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Attention is inherently limited (Kahneman, 1973). While much research has been devoted

to understanding its effects on stock-specific returns (Barber & Odean, 2008; Ben-Rephael,

Da, & Israelsen, 2017; Da, Engelberg, & Gao, 2011; Dellavigna & Pollet, 2009; Peng &

Xiong, 2006), recent literature suggests it has a market-wide impact (Chen, Tang, Yao, &

Zhou, 2022). Given the presence of behavioral biases in the decision making of investors

and the complex features of the market, this impact might not necessarily be linear in

nature (Banerjee & Green, 2015; Hsieh, 1991). Despite the growing interest in nonlinear

technical analysis since the entrance of machine learning in asset pricing, there is yet little

empirical research on the nonlinear relationship between investor attention and time series

market returns.

This article adds to the subfield of stock prediction studying the impact of investor

attention on the time series of market returns. Our starting point is twelve proxies for

investor attention put forth by Chen et al. (2022), with which we test for a combined

predictive power on market returns in and out of sample. Subsequently, we broaden the

understanding of nonlinearity in the data by applying a machine learning method capable

of modeling complex relationships. In contrast with prominent cross-sectional literature

claiming stock prediction to be enhanced by allowing for nonlinearity (Gu, Kelly, & Xiu,

2020; Kozak, Nagel, & Santosh, 2020), we find no robust evidence for the same applying

to the predictive power of investor attention.

Our contributions are fourfold. First, we add to the evidence that investor attention

has predictive power on market returns and uniquely show its maintained impact beyond

2017. Second, we show that a linear regression on components following a dimensionality

reduction outperforms our nonlinear machine learning model as the chosen method for

our dataset, which directly contributes to answering Chen et al. (2022) who called for

machine learning applications as important future research on the topic. Third, we

enrich the discussion surrounding the sign of the coefficient explaining the relationship

between investor attention and stock returns. The literature is inconclusive (Campbell &

Thompson, 2007), presenting evidence for positive (Gervais, Kaniel, & Mingelgrin, 2001; Li

& Yu, 2012) and negative (Barber & Odean, 2008; Chen et al., 2022) slope signs depending

on the examined measure used to proxy investor attention. By adopting identical methods

and still finding results opposing those of Chen et al. (2022), we show that minor data

differences can yield an impact on the direction of the slope. Lastly, we provide the most

comprehensive investor attention index to date (to the authors’ knowledge at the time

of writing), extending the time horizon of the attention index developed by Chen et al.

(2022). In aggregating the twelve individual proxies for the attention of investors, the
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index widely encapsulates market-level investor attention. Thus, its usage areas extend

outside stock market return prediction, much like the more well-researched sentiment

indices (Baker & Wurgler, 2007; Huang, Jiang, Tu, & Zhou, 2015).

The main empirical approach of this paper is as follows. Given the inherently unob-

servable nature of investor attention (Chen et al., 2022; Huang et al., 2015), we consider

a number of frequently used proxies. In spite of their low individual contribution to

predictive power, a combination of these proxies has shown to have predictive power on

market returns (Chen et al., 2022). In order to separate the investor attention from these

proxies and disregard noise, we use two separate approaches. In the linear benchmark, we

extract the common components through a factor structure model before doing repeated

regressions maximizing explanatory power and minimizing the error term. In our search

for nonlinearity, we relax the assumption of a factor structure model to allow Recurrent

Neural Networks (RNNs) to instead rid itself of noise by training itself on data before

measuring its maximum predictive power on a separate test set.

Our model choice for the linear benchmark is Partial Least Squares (PLS), which

since its creation by Wold (1966) has been subsequently developed into the version we

apply (Kelly & Pruitt, 2015; Light, Maslov, & Rytchkov, 2017). In short, PLS was chosen

due to being the best approach applied by Chen et al. (2022) since it elegantly deals

with dimensionality reduction and autocorrelation, and because it has a strong history of

successful applications in quantitative finance (Chen et al., 2022; Light et al., 2017).

We then apply a Long-Short Term Memory (LSTM) to identify potential nonlinearity

in the relationship between investor attention and market returns through a comparison

with our linear results (Hochreiter & Schmidhuber, 1997). LSTMs have a built-in memory

making it apt for time series analysis (Hochreiter & Schmidhuber, 1997) and have been

successful in financial modeling (Roondiwala, Patel, & Varma, 2017). Additionally, LSTM

employs a rolling time window, allowing it to mitigate the issue of concept drift in public

markets - a phenomenon that is well-known, unsolved as an issue and associated with

market efficiency (Nagel, 2021).

We find that our PLS investor attention index, used as a single predictor, has significant

predictive power of excess returns. Regressing excess returns of the stock market on our

investor attention measure, we are able to predict stock returns on a forecasting horizon

from one month up to two years. We find an in-sample R2 of 12.23% for yearly excess

returns. Interestingly, we find that high (low) investor attention predicts higher (lower)

subsequent excess returns on the stock market. This finding contradicts earlier empirical

findings within the investor attention domain (Chen et al., 2022). It is in line, however,
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with the economic logic and theory laid out by Gervais et al. (2001) and Li and Yu

(2012). For all forecasting periods, we obtain highly significant and strictly positive slopes

peaking at 0.90% for monthly predictions and shrinking in increasing prediction horizon

to 0.28% at the two year forecast. This means that a 1% increase in investor attention

today predicts a 0.90% increase in next month’s excess return of the stock market. We

turn to forecasting out-of-sample using our investor attention measure and find that the

predictive power remains for prediction horizons up until a year. We obtain an R2
OOS of

3.37% for monthly excess returns and 2.37% for yearly forecasts. The coefficients remain

strictly positive, in line with our findings in-sample.

With the results of PLS as a benchmark, we then turn to predicting the excess

stock market return using LSTM. We find that LSTM underperforms relative to PLS.

Occasionally, we are able to obtain a positive R2
OOS on par with PLS (2.23% for the six

month forecast). However, the results are not robust over the prediction horizons and

highly volatile depending on hyperparameter choices.

Our main points of analysis begin with the finding of a positive correlation between

investor attention and market excess returns, as indicated by the sign of the prediction

coefficient. The literature is inconclusive on what sign the coefficient should have, but

our analysis shows that the timing of investor attention vis-a-vis market returns may

be impactful. Our test examining the potential to enhance predictive power of investor

attention on stock returns show that nonlinear patterns are not sufficiently detectable

to yield economic gains. However, doubts pertaining to the compatibility between our

dataset and LSTM means that we are unable to make general conclusions.

Our findings challenge the notion that increased investor attention predicts decreased

future returns, mainly argued to stem from the reversal of temporary price pressure (Chen

et al., 2022). Rather, the results we present suggest a stronger prevalence of increasing

visibility driving shocks in trader interest, and thus increasing demand in the short term,

aligned with the findings of Gervais et al. (2001).

In brief, our research question is:

Does investor attention have predictive power on market returns and can it be enhanced

by allowing for nonlinearity?

This article builds on several contemporary themes in financial research. First, our analysis

complements earlier literature studying the predictive power of investor attention on stock-

returns (Barber & Odean, 2008; Ben-Rephael et al., 2017; Da et al., 2011; Dellavigna &
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Pollet, 2009; Gervais et al., 2001; Peng & Xiong, 2006). Specifically, we expand on the

body of work examining the impact of investor attention on the aggregate market. Li and

Yu (2012) show that nearness to the Dow 52-week high, as a proxy for investor attention,

has predictability of aggregate market returns. Yuan (2015) finds in-sample evidence of

the relationship between investor attention and the stock market. We expand on the

research by Chen et al. (2022). First, we provide a direct extension of their suggested

investor attention index. Second, we put their twelve proxies for investor attention in a

machine learning context. Our findings adds to the inconclusive literature examining the

slope of coefficient in predicting returns from investor attention (Barber & Odean, 2008;

Chen et al., 2022; Da et al., 2011; Gervais et al., 2001; Li & Yu, 2012).

We benchmark the application of machine learning models with linear models in asset

pricing, in coherence with Gu et al. (2020) and Kozak et al. (2020). Their work, however,

focuses not on time series but on the cross-section of returns, a subject attended to more

extensively in previous research. As such, we add to the relatively sparsely researched

field of machine learning applied to time series analysis of stock market returns (Cao, Lin,

Li, & Zhang, 2019; Roondiwala et al., 2017; Zhang, Chu, & Shen, 2021).

The remainder of the paper is organized as follows. Section I describes data and the

construction of proxies for investor attention. Section II explains the empirical approach.

Section III presents the empirical results and analysis. Section IV concludes.

I Data and Construction of Attention Proxies

We gather data and construct a series of attention proxies, based on the assumption

that true aggregated attention of investors is unobservable (Chen et al., 2022; Huang et al.,

2015). Despite the literature suggesting weak results for many proxies used in isolation,

Chen et al. showed investor attention to have strong predictive power once combined 2022

by aggregating twelve attention proxies. We follow their approach and use the following

proxies: abnormal trading volume (Barber & Odean, 2008), extreme returns (Barber &

Odean, 2008), past returns (Aboody, Lehavy, & Trueman, 2010), nearness to the Dow

52-week high and nearness to the Dow historical high (Li & Yu, 2012), analyst coverage

(Hirshleifer & Hong Teoh, 2003; Hirshleifer, Hsu, & Li, 2013; Peng, 2005), changes in

advertising expenses (Lou, 2014), media coverage (Barber & Odean, 2008; Fang & Peress,

2009), mutual fund inflow and outflow, Google search volume (Da et al., 2011), and the

number of document downloads on EDGAR (Drake, Roulstone, & Thornock, 2015; Lee,
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Ma, & Wang, 2015). We follow Chen et al. (2022) in collecting and computing these

measures. Here follows a detailed description of our data construction. Any discrepancies

contra Chen et al. (2022) is noted and explained.

For abnormal trading volume AAV ol, we compute the abnormal trading volume as

volume traded at the end of the month (EOM) for firmi during montht in relation to the

average trading volume of firmi during the last twelve months (LTM). We define extreme

returns AERet as the ratio of return for firmi during montht to its average during LTM.

Past returns APRet are calculated as the cumulative monthly return for firmi over LTM

at montht.

We define nearness to the Dow 52-week high A52wH as the ratio between the level of

the Dow Jones EOM at montht to its highest level in the past 52 weeks at montht, and

Nearness to the Dow historical high AHisH is computed as the ratio between the level of

the Dow Jones at EOM on montht to its highest historical level up to montht.

For analyst coverage A#AC , we count the number of analyst forecasts of earnings

per share (1 year ahead) for each firmi. For changes in advertising expenses ACAD

we calculate the log change in advertising expenses between yeart−1 and yeart. Due to

restricted access to the Compustat database where the data is collected, we deviate from

Chen et al. (2022) who collect monthly changes in advertising expenditure. We use the

yearly change for each company across all months during the year.

To obtain the number of document downloads on EDGAR AEDGAR, we follow Ryans

(2017) in line with Chen et al. (2022). We download the pre-cleaned EDGAR Log File

Dataset and choose “Rpv” as the measure for number of document downloads on EDGAR.

Here, it is not clear which measure of EDGAR document downloads Chen et al. (2022)

uses. However, “Rpv” is suggested by the author Ryans (2017) since it was shown to

minimize bot downloads which can be considered noise (Ryans, 2017).

For mutual fund outflows AOutflow we calculate fund outflows using redemption of

shares for each mutualfundi during montht, and for fund inflows AInflow we aggregate

total new shares sold and “other sales” for each mutualfundi during montht.

In collecting media coverage data AMedia, due to restricted access to the RavenPack

database used by Chen et al. (2022), we compute media coverage as the number of

news articles covering the largest companies in North America with respect to market

capitalization during the data time period, 2004 to 2021, simulating a value-weighted

approach adopted by Ma, Wang, and Zhang (2017). As suggested by Da et al. (2011) we

search for stock tickers in order to obtain results likely to contain news read by investors.

See Appendix I for a step-by-step description of how we filter and collect the data.
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For Google search volume AGoogle we obtain the Search Volume Index (SVI) from

Google Trends. It is indexed so that the montht where search volume peaked for firmi

during the time period takes a value of 100 for firmi. Here we obtain data for the same

tickers used in AMedia, a deviation from Chen et al. (2022) who uses all tickers on NYSE,

NASDAQ and AMEX. The lower quantity of data from Google Trends is countered by

the higher quality reached from manual downloads, since neither an API nor web crawler

can select the correct topic ID. We thus assure that a search of e.g. “COP” refers to the

searches interpreted by Google as pertaining to the stock of ConocoPhillips (including

misspellings) instead of the exact word “cop”. The manually collected data is available for

free public use on our github1 and might itself constitute a small contribution to further

studies since the problem is noted in the literature (Da et al., 2011).

Lastly, we obtain the data for our target variable, excess stock returns R, which we

define as monthly value-weighted aggregate stock return minus the U.S Treasury Bill-rate.

All cross-sectional equity data is collected from companies listed on the three major

American stock exchanges NYSE, AMEX or NASDAQ during each respective period. We

obtain data for AAV ol, AERet, APRet, A52wH , AHisH , A#AC and ACAD for the time period

January 1980 to October 2021. Data for AOutflow, AInflow, AMedia and AGoogle is obtained

from January 2004 to October 2021. Finally, for AEDGAR the only available data extends

from January 2004 to June 20172.

Data for AAV ol, AERet, APRet, AOutflow AInflow are obtained from the Center for Re-

search in Security Prices (CRSP) database. We collect data for A52wH and AHisH from

the Capital IQ database. The data for A#AC is obtained through the Institutional Brokers

Estimate System (IBES) database, data for ACAD collected from the Compustat database

and the news counts for AMedia are obtained from the Dow Jones Factiva. Lastly, we

extract data for AGoogle from Google Trends by manual downloads and data for AEDGAR

from the EDGAR log file dataset provided by Ryans (2017). Table 1 reports a summary

of the construction of our twelve investor attention proxies.

1github.com/lukuhr
2We contacted the Structured Data division at the SEC who claimed they can provide no information

on why the EDGAR log file dataset only extends to 2017. The same limit is imposed on the research
conducted by Chen et al. (2022).
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Table 1: The Twelve Proxies

Name Source Sample period

AAV ol CRSP Jan 1980 - October 2021

AERet CRSP Jan 1980 - October 2021

APRet CRSP Jan 1980 - October 2021

A52wH Capital IQ Jan 1980 - October 2021

AHisH Capital IQ Jan 1980 - October 2021

A#AC IBES Jan 1980 - October 2021

ACAD Compustat Jan 1980 - October 2021

AInflow CRSP Jan 2004 - October 2021

AOutflow CRSP Jan 2004 - October 2021

AMedia Factiva Jan 2004 - October 2021

AGoogle Google Trends Jan 2004 - October 2021

AEDGAR Ryans Jan 2004 - June 2017

Table 1 summarizes all variable names, the source from

where the data was obtained and the sample periods for

our twelve proxies of investor attention.

We compute monthly measures at the firm level before aggregating up to market-level

for all attention proxies. For all measures where available, we use equal weighting in order

to capture investor attention from a variety of different stocks and thus avoid biasing

the attention towards firms with high market capitalization. Equal weighting is also

applied by (Chen et al., 2022; Jondeau, Zhang, & Zhu, 2019; Rapach, Ringgenberg, &

Zhou, 2016). Table 2 describes the median, first- and third- quartile, skewness, first-order

autocorrelation and sample period of the twelve investor attention proxies.
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Table 2: Summary Statistics

Name 1st Quartile Median 3rd Quartile Skewness p(1)

AAV ol -0.65 -0.14 0.45 1.40 0.50

AERet -0.47 0.12 0.60 -0.80 0.17

APRet -0.64 0.05 0.52 0.08 0.92

A52wH -0.20 0.41 0.64 -2.42 0.86

AHisH -0.36 0.40 0.77 -1.71 0.93

A#AC -0.83 0.07 0.81 -0.04 0.98

ACAD -0.42 -0.13 0.43 1.67 0.90

AInflow -0.37 -0.37 -0.37 2.46 0.94

AOutflow -0.37 -0.36 -0.36 2.79 0.90

AMedia -0.47 -0.13 0.25 1.92 0.60

AGoogle -0.73 -0.22 0.31 1.74 0.93

AEDGAR -0.56 0.14 0.68 -0.43 0.82

Table 2 reports the 1st- and 3rd quartiles, median, skewness and first-

order autocorrelation of the twelve attention proxies AAV ol, AERet,

APRet, A52wH ,AHisH , A#AC , ACAD, AInflow, AOutflow, AMedia, AGoogleand

AEDGAR. All variables are standardized to normal.

We restrict the data set to the time period 1980 to 2017 in order to compare the

distribution of our data proxies vis-à-vis those constructed by Chen et al. (2022).We

conclude that our data aligns closely to the measures presented by Chen et al. (2022) for

the data obtained through CRSP, Capital IQ, IBES and Compustat. As expected, there

are discrepancies in the distributions of ACAD, AMedia, AGoogle, and AEDGAR where we are

restricted by database access to reproduce identical data. In particular, we are cautious

of the discrepancies in collecting Google Search- and Media Coverage data. The proxies

could pick up different signals due to the value-weighted nature of our approach. Table

A.2 reporting the summary statistics of our data during the time period January 1980 to

December 2017 can be found in the Appendix.
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II Empirical Approach

A Partial Least Squares

Methodologically, we begin by applying Partial Least Squares (PLS) as a benchmark to

our nonlinear approach. Since introduced by Wold (1966), PLS has been refined and

popularized as a method related to both principal component analysis (PCA) and ordinary

least squares (OLS), but different from both. Instead of maximizing variation of the

independent variables, they are maximized according to their explanatory power vis-a-vis

the dependent variable. Its dimensionality reduction tackles the problem of autoregression

and makes it particularly useful for time series analysis, and the method has found plenty

of popularity in finance research (Chen et al., 2022; Kelly & Pruitt, 2015; Light et al.,

2017).

In this subsection, we consider a model in which excess returns on the stock market is a

linear function of the true but unobservable investor attention A∗ plus some unpredictable

noise-term ε unrelated to A∗ as depicted in equation (1).

rt+1 = α + βA∗
t + εt+1 (1)

where rt+1 is the realized excess stock return at time t + 1. Due to the unobservable

nature of A∗, equation (1) describes the optimal but infeasible best forecast (Kelly &

Pruitt, 2015). In our case, the true but unobservable investor attention A∗ is a latent

factor that drives the systematic variation of both our target variable, excess returns on

the stock market, and our predictors, the twelve investor attention proxies. Intuitively, we

are in need of a factor estimation step where we can identify the true investor attention

driving excess returns from our proxies and remove all noise of the individual attention

proxies unrelated to excess returns. To do so, we assume the data can be described by

an approximate factor model. Specifically, we assume a linear factor structure for our

investor attention proxies. Let At represent an N × 1 vector of our attention proxies at

time t such that At = (A1,t, ..., AN,t)
T , where N is the number of attention proxies. The

structural model for Ai,t(i = 1, ..., N) is given by

Ai,t = ηi,0 + ηi,1A
∗
t + ηi,2Et + ei,t (2)

where A∗ is the true and unobservable investor attention in equation (1), ηi,1 is the factor

loading that captures the sensitivity of attention proxy Ai,t to A∗, Et is the approximation-
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error common for all proxies that are unrelated to excess return, and ei,t is the noise

idiosyncratic to attention proxy Ai .

In order to make predictions, we extract the subset of factors that influences our

target variable, stock market excess returns, by implementing Partial Least Squares (PLS).

Technically, the method we apply is a special case of the Three-Pass Regression Filter

(3PRF) pioneered by Kelly and Pruitt (2015) and further developed by Light et al. (2017).

It serves as a way to replicate a PLS forecast by running three passes through separate OLS

regressions, given three assumptions: 1) the predictors are standardized in a preliminary

step 2) the first two OLS regression passes are run excluding constants and 3) proxies

are automatically selected (Kelly & Pruitt, 2015). We will refer to them both as PLS

throughout this paper since they are used synonymously in adjacent research (Chen et al.,

2022). The first pass is a time series regression of our attention proxies Ai,t on realized

excess return rt+1 as a proxy for future excess returns on the stock market.

Ai,t = π0 + πirt+1 + ui,t, (3)

where πi is the slope to be estimated and serves as each individual attention proxy’s

loading on the true target variable, excess returns. Consider equation (1), where rt+1 is

driven by the true investor attention A∗t. Then follows that equation (3) describes how

Ai,t is related to A∗t instrumented by future excess returns rt+1. The second pass is a

cross-sectional regression of Ai,t on the estimated loadings in equation (3) π̂i for each time

period t

Ai,t = ct + APLS
t π̂i + vi,t, (4)

where AAttention
t is the estimated measure of true investor attention at time t. The collective

output of equation (4) is our investor attention index and predictor used to estimate

equation (1) and forecast stock market excess returns. Note that if the true loadings πi are

unknown, and thus the slope π̂i in equation (3) approximates the loadings πi. Naturally,

if the true relationship between our attention proxies Ai,t and true investor attention A∗
t

were known, we could consistently estimate our investor attention measure AAttention
t by

running cross-sectional regressions of Ai,t on πi for each period. Figure 1 describes the

time series index of market-level investor attention between January 1980 and October

2021. All numbers are standardized to have a mean of zero and standard deviation of

zero. Investor attention was abnormally low during the 2008 financial crisis. Sicherman,

Loewenstein, Seppi, and Utkus (2015) finds that attention falls by almost 10% after market

declines. This phenomenon was attributed to the ostrich effect (Karlsson, Loewenstein,
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& Seppi, 2009) coined after the metaphor of sticking one’s head in the sand. Notably,

this psychological bias is not detectable in the data pertaining to the COVID-19 crisis.

Investor attention reaches its all-time high in March 2020 and continues on a high-level

throughout the data period’s end in October 2021.

Figure 1 displays the market-level Investor Attention Index AAttention over the the

time period Jan 1980 to Oct 2021. The index is standardized to normal.

In the empirical implementation described in Section I, we apply the third pass OLS to

examine the forecasting power of the attention index AAttention. Crucially, we complement

the assessment of investor attentions’ predictive power by testing our model out-of-sample.

B Long-Short Term Memory

The Long-Short Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

and differs from traditional neural networks by its ability to store an internal state

generally considered as a memory (Hochreiter & Schmidhuber, 1997). As demonstrated by

Zhang et al. (2021) this makes LSTM models well suited for handling complex non-linear

relationships in time series data. Additionally, its application of a rolling window is a

technique appropriate for mitigating concept drift (Nagel, 2021). The model is restricted

at each month t to only consider data w months back, where w is the size of the time

window.
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The following description of our LSTM method assumes the reader possesses prior

knowledge of the basic mechanisms of a traditional neural network. Appendix II provides

a more detailed description of Neural Networks and LSTM. For a thorough guide on

Neural Networks and Deep Learning, see Goodfellow, Bengio, and Courville (2016) and

for a well-written book on machine learning applications in finance, consult Nagel (2021).

The units, often referred to as ’neurons’ in the machine learning literature, in an LSTM

hidden layer are linked together by the network’s feedback connections. At each time step

the LSTM neuron passes information downstream in the network for a prediction at time

t. However, the same information is also passed sideways to the next neuron in line to be

considered in the prediction at time t+ 1.

Each LSTM neuron consists of four essential parts: A cell state Ct−1,passed on from

previous LSTM units, acts as the network’s long term memory. Second, a forget gate ft

controls what should be removed from the cell state. Third, an input gate determining

what should be added to the cell state Ct. Finally, the output gate ht executes the

LSTM’s output at time t that serves two purposes: as the network’s prediction at time t

and its short-term memory at time t+1. Below follows a condensed description of the

processes inside an LSTM unit. The first process takes place in the forget gate. The

process defining what part of the cell state Ct−1 to forget is given by

ft = σ (Wf [xt, ht−1] + bf ), (5)

where σ is a sigmoid function with output between 0 and 1; Wf a matrix of parameters

commonly referred to as weights; xt the vector of inputs at time t; ht−1 the short term

memory and prediction in the previous time step; and bf the noise-term of the forget gate

ft. The second process determines what new information to combine with the remainder

of old cell state Ct−1 and subsequently form the updated cell state Ct. The process of

updating is given by

it = σ (Wi [ xt, ht−1] + bi), (6)

C̃t = tanh (WC [ xt, ht−1] + bC), (7)

Ct = Ct · it + Ct−1 · ft, (8)

where σ is a sigmoid function; tanh a hyperbolic tangent function with output between

-1 and 1; Wi and WC are weight matrices; and bi and bC the noise-terms of it and C̃t

respectively. The third and final process constructs the prediction at time t by means of

two subsequent calculations considering both the new information xt combined with the
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short term memory ht-1 and the updated cell state Ct. The output process is given by

ot = (Wo[xt, ht−1] + bo), (9)

ht = ot · tanh(Ct), (10)

where ot is the part of the output at time t contributed to by xt and ht − 1; Wo a weight

matrix; and bo the noise-term of ot ; ht the prediction at time t; and Ct the cell state

formed in equation (9).

Next, preparatory choices are considered in order to optimize the model. LSTMs and

other neural networks have the capacity to approximate any underlying model and thus

make predictions with arbitrary accuracy in-sample (Cybenko, 1989). This is by virtue of

their nonlinear nature and vast number of trainable parameters (Cybenko, 1989). Thus, a

main challenge while applying an LSTM is how to avoid overfitting the sample data and

optimize for out-of-sample accuracy (Gu et al., 2020).

First, the tuning of hyperparameters controls a model’s complexity and works as

machine learning’s major antidote to overfitting. There is no universally applicable

method of how to best tune hyperparameters (Gu et al., 2020; Nagel, 2021). We follow

prominent research by Gu et al. (2020) and dedicate a set of our data as a validation

sample in order to choose hyperparameters adaptively. In chronological order, we split our

data into a training, validation and test set. The first data set is dedicated to training the

model. The second part serves as a benchmark in a simulated out-of-sample test in the

current state. The validation data is thus being restricted from the model during training,

and used to evaluate prediction accuracy before the model adjusts its weights again. The

test data is left untouched for true out-of-sample prediction evaluation. To simulate

real-time out-of-sample testing while predicting, it is crucial that the network is set up so

that it is not informed at time t by information occurring in time t+1. Thus, we normalize

the three data sets separately according to its own mean and standard-deviation.

We apply Mean Squared Errors (MSE), also used by Gu et al. (2020) to evaluate the

model’s accuracy on validation data, and Adam optimization algorithm to minimize the

loss, also applied by Yadav, Jha, and Sharan (2020) and Zhang et al. (2021). To avoid

overfitting, we add two regularization terms to the loss function called elastic. Elastic

net combines lasso regularization (L1) and ridge regularization (L2). L1 regularization

serves to penalize the number of weights used in the model, incentivizing the model to

rid non-essential parameters. The L2 regularization term penalizes the total absolute

values of the weights in the network which prompts to shrink the size of any individual
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parameter. In effect, the network is incentivized by the elastic net regularization to find

the best balance between minimizing in-sample errors, the number of parameters and

shrinking the size of parameters in use. The extended loss function is given by

Lenet(β̂) = MSE(β̂) + λ

(
1− α

2
Σβ̂2

i + αΣ|β̂i|
)

(11)

where β̂ are the trained parameters , MSE the Mean Squared Error-term, λ the learning

rate and α the parameter balancing the presence of added penalty terms. Remaining

preparatory steps include selecting the number of epochs, the time window size and the

network’s depth and width. The number of epochs refers to the number of passes of

training and validating the model taken before choosing the best performing model. Thus,

an increasing number of epochs allows more parameter updates. The depth and width of

a network describes how many parameters each layer contains and secondly how many

layers of neurons the network should include. Here again, no universal best-practices

apply (Gu et al., 2020; Nagel, 2021) and we exercise recursive testing to obtain the best

prediction accuracy.

Given the aforementioned opaque nature and strong ability of LSTM networks to

model complexity, in-sample predictions are rarely of interest while applying machine

learning models of akin character. Thus, our focus while applying LSTM is solely to

compare its out-of-sample accuracy to our PLS model. Next, we conduct empirical testing

and benchmark the prediction accuracy of our linear and nonlinear models.

III Empirical Results and Analysis

In this section we forecast stock market returns using our PLS. Sequentially we compare

the methods in order to bring light to our hypothesis of nonlinearity in the relationship

between investor attention and excess market returns.

A Partial Least Squares

To examine the in-sample predictive power of investor attention on excess market returns

we apply the third pass regression of PLS, which is a univariate predictive regression given

by

Rt+h = α + βAAttention
t + εt+h, (12)
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where Rt+h is the average excess stock return over the forecast horizon h, where h = 1,

3, 6, 12 and 24 months; AAttention
t is the estimated slope in equation (4) and measure of

investor attention at time t; β the slope to be estimated; and εt+h the noise-term unrelated

to AAttention
t .

For in-sample predictions, we use the full data set spanning from January 1980 to

October 2021 for attention measures AAV ol, AERet, APRet, A52wH and AHisH ; from January

2004 to October 2021 for AInflow, AOutflow, AMedia and AGoogle; and January 2004 to June

2017 for AEDGAR to approximate the loadings π̂i in equation (3) and sequentially estimate

AAttention
t in equation (4). We forecast excess returns Rt+h in the predictive regression

displayed in equation (12) over the full time period. To evaluate the in-sample prediction

we use the commonly applied R2-metric, also used by Chen et al. (2022).

We find that the market-level investor attention has in-sample predictive power over

stock returns. Our results are significant for all forecasting horizons. In predicting next

month’s return between January 1980 and October 2021 we find an in-sample R2 of 3.21%

and the explanatory power increases until the yearly forecast horizon where R2 peaks at

12.23%, implying that AAttention can explain 12.23% of the time variation in the yearly

excess return of the stock market. Furthermore, the betas are significant for all prediction

horizons. The largest coefficient slope is obtained for monthly forecasts and declines as

the prediction horizon increases. The coefficient under monthly predictions is 0.90%. The

corresponding for 24 months is 0.28%. Since all our data is standardized, this means that

1 standard-deviation increase in investor attention at time t predicts a 0.90% increase

in excess returns in the consecutive month. Annualized, this equates to 10.8%, which

is in the higher ranges of common macro economic predictors. An equal increase in the

dividend–price ratio, and the net payout ratio approximately increases the risk premium

by 3.60% and 10.2% per year, respectively (Jacob Boudoukh & Roberts, 2007; Lettau &

Ludvigson, 2001).

Our in-sample prediction performs significantly better than Chen et al. (2022) who’s

R2 results are lower for all forecast horizons. However, the time periods over which we

conduct in-sample predictions differ, and thus we proceed by restricting the data set

to the same time period, January 1980 to December 2017. Notably, our in-sample R2

increases to 3.31% at the monthly horizon and reaches 14.5% at the yearly horizon. All

coefficient slopes are significant and follow the same pattern - positive slopes decreasing

in the prediction horizon. Table 3 summarizes the in-sample forecast R2 and betas over

both time periods.
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Table 3: In-Sample Results

Time Period Statistic h = 1 h = 3 h = 6 h = 12 h = 24

Jan 1980 - Oct 2021
In-sample R2(%) 3.24 3.69 6.96 12.23 5.82

β (%) 0.90∗∗∗ 0.58∗∗∗ 0.57∗∗∗ 0.55∗∗∗ 0.28∗∗∗

Jan 1980 - Dec 2017
In-sample R2(%) 3.21 5.96 10.69 14.55 9.52

β (%) 0.88∗∗∗ 0.73∗∗∗ 0.71∗∗∗ 0.56∗∗∗ 0.30∗∗∗

Table 3 reports the in-sample results and β over the two time periods Jan 1980 -

Oct 2021 and Jan 1980 - 2017. The results follow from the predictive regression in

equation (12) where Rt + h is regressed on AAttention. *** indicate a p-value

below 0.001.

In-sample prediction allows for usage of all available data and thus offers more accurate

forecasting. However, prominent financial research such as Campbell and Thompson

(2007) and Welch and Goyal (2008) widely argues that out-of-sample predictions more

authentically reflect real-time predictive power. Accordingly, we proceed by applying PLS

on out-of-sample forecasting.

In forecasting out-of-sample, we are restricted to use only the data available up until

time t to make a prediction of stock returns at time t+ 1. Sequentially, the latest time

period used in the first pass given by equation (3) is rt, and as such the latest observations

of our attention proxies Ai are at time t− 1 . In the second pass AAttention
t is estimated

using data from month 1 through t. We apply the latest available loadings πi at every

month t in the second pass of estimating the model. Using all the sample data we estimate

the initial predictive regression in equation (12). Thus the out-of-sample forecasting

regression is given by equation (13) where α̂ and β̂ are the estimated coefficients of

equation (12). As we predict the stock return later in time we repeat the passes and

re-estimate equation (13) for each month using the latest available data. For instance, to

forecast excess returns at time t+ 3 we use data up until t+ 2 to estimate our predictive

regression.

We follow Chen et al. (2022) and devote 40% of the data to fit the initial predictive

regression3. However, we add two months to have the sample data end at the end of a

calendar year. Our sample data thus spans from January 1980 to December 1996 and we

forecast monthly out-of-sample stock market returns between January 1997 and October

3Chen et al. (2022) uses 180 out of 456 months as their initial sample which is 39.5%, circa 40% of
the data rounded to end at the calendar year.
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2021. To measure the accuracy of our out-of-sample predictions we apply the commonly

used R2
OOS metric proposed by Campbell and Thompson (2007), also used by Chen et al.

(2022). The R2
OOS metric benchmarks the prediction against the historical average from

the first month in the sample until time t. Logically, the model’s prediction is deemed to

be insignificant if the performance is worse than the historical average.

We find that our predictions are still significant for all forecasting horizons but 24

months, in line with the findings of Chen et al. (2022). We obtain an R2
OOS of 1.09% on

the monthly horizon and 1.76% for predictions 3 months ahead.

We continue by imposing theoretically motivated restrictions and adjustments to the

predictive model. First, we force predictions of excess returns - the market premium -

to be non-negative in line with economic theory suggested by Campbell and Thompson

(2007). We find that non-negative restriction improves prediction accuracy to 1.74 %

at the monthly horizon, and peaking at 2.29% for quarterly forecasts. Second, Light

et al. (2017) suggests that the loadings πi can be substituted by the average loadings πi

of the previous periods to estimate the coefficient in equation (4) more precisely. This

assumes that time does not influence the relationship between investor attention and

excess returns on the stock market (Chen et al., 2022; Light et al., 2017). We use both the

historical average of the loadings πi at each month t as well as a 5 year averaging scheme.

In contrast to Chen et al. (2022) we observe that applying the most recently estimated

loadings πi yields the most accurate predictions. This suggests that the relationship

between investor attention and stock returns changes over time (Light et al., 2017) and

hints at the potential of LSTM to improve prediction accuracy.

We observe that Chen et al. (2022) obtains a higher R2
OOS, and thus we proceed

by examining what differs between our tests. First, we change the data time period to

January 1980 to December 2017, and split our in-sample and out-of-sample data according

to Chen et al. (2022). In shortening the time period, we find a higher R2
OOS for all forecast

horizons culminating during monthly predictions at 3.37%. Notably, we find a significant

R2
OOS for the 24-month forecast of 0.55%, not found by earlier research. Still, the results

during shorter prediction horizons are still not quite in line with Chen et al. (2022).

Second, we impose a non-negative return premium, as reported by Chen et al. (2022).

Interestingly, this deteriorates the prediction performance, albeit still yielding significant

results. Chen et al. (2022) applies different averaging schemes of loadings πi including 5

year average, 10 year average and the average of all available loadings at time t. They do

not, however, report which averaging scheme yields their presented R2
OOS. We implement

all their reported averaging schemes, but do not observe an improved R2
OOS. All else
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equal this should yield equal results. Thus, we have replicated all implementations of

out-of-sample forecasting reported by Chen et al. (2022). We conclude that the one source

left to explain the discrepancy lies in our data differences for the variables ACAD, AMedia,

AGoogle and AEDGAR. Table 4 summarizes the out-of-sample predictions using the best

performing models for each respective time period.

Table 4: Out-of-sample Results

R2
OOS (%) for Data Period: 1980 - 2021

Forecast Horizon Unrestricted Forecast Restricted for Non-negative Prediction

h = 1 1.09 1.74

h = 3 1.76 2.29

h = 6 1.48 2.24

h = 12 0.01 1.60

R2
OOS (%) for Data Period: 1980 - 2017

Forecast Horizon Unrestricted Forecast Restricted for Non-negative Prediction

h = 1 3.37 1.81

h = 3 2.10 1.11

h = 6 2.67 1.82

h = 12 2.37 1.80

Table 4 shows the out-of-sample results and β for the two time periods Jan 1980

- Oct 2021 and Jan 1980 - 2017 over the prediction horizon h, where h = 1, 3, 6

and 12 months. In the Restricted for Non-Negative Prediction, we impose the

economic restriction of a non-negative market premium, substituting negative

forecasts by 0. No economic restrictions are imposed on the Unrestricted Forecast.

*** indicate a p-value ¡ 0.001.

A notable aspect of our results is the positive sign of the prediction coefficient, which

is different from the negative coefficient identified by Chen et al. (2022) with a similar

array of proxies. However, the literature suggests that the sign of the slope is not definite

(Andrei & Hasler, 2020; Campbell & Thompson, 2007). The positive predictability of

investor attention is in line with the theory presented by George and Hwang (2001) and Li

and Yu (2012) present evidence that attention, captured by nearness to the 52-week high,

positively predicts excess market returns. Our findings support the economic phenomenon
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suggested by Gervais et al. (2001) who show that high attention, proxied by trading

volume, leads to future increases in stock returns driven by shocks in trader interest

from its increased visibility. However, we conclude that minor data differences yielded

an impact on the direction of the slope contra Chen et al. (2022), and thus we echo the

inconclusiveness regarding the coefficient previously addressed in the literature (Andrei &

Hasler, 2020; Campbell & Thompson, 2007).

We observe that the effect is strongest in the short term (one month’s horizon) and

declines over time, in line with economically expected phenomena such as reversal from

temporary price pressure (Barber & Odean, 2008; Da et al., 2011) harmonious with the

theory of mean reversion to a stocks’ fundamentals, first presented by De Bondt and

Thaler (1985).

B Long-Short Term Memory

We begin our application of LSTM by testing the out-of-sample prediction accuracy, which

is then compared with the results of the PLS analysis.

In order to find the best model setup for out-of-sample predictions, we make repeated

tests where a single variable is changed while the rest are held constant. We cycle through:

learning rates of 0.01 and 0.001; the number of epochs set to 100, and 200; window step

size of 6, and 12; and the elastic net penalization constant α to 0.1. Importantly, we reset

the layer weights after each test. A summary of the model setups examined is reported in

Table 5.

Table 5: LSTM Model Setup

LSTM Architecture Hyperparameters and Regularization Data Split

Input Layer (11 and 12 inputs) Learning Rates: 0.01 and 0.001 Training 80%

LSTM Layer (8 Neurons) Dropout: 0.2 and 0.4 Validation 5%

Dense Layer (4 Neurons, ReLU) Window Step Size: 6 and 12 Test 15%

Output layer (1 Neuron, Linear) Alpha: 0.1 and 0.01

Table 5 summarizes the LSTM model setup used in our tests. The left-most column

describes the network architecture. The middle column describes hyperparameter and

regularizer choices. The right-most column describes the share of data dedicated to

training, validation and test data.
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For comparison with PLS, we predict excess returns Rt+h over the same prediction

horizons where h = 1, 3, 6, 12 and 24 months. LSTM requires that all predictors, the

twelve attention proxies in our case, have the same time period. We restrict the dataset

from January 2004 to June 2017 and call this Data04−17. We also run the model omitting

the predictor AEDGAR (which only has data until 2017) in order to extend all other

predictors to October 2021 and refer to it as Data04−21. We attribute the first 80% of the

months in each data set to training, 5% for the validation and use the remaining 15%

as test data. Running each respective model described in Table 5 we find that the best

performing model applies a learning rate of 0.01, 100 epochs and a window step size set to

6 months and yields an R2
OOS of 2.23% for Data04−21 which is on par with what we obtain

using PLS (2.24%). The data set in the LSTM is notably shorter however, considering all

proxies begin in 2004.

We find that our LSTM model fails to outperform the PLS model in out-of-sample

predictions. While the is able to impressively fit in-sample data, we obtain negative

R2
OOS scores for all horizons except for the half-year forecast using Data04−21. Adjusting

hyperparameters to mitigate the bias-variance trade-off (Kozak et al., 2020) improves the

forecast but yields no significant results.

As neural networks is far from closed-form mathematics and more often likened to

a black box, identifying shortcomings is similarly more about trial-and-error debugging

than the transparent inference commonly possible in traditional statistics (Chollet, 2021).

That is why we turn towards finding and rectifying any eventual shortcomings in our

model with alternative means below.

In order to draw conclusions on the absence of nonlinearity in our data, we intend

to set up a test where we can expect our LSTM to perform well out-of-sample. If our

LSTM accurately predicts a nonlinear relationship we know exists, we can discard that

the failure to find predictive power on excess returns in our investor attention data is due

to a computing problem. First, we measure the first-order autocorrelation of our excess

return data and find that it increases drastically as the prediction horizon expands. The

autocorrelation for average 24-month excess returns reaches 0.97 .

We add a variable containing past returns up to time t to the input data that the

LSTM can use to predict returns at time t+ 1. Given the high degree of autocorrelation

in the 24 month average excess return, we would expect to observe a substantial increase

in prediction performance, unless there is an issue in the model or data setup. We run the

LSTM prediction horizon and we instantly find a considerable spike in R2
OOS. Predicting

average excess returns over the coming 24 months yields an R2
OOS of 40% without tuning
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any hyperparameter. This supports our ability to make conclusions about our data.

LSTMs primary advantage over PLS is that it allows for nonlinear relationships

and interactions between the input variables and the predicted target. Hence, our null

hypothesis that there is insufficient nonlinearity in the data to improve its predictive

performance cannot be rejected. Our tests conclude that the existence of nonlinear

interplay between the twelve attention proxies and market returns is not great enough to

enhance prediction performance, at least within the data set used in this paper. However,

we are careful about generalizing our conclusion to an external setting.

IV Conclusion

Behavioral patterns and cognitive constraints have long been known to impact investors

decision-making on public markets, yet its impact on market returns has been sparsely

examined. This paper makes several contributions to this relatively thin body of research.

Chief of our findings is that the relationship between investor attention and market returns

is strong enough for economically meaningful gains to prediction. While the result has an

intuitive theoretical underpinning in the limitations of the human mind, no consensus has

been reached on whether the correlation is or ought to be positive or negatively correlated.

Our findings show that when attention is high, subsequent market returns are predicted

to increase in the following months.

Uniquely, we examine whether the predictive abilities of investor attention are enhanced

through a Long-Short Term Memory, a machine learning model capable of predicting

complex nonlinear relationships. We find that closed-form dimensionality reduction

remains triumphant, and conclude that the existence of nonlinear interplay between the

twelve attention proxies and market returns is not great enough to enhance prediction

performance, at least within the data considered in this paper.

Future research would do well to compare this predictive performance with a series

of cross-sectional and macro predictors to evaluate whether investor attention would

improve all-encompassing predictive models. With professional quantitative finance

steering towards character rich modeling, investor attention shows the potential to improve

prediction models similar to Kozak et al. (2020). Additionally, researchers could further

widen the understanding of investor attention by allowing for larger datasets and the

testing a broader series of machine learning methods. This could entail higher statistical

power in testing.
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Appendix I

Table A.1: Correlation Plot

AAV ol AERet APRet A52wH AHisH A#AC ACAD AInflow AOutflow AMedia AGoogle AEDGAR

AAV ol 1 0.01 0.19 0.11 0.14 -0.14 0.07 0.31 0.27 0.13 0.33 -0.04

AERet 1 0.06 0.17 0.15 -0.01 0.15 0.09 0.06 0.05 0.04 0.03

APRet 1 0.7 0.29 0.12 0.61 -0.36 -0.4 0.24 -0.24 0

A52wH 1 0.77 0.39 0.66 -0.41 -0.43 0.39 -0.13 -0.05

AHisH 1 0.43 0.54 -0.26 -0.25 0.39 0.15 -0.12

A#AC 1 0.24 -0.63 -0.52 0.46 -0.43 0.46

ACAD 1 -0.39 -0.43 0.28 0 -0.1

AInflow 1 0.96 -0.34 0.39 -0.11

AOutflow 1 -0.33 0.34 -0.03

AMedia 1 -0.12 0.12

AGoogle 1 -0.35

AEDGAR 1

Table A.1 shows the cross-correlation between the 12 investor atten-
tion proxies AAV ol, AERet, APRet, A52wH ,AHisH , A#AC , ACAD, AInflow,
AOutflow, AMedia, AGoogleand AEDGAR .

Table A.2: Summary Statistics Jan 1980 - Dec 2017

Name 1st Quartile Median 3rd Quartile Skewness p(1)

AAV ol -0.72 -0.10 0.52 0.98 0.48
AERet -0.49 0.10 0.60 -0.63 0.18
APRet -0.64 0.08 0.53 0.02 0.93
A52wH -0.18 0.41 0.64 -2.40 0.88
AHisH -0.41 0.39 0.80 -1.63 0.94
A#AC -0.84 0.03 0.76 -0.11 0.99
ACAD -0.45 -0.05 0.61 0.88 0.93
AInflow -0.64 -0.32 -0.31 2.08 0.80
AOutflow -0.60 -0.35 -0.27 2.31 0.77
AMedia -0.44 -0.12 0.22 1.71 0.61
AGoogle -0.63 -0.20 0.33 0.91 0.90
AEDGAR -0.56 0.14 0.68 -0.43 0.82

Table A.2 reports the 1st- and 3rd quartiles, median, skewness and
first-order autocorrelation of the twelve attention proxies AAV ol,
AERet, APRet, A52wH ,AHisH , A#AC , ACAD, AInflow, AOutflow,
AMedia,
AGoogle and AEDGAR for the time period Jan 1980 to June 2017
(when all measures are complete). All variables are standardized to
normal. This time frame is the same as the one studied by Chen
et al. (2022).
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Appendix II: A Brief Introduction to Neural

Networks

Imagine a neural network containing one input layer, one hidden layer with two neurons
and an output layer. From the input layer, input values are sent to each neuron inside the
hidden layer. Inside each neuron, weights are assigned to the inputs and a bias is added.

x1 → (x1 · w1) + x2 → (x2 · w2) + bias (1)

At this point, what we have is equal to a multivariate linear regression:

(x1 · w1) + (x2 · w2) + b (2)

Before the value is fed to the output layer however, the hidden layer applies a nonlinear
activation function (·) to the sum of (1):

y = (x1w1 + x2w2) + b (3)

Normally, the activation function “squashes” the sum of (1) so that its output takes a
value where y is

1 ≤ y ≤ 1, 0 ≤ y ≤ 1 or 0 ≤ y (4)

Lastly, each neuron in the hidden layer feeds its output to the output layer where the same
process is repeated in an output neuron, though not necessarily using the same activation
function. Some of the most common nonlinear activation functions ReLu, Tanh, Sigmoid
and Softplus. Neural Networks are able to model high-dimensional relationships between
variables and can become highly complex as more hidden layers are added to the network,
thus they are called Deep Neural Networks (DNNs) when more hidden layers are added.

Albeit being highly effective for many nonlinear prediction situations, the neural
network we have studied above suffers when the prediction problem is of a time series
nature. In a time series, the prediction of yt+1 at timet is potentially dependent on earlier
information from time t , t− 1 and t− 2 and so on. As the timesteps relevant to predict
yt+1 increases, the neural network, more specifically called a feed-forward neural network,
runs into problems since it has no notion of order in time. The information inside a
feed-forward neural network can not run in “cycles” and thus it has no “memory” of earlier
timesteps. Recurrent Neural Networks (RNNs) mitigate this problem by containing loops
that allow the information to cycle through the network. The RNN can be thought of as
several copies of the same neural network for each time step that each can feed information
to the network next to it such that NNt−1 feeds to NNt that feeds to NNt+1 and so on.
In effect, information can be stored across time steps as memory for predictions. Thus,
RNNs are especially effective when combating sequential data such as natural language
processing, speech recognition and time series prediction.

A traditional RNN often becomes futile when one is dealing with predictions dependent
on information many time steps apart. Hochreiter and Schmidhuber (1997) introduced
the Long-Short Term Memory Network (LSTM), a type of RNN that is able to store both
long- and short term memory.
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