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1 Introduction

Europe has experienced drastically increased electricity prices since fall 2021. Ac-

cording to Eurostat (2022), 25 member countries of the European Union (EU)

experienced a rise in household electricity prices in the latter half of 2021, com-

pared to the corresponding period a year before. Estonia reports the largest

increase of 50%, tightly followed by Sweden, sporting a rise of 49% in household

electricity prices. Meanwhile, the highest household electricity prices for the same

period were observed in Denmark and Germany, amounting to 34.50e/kWh and

32.30e/kWh, respectively.

Figure 1: Average Monthly German Electricity and Gas Prices

Note: The drastic increase in both gas and electricity in the latter half of 2021 can

be seen on the German market. Data source: ENTSO-E Transparency Platform and

Refinitiv Datastream. Graph by the authors.

It is largely acknowledged that the high electricity price is mainly driven by a

huge increase in the price of natural gas (Batlle, Schittekatte, and Knittel 2022).
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A natural gas supply crisis is spreading throughout Europe. 20 EU-countries

simultaneously experienced gas price increases in the second half of 2021. For

example, a rise of 70% in the gas price is seen in Sweden, along with a 67% increase

in Denmark. Further tensions between Russia and the rest of Europe, heavily

reliant on Russian gas deliveries, has highlighted additional risks of including

natural gas in the energy production mix. Besides, demand increase due to the

recovery from Covid-19 and technical challenge have also contributed to the gas

supply shortage (Mǐsık 2022).

Existing literature addresses the impact of gas on the electricity producing sec-

tor. Linn, Muehlenbachs, and Wang (2014) point out that the cost and capital

formation of the power sector leads to large and consistent effects on the genera-

tors when a natural gas price shock takes place. Mosquera-López and Nursimulu

(2019) imply that the price of natural gas is one of the main price drivers at the

long-term electricity futures market.

While gas price boasts a great influence on electricity price, other sources also

play important roles in the electricity price setting process. Intermittent renew-

able energy sources (IRES) are increasingly employed for power generation in the

EU. IRES also present a well-documented merit-order effect (Sensfuß, Ragwitz,

and Genoese 2008; Tveten et al. 2013; Clò, Cataldi, and Zoppoli 2015; Gelabert,

Labandeira, and Linares 2011), which encompasses the reducing effect on electric-

ity prices from the usage of low marginal-cost IRES electricity production. Hence,

IRES could be expected to dampen the price increase brought by along a spike in

the gas price.

Nonetheless, the inherent variability in the production output of IRES has brought

uncertainty to its expected effect to soothe gas price influence. The intermittency

of IRES calls for the support of other technologies, so called back-up technologies,

to generate electricity when IRES generation is not available or enough to meet

demand. For this purpose, natural gas is known to be one of the major back-

up technologies (Kolb et al. 2020). Therefore, we suspect that countries, e.g.

Germany, that rely on natural gas as back-up technology are at greater risk when

facing an exogenous gas price shock, compared to countries with access to cheaper

back-up generation, e.g. the Nordic countries with access to hydropower (Dong
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et al. 2019).

In this paper, we contribute to the literature by evaluating the joint effects of

gas price and IRES generation. More precisely, we aim to answer the following

research question: Judging from its current reliance on back-up technologies, does

IRES truly contribute to mitigating electricity’s dependence on natural gas?

This paper also contributes to the literature in electricity market study by employ-

ing two empirical approaches to reveal how gas price and IRES generation take part

in the electricity market. To disentangle the relationship among electricity price,

gas price and IRES generation, we proceed with the analysis in two steps, focusing

on the German day-ahead electricity market during 2016-2020. Firstly, based on

an integrated empirical approach (Duso, Szücs, and Böckers 2020; Macedo, Mar-

ques, and Damette 2021), we specify SARIMAX/GARCH models to assess the

peak and off-peak differences of gas price influence on electricity prices. Secondly,

we specify the interaction effect of gas price and IRES generation on electricity

prices by developing OLS regression models with interaction terms (Clò, Cataldi,

and Zoppoli 2015). Notably, day-ahead gas price is affected by electricity price

from the demand side (Hulshof, Van Der Maat, and Mulder 2016) whereas gas

price is mostly determined by fuel price in the long run (Nick and Thoenes 2014;

Asche, Misund, and Sikveland 2013). In this study we employ the front month

futures contracting price to indicate gas price, in order to mitigate the concern of

reverse causality.

The focus on the German electricity market is founded upon its, for our purposes

appropriate, energy profile. In addition to an upwards trend in IRES penetration,

as seen in Figure 2, natural gas still covers a stable share of electricity supply in

Germany.

Our study finds evidence of the merit-order effect of IRES in the German market

and confirms that gas price has greater influence on electricity price during peak

hours than off-peak hours. Nevertheless, the proposed mitigating effect of IRES on

gas price influence on electricity prices remains unclear and cannot be established.
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Figure 2: German Electricity Generation by Source

Note: Other sources include electricity generation from oil, waste, chemical heat, and

other sources. Datasource: IEA (2022). Graph by the authors.

The paper proceeds as follows. Section 2 gives an introduction to the dynamics of

electricity markets, further exemplified with the German electricity market. We

proceed by presenting a review of related literature and our hypotheses, consti-

tuting our theoretical framework in Section 3. Sections 4 and 5 introduce the

methodology and the data used in our analysis. The results are presented in

Section 6 and further analysed in Section 7. Section 8 concludes.

2 Background

2.1 Electricity Market Design

Electricity can hardly be stored on a small scale, and unlikely at all on an indus-

trial level. Electricity has historically been a monopolistic utility. However, the
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market has evolved with deregulation, development of generation technology and

establishment of transmission networks (Stoft 2002; Kirschen and Strbac 2018).

In order to understand a basic model of the electricity market, several concepts

are important for understanding the institutional setup for the electricity market

post-deregulation. Therefore, in accordance with the analysis of Cramton (2017),

a detailed electricity market design is presented below.

The system operator (SO) is in charge of real-time grids and maintains the real-

time balance of supply (Generation), from generating companies and decentralized

generation, and demand (Load). The demand side includes final-end consumers

(industry and household) and retailers that face these consumers. The demand

presents a characteristic of time-dependency and low elasticity. Power exchanges

(PX) offer the platform where trading happens and trading information, including

positions, is provided to SO.

Moreover, there is the wholesale market. Trade takes place between generators and

retailers at the wholesale market under two types of systems. Bilateral trading

involves long-term contracts, over-the-counter contracts and short-term electronic

trading contracts. Electricity pools allow companies and retailers to submit bids

which are handled by SO and ranked to find the clearing price. The two systems

are not in conflict and can exist in a hybrid model, which is employed in for

example Nordpool and the European Power Exchange (EPEX). The retail market

in turn involves the distribution networks from retailers to consumers.

The day-ahead market is a voluntary and financially binding model market where

market participants acquire incentives and commitment for generation and op-

erators efficiently plan units of the next day. Offers submitted by participants

typically include three sections: start-up cost (the cost of starting a generator),

minimum-energy cost (the lowest cost of running a generator), and an energy offer

curve (the reflection of each unit’s marginal cost).

The real-time market is a mandatory as well as financially and physically binding

market where the resource dispatch and energy prices throughout the operating

day are determined. Energy offer curves or output schedules are required for

resources. Bid curves can be submitted by load resources in response to dispatch
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instructions, in which lower prices are present with higher demand. Due to the

fact that supply and demand are not able to be forecast in reality, adjustments

are made efficiently at the real-time market by SO in order to meet the real-time

deviations from the day-ahead planning.

Peak-load pricing is employed in the electricity market as a result of the interplay

of time-varying demand, market power and electricity’s nature of non-storability

(Boiteux 1960). It describes a system where price shows within-day variations

based on demand (Crew, Fernando, and Kleindorfer 1995).

Lastly, a merit order dispatch system is utilized in the electricity market. It ranks

each unit of generation capacity by the bidding price. The dispatching capacity

then meets demand, in terms of the bidding rank from lowest to the highest.

In other words, the cheapest units that satisfy demand win the auction. Two

main payment rules are deployed for winning bids. Uniform price suggests that

all the winning bids receive the bidding price of the marginal bid (the highest

winning bid) whereas pay-as-bid suggests that all the winning bids receive their

own bidding prices (Akbari-Dibavar, Mohammadi-Ivatloo, and Zare 2020). In

the case of uniform price, which is utilized in the European market (Van Bracht,

Maaz, and Moser 2017), the price is determined by the bidding price of last unit

demanded. As a consequence, low marginal-cost power generating sources are able

to lower the spot price in the electricity market.

2.2 Electricity Supply

2.2.1 Energy Mix

The variety of electricity generation technologies has broaden the investment pos-

sibilities. According to Eurostat (2021b), at the year of 2020, the five most elec-

tricity generation sources in Europe are total petroleum products (35%), natural

gas (24%), renewable energy (17%), nuclear energy (13%) and solid fossil fuels

(12%). Generation sources vary in multiple aspects, including fixed and variable

costs, carbon emission and installation difficulty. The choices of technology af-

fect power market design, especially the auction form, and raise issues in various
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senses: greenhouse gas emissions (e.g. fossil fuels), nuclear security (e.g. nuclear),

supply security (e.g. IRES), etc. (Fabra 2021).

Natural gas has gradually become the fuel choice for power plant investments and

renewable energy sources have shown growing impact for generation in electricity

markets in Europe. Their disparate natures lead to different risk profiles of gas-

fired electricity contracts and renewable contracts. While natural gas generation is

more resilient to short-run demand risks, renewable generation performs better at

mitigating fuel price risks and environmental compliance risks (Wiser et al. 2004).

2.2.2 Transition to Renewable Energy Sources

The Energy Strategy and Energy Union in EU has addressed the importance of

environmental issues and announced progressive targets in terms of renewable

usage, notably achieving renewables generating 20 % of energy supply by 2020

and 32% by 2030 (European Union, n.d.).

The supply variability of renewable capacity in combination with the demand un-

certainty at the power market calls for an integrated generation system, which

provides a balanced production, flexible grids and distributed transmission in-

frastructure (Milstein and Tishler 2011; Zahedi 2011). Meanwhile, low-carbon

sources present the characteristic of capital intensiveness, which indicates that it

is more costly to promote renewables in emerging economies with higher capital

costs than in more developed countries (Hirth and Steckel 2016). Therefore, vary-

ing energy security, economic situation and technology development have led to

different speeds and motivation of energy transitioning among different countries

within EU; While some countries prioritize developing renewables (e.g. Germany,

Nordpool, and the Netherlands), others are not as enthusiastic about promot-

ing renewables (e.g. Poland and Malta) (Pérez, Scholten, and Stegen 2019). To

further promote renewable energies, a cointegrated system among countries to

coordinate against the supply and demand fluctuation, as well as country-wise

diversified generation, is much needed in the energy transition process (De Vries

and Verzijlbergh 2018).
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2.3 German Market

Despite the general trend of increasing usage of renewables in most European

countries, we believe that Germany provides the most suitable energy mix setup

for our study to analyze the combined effects of IRES and natural gas. In coun-

tries where IRES is developing, some still largely depend on nuclear energy (e.g.

France), some are dominated by one major source (e.g. Norway) and some rely

much more on natural gas than IRES (e.g. Italy). However, Germany serves bet-

ter for our goal of untangling the relationship of IRES and its backup technology,

notably natural gas in our case, and their joint effects on electricity prices. While

IRES is gradually gaining more influence on power generation, natural gas still

accounts for a crucial share of domestic German electricity supply.

2.3.1 Energiewende

Energiewende marks the energy transition in Germany. It entails a series of de-

cisions including phasing out nuclear power by 2022, bringing down the share of

electricity generation from fossil fuels from 80% to 20% while maintaining the eco-

nomic development and increasing the share of renewable energy supply to 35%

by 2020 and 80% by 2050 (Beveridge and Kern 2013). German government has

created a feed-in-tariff model that consistently supports renewable sources and

maintains adequate electricity supply despite the drastic decline in nuclear and

fossil fuel generation (Gerhardt 2017). Meanwhile, various policy strategies are

exercised to promote the supply of renewable energies, such as incentivizing photo-

voltaic installations in private households (Kratschmann and Dütschke 2021). On

the other hand, the renewable energy companies show influence on the decision-

making of the policy makers, which in turn further promotes renewable generation

(Sühlsen and Hisschemöller 2014). The introduction of IRES has largely influenced

the German electricity market. In 2020, solar and wind production account for

more than 25% of electricity generation in Germany, compared with a share of

less than 10% in 2010 (IEA 2021).

The policy makers have responded to the concern of nuclear safety and envi-

ronmental concern by phasing out nuclear energy, reducing coal production, and
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expanding investments in renewable energy sources. However, the energy market

is heavily subsidized to cover the gap between guaranteed prices to producers and

market prices, with subsidies adding up to as much as 27 billion euro in 2014

(Chrischilles and Bardt 2015). Analysts are not positive about this situation and

believe that German consumers do not have the ability to afford these enormous

subsidies in the future (Renn and Marshall 2016). Hence, a call for mixed en-

ergy sources is raised in Germany, especially in terms of having a stable gas-fired

production to mitigate the fluctuation of IRES supply. Having observed a pre-

vious decline, gas is now found to play an essential role in the Germany energy

transition, resulting in a a recent increase of gas-fired generation (Hörnlein 2019;

Graichen and Redl 2014).

3 Related Literature and Hypotheses

3.1 Related Literature

3.1.1 Natural Gas and Electricity Price

The gas market follows the scheme of coming spot trading with long-term con-

tracts, which is the typical transaction approach of energy markets is followed.

Spot trading indicates immediate delivery on the spot market while contracts are

made with respect to a specific duration, location and price.

The gas price is a result of the interplay of supply and demand. Asche, Misund,

and Sikveland (2013) discover that oil price is the most important price driver of

the intergrated European gas market. The results of a study by Nick and Thoenes

(2014) show that temperature, storage and supply shocks affect gas price in the

short run, and coal and oil prices determines gas price in the long run. After

analyzing the Dutch Gas Hub (TTF) day-ahead spot price from 2011 to 2014,

Hulshof, Van Der Maat, and Mulder (2016) find that gas-market fundamentals

including weather and storage are predominant on gas price. In other words, the

supply side does not decide the daily gas price fluctuation. Meanwhile, they also

find that wind production electricity price, which comes from the demand side,
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has a positive effect on gas price on the day-ahead market.

As a traditional source of power generation, natural gas is expected to show effects

on electricity prices. Linn, Muehlenbachs, and Wang (2014) find strong evidence

that electricity price is affected by natural gas prices in the US, and the similar

indication is suggested by Alexopoulos (2017). He et al. (2018) come up with a

two-stage adjustable model of a optimal coordinated system with power and gas,

and argue that there exists interdependency of the two systems, which indicates

that uncertainties from one side can also affect the other. The determinants of

electricity price vary in the short run and in the long run (Everts, Huber, and

Blume-Werry 2016), and natural gas is found to be one of the main price drivers

at the long-term electricity futures market (Mosquera-López and Nursimulu 2019).

3.1.2 IRES and Electricity Price

With the employment of a merit-order dispatch system in the electricity mar-

ket, low marginal-cost renewable electricity sources drive out expensive marginal

plants (Fischer et al. 2006). Thus, merit-order effect describes this mechanism that

the increasing usage of renewable energy sources in power generation decreases

the electricity prices. The described phenomenon is found in multiple countries

with empirical evidence. A marginal increase of 1 GWh in daily electricity pro-

duction from solar and wind generation reduced the wholesale electricity prices

respectively by 2.3e/MWh and 4.2e/MWh, and increased the volatility of the

wholesale electricity prices in Italian market during the time period of 2005-2013

(Clò, Cataldi, and Zoppoli 2015). Similarly, a decrease of 2e/MWh is found in a

ex-post study of renewable and co-generation production in the Spanish market

(Gelabert, Labandeira, and Linares 2011). Wind energy generation is found to

affect the day-ahead electricity spot price in the Danish market (Jónsson, Pinson,

and Madsen 2010), as well as in the Irish market (O’Mahoney and Denny 2011).

However, while most literature suggest a uniform direction of renewable energy

sources, Oosthuizen, Inglesi-Lotz, and Thopil (2022) find that the increasing share

of RES has significantly affected retail electricity prices in an upward direction in

34 OECD countries.
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In the context of the setup of our paper, empirical evidence of merit-order effect

in the German power market is presented in several studies. The renewable power

generation lead to a decrease of 7.8 e/MWh of the unweighted average electricity

price in 2006, and the estimated total merit-order effect increased from 1 billion

euro in 2001, to 5 billion euro in 2006 (Sensfuß, Ragwitz, and Genoese 2008).

Specifically, the solar generation on average reduces predicted prices by 7% in

comparison with the predicted prices without solar production in 2011 (Tveten

et al. 2013).

Furthermore, the analysis of Dillig, Jung, and Karl (2016) reveals that, along with

the fact that renewable energy generation has reduced power market prices, renew-

ables have saved German electricity consumers almost 30 billion euro, compared

with the situation where only non-renewable sources are used. They conclude this

is a consequence of a deficit of the capacity installation from non-renewable gen-

eration sources during 2011 and 2013. Their follow-up study in the time period

2014-2016 (Kolb et al. 2020) further argues that domestic non-renewable gen-

eration would not have been able to fulfill the electricity demand, which in turn

addresses the importance of expanding the utilization of renewable energy sources.

The studies imply electricity supply shortages in few years as a consequence of a

series of events: time gap between renewable investments and actual production,

decommission of conventional plants and fully shutting down or nuclear plants.

Besides, considering IRES’ characteristic of intermittency, there are times that

solar or wind energy is not able to be put into use. Hence, a potential short-term

solution to the deficits is to make use of backup capacities such as gas and hydro

installation.

The employment of IRES not only affects power market prices, but also influences

the price volatility. Intuitively, the intermittency nature of IRES leads to a less sta-

ble supply, for example, when the weather conditions fail to conduct wind or solar

generation, and hence increases in price volatility. Nevertheless, previous stud-

ies have indicated various directions of the effects. The study of Ketterer (2014)

shows that intermittent wind electricity generation increases the price volatility

in the German market. This is in line with the analysis of Rintamäki, Siddiqui,

and Salo (2017) in terms of the German market. However, they find that wind

power generation decreases the price volatility in the Danish market. Similarly,
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Dong et al. (2019) also find that the Danish market presents a low price volatility

with a major usage of wind generation, and they argue that this is potentially

because Norway’s hydro production is backing up the Danish system when wind

generation is not able to fulfill the demand.

These findings regarding both electricity price mean and volatility above shed light

on the importance of back-up technology in the increasing production of renewable

sources. The analysis of Hirth (2013) addresses that complementary technologies,

such as gas-fired plants and biomass, are crucial to fill the gap at mid and peak load

hours when IRES is not able to fulfill the demand. After observing a declining

trend in marginal effects of renewables on electricity prices in Spain, Gelabert,

Labandeira, and Linares (2011) put forward one potential reason that, along with

the growing renewable generation, the increasing participation of lower marginal

cost gas power plants instead of higher cost coal production has contributed to

flatten the supply curve.

3.1.3 Empirical Approach in Electricity Market Study

Various empirical approaches are applied to untangle the relationship between the

employment of IRES and electricity prices. Some studies use fundamental models

to simulate market prices, such as an agent-based approach (Wehinger, Galus, and

Andersson 2010; Wang et al. 2008), an approach based on the economics of power

production and consumption (Pirrong and Jermakyan 2008). Clò, Cataldi, and

Zoppoli (2015) build an OLS regression model to examine the merit-order effect

of solar and wind generation in the Italian electricity market during 2005-2013.

Many studies use econometric techniques including time series analysis. When

analyzing electricity price series, its nature of high heteroskedasticity and high au-

tocorrelation is often considered. Autoregressive moving average models (ARMA)

and generalized autoregressive conditional heteroskedasticity models (GARCH)

are widely used in electricity price studies. Worthington and Higgs (2010) under-

take a comprehensive literature review on models used in electricity price stud-

ies, including both univariate and multivariate models, and this study suggests

an increasing usage of ARCH and GARCH models to assess the persistence and
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volatility of electricity price series.

Based on time series analysis with seasonally adjusted autoregressive moving av-

erage (SARMA) models, Rintamäki, Siddiqui, and Salo (2017) compare Danish

and German electricity market data at peak and off-peak hours, and assesses how

variable renewable energy generation affects electricity price volatility. Macedo,

Marques, and Damette (2021) measure the influence of wind power and cross-

border electricity flow on the mean and volatility of electricity price, by building

24 hourly models with a SARMAX/GARCH method. To take the nature of elec-

tricity price into account, the SARMAX/GARCH model approach is used in this

study to estimate the mean and volatility of electricity prices.

3.2 Hypotheses

As is presented in existing literature, there is a well-documented relationship be-

tween gas and electricity price, as well as between IRES and electricity price. EU’s

energy transition, in which IRES plays a major role, aims to mitigate the reliance

of electricity production on fossil fuels and improve energy security against fluctu-

ating supply of fossil fuels. However, judging from its current reliance on backup

technologies, does IRES truly contribute to mitigating electricity’s dependence on

natural gas?

More precisely, we aim to analyze how IRES affect gas price fluctuations’ influ-

ence on electrity price. To untangle this relationship, we proceed with two steps.

Firstly, we test whether gas price presents different effects on electricity price

under the usage of IRES.

We apply an identification strategy on the basis of intraday demand variation and

merit-order dispatch. We expect to see gas price present different effects between

peak and off-peak hours. This strategy is inspired by the observation of Duso,

Szücs, and Böckers (2020) in Germany. While off-peak prices reflect marginal cost

of the highest-cost plant, energy providers possess stronger market power during

peak hours. As shown in Figure 3, electricity supply curve presents high convexity,

and it intersects the peak demand curve at a steeper fragment than the off-peak
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one. That is to say, a shock from supply side renders a larger effect during peak

hours.

Figure 3: Visualization of the Dispatch System in Germany

Note: Stylized visualization of the German dispatch system, inspired by Gugler and

Haxhimusa (2019). Graph by the authors.

During off-peak hours with a lower demand, IRES with low cost profiles are used

first whereas the more expensive gas is only used if IRES and other, cheaper, back-

up generation technologies, e.g. hydro, cannot provide the marginal demanded

unit. During peak hours with a higher demand, IRES and gas are likely to produce

electricity simultaneously to fulfill the high demand. Hence, we specify two models

separately for peak and off-peak hours and expect to see gas price present a lower

or zero effect on electricity price mean and volatility at off-peak hours than at

peak hours.

Secondly, we further study the interaction of IRES generation and gas price. Di-
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rections of the interaction can be divergent. To identify the scale of the effects, we

specify an OLS regression model including an interaction term of IRES production

and gas price. We expect a negative coefficient of the interaction term, because

even though increasing IRES emphasizes the role of natural gas as back-up tech-

nology, its merit-order effect might still serve to reduce the overall influence of gas

price on electricity price.

4 Method

Based on the different hypotheses we aim to test, two methods are employed

accordingly. Firstly, we use SARIMAX/GARCH models to explain the character-

istics of electricity price series and compare the differences of explanatory variables

between peak and off-peak hours. Secondly, we use OLS estimations with inter-

action terms to capture the joint effect of gas price and IRES.

4.1 SARIMAX/GARCH Model

The SARIMAX model belongs to the autoregressive moving average (ARMA)

model family. ARMA stands out in time series study for its flexibility and capac-

ity to describe most features of a stationary time series (Woodward, Gray, and

Elliott 2017). The autoregressive parts of these models explain how consecutive

observations are influenced by their own previous values while the moving aver-

age parts capture some possible unobserved shocks. In this research, to include

the seasonality feature of electricity and exogenous regressors accounting for price

formation, we use the SARMAX framework proposed by Box et al. (2015). Con-

sidering the results of the unit root tests later reported in Section 5, we incorporate

an integration order, which gives us the final SARIMAX structure. We follow the

notation of Macedo, Marques, and Damette (2021) and present their model below.

The SARIMAX model we pursue is essentially the same as the SARMAX model

shown below, with the addition that the variables are differenced.
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Pt,h = +

ph∑
j=1

ϕjPt−j +

Ph∑
i=1

ΦjPt−sh +

Ph∑
i=1

Φi

ph∑
j=1

ϕiPt−j−sh +

qh∑
j=1

φjεt−j+

Qh∑
z=1

Ψzεt−sh +

Qh∑
z=1

Ψz

qh∑
j=1

φzεt−j−sh +
∑
l∈k

δlXt,l + εt,

(4.1)

Pt,h is our dependent variable, the average day-ahead electricity price for peak and

off-peak hours respectively, which are denoted by h. Furthermore, s represents the

seasonal term, k represents the information set, ϕp and φq respectively denote the

non-seasonal AR- and MA-parameters, whereas ΦP and ΨQ respectively denote

the seasonal AR- and MA-parameters. X stands for the vector of the exogenous

variables, δ their coefficients and l indicates the summation index of the exogenous

regressors.

The GARCH model is introduced by Bollerslev (1986) to model time-varying

volatility. GARCH models capture the error variance in ARMA models, and al-

low for past conditional variances in the current conditional variances. We use

the same model proposed by Macedo, Marques, and Damette (2021) for the cor-

responding GARCH(p,q) variance equation:

σ2
t = γ + βσ2

t−1 + αε2t−1 +
∑
m∈r

λmZt,m, (4.2)

where Z represents the vector of the exogenous variables and λ are the coeffi-

cients of them, m is the information set, and r stands for the summation index.

The exogenous regressors include total load, cross-border flows, wind and solar

generation, as well as gas price.

The GARCH error parameter α, also known as the ARCH parameter, assesses

the impact of new shocks in a time series. The GARCH lag parameter β evalu-

ates the impact of past shocks on future volatility. Combining both parameters,

α+β measures the persistence of volatility, which indicates whether a shock has

long-lasting influence in a time series. The stationarity of GARCH models is un-

dermined when the value of α+β is greater than 1. The persistence of volatility
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is high if the value of α+β is around 1 and suggests that a shock possibly tend to

revert slowly in a time series. The persistence of volatility is low if the value of

α+β is substantially lower than 1 and indicates that a shock is likely to diminish

quickly.

4.2 OLS Regression Model

We incorporate a secondary OLS approach to include interaction terms and nuance

the results of the SARMAX models, and loosely establish our models on the basis

of Clò, Cataldi, and Zoppoli (2015).

We firstly build a model including gas price and IRES generation as the explana-

tory variables. We then control for total load, inflow and outflow, denoted in the

vector of exogenous regressors, X.

Pt = α + β1IRESt + β2GasPricet +
∑
l∈k

δlXt,l + εt (4.3)

We further add an interaction term between gas price and IRES generation, which

is our main variable of interest, to assess the joint effects of them.

Pt = α + β1IRESt + β2IRESt ×GasPricet + β3GasPricet +
∑
l∈k

δlXt,l + εt

(4.4)

On the basis of above equations, we separate IRES generation into wind and solar

to distinguish their individual effect on electricity price.

Pt = α + β1Solart + β2Windt + β3GasPricet +
∑
l∈k

δlXt,l + εt (4.5)

Lastly, we incorporate interaction terms of gas price and wind and solar respec-

tively, aiming to identify their influence separately.

Pt = α + β1Solart + β2Solart ×GasPricet + β3Windt

+β4Windt ×GasPricet + β5GasPricet +
∑
l∈k

δlXt,l + εt
(4.6)
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5 Data

For our empirical analysis, time series for the German electricity market from

January 1, 2016 to December 31, 2020 are used. The time series included are

hourly electricity spot prices on the day-ahead market, the day-ahead forecast to-

tal quarter-hourly load, day-ahead forecast for hourly wind and solar generation,

as well as actual cross-border flows of electricity, all obtained from the ENTSO-E

Transparency Platform (ENTSO-E 2022). Additionally, the European Gas Index

for Trade Hub Europe (EGIX THE) was obtained for the corresponding time pe-

riod from Refinitiv Datastream. The electricity price is our dependent variable,

with IRES generation, i.e. wind and solar generation, along with gas price as the

main explanatory variables. As Clò, Cataldi, and Zoppoli (2015) note, IRES are

non-programmable and therefore exogenous. Likewise, they claim our control vari-

able for demand, total load, is exogenous as consumption is generally inelastic in

response to electricity price. We refrain from including additional generation tech-

nologies as control variables out of worry for collinearity with existing generation

and consumption variables. Front month futures gas price is used in this study as

gas price in the long run is mostly affected by fuel price (Nick and Thoenes 2014;

Asche, Misund, and Sikveland 2013), thus exogenous to electricity price. All time

series are further defined in the variable description below.

The selected period of study is based on a combination of data availability and

analysis feasibility. By going back to 2016, a sufficiently large sample for analysis

is secured. The original sample included daily data up until the end of 2021,

however the full year of 2021 was dropped because of the difficulty of studying

it. The unprecedented spikes in both electricity and gas prices in 2021, shown

in Figure 1, violate the stationary assumption of many time series approaches,

further elaborated on in Section 5.4. Furthermore, 2021 seemingly constitute an

outlier, as it is primarily the price variables that are affected by the spike, whereas

load, generation, and cross-border flow variables remain fairly stable across the

years. This is exemplified in Figure 4, showing the scatter plot of average daily

electricity prices and average daily forecast total load for 2016–2020 and 2021

separately. Scatter plots of electricity prices and the rest of the variables are

available in Appendix A.
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Figure 4: Scatter Plot of Electricity Price and Forecast Total Load

Note: Data source: ENTSO-E Transparency Platform. Plot by the authors.

5.1 Variable Description

Electricity Price

The day-ahead hourly spot price (Electricity Price, e/MWh) used is the spot

price for the German-Austrian-Luxembourgian bidding zone up until September

31, 2018, and for the German-Luxembourgian from October 1, 2018 onwards. This

is a consequence of the German-Austrian bidding zone split due to congestion in

the Austrian direction around the country border (APG, n.d.). Both series are

obtained from the ENTSO-E Transparency Platform and combined to create a

continuous price time series for the period of study.
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Total Load Forecast

Forecast total load (Total Load, GWh) is the forecast total consumption, or de-

mand for a given time period. We sum up the quarter-hourly observations to

hourly data. The forecast total load is estimated based historic consumption and

other demand-driving factors, such as weather conditions.

Wind, Solar, and IRES Generation Forecast

For the forecast wind and solar generation (Wind, GWh, and Solar, GWh), the

quarter-hourly prognosis are summed up to hourly projected generation. The

solar and wind generation is separated, the latter combining the prognosis for

both onshore and offshore generation. The forecast generation is used instead of

realized generation to better account for the formation of the spot price. For part

of the analysis, a third variable (IRES, GWh) summing up the total of both the

forecast wind and solar generation is created.

Cross-border Electricity Flows

The actual cross-border electricity flows are included in two separate time series

for inflow and outflow respectively (Inflow, GWh, and Outflow, GWh) across the

German borders. The variables sum up the total actual flows to and from the

connected grids in Austria, Belgium, the Czech Republic, Denmark, France, Lux-

embourg, the Netherlands, Norway, Poland, Sweden, and Switzerland. Although

scheduled cross-border flows, rather than the actual flows, would be more relevant

for the formation of the spot price, the latter is used due limited availability of

the scheduled flows.

Gas Price

For the gas price (Gas Price, e/MWh), the daily European Gas Index for Trade

Hub Europe (EGIX THE) is used. The daily index is a volume-weighted average
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price of all trades of front month natural gas futures on the specific Trade Hub

Europe contract (EEX 2021).

5.2 Identifying Peak Hours

Figure 5: Average Day-ahead Forecast Total Load Across the Day

Note: Red line represents the median. Data source: ENTSO-E Transparency Platform.

Graph by the authors.

We study daily averages, as well as averages for peak and non-peak hours sep-

arately, based on the hourly consumption patterns in Germany. Figure 5 shows

the average day-ahead forecast for total load across the day. We note there is a

strong pattern with electricity consumption peaking between 9 a.m. and 9 p.m.

We use this graphical analysis to define peak hours as the 12 hours starting 9 a.m.

– 8 p.m. Thus the remaining hours starting at 9 p.m. – 8 a.m. are regarded

as off-peak hours. This definition is also in line with definitions used in previous

research using a similar separation, such as Duso, Szücs, and Böckers (2020), who

define their peak hours as the period between 8 a.m. and 8 p.m. in their study
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on the German electricity market. Similarly, in their study on the Swedish SE3

bidding zone, Macedo, Marques, and Damette (2021) consider the hours starting

from 7 a.m. to 7 p.m. as peak hours.

5.3 Descriptive Statistics

Table 1: Descriptive Statistics

Mean Std.Dev. Min. Max. Skewness Kurtosis
Off-peak Hours
Electricity Price 32.029 12.053 -56.388 73.659 -0.583 6.159
Total Load 196.464 20.197 148.555 253.043 -0.090 2.493
Inflow 3.763 1.973 0.628 12.009 1.204 4.273
Outflow 7.941 2.935 2.011 15.509 0.177 2.056
IRES 51.008 33.042 5.594 175.788 1.088 3.686
Solar 0.849 1.003 0.000 3.962 1.000 2.716
Wind 50.159 33.370 4.919 175.763 1.086 3.666
Gas Price 15.778 5.030 4.050 29.220 0.080 2.950
Peak hours
Electricity Price 38.277 17.168 -65.941 130.184 -0.130 6.737
Total Load 243.257 28.683 167.862 297.204 -0.522 2.326
Inflow 3.117 1.842 0.337 11.133 1.181 4.508
Outflow 8.346 2.347 2.224 16.059 0.245 2.633
IRES 83.606 35.258 6.738 206.961 0.541 3.151
Solar 35.589 22.714 1.557 88.974 0.236 1.850
Wind 48.017 37.011 2.300 184.240 1.094 3.591
Gas Price 15.778 5.030 4.050 29.220 0.080 2.950
Total
Electricity Price 35.153 15.156 -65.941 130.184 -0.040 7.063
Total Load 219.860 34.098 148.555 297.204 0.203 2.052
Inflow 3.440 1.935 0.337 12.009 1.180 4.403
Outflow 8.143 2.665 2.011 16.059 0.152 2.328
IRES 67.307 37.853 5.594 206.961 0.648 2.949
Solar 18.219 23.669 0.000 88.974 1.116 2.871
Wind 49.088 35.249 2.300 184.240 1.084 3.637
Gas Price 15.778 5.030 4.050 29.220 0.080 2.950

Note: The number of observations is 1,827 for all variables in every sample.

Table 1 reports the descriptive statistics of the calculated daily averages for peak

and off-peak hours respectively, based on the definitions specified above, as well as

for the total sample. We notice immediately that all of the electricity price time
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series take on negative values. A closer look at the data confirms that this is the

case in 37 days for the peak series and 20 days for the off peak series, for a total

of 45 days in the full sample. These observations are spread out evenly across the

months of the year and the years in the sample with no apparent pattern. Negative

prices are common in electricity market, due to the fact that for some generators

it is more cost-efficient to continue producing at negative prices than shutting

down and restarting again (Stanwell 2021). In addition to that, the forecast solar

generation shows a minimum value of 0 in off-peak hours, as can be expected as

there should be no solar generation in nighttime in winter.

5.4 Unit Root Tests

Classical regression models require both dependent and independent variables to

be stationary, else there is risk for a so called spurious regression, whereby signif-

icant parameter estimates and high explanatory power might be achieved despite

no actual, consistent effect existing (Enders 2015). Therefore we test all variable

time series for the full sample, as well as for the peak and off-peak subsamples, for

presence of unit roots using the Augmented Dickey-Fuller (ADF) test, as suggested

by e.g. Clò, Cataldi, and Zoppoli (2015). The ADF tests the null hypothesis of a

unit root in the time series against the alternative of a stationary time series.

The test statistics for the unit root tests are reported in detail in Appendix A.

The results suggest that most variables are mean-stationary. In the full sample,

forecast solar generation is the only variable not significant on a 1% level, but it

is on a 5% level. This is also the case for the peak and off-peak samples, with

the addition of the off-peak forecast total load series. The exception to all this is

the gas price, which neither is mean-, nor trend-stationary, for any of the samples,

providing difficulty for the progression of the analysis.

Transformations of time series are common in order to circumvent problems with

non-normality and noise in data that can result in non-stationarity. The logarith-

mic transformation has desirable qualities when it comes to result interpretation,

as parameter estimates are expressed as elasticities. However, the presence of sub-

zero observations hinder this transformation of the data. Macedo, Marques, and
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Damette (2021) face the same challenge, but circumvent this problem by adding

a constant of one to all variables, as suggested by Lagarde and Lantz (2018).

Noteworthy is that the Swedish electricity prices studied by Macedo, Marques,

and Damette (2021) never fall below –1 e/MWh, rendering the effect of such a

transformation on the subsequent analysis limited. In our sample, a similar trans-

formation would involve adding a constant of a minimum of 66, whereas the means

of electricity price samples range in the 30s. Lagarde and Lantz (2018) likewise

face larger negative values and point out that adding a larger value to make the

time series strictly positive risk compressing higher price values and shifting more

weight to the lower prices. Given the importance of a continuous time series we

cannot remove the days for which negative prices appear, although they only make

up approximately 2.5% of the sample. Therefore, we proceed with taking the first

difference of all variables instead, effectively studying the daily changes in them.

Figure 6: First Difference of Off-peak, Peak, and Total Electricity Price Time

Series

Note: Panels graph the first-differenced electricity price for off-peak, peak and total

time series, in order from left to right. Data source: ENTSO-E Transparency Platform.

Graph by the authors.

The first differences of all variables, including gas price, are suggested to be station-

ary in ADF tests, also reported in Appendix A, and used in subsequent analysis.

The transformed electricity price time series are presented in Figure 6 and we can

see that the average off-peak electricity price (Panel 1) seems to be substantially

less volatile than the average peak electricity price (Panel 2). The full sample

average electricity price (Panel 3) reasonably seems to smooth out the differences
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between the subsample averages.

5.5 SARIMAX Model Selection

In order to determine the SARIMAX model we use in our analysis, we first plot

autocorrelation (ACF) and partial autocorrelation functions (PACF) of the time

series. In Figure 7 the ACF and PACF plots for the respective differenced German

off-peak and peak average electricity price time series are displayed. The ACF

plots display a recurring seasonal pattern, corresponding to the day of the week,

as there are spikes at 7, 14, 21, and 35, with the data being of daily frequency.

The PACF plots shows the partial autocorrelation, controlled for other lags, where

mentioned seasonality is less pronounced. However, there seems to exist some

significant negative autocorrelation over the first seven days.

Figure 7: Autocorrelation and Partial Autocorrelation Function Plots of Differ-

enced Off-peak and Peak Time Series

Note: Data source: ENTSO-E Transparency Platform. Plots by the authors.
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The model selection used for the analysis of the respective time series is based on

the Bayesian information criterion (BIC), also known as the Schwarz information

criterion (SIC, SBIC). The model with a lower information criterion value than

alternative models is supposed to be the most appropriate. An alternative infor-

mation criterion often employed in time series analysis is the Akaike information

criterion (AIC). Enders (2015) note that although both criteria punish additional

regressors lacking explanatory power, the BIC is more restrictive on adding ad-

ditional regressors. However, Enders (2015) concludes that the BIC is superior

to the AIC in large samples. As our sample might be deemed to be with 1,826

observations (reduced by one from 1,827 due to the first-differencing), the AIC is

prone to overfitting. Since the BIC favors a simpler model, we must be careful

to check that the residuals of the model selected actually passes as white noise,

which we do after our model selection.

Finding the best fitting model is a process of trial and error in minimizing the BIC-

value. We start by estimating simple AR(1) and MA(1) models and thereafter add

more lags until we find a model that results in the lowest BIC-value. As we are

using a SARIMAX framework, we also allow for seasonal lags primarily set to 7

days, corresponding to a weekly lag, in the models, supported by the presence of

such lags in the ACF and PACF plots.

For the off-peak electricity price time series, the BIC suggests a SARIMAX(0, 1,

1/2)(0, 0, 1) model out of the multitude of model specifications that we test. The

first parentheses define the normal ARIMA-lags and the order of integration, which

is one, since we are dealing with first-differenced data. The second pair of brackets

set the seasonal lags, set to a seasonality of 7. For the peak electricity price time

series modelling the model selection results in a SARIMAX(10, 1, 1/2)(1, 0, 0).

The estimated models are presented in full in Table 2 in Section 6.

After model selection we study the ACF and PACF plots of the predicted residuals,

to make sure we cannot detect any autocorrelation. These plots are presented in

Appendix B. We also carry out the Ljung-Box Q-test for serial correlation in the

standardized residuals for up to 40 lags. We cannot reject the null hypothesis

of the residuals behaving like white noise and not being serially autocorrelated.

Finally, we check the inverse roots of the ARMA polynomials, likewise available
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in Appendix B, and find that they all lie within the unit circle for both models,

which indicates that the estimated models are stationary. We therefore conclude

the models to be appropriate for our analysis.

6 Results

6.1 SARIMAX/GARCH

We first present the results from the SARIMAX model estimations in Table 2

and the GARCH model estimations in Table 3. As all variables have been first-

differenced, the interpretation of the estimated coefficients represent the effect

of a one unit increase in the daily change of the independent variable on the

daily change of the dependent variable, electricity price, conditional on the lagged

variables of the SARIMAX estimation. The results suggest there are differences in

the explanatory power of the exogenous variables on the daily change in average

electricity price across peak and off-peak hours. All exogenous regressors, as well

as the lagged ARMA-parameters, are significant on a 1% significance level across

both the off-peak and peak electricity price mean equations, with the exception

of forecast solar generation and outflow.

The results show that electricity price is significantly positively driven by the daily

increase of gas price at both off-peak and peak hours. Nonetheless, the magnitude

of gas price’s influence on the electricity price is substantially larger at peak than

off-peak hours. While a 1 e/MWh rise of daily change in gas price increases the

daily change of electricity price by 0.572 e/MWh at off-peak hours, the increase

is 0.862 e/MWh at peak hours. Meanwhile, the daily increase of gas price makes

electricity price more volatile in both peak and off-peak hours, and shows a similar

pattern as how it affects the mean price, where a larger influence is observed at

peak hours and off-peak hours.

The daily change of forecast load is shown to have a significant increasing effect on

the electricity price mean, and the effects are of similar magnitude between peak

and off-peak hours. When the daily change of forecast load shift positively for 1
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Table 2: Mean Equation

Off-Peak Peak

D.Total Load 0.270∗∗∗ 0.294∗∗∗

(0.008) (0.008)

D.Inflow -0.467∗∗∗ -0.504∗∗∗

(0.103) (0.144)

D.Outflow 0.731∗∗∗ -0.386∗∗∗

(0.093) (0.124)

D.Solar -0.243 -0.241∗∗∗

(0.404) (0.019)

D.Wind -0.295∗∗∗ -0.274∗∗∗

(0.005) (0.008)

D.Gas Price 0.572∗∗∗ 0.862∗∗∗

(0.167) (0.248)

Constant 0.009 0.009
(0.018) (0.023)

ARMA
L.ma -0.535∗∗∗ -0.661∗∗∗

(0.011) (0.013)

L2.ma -0.319∗∗∗ -0.205∗∗∗

(0.018) (0.016)

L10.ar -0.084∗∗∗

(0.021)

ARMA7
L.ma 0.060∗∗∗

(0.022)

L.ar 0.086∗∗∗

(0.019)

sigma
Constant 4.120∗∗∗ 6.350∗∗∗

(0.037) (0.056)

Observations 1826 1826
AIC 10375.629 11957.747
BIC 10436.238 12023.865
QLB(40) 39.256 26.446

[0.504] [0.951]

Standard errors in parentheses. Daily change in day-ahead electricity prices. Electricity and

gas price measured in e/MWh, all other variables in GWh. P-value of Q-statistic in square

brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Volatility Equation

Off-Peak Peak

D.Total Load 0.242∗∗∗ 0.282∗∗∗

(0.006) (0.007)

D.Inflow -0.421∗∗∗ -0.382∗∗∗

(0.098) (0.131)

D.Outflow 0.567∗∗∗ -0.316∗∗

(0.079) (0.124)

D.Solar -0.714∗∗∗ -0.245∗∗∗

(0.276) (0.017)

D.Wind -0.264∗∗∗ -0.266∗∗∗

(0.004) (0.007)

D.Gas Price 0.590∗∗∗ 0.885∗∗∗

(0.160) (0.227)

Constant -0.008 -0.013
(0.017) (0.023)

ARCH
L.arch 0.401∗∗∗ 0.228∗∗∗

(0.030) (0.023)

L.garch 0.183∗∗∗ -0.069
(0.049) (0.046)

Constant 7.456∗∗∗ 34.196∗∗∗

(0.529) (1.622)

Observations 1826 1826
AIC 9983.974 11814.380
BIC 10055.602 11891.519

Standard errors in parentheses. Dependent variable: Conditional variance of daily change in

day-ahead electricity prices. Electricity and gas price measured in e/MWh, all other

variables in GWh.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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GWh, the daily change of electricity price increases by 0.270 e/MWh at off-peak

hours and 0.294 e/MWh at peak hours. Similarly, daily change of forecast load

increases electricity daily change volatility homogeneously at peak and off-peak

hours.

Increasing forecast solar generation presents different effects between peak and off-

peak hours. As expected, forecast solar generation is not significant in explaining

the electricity in off-peak hours, mainly because of definition of off-peak hours as

9 p.m. - 8 a.m., hours where there would be no sunshine in Germany for large

parts of the year. In contrast, a 1 GWh increase of its daily change brings down

electricity price daily change by 0.241 e/MWh at peak hours. Meanwhile, even

though forecast solar generation decreases the volatility of the electricity price in

general, it shows a larger effect at off-peak hours than peak hours. This could

perhaps be due to the fact that any solar generation in off-peak hours would

coincide with early mornings and late evenings in summertime. These are also the

hours of the highest load during the off-peak hours, as can be seen in Figure 5, and

any solar generation could suppress prices during relatively high loads, compared

to the rest of off-peak sample.

However, increasing forecast wind generation displays homogeneous effects be-

tween peak and off-peak hours. A 1 GWh increase of forecast wind generation

change decreases the electricity price change by 0.295 e/MWh at off-peak hours

and 0.274 e/MWh at peak hours. Besides, increasing forecast wind generation

decreases volatility of the electricity price daily change similarly at off-peak and

peak hours.

Inflow likewise appears to have homogeneous decreasing effects on both mean and

volatility of the electricity price at off-peak and peak hours. However, the influence

of outflow on electricity price daily change show distinctly different directions

between off-peak and peak hours. While an increase of 0.731 e/MWh is seen at

off-peak hours, a decrease of 0.386e/MWh is observed at peak hours, in response

of a 1 GWh rise of the change in outflow. Similarly, cross-border outflows increases

the electricity price volatility at off-peak hours but decreases the volatility at peak

hours.
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Both the α and the β estimates are higher during off-peak hours than peak hours,

with β not even being significantly different from null for the peak hour estimation.

The α parameter, measuring the impact of new shocks, is larger than β, measuring

the impact of past shocks, the in both peak and off-peak hours. The persistence of

volatility, measured as the sum of α and β, in daily change in day-ahead electricity

price is on a relatively low level, not even close to 1, during both peak and off-peak

hours, which means the electricity price series presents a short memory pattern.

A higher degree of persistence is found during off-peak hours (α+β = 0.584) than

peak hours (α + β = 0.228, as β is not significant), so a shock is likely to have a

larger effect on off-peak volatility.

Although the estimates from the SARIMAX model are generally in line with ex-

pectations, the interpretation of them suffers from some non-intuitivity because

of the lagged variables that condition them. Therefore we proceed with an OLS

regression, in order to compare estimates and nuance them with a different ap-

proach.

6.2 OLS Regression with Interaction Terms

Table 4 presents the results of the complimentary OLS regression analysis. We use

the same variables as in the previously presented SARIMAX/GARCH estimation,

with the addition of the IRES variable, summing up the wind and solar generation.

Instead of separating the analysis into different models for peak and off-peak hours,

we use interaction terms of gas price and wind and solar generation, and IRES

generation respectively, in order to estimate the magnitude of the joint effect. We

also employ a set of dummies (DMY) for the day of the week, month of the year,

as well as year, to control for time fixed effects.

To check for serial correlation in the regression residuals, we employ the Durbin-

Watson test and Durbin’s alternative test, as suggested by Clò, Cataldi, and Zop-

poli (2015). The Durbin-Watson test statistic range from 0 to 4, with a statistic

of 0 indicating perfect positive correlation, and a statistic of 4 suggesting per-

fect negative correlation of the error terms. A test statistic close to 2 suggest

no serial correlation of the residuals. The Durbin-Watson test on the original
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Table 4: Regressions of Differenced Time Series

(1) (2) (3) (4)

D.Total Load 0.293∗∗∗ 0.293∗∗∗ 0.293∗∗∗ 0.293∗∗∗

(0.027) (0.027) (0.027) (0.027)

D.Inflow -0.225 -0.227 -0.210 -0.213
(0.179) (0.179) (0.182) (0.183)

D.Outflow 0.071 0.071 0.067 0.065
(0.152) (0.152) (0.152) (0.153)

D.Gas Price 0.444 0.426 0.443 0.434
(0.325) (0.338) (0.325) (0.338)

D.IRES -0.278∗∗∗ -0.278∗∗∗

(0.010) (0.010)

D.IRES × D.Gas Price 0.004
(0.014)

D.Solar -0.257∗∗∗ -0.257∗∗∗

(0.026) (0.026)

D.Wind -0.277∗∗∗ -0.277∗∗∗

(0.010) (0.010)

D.Solar × D.Gas Price -0.030
(0.045)

D.Wind × D.Gas Price 0.005
(0.014)

Constant -1.036 -1.041 -1.032 -1.042
(0.666) (0.667) (0.667) (0.668)

DMY Dummies YES YES YES YES
R2 0.761 0.761 0.761 0.761
Adjusted R2 0.758 0.758 0.758 0.757
F 121.601 117.093 116.934 108.839
rho -0.312 -0.312 -0.311 -0.311
Durbin-Watson 2.163 2.163 2.163 2.162
Durbin-Watson, orig. 2.620 2.620 2.616 2.616
Observations 1826 1826 1826 1826

Robust standard errors in parentheses. Dependent variable: Daily change in day-ahead

electricity price. Electricity and gas prices measured in e/MWh, all other variables in GWh.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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regression, which statistic is found in 4, denoted as Durbin-Watson, orig., shows

sign of negative serial correlation across all four models. Likewise, we reject the

null hypothesis of no serial correlation with Durbin’s alternative test. Like Clò,

Cataldi, and Zoppoli (2015), we mitigate this problem by using the Prais-Winsten

estimation, which models the residuals to follow a first-order autoregressive model

as follows:

εt = ρεt−1 + ωt (6.1)

where |ρ| < 1 and ω resembles a white noise process. The presented results are the

rerun results and the new Durbin-Watson test statistic (denoted Durbin-Watson

in Table 4), very close to 2, suggests the serial correlation is amended. The values

of ρ are also in the required range.

Models 1 and 2 of Table 4 show the regressions using first IRES, and then IRES

in combination with an interaction term with the gas price. The corresponding

specifications are run in Models 3 and 4 for the wind and solar variables separately.

Comparing the coefficient estimates to those of the mean equation of the SARI-

MAX models, we see that the estimates for total load, as well as wind and solar,

showcase significant coefficients of a similar magnitude. The coefficient for total

load is estimated to 0.293 (0.242 and 0.282 respectively in Table 2). Solar and

wind are estimated to –0.257 and –0.277 respectively (–0.241 and –0.295/–0.274).

In contrast, inflow, outflow, and gas price, and in extension the interaction terms

of the gas price, are not significant in explaining the daily change in the electricity

price. The insignificance of the inflow and outflow estimates are further elaborated

on in Section 7. Although the direction of the gas price is as expected, the lack of

significance is worrying. Natural gas-burning being one of Germany’s major power

generation technologies, the gas price is expected to have a significant, positive

effect on electricity prices, as the price of the input should influence the end price.

Taking first differences of the variables reduces the variance in the series, which

means that we in our transformation lose information that could be of importance.

The combination of natural gas being storable and our usage of a daily index for

next month gas deliveries for our gas price suggest that we have less volatility in
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the gas prices than electricity prices. The daily change in the gas index does not

appear to explain daily changes in the German electricity price, but eyeing Figure

1 suggests there is still certain correlation between gas and electricity prices, as

previous literature has established, e.g. Clò, Cataldi, and Zoppoli (2015). Thus,

we proceed with estimating the mean electricity price with the non-transformed

variables, but take caution in the interpretation of the results.

Table 5 reports the results of the OLS regression with the variables in levels. The

corresponding model specifications tested in Table 4 are presented in the same

order. The Durbin-Watson test and Durbin’s alternative test are carried out again

and show similar results, despite indicating positive serial correlation this time

around, motivating the repeated use of the Prais-Winsten estimation. Comparing

Tables 4 and 5, we see that the adjusted R2 values barely change, increasing from

76% to 77%, suggesting that the non-transformation of the variables does not

radically change explanation of variance in the dependent variable.

The coefficent estimates for total load, as well as forecast IRES, wind, and solar

generation remain significant on a 1% level and of approximately the same magni-

tude. That is reassuring, as estimates of the first-differenced series should reflect

the relationship of the non-differenced variables. The electricity price is increasing

in total load, and decreasing in IRES, wind, and solar generation. The coefficient

estimates of inflow and outflow remain significant, as before.

However, the coefficient of gas price is now significant and positive, which sug-

gests that the day-ahead electricity spot price is increasing in gas price. Likewise

are the interaction terms, interacting gas price with IRES, wind, and solar, re-

spectively, significant. The interaction estimates range from −0.006 for forecast

IRES and wind generation, to −0.017 for solar generation. These results suggest

IRES dampen the effect of gas price on electricity price, supported by the increase

of 0.434 (0.703) in the pure gas price coefficient estimate moving from the first

(third) to the second (fourth) regression specification.

Focusing on the second regression specification, the interaction term estimate of

−0.006 might seem very small. However, both interaction variables are continuous,

which complicates the interpretation of the coefficient, as the marginal effect of
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Table 5: Regressions of Non-differenced Time Series

(1) (2) (3) (4)

Total Load 0.277∗∗∗ 0.271∗∗∗ 0.279∗∗∗ 0.274∗∗∗

(0.027) (0.026) (0.027) (0.026)

Inflow -0.137 0.037 -0.108 0.041
(0.148) (0.139) (0.150) (0.142)

Outflow 0.193 0.181 0.188 0.181
(0.148) (0.147) (0.149) (0.147)

Gas Price 1.537∗∗∗ 1.971∗∗∗ 1.549∗∗∗ 2.252∗∗∗

(0.153) (0.145) (0.153) (0.181)

IRES -0.281∗∗∗ -0.182∗∗∗

(0.009) (0.026)

IRES × Gas Price -0.006∗∗∗

(0.001)

Solar -0.230∗∗∗ 0.014
(0.026) (0.063)

Wind -0.280∗∗∗ -0.181∗∗∗

(0.009) (0.026)

Solar × Gas Price -0.017∗∗∗

(0.004)

Wind × Gas Price -0.006∗∗∗

(0.001)

Constant -43.475∗∗∗ -49.543∗∗∗ -44.154∗∗∗ -54.648∗∗∗

(6.314) (6.297) (6.359) (6.365)

DMY Dummies YES YES YES YES
R2 0.772 0.778 0.773 0.780
Adjusted R2 0.769 0.774 0.769 0.777
F 154.232 162.690 148.528 154.651
rho 0.509 0.502 0.509 0.494
Durbin-Watson 2.089 2.083 2.085 2.073
Durbin-Watson, orig. 1.020 1.035 1.020 1.055
Observations 1827 1827 1827 1827

Robust standard errors in parentheses. Dependent variable: Day-ahead electricity price.

Electricity and gas prices measured in e/MWh, all other variables in GWh.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Interaction Term Effect

IRES Interaction Size Marginal Gas Price Effect

0 0.000 1.971
50 -0.300 1.671
100 -0.600 1.371
150 -0.900 1.071
200 -1.200 0.771

Calculations based on coefficients of IRES and gas price interaction term from Model 2 in

Table 5. IRES denoted in GWh and interaction size and marginal gas price effect given in

e/MWh.

one of the interacting variables increases in the other variable. Table 6 shows the

estimated effect of the interaction coefficient, as well as the estimated total effect,

for a one euro increase the gas price, for different levels of IRES generation. As

can be seen in the descriptive statistics (Table 1), forecast IRES generation ranges

between roughly 6 and 207 GWh, with a mean of 67 GWh. We therefore calculate

the estimated effects for forecast IRES generation in 50 GWh intervals between

0 and 200 GWh. For a below mean IRES generation of 50 GWh, the marginal

effect of gas price is reduced by 0.30 e/MWh to 1.67 e/MWh. A forecast IRES

generation of 150 GWh almost halves the marginal gas price effect.

6.3 Robustness to Oil Price and Year-effects

The concern for oil price being the underlying driver of the positive effect of

gas price on electricity price warrant the inclusion of oil price in our regression

specifications. Given studies like that by Asche, Misund, and Sikveland (2013),

which credits the influence of oil prices on European natural gas prices, the concern

is not unfounded. We obtain the daily European spot price for Brent oil, along with

the average daily euro-dollar exchange rate, from Refinitiv Datastream in order to

create our oil price control variable (Oil Price, e/bbl). The regression results for

the variables of interest are presented in Table 7, with complete regression tables

available in Appendix C. Oil price appears to have a signifcant and positive effect

on electricity price, as could be expected, as oil is an input good to oil-fired power

production. The results also suggest that the previously mentioned gas price and
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Table 7: Regressions of Non-differenced Time Series, Including Oil Price

(1) (2) (3) (4)

Gas Price 1.422∗∗∗ 1.854∗∗∗ 1.433∗∗∗ 2.201∗∗∗

(0.164) (0.156) (0.163) (0.180)

IRES -0.281∗∗∗ -0.186∗∗∗

(0.009) (0.026)

IRES × Gas Price -0.006∗∗∗

(0.001)

Solar -0.228∗∗∗ 0.072
(0.025) (0.061)

Wind -0.280∗∗∗ -0.185∗∗∗

(0.009) (0.026)

Solar × Gas Price -0.021∗∗∗

(0.004)

Wind × Gas Price -0.006∗∗∗

(0.001)

Oil Price 0.126∗∗∗ 0.112∗∗∗ 0.127∗∗∗ 0.155∗∗∗

(0.043) (0.041) (0.043) (0.039)

Robust standard errors in parentheses. Dependent variable: Day-ahead electricity price.

Electricity and gas prices measured in e/MWh, all other variables in GWh, except for oil

price, which is denoted in e/barrel. Full Table available in Appendix C.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Yearly Regressions of Non-differenced Time Series

(1) (2) (3) (4) (5)
2016 2017 2018 2019 2020

Gas Price 2.078∗∗∗ 3.266∗∗∗ 1.033∗∗ 0.133 1.118∗∗

(0.446) (1.256) (0.488) (0.620) (0.481)

IRES 0.285∗∗∗ 0.122 -0.205∗∗∗ -0.270∗∗ -0.230∗∗∗

(0.097) (0.162) (0.055) (0.114) (0.055)

IRES × Gas Price -0.035∗∗∗ -0.025∗∗∗ -0.005∗∗ -0.000 -0.001
(0.007) (0.008) (0.002) (0.006) (0.005)

Robust standard errors in parentheses. Dependent variable: Day-ahead electricity price.

Electricity and gas prices measured in e/MWh, all other variables in GWh. Full table

available in Appendix C.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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interaction effects are not driven by oil price.

Lastly, we run the second regression specification, using the forecast IRES gener-

ation and its interaction term rather than the separate wind and solar generation

variables, separately on the yearly samples. Despite including year-fixed effects in

the previous regressions, we also want to acknowledge that the rapidly increasing

share of IRES in the German electricity production, as shown in Figure 2, could

result in changing effects of IRES on electricity price over time. A selection of the

results is presented in Table 8 and the complete regression results can be found

in Appendix C. The results are ambiguous, but indicate that the full sample re-

gression results could be driven by effects found in 2016 and 2017, for which the

gas price coefficient is relatively high and significant on a 1% level. The interac-

tion term coefficient is negative and significant only for the years 2016-2018. The

IRES coefficient estimate remains the most stable one, corresponding to the levels

observed in our previous approaches, except for in 2017.

7 Discussion

The results presented in the previous section have three major implications. Firstly,

we can confirm the already established merit-order effect (MOE) in our specific

sample. Secondly, we find different effects of gas price on electricity prices in peak

and off-peak consumption hours. Thirdly, we cannot confirm our hypothesis of

IRES reducing the impact of gas prices on electricity prices.

The MOE entails IRES, with low to no marginal costs in power production, offset-

ting more expensive electricity generation technologies, such as fossil fuel burning,

and thus reducing the electricity price (Krohn, Morthorst, Awerbuch, et al. 2009;

Woo et al. 2011; Sensfuß, Ragwitz, and Genoese 2008). We estimate the MOE

per 1 GWh increase of forecast wind and solar generation to ranges of 0.277–0.295

e/MWh and 0.230–0.257 e/MWh respectively, and to 0.278–0.281 e/MWh per

1 GWh increase for the summed up forecast IRES generation, across both our

SARIMAX and OLS regression models. The mitigating, negative effect of wind

generation on the level of electricity prices is already proved for electricity prices
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in the Swedish BZ3 (Macedo, Marques, and Damette 2021), as well as in Germany

during the period from 2006 to 2012 (Ketterer 2014). Considering the nature of

solar energy, and our definitions of peak and off-peak hours, it is well-anticipated

that solar generation shows distinct effects between peak and off-peak hours, as

seen in Table 2. While it has a significant, reducing effect on electricity price

during peak hours, it does not show any significant effect during off-peak hours,

which are mostly times without daylight. Comparing our estimates for the MOE

to a study by Clò, Cataldi, and Zoppoli (2015) on the Italian electricity market

from 2005 to 2013, we find that their estimates for the suppressing effects are

roughly 10–15 times larger than ours. They estimate a 1 GWh increase in wind

and solar generation to reduce electricity prices with 4.2e/MWh and 2.3e/MWh

respectively. The sizeable difference in the estimates could be tied to either the

different markets of study, or to the fact that we study different time periods. The

IRES technologies have developed rapidly over the last decade and differences in

the technology mixes as well as in the IRES penetration of the electricity gen-

eration can result in remarkably different effects due to the merit-order dispatch

system.

Volatility of IRES generation is often a concern when it comes its effects on elec-

tricity prices. We find that both forecast wind and solar generation reduce the

volatility of Germany electricity prices, as shown in Table 3. This in line with

the finds of Rintamäki, Siddiqui, and Salo (2017) for the Danish market 2010-

2014. However, the same study find that wind generation increases electricity

price volatility in Germany 2012-2014, as the impact is stronger during off-peak

hours. Ketterer (2014) also finds that wind generation drives volatility in 2011 and

2012. Meanwhile, Rintamäki, Siddiqui, and Salo (2017) claim solar generation re-

duces volatility in Germany. The accessibility to back-up electricity generation is

vital for an integrated power system with a large share of IRES. For example, hy-

dro production from Norway backs up the Danish market (Dong et al. 2019), which

could explain why intermittency in Danish wind production does not increase elec-

tricity price volatility. The volatility effect of wind production is inconclusive in

the study of the Swedish BZ3 by Macedo, Marques, and Damette (2021). They

report that nuclear production is still vital in Sweden and also provides electric-

ity at low marginal costs, but it is not very fit as back-up. The stable supply
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of relatively cheap electricity, however, could explain why there is neither a clear

positive, nor negative effect on electricity price volatility from wind generation.

Our contrasting results of the volatility effect of wind generation on the German

market, as compared to previous studies, could either be a result of more mature

and diversified IRES infrastructure evolved over time, as we study a later time pe-

riod. With combinations of on-shore and off-shore wind parks in different regions,

wind generation is diversified. Increased solar generation, supported by Figure

2 reducing peak load electricity prices, also suggests the skewed impact of wind

generation on off-peak hours is reduced.

Our analysis based on the SARIMAX/GARCH model suggest that gas prices

are positively correlated with electricity price, similar to the findings of Linn,

Muehlenbachs, and Wang (2014) and Alexopoulos (2017) on the U.S. market.

Mosquera-López and Nursimulu (2019) also find a positive effect of gas prices

on electricity prices, although they find the impact is larger on electricity futures,

rather than on the day-ahead electricity market. Furthermore, the estimated effect

in our sample is larger during peak hours than in off-peak hours. This is in line

with our hypothesis, as we base our peak hour definition on the average total load.

The merit-order dispatch system in the electricity market determines that while

IRES is used first in both peak and off-peak hours, the more expensive natural gas

only comes into play as back-up production when IRES or other non-intermittent

renewables, such as hydro, cannot fulfill the demand. Arguably, this results in

different influence of gas price on electricity price during peak and off-peak hours.

Nonetheless, the fact that gas price has a significant and non-negligible effect on

electricity price during off-peak hours implies generation without natural gas is not

sufficient enough to deliver the off-peak demand. We think this might be explained

in two ways. One is related to inherent nature of volatility IRES generation.

While solar generation is generally not available in evenings, wind generation also

experiences unpredictable fluctuations. For example, nights in summer are in

generally less windy than other times due to air temperature conditions (Brown,

Katz, and Murphy 1984). Thus, the difficulty to generate electricity in the evening-

and nighttime, which our off-peak hours analysis accounts for, requires natural gas-

fuelled electricity production. The other possible explanation is that the current

IRES penetration in Germany is not adequate for off-peak, following our definition,
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demand at all hours.

However, the influence of gas price is less clear in our OLS regression approach.

The coefficient estimates are positive, suggesting high gas prices are consistent

with higher electricity prices, but they are not consistently statistically signifi-

cant, which is further proved in the robustness checks. This also translates into

ambiguity into interpreting the effect of the interaction of gas price and IRES gen-

eration. The direction of the interaction estimates suggest that IRES generation

reduces the magnitude of gas price influence on electricity prices, but we cannot

confirm this effect is statistically significant across all model specifications across

all years of our sample.

Despite our inability to confirm a negative joint effect of gas price and IRES gen-

eration, there are indications of some dynamic at play. Comparing the results

of Models 3 and 4 in Table 5, we discover that while wind generation retain a

statistically significant effect, solar generation loses significance after including an

interaction term with gas price, which has a negative coefficient. The interaction

coefficient is, however, estimated larger than for both IRES and wind. Arguably,

this could be because wind and solar face different production patterns. Wind is

employed for generation throughout the day when there is sufficient wind, regard-

less of the level of demand. However, solar is limited due to its obvious dependence

on sunlight and only therefore can only generate electricity during the day, which

coincides with peak hours of high electricity demand. Meanwhile, natural gas is

mostly utilized in response to the high demand during peak hours. It is likely

that both solar and gas generation is concentrated to peak hours. Hence, solar

generation main effect on electricity prices comes from offsetting the need for gas-

fired power generation during some peak hours. In other words, in our model

specification including an interaction term of solar generation and gas price, solar

generation only affects electricity price through reducing the influence of gas price.

Of our control variables, total load shows a consistent, statistically significant and

positive effect on electricity prices among all the models, which is in line with the

economical intuition of price and demand. Inflow and outflow, on the other hand,

do not present the same effects in the SARIMAX/GARCH models. Whilst daily

change of inflow shows simultaneous reducing effects across peak and off-peak
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hours in both mean and volatility equations, daily change of outflow has divergent

effects between peak and off-peak hours. Two possible scenarios can happen with

electricity inflow and outflow, conditional on whether power transmission lines are

congested. When the interconnections are not congested, electricity flows from

markets with lower prices to markets with higher prices, which increases prices in

the exporting areas and decrease prices in the importing area (Keles et al. 2020).

In the case of Germany, lower-price electricity imports from wind generation in

Denmark or nuclear generation in France can reduce the German domestic spot

price. On the other hand, as one of the biggest electricity exporters in Europe

(Statista 2021), Germany experiences increasing electricity price from exporting

to areas with a higher market price until power prices get almost equalized. That

being said, neither inflow or outflow appear to be significant in the results of

our OLS regressions. Considering Germany as the biggest electricity producer

and consumer in Europe (Eurostat 2021a), it is reasonable that electricity trade,

against a larger scale of domestic production and consumption, has relatively low

explanatory power for German electricity prices.

The combination of two different approaches to determine the relationships be-

tween the German day-ahead electricity price and our set of explanatory variables

strengthens the internal validity of our analysis. Likewise, the effects of IRES, to-

tal load and cross-border flows are in line with previous literature on the area and

intuition. However, the relationship between the electricity and gas prices, and in

extension also that of the electricity price and the interaction of IRES generation

and gas price, remain ambiguous. The non-stationarity of the gas price variable,

one of our main variables of interest provides some difficulties in the analysis and

requires caution in our interpretation. The relatively large coefficient estimates

reported in Table 5 compared to those of our SARIMAX approach could indicate

that the former are overestimated.

While the homogeneity of electricity market setup throughout Europe enhances

the external validity of our study, the extent to which our findings can be gener-

alised is limited by the accessibility to diversified production technologies and the

importance of the generation mix in price determination for each electricity mar-

ket. Germany has seen an increasing share of IRES generation in the last decade,

resulting in a need for back-up generation to compensate for occasional shortfall
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in IRES generation. The Nordic electricity market Nordpool, on the other hand,

has access to large hydropower generation, which to some extent is storable and

feasible as cheap back-up generation to volatility in IRES generation (Dong et

al. 2019). Moreover, in some markets other factors play a more pronounced role,

such as in Lithuania, a country which is currently heavily dependent on electricity

imports (Norvaǐsa and Galinis 2016). All these differences in electricity generation

technology mixes result in different effects of the variables studied in this paper.

8 Conclusion

The price of natural gas has been drastically increasing since early fall 2020,

coupled with the ongoing European gas supply crisis spurred by recovery from

Covid-19 (Mǐsık 2022). Moreover, the threatened gas supply from Russia due to

geopolitical situation has further undermined the natural gas supply security in

Europe. In the power sector, diversified generation profiles are believed to relieve

the risk from fluctuations in the supply side, which is the gas supply deficit in

our case. Under the trend of energy transitioning, IRES has gradually grown

to play an essential role in electricity mix. While strong evidence of merit-order

effect is found with IRES (Sensfuß, Ragwitz, and Genoese 2008; Clò, Cataldi,

and Zoppoli 2015), the current level of IRES penetration and electricity storage

technology are not able to fully account for domestic electricity demand, which

is why backup technology comes into play. In the case of Germany, the goal of

Energiewende to phase out nuclear has shifted its energy profile and made natural

gas an importance source of back-up production.

Our paper extends on existing literature by not only studying IRES and natural

gas, and their respective effects on electricity prices, but also analysing their joint

effect on electricity prices. Specifically, we assess whether increasing IRES gener-

ation in fact mitigates the influence of gas price on day-ahead electricity prices in

the German market. By creating and analysing SARIMAX/GARCH models, we

confirm the existence of a merit-order effect (MOE), of a magnitude of 0.23–0.30

e/MWh per one GWh increase in IRES output, in the German market. We also

find evidence of different magnitudes of gas price influence on electricity price

46



between peak and off-peak hours. OLS regression models with interaction terms

are further evaluated in order to distinguish the joint effect of gas price and IRES

generation on electricity prices. However, we cannot find solid evidence that IRES

reduces the impact of gas price on electricity prices. The two approaches used in

this paper coordinate and complement each other. While the SARIMAX/GARCH

models are able to capture the time varying characteristics of electricity price se-

ries, the OLS regression models constitute second approach to confirm the results

and offers more intuitive effect estimates.

Our findings suggest that IRES generation does reduce electricity prices, which can

be beneficial on a societal level. However, careful concern has to be taken to what

generation technology is available to provide back-up generation to compensate

for the volatility in IRES generation. In the case of Germany, employing gas-

fired generation as the main source of back-up generation, the MOE does not

seem to extend to actively reducing gas price influence on electricity prices. Thus,

the German electricity market is especially vulnerable to price spikes of natural

gas, such as has been experienced in late 2021 – early 2022. As long as there is

no feasible technology available for large-scale storage of electricity, other alleys

would have to be evaluated in order to mitigate said vulnerability. This could

for example entail increased interconnections to other markets, such as Nordpool,

that can compensate for IRES generation shortfalls in Germany with cheaper,

semi-programmable hydro-generated electricity.

Lastly, in this paper we solely study the effect of IRES and gas prices on day-ahead

electricity prices. The effects of the level of electricity prices on the monetary in-

centives of producers is not part of our analysis, but nonetheless of importance.

Despite providing electricity at basically no marginal cost, IRES requires substan-

tial investments that have to be repaid, which has motivated subsidy schemes for

IRES. These have been studied by Chrischilles and Bardt (2015) and Renn and

Marshall (2016). However, how price spikes on input goods for back-up generation

affects the incentives for IRES investors could be interesting for future research to

evaluate.
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Duso, T., F. Szücs, and V. Böckers. 2020. “Abuse of dominance and antitrust
enforcement in the German electricity market.” Energy Economics 92:104936.

EEX. 2021. Index Description 11b. https://www.eex.com/fileadmin/EEX/Do
wnloads /Trading / Indices / 20211109 Index Description v011b FINAL . pdf.
Accessed: 23rd March 2022.

Enders, W. 2015. Applied econometric time series fourth edition.

ENTSO-E. 2022. Central collection and publication of electricity generation, trans-
poration and consumption data and information for the pan-European market.
Data retrieved from ENTSO-E Transparency Platform, https://transparency.
entsoe.eu.

European Union, C. of the. n.d. “Renewable Energy: Council Confirms Deal
Reached with the European Parliament 27 June 2018.”

Eurostat. 2021a. Electricity production, consumption and market overview. https:
//ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity
production, consumption and market overview#Electricity generation.

. 2021b.Where does our energy come from? https://ec.europa.eu/eurostat/
cache/infographs/energy/bloc-2a.html.

. 2022. Change in electricity price for household consumers. https://ec.
europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220429-2.

Everts, M., C. Huber, and E. Blume-Werry. 2016. “Politics vs markets: how Ger-
man power prices hit the floor.” The Journal of World Energy Law & Business
9 (2): 116–123.

Fabra, N. 2021. “The energy transition: An industrial economics perspective.”
International Journal of Industrial Organization 79:102734.

Fischer, C., et al. 2006. “How can renewable portfolio standards lower electricity
prices.” Resources for the Future Discussion Paper, Resources for the Future,
Washington, DC, 06–20.

Gelabert, L., X. Labandeira, and P. Linares. 2011. “An ex-post analysis of the
effect of renewables and cogeneration on Spanish electricity prices.” Energy
economics 33:S59–S65.

Gerhardt, C. 2017. “Germany’s renewable energy shift: Addressing climate change.”
Capitalism Nature Socialism 28 (2): 103–119.

49

https://www.eex.com/fileadmin/EEX/Downloads/Trading/Indices/20211109_Index_Description_v011b_FINAL.pdf
https://www.eex.com/fileadmin/EEX/Downloads/Trading/Indices/20211109_Index_Description_v011b_FINAL.pdf
https://transparency.entsoe.eu
https://transparency.entsoe.eu
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview##Electricity_generation
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview##Electricity_generation
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview##Electricity_generation
https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-2a.html
https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-2a.html
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220429-2
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220429-2


Graichen, P., and C. Redl. 2014. “Das deutsche Energiewende-Paradox: Ursachen
und Herausforderungen,“” Agora Energiewende, Berlin 4.

Gugler, K., and A. Haxhimusa. 2019. “Market integration and technology mix:
Evidence from the German and French electricity markets.” Energy policy
126:30–46.

He, C., L. Wu, T. Liu, W. Wei, and C. Wang. 2018. “Co-optimization scheduling of
interdependent power and gas systems with electricity and gas uncertainties.”
Energy 159:1003–1015.

Hirth, L. 2013. “The market value of variable renewables: The effect of solar wind
power variability on their relative price.” Energy economics 38:218–236.

Hirth, L., and J. C. Steckel. 2016. “The role of capital costs in decarbonizing the
electricity sector.” Environmental Research Letters 11 (11): 114010.

Hörnlein, L. 2019. “The value of gas-fired power plants in markets with high shares
of renewable energy: A real options application.” Energy Economics 81:1078–
1098.

Hulshof, D., J.-P. Van Der Maat, and M. Mulder. 2016. “Market fundamentals,
competition and natural-gas prices.” Energy policy 94:480–491.

IEA. 2021. Electricity generation by source, Germany 1990-2020. https://www.
iea.org/countries/germany. Accessed: May 15, 2022.

. 2022. Electricity generation by source, Germany 1990-2020. www.iea.org/
statistics.

Jónsson, T., P. Pinson, and H. Madsen. 2010. “On the market impact of wind
energy forecasts.” Energy Economics 32 (2): 313–320.

Keles, D., J. Dehler-Holland, M. Densing, E. Panos, and F. Hack. 2020. “Cross-
border effects in interconnected electricity markets - an analysis of the Swiss
electricity prices.” Energy Economics 90:104802.

Ketterer, J. C. 2014. “The impact of wind power generation on the electricity price
in Germany.” Energy economics 44:270–280.

Kirschen, D. S., and G. Strbac. 2018. Fundamentals of power system economics.
John Wiley & Sons.

Kolb, S., M. Dillig, T. Plankenbühler, and J. Karl. 2020. “The impact of renew-
ables on electricity prices in Germany-An update for the years 2014–2018.”
Renewable and Sustainable Energy Reviews 134:110307.
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Rintamäki, T., A. S. Siddiqui, and A. Salo. 2017. “Does renewable energy genera-
tion decrease the volatility of electricity prices? An analysis of Denmark and
Germany.” Energy Economics 62:270–282.

Sensfuß, F., M. Ragwitz, and M. Genoese. 2008. “The merit-order effect: A detailed
analysis of the price effect of renewable electricity generation on spot market
prices in Germany.” Energy policy 36 (8): 3086–3094.

Stanwell. 2021. Negative prices: how they occur, what they mean. https://www.
stanwell.com/our-news/energy-explainer/negative-prices/. Accessed: May
15, 2022.

Statista. 2021. Electricity net imports in the European Union (EU) in 2020, by
country (in terawatt hours). https://www.statista.com/statistics/1265894/
european-union-electricity-net-imports-country/. Accessed: May 12, 2022.

Stoft, S. 2002. Power system economics: designing markets for electricity. Vol. 468.
IEEE press Piscataway.
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Appendix A: Data Analysis

Figure 8: Scatter Plots

Note: Data source: ENTSO-E Transparency Platform. Plots by the authors.
54



Table 9: Unit Root Tests

Non-differenced Series Differenced Series

Lags ADF Test Statistic Lags ADF Test Statistic
Off-peak Hours
Electricity Price 13 -4.775 13 -17.245
Total Load 50 -3.338 49 -7.461
Inflow 8 -4.900 13 -16.563
Outflow 7 -4.393 6 -24.368
IRES 3 -12.876 11 -19.303
Solar 5 -2.887 4 -25.904
Wind 3 -12.689 11 -19.292
Gas Price N.A. N.A. N.A. N.A.
Peak hours
Electricity Price 22 -3.549 21 -13.321
Total Load 50 -3.626 49 -7.921
Inflow 7 -6.480 13 -17.978
Outflow 7 -6.667 13 -18.184
IRES 1 -18.958 15 -17.407
Solar 10 -3.038 9 -20.354
Wind 1 -9.988 11 -19.231
Gas Price N.A. N.A. N.A. N.A.
Total
Electricity Price 22 -3.651 21 -13.616
Total Load 50 -3.461 49 -7.736
Inflow 8 -5.377 13 -17.153
Outflow 7 -5.141 21 -12.849
IRES 3 -14.700 11 -19.428
Solar 10 -2.984 9 -20.350
Wind 3 -13.195 10 -20.340
Gas Price 2 -1.558 1 -30.023

Note: The MacKinnon (1996) critical values are −3.430, −2.860, and −2.570 for confidence

levels of 1%, 5%, and 10% respectively. A test statistic less than the critical value means we

can reject the null hypothesis of presence of a unit root in the time series.
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Appendix B: SARIMAX Model Fit

Figure 9: Autocorrelation and Partial Autocorrelation Function Plots of Off-peak
and Peak Model Residuals

Note: Lag observations within the confidence band indicate no autocorrelation.
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Figure 10: Inverse roots of ARMA-polynomials

Note: Plots of the inverse roots of the ARMA-polynomials from the respective off-
peak and peak SARIMAX-models. Inverse roots within the unit circle indicate model
stationarity.
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Appendix C: Robustness Check Regression Ta-

bles

Table 10: Yearly Regressions of Non-differenced Time Series

(1) (2) (3) (4) (5)
2016 2017 2018 2019 2020

Total Load 0.146∗∗∗ 0.241∗∗∗ 0.355∗∗∗ 0.350∗∗∗ 0.277∗∗∗

(0.036) (0.057) (0.058) (0.063) (0.035)

Inflow -0.552∗∗ -1.219∗∗∗ -0.365 -0.238 -0.170
(0.251) (0.412) (0.374) (0.358) (0.223)

Outflow -0.212 -0.216 0.534∗ 0.352 -0.054
(0.176) (0.497) (0.319) (0.305) (0.244)

Gas Price 2.078∗∗∗ 3.266∗∗∗ 1.033∗∗ 0.133 1.118∗∗

(0.446) (1.256) (0.488) (0.620) (0.481)

IRES 0.285∗∗∗ 0.122 -0.205∗∗∗ -0.270∗∗ -0.230∗∗∗

(0.097) (0.162) (0.055) (0.114) (0.055)

IRES × Gas Price -0.035∗∗∗ -0.025∗∗∗ -0.005∗∗ -0.000 -0.001
(0.007) (0.008) (0.002) (0.006) (0.005)

Constant -20.830∗∗ -49.670∗∗∗ -55.154∗∗∗ -15.112 -20.906∗∗

(10.568) (16.661) (13.745) (13.331) (9.471)

DM Dummies YES YES YES YES YES
R2 0.850 0.815 0.873 0.784 0.861
Adjusted R2 0.840 0.802 0.864 0.770 0.852
F 71.663 40.304 106.206 40.879 60.925
rho 0.312 0.342 0.433 0.165 0.287
Durbin-Watson 1.938 1.893 2.011 1.921 2.011
Durbin-Watson, orig. 1.378 1.321 1.199 1.635 1.450
Observations 366 365 365 365 366

Robust standard errors in parentheses. Dependent variable: Day-ahead electricity price.

Electricity and gas prices measured in e/MWh, all other variables in GWh.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Regressions of Non-differenced Time Series, Including Oil Price

(1) (2) (3) (4)

Total Load 0.275∗∗∗ 0.269∗∗∗ 0.276∗∗∗ 0.272∗∗∗

(0.026) (0.026) (0.026) (0.026)

Inflow -0.133 0.034 -0.104 0.028
(0.146) (0.138) (0.149) (0.140)

Outflow 0.198 0.186 0.193 0.191
(0.148) (0.147) (0.148) (0.146)

Gas Price 1.422∗∗∗ 1.854∗∗∗ 1.433∗∗∗ 2.201∗∗∗

(0.164) (0.156) (0.163) (0.180)

IRES -0.281∗∗∗ -0.186∗∗∗

(0.009) (0.026)

IRES × Gas Price -0.006∗∗∗

(0.001)

Solar -0.228∗∗∗ 0.072
(0.025) (0.061)

Wind -0.280∗∗∗ -0.185∗∗∗

(0.009) (0.026)

Solar × Gas Price -0.021∗∗∗

(0.004)

Wind × Gas Price -0.006∗∗∗

(0.001)

Oil Price 0.126∗∗∗ 0.112∗∗∗ 0.127∗∗∗ 0.155∗∗∗

(0.043) (0.041) (0.043) (0.039)

Constant -46.245∗∗∗ -51.811∗∗∗ -46.996∗∗∗ -59.597∗∗∗

(6.445) (6.426) (6.495) (6.487)

DMY Dummies YES YES YES YES
R2 0.774 0.779 0.775 0.784
Adjusted R2 0.771 0.776 0.772 0.781
F 150.646 158.393 145.424 153.696
rho 0.503 0.498 0.503 0.481
Durbin-Watson 2.083 2.079 2.079 2.062
Durbin-Watson, orig. 1.032 1.044 1.032 1.082
Observations 1827 1827 1827 1827

Robust standard errors in parentheses. Dependent variable: Day-ahead electricity price.

Electricity and gas prices measured in e/MWh, all other variables in GWh, except for oil

price, which is denoted in e/barrel.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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