation of the PMGSY
to identify causal impacts of road construction on agricultural decisions. She finds
evidence of diverging effects of treatment along the spatial dimension, where house-
holds in less remote areas and within commuting distance to towns see an increased
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exit from agriculture, compared to more remote households that do not see an in-
creased exit from agriculture (Shamdasani 2021, pp. 8–10). Asher and Novosad
(2020) use a regression discontinuity approach that takes advantage of threshold
levels on village population for enrolling in the road construction program to study
economic outcomes of the PMGSY. Interestingly, the authors use remote sensing
data to proxy agricultural production (vegetation measures NDVI and EVI) on vil-
lage level (Asher and Novosad 2020, p. 803). They find that rural road construction
increases the provision of transportation services, and reallocation of labor out of
agriculture (ibid., pp. 809–813). The authors suggest that the effect is strongest
for rural residents holding no or little agricultural land, although this heterogeneity
cannot be justified statistically (ibid., p. 803). Furthermore, the authors conclude
that they find no substantial impact on agricultural yields (agricultural production)
for villages that receive new roads – standard errors of the coefficient of interest are
large compared to the estimate itself (ibid., p. 815).

Moneke (2020) studies the impact of “big push” infrastructure investments, in
this case the extension of electrification and improvements in the road network
in Ethiopia. The author estimates the separate effects of road improvements on
sectoral employment and compares the results to the estimated effects from the
coupled investments (ibid.). It is an approach that acknowledges that there might
be interactions (or complementarities) between different types of infrastructure in-
vestments, and interactions’ potential importance in economic development. To
overcome the endogeneity issue, Moneke uses an instrumental variable design and
finds that road infrastructure improvements only has a statistically and economically
significant effect on manufacturing employment and service employment shares, al-
beit in different directions (positive for services, negative for manufacturing), while
the coefficient on employment in agriculture is statistically insignificant on conven-
tional levels but negative (ibid., pp. 30, 62). When estimating the effect of the
interaction between road improvements and extension of electrification on sectoral
employment, the author finds a large, negative impact on agricultural employment,
statistically significant at the 10% level (ibid., p. 62).

Taken together, these studies point towards a reallocation of labor out of agricul-
ture as an effect of improved access to labor markets, or a combination of improved
access and other infrastructural developments. Still, Shamdasani (2021) finds that
improved road connectivity in a statistically significant way increases households’
adoption of modern agricultural inputs such as hybrid seeds, leads to increases in la-
bor hiring at farms, and increased market participation among rural farmers (ibid.,
pp. 11–12). Indeed, if rural farmers are credit constrained, sending a family member
to work in the city could very well facilitate the household’s agricultural production.
At the same time, Asher and Novosad (2020) recorded a small and statistically in-
significant effect on agricultural output in their study of the PMGSY, which could
suggest that agricultural production was not altered to a great extent even as agri-
cultural decisions became more commercial. Still, less costly transportation of labor
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and goods may channel both the reallocation of labor out of agriculture and the
commercialization of agricultural activities, in a simultaneous manner. Finally, we
note that reallocation of labor out of agriculture coupled with increased uptake of
modern-day inputs in the agricultural sector, are patterns that could be observed in
structural transformation, where the agricultural sector increases its productivity
but decreases in terms of importance for employment (see e.g. Campenhout 2015,
p. 1), although none of the above studies claim to show such a transformation.

Olwande et al. (2015) use panel data to estimate output supply functions for small-
holder farmers in Kenya, a country where, similarly to Mozambique, smallholder
farmers make up a large share of the population and produce a large part of to-
tal output; 75% of agricultural output in Kenya is produced on 0.2.-3 hectares of
farmland (ibid., p. 22). Farming is generally characterized by low productivity and
input usage, and can be described as “semi-subsistence” (ibid., p. 22), which means
that the features of Kenyan agriculture as described in Olwande shares traits with
Mozambican smallholder agriculture (see section 3). Using panel data and Cragg’s
1971 double hurdle model, the authors study market participation and quantity
sold of maize, kale and milk (ibid., p. 28). Interesting to us, are their findings that
land holdings are positively associated with the probability of selling maize, and
that increases in land holdings are associated with increases in quantities sold of
maize, milk and kale (ibid., p. 28). Also interesting is their finding that cumula-
tive adoption rates of hybrid seeds and fertilizer are (“strongly”) associated with
increases in market participation (ibid., p. 28). Precipitation matters too for maize
marketing decisions; the highest quintile in maize market participation as well as
quantity sold live in areas of high precipitation, compared to the lowest quantile
(ibid., pp. 30–31). With policy responses in mind, Olwande et al. advance that re-
ducing transaction costs for smallholder farmers is not enough to encourage market
participation as a mechanism to transition out of poverty, since landholdings (as
well as owning assets and technology) are important determinants of market partic-
ipation (ibid., p. 31). Indeed, low productivity might persist in absence of coupled
interventions, and income-boosting effects (such as increased commercialization of
agriculture) could be prone to be unevenly distributed among the ones who own
more and less of land, assets, and technology.

Jedwab and Storeygard study road upgrades over five decades, 1960-2010, in 39
sub-Saharan countries (2021). More specifically, the authors consider the effect
from road upgrades on population growth in cities using an instrumental variables
approach (Jedwab and Storeygard 2021). Their estimates suggest that on average,
over the thirty years after a change in market access, a 10% increase in market
access increases city population by 0.8-1.3% (ibid., p. 21). Their road dataset
is constructed by drawing from the United States Government’s Digital Charts
of the World and Michelin Road maps (with the maps indicating road categories
such as "highways", "paved roads", "improved roads" and "dirt roads"). Rural-urban
migration is suggested to be one of the main drivers of the found population increase
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(Jedwab and Storeygard 2021). The authors also consider whether roads have an
impact on economic activity, proxied by night light density, and find that while
population effects take time to manifest, positive effects on night lights are quicker
and arrive in the first decade after an improvement in market access (ibid., pp. 1,
27–28). Indeed, their study suggests that roads matter for city population and
economic activity, in particular the latter. Another study that looks at the effect
of roads on economic development, is Casaburi et al., who study the effects of a
rural road upgrade program in Sierra Leone on market prices of staple crops (2013).
Their findings, obtained via a regression discontinuity design, suggest that rural
road upgrades decrease transportation costs and decrease the market price of crops
in rural markets, with the strongest price decreases materializing furthest away from
the city (Casaburi et al. 2013, pp. 23–26). Their interpretation is that rural road
upgrades mainly facilitated access to markets for producers, i.e. farmers (ibid.,
p. 23).

Finally, Peng and Chen (2021) study the impact of increased market access (using
travel time) in Zambia on air pollution, night time light and green space. The
authors train an AI to detect the condition of roads ("no road", "dirt road", and
"paved road"), and to detect changes in road condition (road improvements) be-
tween the years 2009 and 2019 (ibid., pp. 11–12). They also use an AI to detect
built-up (new buildings) (ibid., pp. 9–10). The authors furthermore use aerosol op-
tical depth (AOD) measures to detect air pollution and NDVI measures to detect
green space (ibid., pp. 9–10). Indeed, Peng and Chen pioneer the usage of remote
sensing techniques and AI methods to obtain data for econometric analysis. The
authors find that increased market access does not have an impact on income (mea-
sured by night light density) except for in primate cities where it decreases slightly,
and they interestingly show that increased market access increases built-up in ur-
ban areas, leads to increases in air pollution and to increases in deforestation (ibid.,
pp. 28–31). This leads to their conclusion that increased market access may en-
courage migration and urbanization without the provision of sufficient employment
opportunities within urbanized areas, much in line with the “urbanization with-
out growth” phenomenon that has been studied in Sub-Saharan Africa (ibid., p. 1;
see Vernon Henderson and Kriticos 2018, for urbanization in sub-Saharan Africa).
Peng and Chen mask out cropland using Global Land Cover 2009 data from the
European Space Agency, and then isolate the NDVI differences to areas classified
as forests or non-crop land, which leads to their conclusion that increased market
access exacerbates deforestation in areas that are not suitable for crops (Peng and
Chen 2021, p. 22).

The findings by Peng and Chen support the features described in the “urbanization
without growth” literature, namely urbanization in spite of a lack of the traditional
notions of “push” and “pull” factors. If indeed such dynamics are at work, it is
not evident that allocation of labor out of agriculture as a consequence of improved
rural market access, for instance, necessitates urban employment opportunities. In
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fact, urbanization without growth rather suggests that an allocation of labor out
of agriculture could happen in spite of better employment opportunities. Whereas
rural road upgrades could provide opportunities to improve agricultural productivity
and production as well as to reach better labor markets, they could do neither. As
such, it is far from evident that smallholder farmers face a choice between whether
to commercialize their agricultural practices versus whether to look for employment
in the city, after rural roads have been upgraded. Nonetheless, migration to the city
could occur even if employment opportunities are not readily provided.

2.3 Studies of rural economic development set in Mozam-
bique

As suggested by previous research, increased rural accessibility may play an im-
portant role in increasing rural economic development. Transportation costs and
market access appear to matter substantially for the spatial distribution of labor
and the spatial economic activity. However, they are not the only factors that
matter. Research by Mather et al. (2013) set out on Kenya, Zambia, and Mozam-
bique, shows that investments that raise land-access and farm-level productivity are
important too and might need to be coupled with investments in transportation in-
frastructure. The authors specifically argue that for Mozambique, it is questionable
whether smallholder maize sales will increase unless these other investments are
realized (ibid., p. 264). For instance, the authors discuss targeted recommendations
about optimal input use and dosage along with public efforts to eliminate "disease
constraints" to animal traction (ibid., p. 262). A similar argument, that transporta-
tion infrastructure improvements are not enough, is advanced by Boughton et al.
(2007), who examine the relationship between asset holdings and market participa-
tion in Mozambique. Although Boughton et al. do not claim to estimate a causal
relationship, they show that households holding more assets, such as land and live-
stock, are more likely to participate in the crop market (ibid., p. 66). While the
distance to the nearest paved road is positively correlated with cash crop market
participation, household assets are even more so (ibid., pp. 54–55). In contrast,
the correlation between the distance to the nearest paved road and maize market
participation is statistically weaker and economically less meaningful (ibid., pp. 54–
55). The authors’ interpretation of their probit and OLS regressions is that not
all households afford to participate in the market (ibid., p. 36). This is echoed in
Barrett (2008), who suggests that substantial barriers to entry exist in staple food
grain markets across eastern and southern Africa.

Heltberg and Tarp (2002) study farmer’s market participation in Mozambique.
They theorize that subsistence farming keeps transaction costs low and mitigates the
risk of fluctuating food prices – an insurance that can be achieved at the expense of
lower output and sales volume (ibid., pp. 107–108). Heltberg and Tarp identify sev-
eral obstacles to smallholders’ market engagement, including substantial transaction
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costs, lack of agricultural assets, and presence of a risky, low-yielding environment
(Heltberg and Tarp 2002, p. 122). Chiovelli et al. (2018) estimate the effect of dem-
ining on economic activity in Mozambique. The authors use night light density as a
proxy for economic activity and find the effect to be heterogeneous between urban
and rural localities, suggesting that the economic payoffs for urban localities are
greater than that for their rural and remote counterparts (ibid., pp. 24–25). One
caveat with the study is that night lights as a proxy for economic activity might
not be reliable in rural contexts (Yoshino et al. 2018, p. 208). Possibly, if there are
positive effects from increased transportation access on economic activity also for
the rural population, this might not be captured by night lights data.

Taking these studies together, previous research set in Mozambique indicates that
there are reasons to question improvements in (rural) transportation infrastructure
to mediate households’ transition out of poverty. In short, farmers face several ob-
stacles that hinder them from participating in market exchanges, and transportation
costs are as such not the only one.

2.4 The literature gap

Remote sensing data and tools are becoming increasingly available, and there is a
growing literature looking to reap the benefits of less costly data collection and (po-
tentially) more accurate data. At the end of Yoshino et al. (ibid.), one is prompted
to contemplate the usage of publicly available satellite imagery for ground-level de-
velopments in road networks (p. 230-231). The main advantage of publicly available
satellite imagery is the availability, whereas the resolution is typically lower than
that of commercial satellite imagery.

This paper contributes to existing literature by proposing a new way to leverage
publicly available satellite imagery for econometric analyses, potentially opening
up for new opportunities for economic research – especially in regions of the world
where other data is expensive or unavailable. To our best knowledge, there is
no other paper in this field that detects the timing of rural road upgrades, using
publicly available satellite imagery, and shares the data generating algorithm with
fellow researchers.

Another significant contribution of this paper is the furthering of our understanding
of the impact of rural road upgrades on agricultural output in Mozambique. Most
relevant previous literature was published over a decade ago, and answered different
research questions; while the papers set in Mozambique touched upon different
access-related effects on local economic development, they did so without estimating
or controlling for the effect of road upgrades. One potential reason for this is
that prior to this paper there has not existed any accurate, large-scale data of the
completion of rural road upgrades. With the data of road upgrades now available,
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this paper directly estimates the impact of rural road upgrades on agricultural
output. By leveraging remote sensing and machine learning methods, we estimate
agricultural effects at scale.

3 Background: Smallholder Farmers in Mozam-
bique

This section attempts to describe the economic realities that smallholder farmers in
Mozambique face. We are greatly indebted to the Mozambique CGAP Smallholder
Household Survey Report 2016, from which we draw most of the qualitative data
reproduced in this section. It should be noted that the CPAG survey encompasses
smallholder households throughout Mozambique, i.e. it attempts to capture data
about Mozambican smallholder farmers in general and it does not contain geo-coded
data. As such, there may be important heterogeneity in answers from farmers in
different parts of the country that does not surface in the data. Nevertheless, we use
the CGAP survey as a proxy for understanding the economic realities of smallholder
farmers of Nampula and Zambézia.

Agriculture is a vital part of the economy of Mozambique, as it contributes to about
25 % of the country’s GDP (USAID 2022). About 80 percent of the population is
employed in the agricultural sector (CGAP 2016, p. 1; International Potash Insti-
tute 2011 claims that about 80 to 90 % of the Mozambican population is involved
in agriculture, and largely in subsistence agriculture taking place on less than three
hectares; according to the USAID 2022 about 80 % of population works in agricul-
ture). The large majority of the sector is smallholder farmers (ibid.). Furthermore,
agriculture in Mozambique is characterized by low production and productivity, in
part due to low accessibility to quality agricultural inputs (ibid.). Smallholder agri-
culture is mainly rain-fed (CGAP 2016, p. 1). For smallholder farmers, agriculture
constitutes not only income but livelihood and consumption, which is illustrated
by the following figures: 89% of smallholder farmers report consuming their crops,
62% report selling their crops, and 33% report trading their crops (ibid., pp. 15–16).
The CGAP report suggests that farmers are committed to and enjoy agriculture and
take pride in their work, but that if given the opportunity, many farmers would opt
out of (or diversify out of) agriculture (ibid., p. 65).

3.1 Farmers’ access to markets

Mozambican smallholder farmers lack access to markets due to limitations in trans-
portation (ibid., p. 3). Farmers are aware that they would be likely to receive
higher prices for their goods if they had access to the market (ibid., p. 3). When
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asked whether they receive the market price for their outputs (crops and livestock),
45% of respondents report selling at the market price, whereas 35% report not get-
ting the market price and 20% answer that they do not know whether they get
the market price (CGAP 2016, p. 38). The three top reasons respondents note for
not getting the market price are: too few customers (57%), no access to transports
to other markets (39%), and that customers take advantage of them (39%) (ibid.,
p. 38). The two top reasons farmers sell their crops at the market they do, are
that they do not have access to transport to other markets (57%) and that they
get the best prices at that market (43%) (ibid., p. 38). Indeed, many respondents
report selling at a local market (73%), or in the village (72%) (ibid., p. 38). In
sum, smallholder farmers lack access to larger markets and as such resort to selling
their output in smaller, more local markets where they generally do not receive the
market price for their crops and livestock, and where customers “take advantage of
them” (ibid., p. 38). Our interpretation is that the local markets where farmers sell
exhibit monopsonistic features.

3.2 Farmers’ access to inputs

Furthermore, smallholder farmers experience a low level of financial inclusion and
as such have a large appetite for financial mechanisms that would enable them
to acquire modern-day farming inputs, such as fertilizer, in order to sustain their
homesteads (ibid., p. 3). 74% of respondents report buying inputs of some sort
already, such as fertilizer (ibid., p. 36-37) and 35% of respondents say that input
purchase would be a main reason for borrowing money (ibid., p. 80). Further
underlining the importance of inputs and their financing, 47% report that a payment
plan for inputs is very important and 46% report that a savings plan for inputs is
very important (ibid., p. 80-81). When asked about whether they currently had a
payment plan for inputs, 11% report that they currently had it while 48% report
that they wanted it (ibid., p. 81). Similarly, 11% report that they currently had
a savings plan for inputs while 49% report wanting it (ibid., p. 81). It could also
be noted that while formal lending practices are almost non-existing among rural
farmers, informal practices are not common either (ibid., p. 48). In sum, we deem it
fair to say that the report suggests that farmers are credit constrained with respect
to optimizing their input purchases.

3.3 Farmers’ future prospects

When asked about their future prospects, the majority of farmers report that they
intend to keep on working in agriculture (ibid., p. 19). Nevertheless, it should be
noted that the share of respondents planning to keep on working in agriculture falls
with decreasing years of agricultural experience (ibid., p. 19). Just over 70 percent
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of respondents want to expand their agricultural activities (73%), although nearly
the same fraction of respondents (71%) claim that they would take on full-time
employment if they were offered a job (CGAP 2016, p. 20). Just as pointed out
by the CGAP report, what could appear as conflicting responses rather suggest
the difficulties of making ends meet on the subsistence farm (ibid., p. 20). These
answers shed light on the need for farmers to diligently adjust their life plan to
changing circumstances in order to support their homesteads (ibid., p. 19-21).
Indeed, many farmers would leave agriculture if a steady wage could be secured
elsewhere.

3.4 Size of agricultural holdings

34% of respondents report having an agricultural holding of less than 1 hectare
(100x100 m) (ibid., p. 7). 37% report having agricultural holdings of between 1
and 2 hectares, 25% report having between 2 and 5 hectares, while 3% report holding
more than 5 hectares (ibid., p. 7). The vast majority of agricultural holdings are
thus below five hectares, which means that the grid cells (see section 5.3) that we
construct are large enough to hold several households’ worth of agricultural land.

Most rural households have small landholdings, which was also reported in Barrett
(2008). The study by Barrett shows that the probability of selling maize in Mozam-
bican rural households back in 2001-2002 increased sharply for households holding
four or more hectares, which represented about 10% of the sample households (ibid.,
p. 309).

3.5 Crops

Maize is the most widely produced staple food crop in Mozambique, and it is grown
in both the northern and central regions (see e.g. Campenhout 2015, p. 2). It is
also one of the most important crops, alongside legumes and cassava (International
Potash Institute 2011).

Maize is not an acutely perishable good, but can be stored for some time meaning
that it does not need to be produced in immediate adjacency to its divestment
(Olwande et al. 2015, p. 23).
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4 Theoretical Framework

In this section, we present the theoretical framework. We start by noting that the
impact on agricultural output from rural road upgrades is not theoretically obvious.
In essence, there are arguments to say that this impact could be either positive or
ambiguous. We will go through both cases separately.

Before we dive into the cases, we will illustrate some theoretical implications of
transaction cost in the marketplace for smallholder farmers. Consider a good that
is both produced and consumed within a household – typically a crop – for which
representative households A, B, and C share an identical demand curve. There is a
market price for the output good, at Pmarket, but transportation costs amounting
to τ means that the good can only be sold at Pmarket − τ , and that the good can
only be bought at Pmarket + τ . Transportation costs thus create a band around
the market price (for simplicity, we assume that transportation costs are identical
for all households). Household B produces the same quantity as it demands, and
therefore self-selects out of the market exchange. Household A demands more than
it produces, for which reason it is a net buyer. Household C produces more than it
demands, which makes it a net producer.

Authors’ illustration of Campenhout (2015). The figure depicts supply and demand
for a farmed good that is produced and consumed by households A, B, and C. P
stands for price and Q for quantity. Pmarket is the market price, τ is a transaction
(transportation) cost. S denotes supply curves, D is aggregate demand.

Figure 1: Supply and demand with transaction costs
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The model predicts that a household will participate in the market as either net
buyer or net seller. Only in the case where demand at the transportation cost
adjusted purchase price equals supply at the transportation cost adjusted price,
will a household self-select out of the market (household B). This is not necessar-
ily supported in the data; there could be many households that do not participate
in the market at all, just as van Campenhout notes (Campenhout 2015, p. 6).
However, the model clearly illustrates that transportation costs matter for small-
holder households’ market participation. As an exercise, we let transportation cost
τ diminish, such that the transportation cost adjusted prices approach the market
price. Consider household C. Whereas a higher market price for output goods may
move household C upwards on their supply curve, household C are also consumers
of the good. The income effect may increase their demand for the good such that
aggregate demand shifts. Where the demand curve shifts to the right, the house-
hold could end up participating in the market to a lesser extent (producing more of
the good than previously, but consuming even more of the good than previously).
Alternatively, a household could want to consume more leisure as income increases
and as such produce less for the market.

The households’ individual supply curves are also determinants of the extent of
households’ market participation. Instead of lowered transportation costs, consider
a technological advancement that enables a farm with “few productive assets, rudi-
mentary technology or both” (ibid., p. 6) to increase their output; household A’s
supply curve shifts out to the right, and in theory, the household may become a net
producer. When considering the implications of changes in transportation costs and
technological advancements, it is important to keep in mind that households both
produce and consume the good in question. If transportation costs decrease, the
intersection of Pmarket + τ happens further down the aggregate demand curve. We
should expect aggregate demand to increase, unless individual household demand
curves shift to the left and cause an overall shift of the aggregate demand to the
left. Where an increased aggregate demand is met with an increased supply, we
should see increases in agricultural output. The effect on market participation may
however still be ambiguous considering the possibility of supply and demand curve
shifts.

In short, it is not theoretically trivial what the effects of rural road upgrades on
agricultural output in Mozambique would be. Ultimately, it could be seen as an
empirical question.

4.1 Positive effects on agricultural output

In this section we will consider important arguments in favor of positive effects on
agricultural output following rural road upgrades.
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A road upgrade is interpreted as a reduction in transportation costs for those using
the road. For a rural resident working in agriculture, the decreased cost of trans-
portation translates into a decrease in the travel cost adjusted price of acquiring
agricultural inputs from the marketplace, such as fertilizer or seeds, and an increase
in travel cost adjusted price of outputs, such as crops, given that other factors
remain unchanged. We will use a simple framework to demonstrate these effects.

Consider a farmer residing in area i, envisioned as a rational agent seeking to opti-
mize their agricultural output, traveling to the marketplace j to procure inputs:

ptotali = pinputj + travelcostj,i (1)
(equation inspired by Aggarwal et al. 2018, p. 9)

Where ptotal is the total price of the input, pinput is the price of the input at the
market rate, and travelcost is the cost of transportation. The travel cost adjusted
total price of an input for farmers living in the area i is the price of input in market
j plus the cost of traveling to the market j and returning to the area i with the
input acquired.

It follows that a reduction in travelcostj,i reduces the total cost of inputs, ptotali,
holding all other factors fixed. A rational agent residing in area i looking to purchase
the input will seek to minimize their cost of doing so. The minimum cost adjusted
price for acquiring the input is:

ptotali = min{pinputj + travelcostj,i} (2)
(see ibid., p. 9)

Let us now turn to the output market. Consider a farmer residing in area i traveling
to the marketplace j to sell a crop:

ptotali = pcropj − travelcostj,i (3)
(equation inspired by ibid., p. 9)

Where ptotal is the total price of the crop, pcrop is the price of the crop at the
market rate, and travelcost is the cost of transportation. The travel cost adjusted
selling price of the crop for farmers in area i is the market price of the crop at market
j minus the cost of traveling from area i to market j with the crop and from market
j back to area i. A reduction in cost of traveling from area i to market j, holding
all other factors fixed, increases the total price of the crop. Again, a rational agent
residing in area i will seek to maximize the price of their outputs. The maximum
price of the crop for farmers in area i can be written as:
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ptotali = max{pcropj − travelcostj,i} (4)
(see Aggarwal et al. 2018, p. 9)

Indeed, the outcomes described above assume that prices remain fixed following the
change in accessibility for remote areas. This need not be the case. For instance,
if increased accessibility would induce a large influx of farmers from area i selling
their outputs in their less remote, larger market j, there could be reasons to interpret
this as a positive supply shift. In a general equilibrium framework, the effect on
total price for input and output goods described here may be mitigated by supply
and demand shifts caused by the integration of more rural areas into more urban
markets. Indeed, if such shifts were to completely mitigate the positive effect on
output prices and the negative effect on input prices, we would not expect a positive
effect on agricultural NDVI coming from the road upgrades. While the simple
framework does not accommodate supply and demand curve shifts, we use it to
show the overall impact on input and output prices in the absence of large supply
and demand curve shifts. In other words, unless supply and demand curve shifts
completely mitigate the above described effect on output and input prices, we should
expect to see an increase in NDVI.

For farmers, the input becomes output (e.g. seeds), or the input is expected to
be output-enhancing (e.g. fertilizer), which means that rational farmers will take
the potential of increased agricultural production and productivity into account
when formulating their input and output decisions. As there is opportunity to
reach better markets with improved roads, farmers may seek to reap previously
unrealizable economic benefits. Some might choose to diversify their production of
crops, perhaps by growing cash crops alongside other production (Yoshino et al.
2018, p. 191). The techniques we use to collect our data are not sensitive enough
to distinguish between different types of vegetation, for which reason we will not be
able to specifically identify whether farmers have opted for strategies to diversify
their portfolio of crops. The effects we estimate, may thus be on the lower bound
with respect to the value of agricultural output.

Qualitative data suggests that farmers currently purchasing some level of inputs
are not acquiring optimal levels of input, but rather a lower than optimal level,
as showcased by their demand for a financial mechanism that would enable them
to afford inputs to sustain their homestead (see section 3.2). It is also a fact that
increasing the value of current agricultural output, would generally be equal to in-
creasing consumption and income among rural Mozambican farmers (see section 3).
Taking the simple framework of decreases in transportation costs together with the
qualitative data on smallholder farmers’ economic lives, we infer that in general,
smallholder farmers would want to take advantage of cheaper transportation costs
to improve their economic situation. This could be achieved by scaling up agricul-
tural production or increasing agricultural productivity. Even if we were to assume
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that farmers face limitations in how much they can affect their extensive margin,
we would expect to see changes in their intensive margins. Increased agricultural
productivity should not mean that farmers choose to cultivate on smaller plots of
land, as many do not currently meet their own consumption demands in terms of
basic necessities such as food and clothing (CGAP 2016, p. 13). The opportunity
to increase agricultural output would become a way of making ends meet for many
smallholder farmers, and as such, a rural road upgrade should cause positive changes
in agricultural NDVI.

From the World Bank’s point of view, rural road improvements should aid local eco-
nomic development. Even as Mozambique experienced sustained economic growth
throughout the years 2005-2015 (World Bank n.d.), rural regions still faced severe
poverty, in part due to low agricultural productivity (ibid.). According to the World
Bank, limited connectivity between rural and less rural areas was a contributing is-
sue, meaning that rural residents faced limited access to credit markets, agricultural
extension services and market information (ibid., p. 1). This underpins the theory
of change provided by the World Bank in their launch of the current project, where
they expect that rural road upgrades should, in the long term, lead to cultivation of
"high value crops and profitable changes in cultivation strategies, including expan-
sion of irrigation [and] cultivated land, consolidation of fragmented plots into larger
plots, cultivation outside of the rainy season, shifts to cultivation of new crops"
(ibid., p. 2). In short, they advance that rural road upgrades, such as "reconstruc-
tion or rehabilitation of bridges and culverts, graveling, surface treatment, [and]
routine/periodic maintenance" in the short and intermediate run should improve
road surfaces and accessibility, decrease travel time and transportation costs (ibid.,
p. 2). Such improvements then lead to easier market access, higher output prices
combined with cheaper access to inputs, as well as increase access to rural areas
for extension agents (ibid., p. 2). The modernized farming methods should in the
long term, according to the World Bank, lead to increased incomes and poverty
reduction (ibid., p. 2). Although this theory of change favors a positive effect on
agricultural output, it considers a longer time horizon, acknowledging that impact
might take time.

Using the theory explored in this section, we hypothesize that grid cells that ex-
perience a road upgrade in the World Bank project will show a higher level of
agricultural output, that is an increase in agricultural NDVI, compared to grid cells
that do not experience a road upgrade in the World Bank project.

4.2 Ambiguous effects on agricultural output

In this section we will consider important arguments for ambiguous effects on agri-
cultural output following rural road upgrades. We maintain the assumption that
rural road upgrades can translate into decreased costs of transportation of people
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and goods, but acknowledge that they do not necessarily enable transport of people
and goods if other obstacles to transportation prevail. Firstly, however, we consider
the possibility that improved access to labor markets outweight detectable effects
on agricultural output.

While improved roads mean that there is opportunity to reach better output markets
for crop sale, and to procure inputs in a less expensive way, it also means that labor
markets are made less expensive to travel to. Improving rural roads could then lead
to a reallocation of labor out of agriculture and into other sectors, via labor markets
that were previously unfeasible to rural residents (see eg. Shamdasani 2021; Asher
and Novosad 2020). Indeed, there is qualitative evidence that suggests that many
smallholder farmers in Mozambique would leave agriculture for other employment
opportunities to improve their economic situation if they could (see section 3.3). If
rural road upgrades mediated this possibility, it is not evident that we would see
an increase in agricultural NDVI as a consequence of the road upgrades. The effect
would instead be ambiguous, especially as some rural residents may extend or in-
tensify their agricultural activities while others may leave the sector altogether. As
discussed in section 2, these effects could very well be spatially distributed. There
is theoretical work suggesting that combined effects of reduced transportation costs
and increased agricultural productivity could produce the above outcome. Gollin
and Rogerson (2014) present a model of a poor economy (comprising "remote agri-
culture", "near agriculture" and "city manufacturing", p. 40) that displays features
of subsistence farming and that has high transportation costs for goods. They cal-
ibrate their model to Uganda and show that a 10% increase in agricultural total
factor productivity combined with a 10% decrease in transportation costs, leads
to a 20% reduction in employment in subsistence agriculture (Gollin and Rogerson
2014, p. 47).

Improved infrastructure is a way of reducing the cost of traveling to markets where
inputs such as fertilizer can be procured and outputs such as crops can be sold at the
market rate. But rural farmers are generally credit constrained and face additional
obstacles (see section 3.2). For example, farmers face limitations in transportation
to larger markets (see section 3.1). While the infrastructure itself is generally not
in place or is unreliable and of poor quality, it is possible that farmers also face
a lack of transportation modes. It indeed seems plausible that financial inclusion,
provision of transportation modes, and rural infrastructure improvements would go
hand in hand for farmers to experience economic development via a transition out of
subsistence farming towards more commercial farming activities. This is somewhat
echoed in Yoshino et al. (2018). It is not theoretically evident whether people
facing poverty reap the same benefits from better roads as people who have a higher
income (Yoshino et al. 2018, pp. 191–192). It could be true that relatively poorer
people see greater effects on consumption gains from road improvements compared
to the less poor, as the less poor might be able to mitigate the negative effects of
not having accessibility and thus not see as great an impact of road improvements
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(ibid., p. 192). It could also be the other way around: the relatively poorer people
still face obstacles even after road improvements (as discussed previously), such
as persisting transportation costs, and are thus unable to reap the benefits of an
improved road that the relatively less poor can (Yoshino et al. 2018, p. 192). As
such, it is not clear that improved rural infrastructure on its own would be enough
for farmers to take up more productive agricultural practices, or to extend their
agricultural production.

From these insights, our hypothesis differs from that previously posited. If effects
are indeed ambiguous we expect that grid cells that experience a road upgrade in
the World Bank project will show similar levels of agricultural output, i.e. we will
not be able to identify an effect on agricultural NDVI, compared to grid cells that
do not experience a road upgrade in the World Bank project.

4.3 When to measure effects

Effects on agricultural practices brought about by road upgrade programs might
take time to manifest themselves. The current study looks at upgrades finalized
in the autumn of 2021 and attempts to estimate the effects in the early spring of
2022. If indeed effects take time to manifest themselves, we would be unable to
detect them in our chosen period of study. There could be reasons to believe that
the effects are not instantaneous, perhaps due to adjustment times among market
participants. At the same time, there could be reason to argue that effects would be
quick to manifest themselves in this particular context: qualitative data on small-
holder farmers in rural Mozambique highlight that most farmers find themselves in
severe poverty, meaning that they live on or below the poverty line (CGAP 2016,
p. 2). Because people find themselves in such conditions, they are forced to contin-
uously adapt, to take advantage of the opportunities that arise. The need to behave
in an “opportunistic” (ibid., p. 20) way could manifest itself in rapidly exploiting
the upgraded roads – either to seek employment outside of agriculture, or to par-
ticipate in agricultural market exchanges with lower transaction costs. Indeed, the
CGAP report underlines that farmers are also constantly looking for opportunities
to improve their situation (ibid., p. 13). We therefore assume that farmers will
respond quickly to changes in their environment and take advantage of changes
brought about by the newly built roads – if they can (as referred to previously, re-
search suggests that barriers other than transportation infrastructure might hinder
farmers’ market participation; see e.g. Mather et al. 2013).

Another argument for estimating effects early on, is to say that road upgrades de-
teriorate with time, unless roads are maintained. Road deterioration is a gradual,
more dynamic process than road upgrading. Road upgrading is comparably sharp:
roads get upgraded to a certain standard within a short period of time, whereas
roads deteriorate during a longer period of time to different levels of quality. Es-
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timating effects of road upgrades “too far” away in time would thus be associated
with problems of gradual road deterioration that might be more difficult to identify
with the remote sensing techniques presently used – for instance, a higher resolu-
tion might be needed for surface quality assessment (Yoshino et al. 2018, discuss
using sub-meter resolution imagery for determining the quality of paved roads, see
p. 230). A combination of estimating effects both close in time as well as effects
further away in time might thus be a promising approach for a holistic impact evalu-
ation. It is unfeasible to us in the context at hand, as the time of writing this paper
is the spring of 2022, for which reason we will seek to estimate only the short-term
effects.

5 Data

Yoshino et al. (ibid.)) describe how remote sensing methods can be beneficial in
contexts commonly known as “data poor” (p. 192). Peng and Chen also discuss
this, arguing that applying machine learning methods to satellite data is a promising
avenue for economic research in “data poor” contexts (Peng and Chen 2021, pp. 1–
2). Helping other researchers discover and use new types of datasets could lower
the cost of using such data, as well as contribute to increasing the attention towards
countries that do not collect encompassing survey data. The idea of looking into
more unconventional data sources in order to study a “data poor” region of the
world resonates with the aim of this paper. While researchers such as Yoshino et al.
(2018) gathered a combination of conventional and unconventional data types, we
face the challenge of relying even more heavily on an unconventional data type as we
use remote sensing to collect geospatial data for both dependent and independent
variables.

This paper contributes with an innovative approach to detect and classify rural road
upgrades. With road coordinates as the only required input, our publicly shared
code can be applied to any area on the Earth. We designed our road upgrade
detection algorithm with accessibility in mind and took extra measures to accurately
detect upgrades on publicly available images, which have a lower resolution than
commercial images.

We received a dataset of 219 roads from the World Bank, where each road is stored
as a list of coordinates. Using the coordinates in Google Earth Engine (GEE) and
Python, we designed three algorithms (1) road upgrade detection, (2) machine learn-
ing classification and (3) grid cell creation. Unless otherwise stated, the described
method is developed by our own design and intuition.
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5.1 Road upgrade detection

To detect road upgrades, we generate composite images (composites) by combining
several satellite images taken between the years 2017 and 2021. These underlying
satellite images come from the European Space Agency’s publicly available Sentinel-
2 (Sentinel-2 MultiSpectral Instrument, Level-1C) satellite imagery. Sentinel-2 im-
agery data is stored in 13 spectral bands, where each band contains data of the
spectral reflectance signature (intensity of light reflected from the Earth’s surface)
from a limited range of wavelengths in the electromagnetic spectrum. For visual
exploration, we utilize the Blue (B2), Green (B3), Red (B4) spectral bands, all with
a 10-meter/pixel resolution. For road upgrade identification, the algorithm solely
relies on the Red band. For every band of a given composite, each pixel has a band
value, i.e. an associated reflected-light intensity value. The unit and range of band
values differ between satellites and sensors. Sentinel-2 band values vary in the range
of 0 to 4,095 light intensity values.

When visualizing multi-band composites, matrices of spectral reflectance can be
converted to computer graphics by mapping band values from three bands to a
computer’s RGB color model. If the Blue, Green, and Red bands are mapped to
their respective colors in the RGB model, a true color composite is produced, where
the rendered visualization will resemble that of how it appears from space. Compos-
ites produced by alternative band-color mappings are called false color composites.
Two true color composites of a sample road, from different time periods (before and
after road upgrade) are shown below:

Figure 2: True color composite of a sample road
(2020-05-01 to 2020-07-31)
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Figure 3: True color composite of a sample road
(2021-01-01 to 2021-03-31)

When visualizing a single band composite, band values from a single band are
converted to a panchromatic (grayscale) representation of the image, where bright
pixels indicate high spectral reflectance, and dark pixels indicate low reflectance.
The same sample road is shown in its single-band visualizations below:

Figure 4: Single-band (Red) composite of a sample road
(2020-05-01 to 2020-07-31)
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Figure 5: Single-band (Red) composite of a sample road
(2021-01-01 to 2021-03-31)

As in the images above, a road upgrade can be detected visually; the road appears
much brighter in the latter image than in the former. With composite images being
matrices of spectral-reflectance intensities, a difference of images can be computed
by subtracting the band-values of respective pixels in the former image from the
latter. Computing the differenced image from the two single-band composites above
will itself yield a new single-band composite, shown below:

Figure 6: Single-band (Red) differenced image of a sample road
(2021-01-01 to 2021-03-31 vs 2020-05-01 to 2020-07-31)

The visualization of the differenced composite can be interpreted as bright pixels
indicating brighter features that are present in the latter composite, but not in
the former. The brightness of the pixel represents the magnitude of the difference,
i.e. white pixels signify a more prominent change than gray pixels. Pixels with no
change, or change in the other direction (strong reflectance in former composite,
but weak in latter) appear as black pixels. The selected sample composites are
particularly illustrative in showing this, as the clouds from the latter composite
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are clearly shown in the differenced composite. Similarly, the clear outline of the
road indicates that the road is significantly brighter in the latter image, suggesting
that the road has been upgraded by leveling. In the detection of road upgrades, we
employ this described method of image differencing to detect roads that have been
upgraded by leveling. By inverting the band values of the differenced composite,
one can produce a composite highlighting features that are brighter in the former
composite, than in the latter. As such, the method can be used to detect roads that
have been upgraded by paving.

The road upgrade detection algorithm employs the aforementioned leveling and
paving detection methods by differencing single-band composites on the Red (B4)
band. In order to distinguish between upgraded and non-upgraded roads, the algo-
rithm places points on the road, every 20 meters. For each of these points, control
points are placed 25, 50, and 75 meters away, on both sides orthogonal to the road
direction. In the illustration below, the points on the road are shown in green, and
the 75-meter control points are blue and red. The 25 and 50-meter control points
are excluded for clarity:

Figure 7: Placing of points on, and parallel to, road in
differenced image of sample road

At each point, and accompanying control points, we measure the change in band
values. The classification of a road as upgraded will depend on the relationship
between the change in band values in points on the road, compared to the control
points. The classification employs machine learning methods and is described in
section 5.2.

When gathering data on the change in band values on the road and among control
points, there are two main challenges: (1) the provided coordinates do not neces-
sarily lie exactly on the road, and (2) the placement of a road may differ between
composites. The former challenge is a result of data-entry errors, while the latter,
commonly known as a correspondence problem, arises as a result of satellite images
being taken from different angles, due to satellite orbits. In a process known as
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image rectification, satellite images are transformed to fit on a standardized coor-
dinate system. This is done by mapping corresponding features to their standard
coordinates. In remote regions, where it is harder to identify unique features, corre-
spondence problems are more likely to arise. While the magnitude of these errors is
at most a couple of meters, measurements taken on single pixels will be inaccurate.

We address both of the aforementioned challenges by buffering the points and con-
trol points by 10 meters. This means that instead of recording the change in band
values at a single point, GEE aggregates the change in a surrounding circle with a
10-meter radius. We download the minimum, maximum, and mean change in band
value. Any mentions hereafter of band value changes at a point or control point,
will refer to the aggregated changes in the 10-meter buffer. The mitigation of errors
arising from the first challenge, by employing this method, is illustrated below:

(a) provided coordinates not on road (b) buffered points overlap road

Figure 8: point buffers correct for data-entry errors

In panel (a) of figure 8 we see that the road formed by coordinates from the provided
data, shown in red, does not lie on top of the true location of the road, shown in
black. Changes in band values on the green points, placed on the red line, will not
represent changes in brightness of the actual road. By buffering the green points,
as done in panel b, we see that the formed circles overlap the true (black) road.
By recording the maximum change in band value in each circle, we will capture the
change in brightness on the true road, if it indeed is upgraded.

In addressing the second challenge we modify the computations done in the buffered
points. By following the image differencing method as described so far, a road that
is not upgraded, but shifted as a result of imperfect rectification, will appear as
an upgraded road in the differenced image i.e we will see a clear white line. An
example is shown below:
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(a) earlier composite (b) later composite (c) differenced composite

Figure 9: shifts between composites result in false positives

In the panels of figure 9, we see a sample road where the road shifts between the
earlier (a) and later (b) composites. With the red line staying in the same position
throughout all images, we see that in the earlier composite a larger share of the road
lies to the left of the line, while in the later the larger share lies to the right. In the
differenced image (c), a gray line appears to the right of the red line, representing
the positive difference between the bright road in the later composite, compared
to the trees in the earlier. With buffering around points placed on the red line, as
described earlier, this road would be classified as a false positive upgrade. To control
for these false positives, we redesign the computations done in the buffered regions.
Rather than measuring the minimum, maximum, and average band values at each
point in the differenced image, we compute the minimum, maximum and average
band values of each composite and take their difference. By doing this, we allow for
small shifts in the position of a road while maintaining the ability to discriminate
between upgraded and non-upgraded roads; a brighter road will be detected by a
change in the maximum band value, while a wider road will be detected by a change
in the average band value.

Finally, the overall brightness of composite images can differ. Given significant dif-
ferences in brightness between composites, an upgraded road might not be correctly
classified; while the road is brighter in absolute terms, the change relative to that
of the control points (which also become brighter) will be diminished. To control
for this, we normalize the measured differences in band values at each point, by
adjusting for the difference in median band value of the two composites.

Employing the data-collection method described in this section, we download data
for 146,587 road points and 879,552 control points.

These points cover all 219 roads in our dataset, in 455 unique segments, which
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we call subroads. These subroads arise as a result of the road coordinates from
the World Bank being split into multiple segments. With a significant number of
segments being noise, we only kept segments longer than 500 meters.

For each point, we download the change in minimum, maximum, and average band
values within the point’s buffered region, between the years 2016/2017, 2017/2018,
2018/2019, and 2020/2021. In each of these year intervals, we measure the change
in band value in 5 overlapping composite periods, i.e. we generate composites from
images taken in the three-month periods: April-June, May-July, June-August, July-
September, and August-October. For each period, we compute the change in band
value between the years. This amounts to 20 comparisons for each road in the
four-year period. This overlapping, or “rolling”, composite method has the effect
of a smoothing kernel, which allows us to reduce image noise while maintaining
the ability to discriminate between time periods to identify when an upgrade took
place. We compare each three-month period with itself across years to avoid noise
from seasonal differences. Furthermore, we do not compare composites between
November and March as they feature many clouds due to the rainy season.

5.2 Machine learning classification

While the image-differencing method described in the previous section can roughly
identify road upgrades, machine learning methods can be leveraged to improve the
accuracy and speed of more detailed road upgrade detection. The motivations
for employing machine learning methods are strong: (1) Visually identification of
upgrades among the 455 subroads in the 20 comparison time periods, a total of 3,100
comparisons, is not feasible. (2) A well-trained machine learning model may detect
upgrades missed in the visual identification process. (3) we intend to develop a tool
that can be useful beyond this study. By aggregating the road and control point
data to the road level, we generate a dataset suitable for road-upgrade classification,
with which we train a random forest model.

For the training and assessment of the model, we visually identified a subset of
road upgrades between 2020 and 2021, specifically looking at composites from the
months of May-July. We selected these composites as they featured a high number
of upgrades identified roughly in the road upgrade detection process. Among the
455 subroads in this time period, we visually identified 156 upgraded subroads. This
visual identification was conducted by looking at each subroad in GEE. Images of
the assessed subroads along with their visual classification, can be viewed in the
digital Appendix (link found in Appendix B). All identified upgrades were leveling
upgrades, as such we have no training data for paving upgrades. Thus, within the
scope of this paper we do not detect upgrades by paving. However, our published
code can be modified to do so. When describing the classification model in this
section, the term road and subroad will be used interchangeably.
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In our random forest model, we classify a road as either upgraded or not upgraded
based on a number of variables, or features. The features road_max, left_max_avg,
and right_max_avg capture the mean of the maximum change in Red (B4) band
values at each of the road and control points on a road. For the latter two features,
the average is computed of the means at the 25-, 50-, and 75-meter control points.
The feature road_mean captures the mean of the mean change in band value at the
road-points. While road_max will capture a road becoming brighter at any point
in the 10-meter buffer around the point, road_mean will capture upgraded roads
that are not necessarily becoming brighter, but significantly wider.

To further discriminate between upgraded and non-upgraded roads, we aggregate
data of "upgraded points" for each road. We define an upgraded point as a road point
that exhibits a specific band value change relative to its neighboring control points,
setting itself apart from non-upgraded points. Whether or not a point is considered
upgraded therefore depends on a threshold of relative band value change. We refer
to this threshold as the relative threshold and define it as the maximum percentage
of band value change experienced on the road point allowed to be experienced on
the control points, on average, for a road point to be considered upgraded. This
means that at a relative threshold of 50%, road points will be considered upgraded
if their corresponding control points exhibit band value change of a magnitude half
or less of that experienced on the road point, i.e. the road point is experiencing
twice as much band value change. At a relative threshold of 100% all road points
where the corresponding control points do not experience more band value change,
on average, than that of the road point, are considered upgraded. At a relative
threshold of 0% no points are considered upgraded and the feature is just noise.
There is no theoretical motivation for how much brighter the change of a road point
should be compared to the control point averages (other than that it should not
exceed 100%) for it to be considered upgraded. Therefore we test the entire range
of possible thresholds between 0% and 100%. The best threshold will be the one
that defines upgraded and non-upgraded points, such that when aggregated they
contribute the most to distinguishing between upgraded and non-upgraded roads.

In our random forest model, the feature share captures the share of points on the
road that are upgraded. The feature dist_mean represents the mean distance be-
tween upgraded points on a road. To compute the distance between upgraded
points, we sort all points in their order along the road. For each upgraded point, we
compute the number of points between itself and the previous upgraded point. Fi-
nally, the feature diff_factor stores the band value change applied in the composite
normalization, described at the end of the previous section.

With these features, we train the random forest classifier with 5-fold cross validation
to reduce overfitting. To avoid data leakage, we train the model on a 90% training
set and evaluate the model on the remaining 10% of the data. We tune the model’s
hyperparameters by iterating through all combinations in a finite range of values
and selecting the best combination. We repeat these steps, training the model in
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this manner, for every 5 percentage point increment in relative threshold. Out of
these 21 models, we select the model with the highest accuracy.

To evaluate our model, we compare it to a rule-based heuristic model. We base
the heuristic solely on the feature share and classify roads with a share of upgraded
points above a given level as upgraded. For every iteration across the range of
relative thresholds, we compute the heuristic that best discriminates between up-
graded and non-upgraded roads. It is this heuristic with the highest accuracy that
we compare with our random forest model.

The variation in model and heuristic accuracy across the range of relative thresholds
is shown in the figure below:

Figure 10: Variation in accuracy across relative thresholds

By varying the relative threshold of average band value change on control points
with respect the road points, the accuracy of the model and heuristic differs. This
means that both our model and heuristic are sensitive to changes in the relative
threshold. Without the features share and dist_mean, our model, independent of
point-level discrimination, performs with an accuracy of 93.48%. From the graph we
see that when including the features share and dist_mean, the model can perform
better or worse depending on the relative threshold.

When interpreting the graph, we recall that the relative threshold determines how
many points are classified as upgraded. With a higher threshold, more points are
considered upgraded. With more upgraded points the share, captured in the feature
share, increases while the mean distance between upgraded points, dist_mean, de-
creases. With a low threshold, there are fewer upgraded points on each subroad. We
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see in the graph that the random forest model performs best in the relative thresh-
old intervals of 10-35% and 75-100%. In these intervals the model classifies subroads
with an accuracy of 95.56%, with the exception of thresholds 85 and 90%, where
the accuracy is 97.83%. The model performs worst, with an accuracy of 89.13%, at
the 65% relative threshold. This accuracy is lower than that of the model without
the features share and dist_mean, which means that at such a relative threshold
the upgraded point aggregations do not help discriminate between upgraded and
non-upgraded roads, but rather contribute with noise.

The accuracy of the heuristic is similarly sensitive to changes in relative threshold.
At low relative thresholds, where the share of upgraded points is low, there is less
variation in the share of upgraded points between roads. In such cases, it is difficult
to optimize a level of share for the heuristic that accurately discriminates between
upgraded and non-upgraded roads. At higher relative thresholds, the rule-based
heuristic discriminates between upgraded and non-upgraded roads with an accuracy
of 93.48%. This accuracy is the same of that as the random forest model without the
features share and dist_mean. A high-performing heuristic model suggests that the
relative threshold is positively contributing to the discrimination between upgraded
and non-upgraded roads.

Following this interpretation of figure 4, we select the relative threshold of 90% when
defining upgraded points. Our subsequent random forest model performs with an
accuracy of 97.83% compared to a heuristic of 93.48%. This translates to a 67%
reduction in error rate.

The strength of a random forest model lies in its ability to identify complex rela-
tionships between the provided features. We can get an idea of these relationships
by looking at the importance of each feature determined by the model. For each
feature in the model the following shares of importance are reported:

road_max : 11.19%, left_max_avg: 3.34%, right_max_avg: 3.50%, road_mean:
56.89%, dist_mean: 2.41%, share: 20.33%, diff_factor : 2.34%,

From the feature importance report we see that the features road_mean, share
and road_max have the highest importance. This is reasonable as the features
capture the changes in width, balance, and brightness of road upgrades respectively.
Nonetheless, the other features still play an important role in the capturing of
complex relationships between the features which we would miss without machine
learning.

When adapting this model to new contexts it will be important to train the model
with new training data. While our trained model will be accessible in our publicly
shared code repository, upgrades in other contexts may differ in appearance, and in
extension differ in the relationships between features.
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With our finally trained model, we predict upgrades for all subroads in all periods.
While the initial visual classification of the subroad from one period took four
hours to complete, the machine learning classification for subroads in all remaining
19 periods took less than a minute. Aside from the significant boost in accuracy
of our random forest model, the time saved compared to manual classification is
astounding.

With the rolling composite method described in the previous section, we attempt
to control for any false positives predicted by the model by dropping upgrades that
only appear in one of the five overlapping composite periods for a given year. Fur-
thermore, we compute what share of an entire road has been upgraded by summing
up the lengths of all upgraded subroads belonging to a road. We only consider
roads as upgraded if at least 90% of the road length has been upgraded. With the
classification of upgraded and non-upgraded roads now complete, we proceed to
create grid cells.

5.3 Grid cell creation

The unit of observation in our regressions is a grid cell. Grid cells are generated
by splitting a given subroad into strips of 1 kilometer length. From each strip, as
well as the remainder following the split, a quadrangle is formed by placing points 5
kilometers to each side of every road strip node, orthogonal to the average direction
of the subroad. With this strip height of 10 kilometers, a grid cell can have a
maximum area of 10 square kilometers, when the strip is a 1 km straight line. With
increasing curvature of the strip, the area of the corresponding grid cell decreases.

The area of the grid cell is important as it is the basis for our aggregations. If the
area of the grid cell is too small and smallholder farmers who experience changes
their agricultural productivity reside beyond the grid cell, then the effect that we
are trying to estimate will not be captured. Similarly, if the area of the grid cell is
too large, there will likely be noise for unaffected areas distorting our coefficients.
Following the anecdotal evidence in section 3 with regards to smallholder farmers’
access to markets and size of agricultural holdings, we believe a 10 kilometer grid
cell height is appropriate. Controlling for the possibility that it should it not be
the case, we collect data from a range grid cells, varying in grid cell heights, from
1 kilometer to 15 kilometers, at 1 kilometer increments. Our findings from this
heterogeneity analysis are presented in section 8.4.1.

The placement of grid cells on a sample road is illustrated below. The orange grid
cells have a grid cell height of 10 kilometers, while the blue grid cells have a height
of 1 kilometer. The road is shown in red.
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Figure 11: Grid cells placed along road

For each grid cell, several measurements are made. Agricultural output is esti-
mated by measures of Normalized Difference Vegetation Index (NDVI). The index
is calculated accordingly:

NDV I = (RNIR −Rred)
(RNIR +Rred) (5)

where RNIR and Rred are the reflectances of near-infrared and red light respectively.
Vegetation exhibits high reflectance of near-infrared light and high absorption of red
light (absorbtion of red light is what makes plants appear green to the human eye).
At scale, increased vegetation should entail increased NDVI.

We collect NDVI averages computed and provided by NASA from their MODIS
satellites. To isolate changes in vegetation as a result of agriculture, we calculate
the change in NDVI value by comparing the beginning of the growing season with
the planting season (see section 6.4). We call this agricultural NDVI. For each grid
cell we also aggregate averaged monthly rainfall from the Copernicus Climate Data
Store.

Furthermore, for each grid cell, we compute a measure of population density, pro-
vided by the Facebook Data For Good High Resolution Population Density Maps.
The measure is computed for 2019. Finally we also measure the distance to the
nearest city, from data downloaded from OpenStreetMap.
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6 Method

In this section, we detail our study design and empirical strategy, as formulated
econometrically. We also identify threats to the validity of our identifying assump-
tions, and potential remedies to issues we may come across.

We employ a differences-in-differences identification strategy to estimate the average
treatment effect of receiving a road upgrade program on agricultural output on areas
of land (grid cells) surrounding a road.

6.1 Econometric specification

The differences-in-differences specification is as follows:

NV DIit = β0 +β1 ×upgradei +β2 ×postt +λ(upgrade×post)it

+Xit + δi +ωt + θi + ϵit
(6)

Where NV DIit is agricultural NDVI for grid cell i at time t, β0 is the intercept,
upgradei is a dummy that takes in the value 1 if the grid cell is in the treatment
group, postt is a dummy variable that takes on value 1 if the observation is is in
the post-treatment time period. The difference-in-differences estimator is λ, Xit is
a vector of control variables, δi are grid cell fixed effects, ωt are year fixed effects,
θi are province fixed effects, and ϵit is the error term.

Note that most of our controls are not used simultaneously as our grid cell fixed
effects due to the fact that most controls are time-invariant. We also cannot use
grid cell fixed effects at the same time as region fixed effects due to collinearity
issues.

6.2 Panel data

We collect a panel of bimonthly NDVI data, and year-end as well as start of the year
rainfall data covering the years 2010-2022. From 2016 and onwards, Sentinel data is
available. We have identified road upgrades from 2018 and onwards, as the launch
of the rural road upgrade program in 2018 should mean that roads are generally
upgraded after this date. For our difference-in-differences estimations, we therefore
use data from the year 2018 and onwards.
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NDVI and rainfall data change for each year of our panel, while data on proximity
to the closest city and road length remain constant throughout. The data on grid
cell population represents only the year 2019.

Our panel is completely balanced (it contains all of our observations in every year),
but it does contain missing values for some of the control variables.

6.3 Unit of observation

The unit of observation is spatial. We primarily use grid cells of approximately 1
km x 10 km in size (sizes differ due to an individual road’s curvature) as our unit of
observation. This measure is constructed at the road segment level, which means
that all units of observation are associated with a unique road segment, that is in
turn associated with a road that can be upgraded or not upgraded during the time
of study.

The difference between observations and road segments, is that the number of obser-
vations comprises all years of study while a road segment is one unit of observation
in a single year.

6.4 Outcome variable

The outcome variable is a measure of yearly NDVI difference, constructed by sub-
tracting the NDVI composite of the previous fall/winter’s NDVI from the NDVI
of the early spring. The measure is constructed to control for vegetation that is
non-agricultural, i.e. persists throughout the year. As such, we want to take the
difference in vegetation index between the growing season (where NDVI should
peak) and the planting season, where NDVI should be low. Our approach mimics
Asher and Novosad (2020, p. 803). We use NDVI data for November-December for
the fall/winter NDVI and for NDVI data for January-February for the early spring
NDVI.

According to the FAO, Mozambique generally has a planting season for maize in
between October and December, and a growing season during January to March,
with harvest starting in the middle of March (Food and Agriculture Organization
of the United Nations 2017). According to Agrilinks, central Mozambique has a
planting season for maize in between November and December, with a vegetative
season for maize in between January and March and harvest starting in the middle
of March (Agrilinks 2020). The region of Zambézia would qualify as central Mozam-
bique, whereas Nampula would qualify as central/northern Mozambique (manual
comparison of maps provided by Agirlinks and Google Earth).
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The Mozambique Food Security Update, dated 2006, says that planting in the
northern regions of the country takes place in between November and January,
with harvest in between April and July, meaning that growing can be inferred to
take place between February and April (ReliefWeb 2006). Central Mozambique,
on the other hand is described to plant in between October and January with
immediate subsequent harvesting in between February and May (ibid.). The Food
Security Update speaks generally of crops, among them maize, and specifically
about the planting season of years 2006-2007 (ibid.). It does also refer to Zambézia
as belonging to the central part of the country, and Nampula as belonging to the
northern part, which is in line with what we concluded based on the Agirlink map
(ibid.).

6.5 Independent variables

We have the collected the following independent variables: distance to the nearest
city (km), road length (km), population in 2019 (number of people), and average
daily precipitation (mm) for months November-February. In addition, we have
stored information on grid cell size (km2).

6.6 Further independent variables

We have kindly been given information on the prioritization score of our observa-
tions. This means that we have obtained information on the score on prioritization
for upgrade given to a certain road in an assessment by the Mozambique Road
Authority. Before individual roads were assigned a score, districts had been cho-
sen according to "economic potential, network centrality and vulnerability" (von
Carnap-Bornheim, personal communication, April 22, 2022). The prioritization
exercise then addressed the following points: costs and economic potential, includ-
ing agricultural potential, fishing, and tourism (ibid). The prioritization scores were
subsequently used to select certain roads for upgrade within the frames of the World
Bank project, with compliance between prioritization score and selecting a road for
upgrade being almost perfect (ibid).

The information on prioritization score has been given to us in a “jittered” fashion.
This means that we do not have information on the road’s geographical location
once we merge to our dataset the information on prioritization score. Instead, we
use a random road ID to still be able to understand which observations belong to
the same road. This is important for an appropriate handling of standard errors (see
section 6.9). The prioritization scores range between –35.2 to 27.3 in our cleaned
data set.
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In addition to information on prioritization score, we have been given information
on our observations’ status as “selected” or “not selected” for an upgrade within the
frames of the World Bank project. This variable is a dummy that takes on value
one for selected roads, and zero otherwise. The information is conveyed to us in the
same manner as information on the prioritization score, in a jittered fashion such
that we no longer have information on the individual road’s coordinates.

There is not an explicit relationship between prioritization score and agricultural
potential. If there were, we would have a selection problem where roads that sys-
tematically differed in agricultural potential were prioritized higher and more often
chosen to receive upgrades. While assessing agricultural potential could be rather
difficult, it would be a strong assumption on our part to suggest that rural infras-
tructure placement would not attempt to take agricultural potential into account,
especially when rural roads are upgraded in part to lift smallholder farmers out of
poverty by enabling them to commercialize their agricultural practices. Recalling
the aim of the prioritization exercise, it is evident that agricultural potential was
addressed even if it remains unclear to what extent and in what way. We might thus
worry that roads (or communities around the roads) that were selected to receive
an upgrade share characteristics that are unobservable to us but correlated with
agricultural potential, and that these roads (communities) systematically differ in
this respect to roads (communities) that were not selected to receive an upgrade.
If this is the case, it could be that the variable selected (a dummy that equals one
for roads that were selected to receive an upgrade within the frames of the World
Bank project, and zero otherwise) or the variable prioritization score holds some
information about these factors. In other words, we think that worries we have
with respect to systematic agricultural potential differences across our treatment
and control roads might be captured to some extent by the variable selected or
the variable prioritization score. To remedy the potential selection bias, we utilize
the information in these variables to construct two secondary sets of treatment and
control groups, see section 6.7.3.

Finally, we were given information about the roads’ belonging to the province Nam-
pula and Zambézia, respectively, and to which district the road belonged.

6.7 Treatment and control groups

In this section, we discuss the selection of treatment and control groups.

6.7.1 Treatment group

Out of our 219 roads, we identified 89 individual roads as partly upgraded with
leveling between 2018 and 2021. Out of these 89 roads, 58 were (partly) upgraded
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between the spring of 2020 and the fall of 2021. 1 road was identified as a duplicate
and was removed from the dataset.

We classified all roads with more than 90% of the road length upgraded as fully
upgraded. In order to obtain the number of fully upgraded roads, we calculated
road percentage upgrade using information on individual subroads’ upgrade status.
In terms of full upgrades, 73 roads were fully upgraded by 2021 and 54 out of these
roads were upgraded between 2020-2021.

As the majority of roads were upgraded during 2020-2021, we deleted all observa-
tions associated with roads that were previously upgraded, as they could not be
used as control roads nor treatment roads in our set-up. This led to a deletion
of 19 roads. Roads that had a percentage upgrade over 10 but below 90 were re-
moved from the data set, as they did not qualify as neither control nor treatment
roads. This led to a deletion of 10 roads. One implication is that roads where 10%
of the road was identified as upgraded, will be considered not upgraded. This is
symmetrical to our definition of an upgraded road.

A treatment dummy was introduced. We let it equal one for all observations in
the cleaned dataset identified as “upgraded”, and zero for all observations in the
cleaned dataset identified as “not upgraded”. Our primary treatment group consists
of 54 roads.

For the regressions with our two secondary control groups, we restrict the sample
with respect to the treatment group, meaning that we have two secondary treatment
groups. They consist of roads classified as both “treated” and as “selected”, and
roads classified as "treated" with positive prioritization score (see section 6.7.3).

6.7.2 Primary control group

The first control group comprises all the remaining road segments in the cleaned
dataset not classified as treated (treatment dummy equal to zero). As such, our
primary control group consists of 135 individual roads.

6.7.3 Secondary control group

For our secondary control groups, we utilized information of roads’ prioritization
score and “selected for upgrade” status. Along with information on a road’s pri-
oritization score, we were given information on whether a road was selected for
upgrade.

The prioritization exercise is carried out prior to roads being selected for upgrade;
as such, it can be seen as a guide for the allocation of rural road upgrades. A
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positive prioritization score is associated with a higher probability of being selected
for upgrade (data not shown).

We firstly restrict our primary sample such that it only contains roads that were
selected for upgrade. We may then compare “selected for upgrade” roads that are
identified as upgraded by us (treatment roads) to “selected for upgrade” roads that
are not identified as upgraded by us (control roads). The latter group is referred
to as the “not yet treated” group, and performing this type of analysis may be
warranted when there is reason to believe that "not-yet-treated" observations be-
have differently than "never-treated" observations (Callaway and Sant’Anna 2021,
p. 205). Furthermore, the usage of the not-yet-treated as a control group, is consis-
tent with an approach used to account for the endogeneity in aid project placement,
in research studying the impact of aid projects on institutional quality (Isaksson
and Durevall 2021). Our rationale for restricting the sample is that the restriction
should leave us with more comparable treatment and control groups, in terms of
agricultural potential, at the cost of decreasing sample size.

Secondly, we restrict the primary sample to only compare roads that have a posi-
tive prioritization score. This is also done in an attempt to weed out roads (both
treatment and control) that are perhaps not suitable for comparison due to differing
agricultural potential. While comparing "treated" roads to "not-yet-treated" roads
is consistent with approaches used by scholars, the restriction proposed with respect
to prioritization score ignores whether a road is "never-treated" or "not-yet-treated".
In fact, our primary control group also cuts across this dimension, as it consists of
roads in both the "never-treated" and the "not-yet-treated" group. It is not evident
whether the endogeneity issue is best addressed by restricting the sample to only
include roads selected for upgrade, or to restrict it according to prioritization score.

6.8 Fixed effects

For some of our specifications, we use fixed effects (FE) to control for non-observable
factors that do not change across time. We primarily run specifications with grid
cell fixed effects and year fixed effects. Grid cell fixed effects control for grid cell
specific characteristics that do not change across time, and year fixed effects control
for changes that are common across observations in each year.

The conflict in the province of Cabo Delgado in the northern part of Mozambique
has seen many displaced civilians, with tens of thousands coming to Nampula,
according to the UN (United Nations 2022a). Because of the conflict, we also run
regressions using province fixed effects, as there is a possibility that the precarious
situation affects agricultural outcomes in the Nampula province differently than it
affects agricultural outcomes in Zambézia. Due to collinearity issues, we were only
able to implement province fixed effects when removing grid cell fixed effects.
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6.9 Standard errors

The observations consist of grid cells that are placed along each road segment. Grid
cells along the same road can thus not be treated as independent observations.
The status of treatment is allocated and identified at the road level, and as such
the treatment statuses of spatially adjacent observations correlate perfectly. The
experimental design, where treatment is assigned on a different level (road level)
than the level we estimate effects on (grid cell level) motivates the usage of clustered
standard errors (Abadie et al. 2017). In our case, we cluster at the road level as
treatment is assigned at the road level and we expect to see that residuals correlate
for observations belonging to the same road (clustering in the assignment).

Bertrand et al. (2004) shows that conventional standard errors from difference-in-
differences estimates leads to an over-rejection of the null hypothesis. One remedy
suggested is the clustering of standard errors, which fits well with our approach and
the structure of our data that contains many groups (roads) to provide a sufficient
number of clusters (Bertrand et al. 2004). Our clustering of standard errors is
thus also important as an attempt to mitigate the risk of over-rejection of the null
hypothesis.

6.10 Causality

There would be concerns if control and treatment observations prior to the inter-
vention of the road upgrade program differ in agricultural potential. The challenge
is to account for this endogeneity problem using a differences-in-differences set-up.
While agricultural potential can be difficult to assess, a proxy might be to look at
NDVI in observations prior to the launch of the road upgrade program. This way
of dealing with agricultural potential ties neatly into the parallel trends assessment.
If we find indications of violations in parallel trends prior to treatment, this could
be an indication of issues with differing agricultural potential. Parallel trends will
be discussed further on in section 8.3.

Another way of handling differences in agricultural potential prior to treatment, is
to look at the prioritization score assigned to roads by the Mozambique Road Au-
thority, and their subsequent status as “selected” or “not selected” for upgrade. One
worry is that roads with similar prioritization scores are to some degree similar in
characteristics used to assess their agricultural potential. Using roads’ prioritization
score and/or “selected for treatment” status, we weed out control (and treatment)
roads that may not be suitable for comparison. This is done in the construction of
our secondary treatment and control groups, see section 6.7.3.
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7 Results

This section presents the results of our main regressions, our sensitivity analyses
as well as our heterogeneity analyses. It starts by introducing some descriptive
statistics. When NDVI is used in tables and figures, it should be interpreted as
"agricultural NDVI".

7.1 Descriptive statistics

This section presents descriptive statistics for the pre- and post-treatment time
periods, for our primary treatment and control groups respectively.

Certainly, when testing the difference of multiple variable means – in this case, as
many as eight variables at a time – we would expect some statistical significance
to be displayed just by chance. For instance, one in ten differences should exhibit
statistical significance at the 10% level.

We decided to include a measure of difference over the standard deviation within
the control group, to facilitate interpretation of the size of differences.

7.1.1 Descriptive statistics for primary treatment and control group

The below table shows descriptive statistics for our primary treatment and control
observations, respectively, in the pre-treatment years of 2018-2020.

Table 1: Descriptive statistics for 2018-2020

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.21 0.09 0.19 0.09 0.02∗∗∗ 0.20
Nearest city 11.02 7.37 13.64 9.63 -2.61∗∗∗ -0.27
Road length in kilometers 19.33 11.34 20.63 15.53 -1.29∗∗∗ -0.08
Grid cell size 7.96 2.37 7.71 2.34 0.25∗∗∗ 0.11
Population in 2019 4,711.42 6,843.31 4,605.28 6,544.72 106.15 0.02
Grid cell population density 662.48 1,353.51 660.42 1,277.72 2.06 0.00
Prioritization score 6.00 6.18 -4.50 9.68 10.50∗∗∗ 1.09
Precipitation in mm 5.86 1.13 5.72 1.09 0.15∗∗∗ 0.13
Observations 2,358 5,706 8,064

* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the pre-treatment time period by primary treatment and
control group.
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As is shown in the above table, agricultural NDVI and precipitation is somewhat
higher in the treatment group compared to the control group. On average, obser-
vations in the treatment group are also located closer to cities and have a higher
prioritization score. Road length is similar between the groups, albeit on average
slightly higher in the control group. Population is similar too, with the treatment
group having somewhat higher population, although the difference is not statisti-
cally significant at any conventional level. It also appears that grid cells are some-
what bigger in the treatment group compared to the control group. This suggests
that treatment roads display systematically less curvature than control roads. Stan-
dard deviations for nearest city, road length, grid cell population and prioritization
score are quite high in both groups, suggesting there is a lot of variation in the data.

The below table presents descriptive statistics for our treatment and control obser-
vations in the post-treatment time period, 2022.

Table 2: Descriptive statistics for 2022

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.27 0.09 0.23 0.09 0.04∗∗∗ 0.43
Precipitation in mm 7.23 1.44 6.68 1.74 0.55∗∗∗ 0.32
Observations 786 1,902 2,688

* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the post-treatment time period by primary treatment and
control group.

Average agricultural NDVI and precipitation are, just as in the pre-treatment time
period, higher in the treatment group compared to the control group.

7.1.2 Prioritization score and “selected for upgrade” status on road
level

In this section, we illustrate the allocation of prioritization scores and "selected for
upgrade" status among the primary treatment and control groups. We do this for
the primary sample.

Firstly, we display the mean and standard deviation of prioritization score, positive
prioritization score and status as selected for upgrade, for the treatment and control
group respectively. The data is presented on the road level.
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Table 3: Prioritization score and "selected" status, road level

Treatment Control

Mean SD Mean SD
Prioritization score 6.77 7.90 -3.50 11.22
Positive prioritization score 0.89 0.32 0.34 0.48
Selected 0.94 0.23 0.31 0.46
Number of roads 54 135

Summary statistics of prioritization score, positive prioritization score and "selected
for upgrade" status for primary treatment and control roads, respectively.

The mean of prioritization score is approximately 6.77 for roads in the treatment
group and -3.50 for roads in the control group. For the dummy variables positive
prioritization score and selected, the mean is closer to one for roads in the treatment
group whereas it is below 0.5 for roads in the control group.

Table 4: "Treatment" group and "selected" status (road level)

Selected for upgrade Not selected for upgrade
Treatment Control Control Treatment

Number of roads 51 42 93 3

The figure summarizes the number of roads identified as upgraded by us (primary
treatment roads), by "selected for upgrade" status. The second column make up the
not-yet-treated roads.

Figure 4 unveils a key factor that contributes to raising the mean of the variables
in the control group in figure 3, namely that just short of half the roads selected for
upgrade are not yet identified as upgraded by us, meaning that they make up the
not-yet-treated group of observations. A positive prioritization score is associated
with a higher probability of being classified as selected for upgrade (data not shown).

7.1.3 Descriptive statistics for secondary treatment and control group

This section presents descriptive statistics for the secondary treatment and control
groups.

The appendix (appendix A) shows descriptive statistics for observations belonging
to selected roads only, divided by treatment and control groups, in the pre-treatment
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years of 2018-2020. There is a larger difference between the control group mean of
agricultural NDVI and the treatment group mean of agricultural NDVI for this sub-
sample, compared to the primary sample. Potentially, road upgrading was decided
to commence for the roads that had the highest level of agricultural NDVI within
the group of selected roads. Other than this, observations that are selected for
upgrade appear to be more similar in terms of proximity to city and prioritization
score, than the observations in the primary sample are. Treatment observations
have somewhat higher precipitation and lower population than control observations
do. Road length is similar, although treatment observations on average belong to a
somewhat longer road compared to control observations.

In the appendix (appendix A), we also show descriptive statistics for observations
with positive prioritization score only, divided by treatment and control groups,
in the pre-treatment years of 2018-2020. Observations with positive prioritization
score are more similar in terms of average agricultural NDVI than observations in
the selected only category. Treatment observations, on average, experience more
precipitation and are located closer to cities. They have a lower prioritization score
than control roads, slightly lower population density, and are associated with on
average shorter roads.

Furthermore, the appendix (appendix A) presents descriptive statistics for selected
roads only, divided by treatment and control groups, in the post-treatment year
2022. The difference in agricultural NDVI means between treatment and control
observations is large in the post treatment time period.

Finally, the appendix (appendix A) presents descriptive statistics for observations
with positive prioritization score only, divided by treatment and control groups, in
the post-treatment year 2022. Similarly to the selected roads only, there is a large
difference in agricultural NDVI means between treatment and control observations
in the post-treatment time period.

7.2 Pre-treatment trends in NDVI measures and rainfall

An important assumption in differences-in-differences estimations is the parallel
trends assumption. In this section, we illustrate the pre-treatment trends for our
primary and secondary sample.

7.2.1 Pre-treatment trends for primary sample

Below, we present pre-treatment trends in agricultural NDVI for the primary treat-
ment and control groups. The data covers the years 2011-2020.
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Means in agricultural NDVI over the years 2011-2020 for the primary treatment
and control group.

Figure 12: Pre-treatment trends in agricultural NDVI

The trends in agricultural NDVI are fairly similar for the treatment and control
group, from the year 2013 and onwards. The level of agricultural NDVI is big-
ger for the treatment group throughout the years 2011-2020, and appears to spike
somewhat more abruptly than the control group between the years 2019-2020.

In order to eliminate some of the fluctuation in agricultural NDVI, we decided to
show the pre-treatment trends with variation from rainfall removed; conditional
pre-treatment trends. Since precipitation matters greatly for variation in NDVI, we
ran a regression of agricultural NDVI on rainfall with standard errors clustered at
the road level. The residuals were collected and plotted against the same x-axis.
The rainfall-adjusted trends are represented graphically in the below figure.
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Means of residuals collected from regression of agricultural NDVI on rainfall for the
primary treatment and control group.

Figure 13: Pre-treatment trends adjusted for precipitation

The variation in means of agricultural NDVI is reduced when rainfall is taken into
account, and centered on approximately 0.19-0.24. The two lines follow each other
closely, the treatment group in general having somewhat higher agricultural NDVI.
Compared to figure 12, trends now look somewhat parallel also for the years 2011-
2013, although there is a spike for the treatment group in year 2013 and a subsequent
drop in year 2014. There is a somewhat lower drop in 2016 for the control group
compared to the treatment group, and some subsequent oscillation in the two lines
over the years 2017-2019.

7.2.2 Pre-treatment trends for secondary sample

As the pre-treatment trends adjusted for rainfall smooth the variation in agricultural
NDVI but preserves rather parallel trends, we reproduce this figure for our secondary
samples as well. As such, figure 14 shows pre-treatment precipitation adjusted
trends for the secondary control and treatment groups.
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(a) Selected roads (b) Roads with positive prioritization score

Figure 14: Secondary treatment and control group pre-treatment precipitation-
adjusted trends

The trends are similar to the ones shown in figure 13. They appear somewhat more
parallel in panel (b) compared to panel (a). They appear somewhat less parallel
than the trends in figure 13.

7.3 Difference-in-differences estimation

7.3.1 Primary estimation (main results)

Our differences-in-differences estimates for the primary treatment and control groups
are shown in the below table. Specification uses (1) grid cell fixed effects and year
fixed effects. Regression (2) adds a covariate for rainfall to the grid cell and year
fixed effects. Regression (3) is similar to regression (2), but instead of grid cell fixed
effects, it uses province fixed effects. Regression (4) uses the a set of covariates
(road length in km, distance in km to nearest city, population in 2019), year fixed
effects and province fixed effects, but no grid cell fixed effects. We also ran regres-
sions (without covariates) using pooled OLS and grid cell fixed effects only, with
the results effectively identical to regression (1).
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Table 5: Primary difference-in-differences

(1) (2) (3) (4)
NDVI NDVI NDVI NDVI

DiD 0.0223* 0.0146 0.0178 0.0175
(0.0123) (0.0118) (0.0119) (0.0118)

Precipitation in mm 0.0187*** 0.0107*** 0.0114***
(0.0030) (0.0026) (0.0026)

Grid cell FE Yes Yes No No

Year FE Yes Yes Yes Yes

Set of controls No No No Yes

Province fixed effects No No Yes Yes

Constant 0.1998*** 0.0870*** 0.1429*** 0.1186***
(0.0038) (0.0197) (0.0176) (0.0193)

N 10,752 10,736 10,672 10,672
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

The coefficient of interest is the difference-in-differences estimator, DiD. In terms of
direction of the estimate, DiD is consistently positive throughout the specifications,
although it decreases in magnitude when rainfall is added to the regression. The
relative size of standard errors increases as we add rainfall to the regression, meaning
that the estimated coefficients on DiD no longer are significant at the 10% level.5,6

5As our sample size is quite substantial, a statistical significance at 10% should be interpreted
with caution, when it comes to assessing the size of statistical significance.

6We also ran the regressions with district fixed effects, specifically regressions with year FE
and district FE. When adding rainfall to the regression, the coefficient decreases in magnitude and
relative size of standard errors increase. One motivation for including district fixed effects, is that
we worry that our precipitation measure is too coarse to account for rainfall differences within
districts. When district fixed effects are added, grid cell fixed effects are removed due to collinearity
issues. The estimated coefficients and their standard errors do not change substantially, but rather
display large similarities with the estimates shown above.
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7.3.2 Secondary estimation (main results)

Below, we restrict the primary sample to (1) only include the observations that
belong to a road selected for upgrade, and to (2) only include observations that
have a prioritization score above zero. We proceed with our preferred specification
from table 5, specification (2), that used grid cell fixed effects, year fixed effects and
our precipitation variable, since precipitation appeared to matter for the difference-
in-differences estimator.

Table 6: Secondary difference-in-differences

(1) (2)
Selected Positive score
NDVI NDVI

DiD 0.0348** 0.0386***
(0.0162) (0.0138)

Precipitation in mm 0.0178*** 0.0185***
(0.0047) (0.0045)

Grid cell FE Yes Yes

Year FE Yes Yes

Constant 0.0859*** 0.0946***
(0.0309) (0.0292)

N 5,100 5,128
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

The estimated coefficients of interest are positive, just as in table 5, but larger in
magnitude. They are statistically significant at the 5% and 1% level, respectively.
The estimate from regression (2) is higher than the estimate from regression (1),
and its relative size of standard errors is smaller. We also note that the sample size
has decreased substantially compared to what it was in table 5.

7.4 Sensitivity analysis

This section presents a sensitivity analysis, that is comprised by two regressions
and is aimed at investigating anticipatory effects and performing a placebo test,
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respectively. Primary as well as secondary treatment and control groups are used.

Regression (1), (3) and (5) show the test of "no anticipation". Since the World Bank
grant for the road upgrade project was approved in May, 2018, regression (1), (3) and
(5) use year 2019 as the first treatment year, and introduces a dummy for year 2019
interacted with the treatment dummy – this is the coefficient named Anticipation
effect. We perform our preferred specification for the years 2018-2022. Absent
anticipatory effects, we should expect not to see any statistically nor economically
significant coefficient for the interaction dummy. Regression (2), (4) and (6) perform
a placebo test. We introduce a placebo treatment between year 2015 and 2016, and
code observations in years 2013-2015 as pre-treatment and observations in years
2016-2018 as post-treatment. The placebo test should not yield economically nor
statistically significant results, if it were to support the main regressions and our
"true" treatment event.

Table 7: Sensitivity analysis

(1) (2) (3) (4) (5) (6)
Primary sample Selected roads Positive prioritization score

NDVI NDVI NDVI NDVI NDVI NDVI
DiD, anticipation test 0.0094 0.0215 0.0243

(0.0137) (0.0178) (0.0174)

Anticipation effect -0.0161 -0.0470*** -0.0280*
(0.0126) (0.0155) (0.0154)

DiD, placebo test -0.0084 -0.0240** -0.0314***
(0.0070) (0.0100) (0.0099)

Precipitation in mm 0.0193*** 0.0128*** 0.0186*** 0.0125*** 0.0213*** 0.0130***
(0.0028) (0.0017) (0.0043) (0.0031) (0.0040) (0.0027)

Grid cell FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Constant 0.0836*** 0.1435*** 0.0810*** 0.1302*** 0.0781*** 0.1341***
(0.0182) (0.0119) (0.0294) (0.0208) (0.0268) (0.0182)

N 13,420 16,104 6,375 7,650 6,410 7,692

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

For the primary sample, shown in column (1) and (2), the coefficient on Anticipa-
tion effect is between the difference-in-difference estimates from regressions (2) to
(4) in table 5 in magnitude, although negative and not statistically different from
zero at any conventional level. The coefficient of interest from the placebo test is
comparably small in magnitude, negative and not statistically different from zero
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at any conventional level.

Regression (1) shows an estimate in the negative direction. If there were in fact
anticipatory behavior, we would rather expect to see a positive coefficient here.
Nevertheless, it cannot be rejected on any conventional level that the coefficient is
equal to zero, which supports the notion of no anticipatory behavior. Similarly, it
cannot be rejected on any conventional level in regression (2) that the estimate is
in fact equal to zero. The coefficient itself is economically small and negative. If
it were greater in size or if its relative standard errors were smaller, we would be
worried that the parallel trends assumption was violated.

Moving on to the secondary treatment and control groups, the estimates change.
The anticipation test in (3) uses only roads selected for upgrade. It shows a negative
coefficient large in magnitude and statistically different from zero on the 1% level.
The placebo test for this subsample, regression (4), gives a negative coefficient of
sizeable magnitude, significant at the 5% level. For the sample where we only
include roads with a positive prioritization score, the coefficient on Anticipation
effect in regression (5) is of non-negligible size, negative and statistically significant
at the 10% level. The placebo test, shown in regression (6), yields, again, a negative
coefficient of non-negligible size, statistically significant at the 1% level. The results
for our secondary samples indicate some issues with our identification strategy, and
will be further elaborated in section 8.3.1.

7.5 Heterogeneity analyses

In this section, we present two heterogeneity analyses: varying grid cell size and
decomposing the difference-in-differences estimator by distance to nearest city. Pri-
mary as well as secondary treatment and control groups are used.

7.5.1 Difference-in-differences estimation with varying grid cell size

In our first heterogeneity analysis, we change the size of our grid cells, letting the
height of the grid cell vary between 1 and 15 km, in increments of 1 km. The width
of grid cells are constantly preserved at (approximately) 1 km. We perform our
preferred specification, regression (2) from table 5, with varying grid cell height and
plot the coefficient of interest together with its associated 95% confidence interval,
calculated by adding and subtracting 1.96 × se, standard error of the coefficient,
from the estimates. We do this as we are concerned that effects on agricultural
NDVI closer to the road could be attenuated by large grid cell sizes, if there are less
or no agricultural effects further away from the road.
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7.5.2 Primary sample

Firstly, we show the results of the grid cell size heterogeneity analysis for our primary
sample.

(a) Confidence interval at 95% (b) t-statistic over grid cell sizes

Figure 15: DiD estimates for differing grid cell sizes

Our difference-in-differences estimates increase as grid cell size increases, as is seen
in panel (a). While the slope is quite steep between the smallest grid cell sizes, it
appears to flatten out at 2 by 1 km. For grid cell sizes larger than 2 by 1 km, the
change in size of coefficient is modest. As grid cell size reaches 15 by 1 km, the
lower bound of the 95% confidence interval is at the closest of an intersection with
the vertical line placed at zero. The coefficient is not statistically different from
zero on the 5% level for any grid cell size. Panel (b) shows how the t-statistic of
the estimated coefficient changes with varying grid cell size.

The concern that effects in agricultural NDVI would be attenuated by our original
grid cell size is not supported by figure 15.

7.5.3 Secondary sample

In the below figures, we perform the analyses described in section 7.5.1, this time
using our secondary sample. We start by showing the results for selected roads
and proceed by showing the results for roads with positive prioritization score. The
estimated coffeficients are generally larger for our secondary sample, compared to
our primary sample.
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(a) Confidence interval at 95% (b) t-statistic over grid cell sizes, selected
roads only

Figure 16: DiD estimates for differing grid cell sizes, selected roads

Similarly to the primary sample, our estimated coefficients are most sensitive for
grid cell sizes in the smallest range, although the slope in panel (a) is quite steep
not only for heights bewteen 1 and 2 km, but between 1 and 4 km. The estimates
are quite stable as grid cell size increases, and they are statistically different from
zero at the 5% level for grid cell sizes above 2 by 1 km. The t-statistic increases
steeply for small grid cell sizes but flattens out as grid cell height is approximately
5 km.

The concern that effects in agricultural NDVI would be attenuated by our standard
10 by 1 km grid cell size is not supported for selected roads only.

The below figure finally shows the results with varying grid cell size for roads with
a positive prioritization score.
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(a) Confidence interval at 95% (b) t-statistic over grid cell sizes, positive pri-
oritization score only

Figure 17: DiD estimates for differing grid cell sizes, positive prioritization score
only

Figure 17 exhibits resemblance with both previous figures; the slope on coefficient
is again quite steep for small grid cell heights, especially between 1 and 2 km as
well as between 2 and 4 km. It appears to flatten out when grid cell height is
approximately 4 km. What sets this figure apart from the previous, is that even the
smallest grid cell sizes display estimates that are statistically different from zero.
The t-statistic is generally upward sloping, although the slope is modest.

Again, we find no evidence suggesting that the concern of large grid cell sizes at-
tenuating agricultural NDVI effects would be valid.

7.5.4 Difference-in-differences estimation by distance to nearest city

In our second heterogeneity analysis, we categorize our observations according to
their distance to the nearest city into three groups: within 10 km from the city,
between 10 and 20 km, and further away than 20 km from the city. We then
proceed with our preferred specification, regression (2) from table 5, and interact
the difference-in-differences variable with dummy variables for distance categories,
preserving the closest distance as baseline. We do this to see whether observations
at a particular distance appear to drive the results of our main regressions. As
advanced in Fafchamps and Shilpi (2003), economic activity could very well be
spatially distributed, such that farmers in our sample only within a certain distance
from cities would be likely to commercializing agricultural practices following rural
road upgrades.

Below, we present the difference-in-differences estimator, decomposed with respect
to distance to the nearest city.
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Table 8: Difference-in-differences by decomposition according to the nearest city

(1) (2) (3)
Primary sample Selected roads Positive score

NDVI NDVI NDVI
DiD 0.0004 0.0198 0.0270*

(0.0130) (0.0173) (0.0153)

DiD × Nearest city ≥ 10 km and < 20 km 0.0271* 0.0281* 0.0210
(0.0157) (0.0162) (0.0168)

DiD × Nearest city > 20 km 0.0282 0.0293 0.0278
(0.0293) (0.0299) (0.0314)

Precipitation in mm 0.0188*** 0.0180*** 0.0188***
(0.0031) (0.0049) (0.0047)

Grid cell FE Yes Yes Yes

Year FE Yes Yes Yes

Constant 0.0863*** 0.0846*** 0.0929***
(0.0201) (0.0318) (0.0303)

N 10,736 5,100 5,128

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

For the primary sample, the estimated coefficients are economically larger for dis-
tances further away from the city, although only the coefficient on the difference-
in-differences estimator interacted with a distance dummy in the second category
is statistically significant at a conventional level (10%), and given the sample size
this level of significance is not strong. Furthermore, we are not able to reject the
null hypothesis that the joint significance of the parameters of interest is equal to
zero, as the p-value of this F-test is 0.2324.

When it comes to the secondary sample, there are both similarities and discrepan-
cies. Starting with specification (2), that uses the selected roads only, the findings
are similar to those of specification (1), with the exception that the coefficient on the
difference-in-difference estimator without interactions is of much larger magnitude.
The p-value of the F-test for joint significance of the three parameters of interest
is 0.0671, which indicates that we may reject the null hypothesis of no joint signifi-
cance at the 10% level. The results from this specification suggest that observations
within 10 and 20 km may drive the results of our main regressions.

Specification (3), on the other hand, tells a different story. Now the coefficient is
smallest when interacted with the second distance dummy. Only the difference-
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in-difference estimator without interaction terms is statistically significant at the
10%. The p-value of the F-test for joint significance of the three variables is 0.0374,
indicating that we may reject the null hypothesis of no joint significance at the 5%
level. The results from specification (3) suggest that observations closest to the city
may drive the main results.

8 Discussion

8.1 Primary results

Our primary regressions of the main estimations show slightly varied results. The
regression that do not control for rainfall, regression (1), show that post-treatment,
grid cells associated with upgraded roads experience an increase in agricultural
NDVI compared to non-upgraded roads and compared to pre-treatment time peri-
ods, statistically significant at the 10% level. These estimates are likely to be biased,
as the coefficients of interest change in magnitude and statistical significance when
rainfall is taken into account. Regressions (2) to (4) display somewhat smaller es-
timates than (1), and they are not statistically significant at a conventional level:
we cannot reject that the estimates of interest in regressions (2) to (4) are equal to
zero. Regression (2) uses grid cell fixed effects, year fixed effects and the rainfall
control, and it is our preferred specification as it controls for grid cell characteristics
that remain constant through time, as well as year effects, and since precipitation
appeared to matter for the difference-in-differences estimator.

Even though we cannot reject that the coefficient of interest from our preferred
specification is in fact equal to zero, we note that all our DiD estimates are con-
sistently positive throughout the primary specifications. The estimated increase in
agricultural NDVI is of order 1/10 of the average agricultural NDVI, as can be seen
when comparing the size of the coefficients of interest in table 5 and reading off
the y-axis in figures 12 and 13. For regression (2), the size of the coefficient on
DiD is approximately similar in size to the coefficient on the precipitation variable
(although smaller). Reflecting on the magnitudes of these coefficients, it means that
the effect on agricultural NDVI from receiving a road upgrade, almost corresponds
to an increase in daily average rainfall by 1 mm.

The directions of the coefficients of interest in table 5 are consistent with the theory
presented in section 4.1, positive effects on agricultural output. When rainfall is
added to the regression, the coefficients of interest decrease in size and the relative
size of standard errors increase (see table 5), which indicates that there is some
correlation between the difference-in-differences estimator and the rainfall variable.
This is puzzling, as it indicates that precipitation would be correlated with the
treatment itself. From the regression, it appears that when rainfall is left in the
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error term, estimates are biased, the direction of bias being positive. Precipitation
is positively correlated with agricultural NDVI, and as bias is positive, it should be
positively correlated with the treatment. The fact that the coefficient on rainfall
displays strong statistical significance is not surprising, as rainfall affects agricultural
vegetation. One explanation for the correlation between rainfall and the treatment,
would be that it was decided to commence upgrade work on roads that received
more rain.

8.2 Secondary results

The results from our secondary estimation of the main regression, presented in
table 6, are consistent with the results from the primary estimations in terms of
direction of coefficients, although the coefficients are larger in magnitude and the
relative size of standard errors is smaller. Indeed, we reject the null hypothesis
that the difference-in-differences estimates are equal to zero on the 5% and 1%
level, respectively. Theoretically, there are reasons to believe that the secondary
samples are more suitable to proceed with in the analyses, as the treatment and
control groups should be more comparable. While it is an accepted approach to
compare the "treated" to the "not-yet-treated" and in doing so exclude the "never-
treated" from analysis, the exclusion of observations based on prioritization score is
less conventional. While the group of "selected" observations and the observations
with positive prioritization score have great overlap, the rationale for considering
the latter subsample was the prioritization exercise carried out by the Mozambique
Road Authority. Visually, the parallel trends assumption appear to be somewhat
better justified for this subsample than for the selected roads, as is shown in figure
14, although trends look less parallel than the primary pre-treatment trends in figure
13 (primary sample). If we think that there might be some endogeneity concerns
with respect to agricultural potential, they should be mitigated to some degree when
the comparison considers roads that are selected for upgrade only, or potentially
roads that scored positively on prioritization. Of course, roads with a prioritization
scores just above zero might be more similar to roads with a prioritization score
just below zero, than to roads with a very high prioritization score. This would
be an argument against treating observations with positive score as more similar
to each other in terms of agricultural potential. However, it is also not completely
evident which roads were classified as "selected", as the compliance with positive
prioritization score is not perfect. Looking at the subsample consisting of roads
with positive score only, could be seen as a complementary analysis in this respect.

The descriptive statistics reveal some interesting facts. Firstly, there are quite mean-
ingful differences in average agricultural NDVI pre-treatment for the group that
comprises selected roads only. On the other hand, prioritization scores are much
more similar for this subsample than between the treatment and control groups
of the primary sample. Secondly, prioritization scores are actually higher in the
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control group when we consider roads with positive prioritization score only. Differ-
ences in agricultural NDVI pre-treatment are also larger for this subsample than for
the primary sample. The primary sample hence presents more comparable groups
in terms of previous means of agricultural NDVI, whereas the secondary samples
present more comparable groups in terms of prioritization score.

8.3 Difference-in-differences assumptions

When it comes to assumptions underpinning the difference-in-differences design,
Callaway and Sant’Anna discuss irreversibility of treatment, random sampling,
limited treatment anticipation and conditional parallel trends (2021). We will go
through them in turn, devoting separate sections for the anticipation assumption
and the parallel trends assumption. Firstly, irreversibility of treatment would merit
special attention if we were to investigate long or medium term impact of rural
road upgrades. It could indeed be an issue that roads that were upgraded in one
period deteriorated in a later period, such that roads that were once classified as
"upgraded" and "treated" should no longer be classified as "upgraded" and "treated"
in a later period. We deem the issue of deteriorating roads to be plausible but
limited in the setting at hand, where we look at short-term effects of rural road
upgrades. We have furthermore ensured that observations classified as belonging to
the "treatment" group are not coded as "control" observations in any time period.
Likewise, we have ensured that no observations used in the analysis are classified
as "treated" in any pre-treatment time period. Secondly, random sampling is not
explicitly addressed in our research design, that primarily uses all roads subject to
the prioritization exercise by the Mozambique Road Authority within the frames of
the World Bank project.

8.3.1 Limited treatment anticipation

Limited treatment anticipation is addressed in our sensitivity analysis, where we
code year 2019 as an anticipation year. The coefficient of interest is the interaction
term of the dummy for year the 2019 and the treatment dummy. For out primary
sample, this coefficient is about the same absolute size as our primary estimates,
although negative, and not statistically different from zero on a conventional level.
This suggests that there is no anticipatory behaviour in the primary sample.

Turning to the secondary sample, the results are different. When we use roads
selected for treatment only, the coefficient is large, statistically significant at the
1% level and negative. When we use roads with positive prioritization score only,
the coefficient decreases in magnitude and statistical significance, although it is still
large compared to our primary results and of negative sign.
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The analysis of anticipation effects for our secondary samples do not suggest an-
ticipatory behavior, as the sign of coefficients are difficult to understand from this
perspective. A negative coefficient is what we could potentially observe if many
people left agriculture as a consequence of the road upgrades. Given that roads are
yet not upgraded by 2019, it is hard to argue that we would see a reallocation of
labor out of agriculture as access to labor markets is not yet improved. A positive
anticipatory effect, on the other hand, could indicate that people who are able to
do so prepare for improved market access by increasing agricultural output. Given
that many people find themselves facing constraints in form of finance and access
to markets, however, we would be more likely to expect no anticipatory behav-
ior. These findings are thus concerning with respect to the difference-in-differences
assumptions.

8.3.2 Pre-treatment trends for primary sample

A critical assumption in difference-in-differences estimations, is the parallel trends
assumption (Callaway and Sant’Anna 2021). The assumption is that absent the
event known as treatment, the "average outcomes for treated and comparison groups
would have followed parallel paths over time" (ibid., p. 200). The counterfactual is
of course not observed, but assumed and supported by, for instance, parallel trends
pre-treatment.

The pre-treatment trends for our primary sample are firstly shown in figure 12. Due
to the large variations in agricultural NDVI across years, we also employ a com-
parison of pre-treatment trends adjusted for rainfall (figure 13). The variation in
agricultural NDVI is reduced when rainfall is controlled for. Pre-treatment trends
appear largely parallel when we control for rainfall, although there are some in-
tersections between the lines that otherwise move in tandem. The pre-treatment
trends are similar in terms of being parallel without the control for rainfall (figure
12), but not entirely given the steep slope between 2019 and 2020 for the treatment
group, and given the U-shaped curve between years 2011-2013 for the control group
and the inverted U-shaped curve for the treatment group over the same period. The
parallel trends assumption could very well be challenged.

While there might be reason to question the pre-treatment parallel trends assump-
tion, our placebo test that yields a small coefficient (-0.0084) not statistically dif-
ferent from zero on any conventional level, draws some support for the assumption
of pre-treatment parallel trends (see table 7).
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8.3.3 Pre-treatment trends for secondary sample

Figure 14 shows parallel trends for our secondary treatment and control group,
using pre-treatment trends adjusted for rainfall. They are quite similar to figure
13, albeit visually less parallel. There are also some intersections between the
lines, which potentially challenges the parallel trends assumption for the secondary
treatment and control groups as well.

The placebo tests indeed suggest that parallel trends for our secondary treatment
and control groups might be violated. For the selected roads, the coefficient of
interest if -0.0240, significant at the 5% level, and correspondingly, -0.0314 for roads
with positive prioritization score, significant at the 1% level. For the placebo test
to lend support for our parallel trends assumption, these coefficients should not be
of economic nor statistical significance.

8.4 Varying grid cell size and distance to city

In this section, we discuss the findings from our heterogeneity analyses.

8.4.1 Varying grid cell size

It is true for both the primary and secondary samples, that the coefficients of
interest and their standard errors appear to be somewhat sensitive to grid cell size,
and especially sensitive to grid cell sizes that are in the smallest range. It could
be that grid cells below a certain size do not capture enough agricultural land for
effects in agricultural output to be identified. It could also be that farms most
responsive to road upgrades are located further away from the road, and are only
included in the analysis when observations grow large enough.

As soon as grid cell size increases to the mid-range, the estimates are however rather
stable. Our concern that effects on agricultural NDVI would be attenuated by large
grid cells does not appear to be supported. Instead, the estimates appear to be
rather robust to differing grid cell sizes above a certain height.

8.4.2 Distance to city

First of all, it should be noted that the sizes of our groups participating in the anal-
ysis differ. This warrants a cautious stance when interpreting the standard errors
on the coefficients of interest. For the primary sample, there are most observations
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in the distance category closest to the city, somewhat fewer observations in the mid-
distance category and the fewest number of observations are located further away
than 20 km from the city. For selected roads, there are most observations in the
closest distance category, fewer the the mid-distance category and the lowest num-
ber of observations are in the category above 20 km away from the city. For roads
with positive prioritization score, the pattern is similar. One way to make groups
more similar in size without using terciles7, would be to just look at observations
closer than 10 km and observations further away from the city. We decided to divide
our sample into three rather than two categories, because we wanted to see whether
there are discrepancies in response to treatment on more levels of remoteness.

For the primary sample, the results suggests that our main regression results could
be driven by observations located between 10 and 20 km from the city, although
the coefficient displays only a low level of statistical significance. Furthermore,
we cannot the reject that the coefficients on the closest and furthest distances are
zero. Also, we are unable to reject the null hypothesis of no joint significance of
the parameters of interest in this test. Indeed, we lack statistical support to say
that distance to city matters for treatment effects. Interestingly, however, we note
that the size and direction of the estimates are what we would expect if people
living closer to the city allocate out of agriculture as a consequence of rural road
upgrades, while people living further away from the city shift agricultural production
towards increased commercialization, which is consistent with previous research.
Nevertheless, we are unable to draw such a conclusion from our results.

The results from the selected roads tell a similar story, although the coefficient for
the group of observations closest to the city is higher than for the primary sample
(still, it is not statistically different from zero). The null hypothesis of no joint
significance of our parameters of interest is rejected at the 10% level, which means
that they appear more statistically significant than for the primary sample, even
though 10% is generally considered too low a level for it do be dubbed statistical
significance.

The results from the roads with positive prioritization score only somewhat changes
the position. The joint significance of our parameters of interest appear more sta-
tistically justified (null hypothesis rejected at the 5% level), but now observations
closest to the city display a coefficient that is statistically different from zero, albeit
only at a low level of significance (10%). In short, the F-test suggest that distance
appears more important for roads with positive prioritization score. But if observa-
tions closest to the city indeed drive the results, it is not in line with what we would
expect if people closer to the city allocated out of agriculture and people further
away from the city commercialized their agricultural practices.

7We also did the regressions with tercile categories, which did not change previous conclusions
of joint significance, but rendered none of the coefficients different from zero at any conventional
level. The means of distance to the nearest city are quite similar to the thresholds we set.
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8.5 Do rural road upgrades increase agricultural output?

The primary and secondary results appear to contradict each other, but ultimately
point to the same conclusion: the rural road upgrades in Nampula and Zambézia
had no short-term effect on agricultural output. While our primary results lack
statistical significance, they are robust to sensitivity analyses with anticipation and
placebo tests. Our secondary results, on the other hand, show larger estimates and
display a higher level of statistical significance. They are, however, not robust to our
sensitivity specifications with anticipation and placebo tests. Taking this together,
we cannot reject that the rural road upgrades we studied had no effect on local
agricultural output in the short term.

The hypothesis from the theory suggesting positive effects on agricultural output, is
not supported by our results. The hypothesis formulated upon the theory suggesting
ambiguous effects on agricultural output, is not rejected by our results. However,
in a short-term assessment, solely using remote sensing data that captures visi-
ble physical changes, it is not feasible for us to say anything detailed about the
mechanisms producing our result.

8.6 Limitations of our study

There are a number of limitations to our study. We will address some key issues in
this section.

Firstly, and as was already discussed in section 4.3, we set out to study only the
short-term effects of the rural road upgrades in Mozambique in this paper. Even
as short-term effects are important to investigate and as there are valid arguments
in favor of an estimation using only one year of post-treatment data, we would
ideally follow our estimation up with data in the years to come, extending our post-
treatment period. Constrained by the fact that such data is simply unavailable at
the time being, we leave the question of middle-term and long-term effects to future
research(ers).

Secondly, there is the question of how one should view roads. This paper treats
roads as individual pieces of infrastructure, rather than a network of infrastructural
elements. While we take into account the distance from a grid cell to the nearest
city and cluster our standard errors at the road level, we do not acknowledge the
fact that roads are connected to each other. One implication is that we might
neglect heterogeneity in treatment with respect to network centrality. Another
implication is that we do not exercise control of potentially inadvertently treated
roads. The first issue we attempt to address in our decomposition of the difference-
in-differences estimator with respect to the nearest city. Certainly, this measure
does not correspond perfectly to a a measure for network centrality, but it holds
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information about an observation’s location in relation to an urban area. It does
not hold information about an observation’s proximity to a range of urban centers,
on the other hand, which a network centrality variable should hold. An observation
could be close to one city but otherwise remote, whereas another observation might
be close to many cities. Similarly, our measure of the distance to the nearest city
does not take into account the size or "importance" of the city in question. There
might be reasons to believe that agricultural and economic activities are different for
well-connected areas and less connected areas, and it is a topic that future research
could justifiably address. The second issue, of inadvertently treated areas, is not
addressed in the scope of this thesis. Observations that lie in between roads, where
the closest road is not upgraded but the second-closest road is, could experience
some level of treatment effects. It would be interesting to construct such a measure,
for a future researcher, to vary the treatment group to also include the inadvertently
treated observations.

Thirdly, this thesis sets out to study what is sometimes dubbed a "data poor"
region of the world. Collecting agricultural and infrastructural survey data is time
consuming and costly for researchers, in comparison to utilizing remote sensing
data. A drawback in relying heavily on satellite imagery, which we do for our
road upgrade detection and for our agricultural NDVI measures, is that we merely
observe that which is "visual". We do not observe prices and quantities of maize
sold in the marketplace, for instance. We need to trust that our road upgrade
detection works well enough for us to identify treated and untreated roads, and
that our agricultural NDVI measure is constructed to appropriately account for
agricultural output. In the first case, we see a that the vast majority of roads
classified as treatment roads were also selected for upgrade. This should support
the functionality of our road upgrade detection algorithm. In the second case, our
agricultural NDVI is constructed with inspiration from Asher and Novosad (2020).
However, an important limitation to our measure of agricultural NDVI is that we
do not discriminate between land types. Ideally, one employs a land cover mask, as
done in Peng and Chen (2021), to separate changes in NDVI for different types of
land. While there are several published land mask datasets, we were unable to find
any products that fit in the time period of this study. While NDVI without land
cover masks can be useful in contexts such as the Midwestern United States (Lobell,
Thau, et al. 2015), where fields can be a clearly identified, it has proved much
more difficult to interpret in contexts such as Uganda, requiring complementary
coordinate data of plots to control for problems with “geolocation accuracies and
mixed pixels in Sentinel-2” (Lobell, Azzari, et al. 2020). To refine our measure of
NDVI, we decided to construct agricultural NDVI as the difference between growing
season NDVI and planting season NDVI. There might be some issues with different
areas having slightly different planting and growing season; both between Nampula
and Zambézia, and within the provinces. We think that fine-tuning the outcome
measure to different regions could be a promising avenue for further research on
this topic, to accurately capture agricultural output. Survey data is also likely to
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be a promising complement to remote sensing data.

Finally, if this World Bank project was to be evaluated over the medium or long
term, there are modifications to the research design that could be considered. If it
would prove difficult to identify a theoretically sound control group satisfying the
parallel trends assumption, researchers could consider using a different identifica-
tion strategy. For instance, panel data can be used in regressions that take fixed
effects and control variables into account, instead of using different groups in an ex-
perimental set-up. While we found theoretical motivations for using our secondary
samples, the empirical analysis conducted in our sensitivity checks rather suggested
that the primary sample provided better comparison groups.

9 Conclusion

The role of infrastructure for spatial economic distribution and development has
been reinforced and acknowledged in applied economic research, but it still remains
contested and contextual as to what it entails. This thesis has identified rural road
upgrades in Mozambique over the years 2018-2021, and studied their impact on
agricultural output in 2022. We add to the knowledge in the fields of geospatial
and development economics by contributing with our road upgrade detection algo-
rithm and a workflow for large-scale data collection. The novelty brought about
is the further exploitation of unconventional data sources and techniques to enable
economists to study areas of the world that previously might have been overlooked.

In our study, we have not been able to identify short-term effects on agricultural
output from rural road upgrades in northern Mozambique. Our primary sample
displays a difference-in-differences estimate of low or no statistical significance, al-
though the coefficient is in line with the hypothesis of positive effects on agricultural
output. These results are robust to sensitivity analyses. Our heterogeneity anal-
ysis does not suggest that distance matters for treatment effects, but then again,
we were unable to identify an increase (or decrease) in agricultural output. The
secondary samples, that theoretically should provide for good comparisons with re-
spect to agricultural potential, show estimated effects of receiving an upgrade that
are both economically larger and statistically more meaningful. These results are
however not robust to sensitivity analyses, which suggests issues with the identifying
assumptions of no treatment anticipation and conditional parallel trends. As we do
not trust the main regressions for our secondary samples, the decomposition with
respect to city for the difference-in-differences estimator appears less interesting at
this stage.

These results are relevant for policymakers considering road upgrades as a mech-
anism for subsistence farms to scale up production and transition out of poverty.

70



Effects on agricultural output are not immediate, although an evaluation consid-
ering a longer time period is needed for a complete understanding, and to best
formulate policy in this regard. Furthermore, it is likely that policymakers will
need the aid of additional data and analyses to discern the mechanisms at play.

The results presented in this thesis were derived from our desks in Stockholm. As
geospatial methods are becoming more advanced and as the quality of publicly
available imagery improves, the potential for similar studies will only increase. At
the same time, evidence collected in the field will always be valuable and comple-
ment the data collected remotely. By developing our own road upgrade detection
algorithm, we have created a means to collect data that is of great value. With
road coordinates being the only required input, our algorithm and data collection
process can be applied to any region in the world.

To shed light on the role of rural transport infrastructure in local economic de-
velopment, more research is surely warranted. Our study suggests that rural road
upgrades do not increase agricultural output in the short term. Additional data for
years to come in the period post road upgrades, is needed to complete the picture
of the agricultural impact of this particular World Bank project.
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Appendices

A Descriptive Statistics for Secondary Samples

Table 9: Descriptive statistics for 2018-2020, selected roads only

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.21 0.09 0.16 0.08 0.05∗∗∗ 0.71
Nearest city 11.15 7.39 11.75 11.53 -0.60 0.05
Road length in kilometers 19.64 11.31 18.87 12.94 0.77 0.06
Grid cell size 7.97 2.36 7.47 2.55 0.51∗∗∗ 0.20
Population in 2019 4,546.97 6,750.46 5,465.76 8,620.27 -918.79∗∗∗ -0.11
Grid cell population density 639.62 1,352.72 833.09 2,002.59 -193.47∗∗∗ -0.10
Prioritization score 6.33 5.83 5.53 8.96 0.80∗∗ 0.09
Precipitation in mm 5.86 1.14 5.29 1.02 0.58∗∗∗ 0.57
Observations 2,298 1,527 3,825

* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the pre-treatment time period by secondary treatment and
control group.

Table 10: Descriptive statistics for 2018-2020, positive prioritization score only

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.21 0.09 0.18 0.09 0.02∗∗∗ 0.28
Nearest city 10.81 7.43 14.50 13.00 -3.69∗∗∗ -0.28
Road length in kilometers 19.94 11.50 21.93 21.92 -1.99∗∗∗ -0.09
Grid cell size 7.99 2.36 7.75 2.30 0.24∗∗ 0.01
Population in 2019 4,651.73 6,861.44 5,242.99 6,907.63 -591.26∗∗ -0.09
Grid cell population density 656.24 1,384.35 785.43 1,851.83 -129.18∗ -0.07
Prioritization score 6.74 5.74 8.67 7.16 -1.94∗∗∗ -0.27
Precipitation in mm 5.85 1.13 5.26 1.08 0.58∗∗∗ 0.54
Observations 2,175 1,671 3,846

* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the pre-treatment time period by secondary treatment and
control group.
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Table 11: Descriptive statistics for 2022, selected roads only

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.27 0.09 0.18 0.08 0.09∗∗∗ 1.13
Precipitation in mm 7.21 1.45 6.47 1.75 0.74∗∗∗ 0.42
Observations 766 509 1,275
* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the post-treatment time period by secondary treatment and
control group.

Table 12: Descriptive statistics for 2022, positive prioritization score only

Treatment Control Difference

Mean SD Mean SD Diff Diff/SDControl

NDVI 0.27 0.09 0.19 0.10 0.08∗∗∗ 0.80
Precipitation in mm 7.15 1.47 5.87 1.72 1.28∗∗∗ 0.74
Observations 725 557 1,282
* p<0.05, ** p<0.01, *** p<0.001

Descriptive statistics for the post-treatment time period by secondary treatment and
control group.

B Digital Appendix: Visual Classification

A report of the visual classifications of roads in our training dataset is available at:

https://github.com/jeffrey-clark/road_upgrades/blob/main/media/appendix_road_
composites.pdf
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