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I. Introduction 

Market microstructure is the branch of finance that studies how markets operate. The 
central area of inquiry concerns the structure of exchanges and trading venues, intraday 
trading behavior, the price formation process, and transaction costs (Kissell, 2014). A 
recent theory called Market Microstructure Invariance (MMI), postulated by Albert S. 
Kyle and Anna A. Obizhaeva (2016), has cemented itself in microstructure literature. It 
is based on the intuitive understanding that financial markets transfer risks in business 
time and can, in contrast to existing literature, be used to render accurate predictions 
of how different quantities in market microstructure vary across assets with different 
levels of trading activity by only employing empirically observable variables in financial 
markets such as returns variance, price, and trade volume.  

After its publication, MMI theory has been supplemented and strengthened by 
additional papers and is today providing several empirical invariance hypotheses. One 
of them being derived from a paper published by Kyle and Obizhaeva (2017) where 
dimensional analysis, leverage neutrality, and a principle of market microstructure 
invariance is combined to ultimately introduce scaling laws, relevant for the creation of 
transaction cost functions. More specifically, Kyle and Obizhaeva (2017) derive an 
illiquidity measure, defined as the cube root of return variance to dollar volume, and 
predict that it has a proportional relationship to the relative bid-ask spread. This theory 
has received instant theoretical and practical acknowledgement in finance literature, and 
so far, it has been tested and confirmed empirically for various markets, e.g. Russian 
and US stock exchanges. To stretch and challenge the theory further, the predictions 
ought to be tested on new and unconventional types of assets and markets where there 
are reasons to believe that microstructure characteristics are unique.  

An emerging asset class, cryptocurrencies, is built on novel technology that enables 
completely new market characteristics to take form. This divergent structure has never 
been seen in public markets before, and many believe it is paving the way for the 
development of financial markets. Because this market employs continuous trading, peer-
to-peer transactions, and nearly instantaneous settlement, liquidity formation may differ 
from those of traditional asset markets (Bruneis et al., 2021). The nationless character 
of cryptocurrencies implies that they are completely decentralized from any organization, 
leading to autonomous pricing across cryptocurrency exchanges (Makarov and Schoar, 
2020). A recent debate concerning the regulation of these exchanges has accelerated as 
they are serving a similar function as established stock exchanges, but at the same time, 
lack the appropriate regulations (CNBC, 2022). 

The cryptocurrency market, which has previously been dominated by retail investors, 
has grown in terms of global importance, echoed by a pattern of increased engagement 
from institutional investors (Forbes, 2021). Cryptocurrencies are also becoming a larger 
element of many investment portfolios, many of which are being managed under rigorous 
trading philosophies, often based on High-Frequency Trading (HFT) data (Chu et al., 
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2020). Naturally, an increasing emphasis has been placed on finding an accurate and 
effective measurement for estimating liquidity. In recent research, Bruneis et. al (2021) 
investigate the efficacy of low-frequency liquidity measures to describe actual liquidity 
of two cryptocurrencies, Bitcoin and Ethereum. The Kyle and Obizhaeva (2016) 
estimator is employed in their study, and the authors claim that it outperforms other 
low-frequency measures.  

The central contribution of this paper is twofold. First, prior studies have covered 
the market microstructure invariance theory, however, to the best of our knowledge, the 
theory has only been confirmed on equities, futures contracts, and portfolio transitions. 
We extend the invariance and microstructure literature by testing if our postulated 
invariance hypothesis holds for this unconventional, yet increasingly important, asset 
class and market. Second, by stretching Bruneis et al. (2021) work, we contribute to the 
field of research that focuses on liquidity measurement in cryptocurrency markets. By 
empirically testing if the invariant relationship underpinning the used estimator actually 
holds, we potentially confirm the performance of this generalizable transaction cost 
measure for a new asset class and market structure. With this in consideration, the aim 
of this paper is to answer to the following question: 

 
Does the relative size of the bid-ask spread have a proportional relationship to the 
asset-specific illiquidity measure, defined as the cube root of the ratio of return 
variance to USD volume, for cryptocurrencies trading on the Kraken Exchange 

between 2019-01-01 and 2020-01-01? 
 

We intend to answer our research question in two distinct dimensions; Along a time 
series dimension, where data is aggregated on a daily level, and along an intraday 
dimension, where variables are aggregated at five-minute intervals across all trading 
days. For both dimensions, we follow a similar theoretical framework to Kyle and 
Obizhaeva (2017) where scaling laws and transaction cost models are derived pursuant 
to the invariance assumptions. For the latter dimension, a method for variable 
aggregation described by Anderson et. al (2018) is used, allowing us to isolate and test 
the time-of-day effect.  

We obtain tick-by-tick data recorded on a millisecond resolution, spanning from 
2019-01-01 to 2020-01-01, for 16 different cryptocurrencies trading on the Kraken 
exchange. Our main aim is to test the hypothesized relationship on a cross-sectional 
level, but we also conduct individual tests for all cryptocurrencies to supplement our 
analysis. All tests are performed using Ordinary Least Square (OLS) regressions. 

Along the time series dimension, we find that the relationship between relative bid-
ask spread and illiquidity is broadly consistent with invariance. Although we statistically 
reject our hypothesis, the result is economically close to our predicted slope of one. On 
the level of individual cryptocurrency, the invariance relationship holds statistically for 
six out of the 16 cryptocurrencies in our sample. For the cross-sectional regression along 
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an intraday dimension, we find that the relationship between relative bid-ask spread and 
illiquidity is broadly consistent with invariance, with a result economically close to the 
predicted slope of one. 

In further investigation of the intraday plot, however, we observe a puzzling result. 
A practically horizontal pattern for most cryptocurrencies is found, suggesting that the 
bid-ask spread may be mechanically constrained. To investigate this seemingly 
systematic issue, we inspect the regression of all individual cryptocurrencies separately 
and find that the invariant relationship holds statistically for zero out of the 16 
cryptocurrencies in our sample. The slopes of the best fitted lines range from -0.03 to 
0.46, with a mean of 0.08. The R2 ranges from 0.00 to 0.18, with a mean of 0.05. Kyle 
and Obizhaeva (2016) state that the empirical invariance hypothesis is not expected to 
hold exactly across all assets and time - if market frictions are high. If market makers 
are competitive, tick sizes are small, transaction fees and taxes are low, the invariance 
predictions may hold particularly well. 

Our empirical results yield two distinct insights. First, that the examined 
relationship between relative bid-ask spread and illiquidity broadly holds for this nascent 
asset class and unique market structure, which supplements the findings of Bruneis et. 
al (2021) and provide support for using the Kyle and Obizhaeva (2017) transaction cost 
model to estimate liquidity in the cryptocurrency market. Second, along the intraday 
dimension and on the level of individual cryptocurrency, we overwhelmingly reject the 
hypothesized invariant relationship, indicating the existence of substantial market 
frictions. We therefore leave a recommendation to potential investors that trading should 
be exercised with caution in this market.  
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II. Fundamental Concepts 

Cryptocurrencies 
The whitepaper "Bitcoin: A Peer-to-Peer Electronic Cash System", published by 
Nakamoto (2008), describes a digital currency system in which transactions are recorded 
on a chain of connected blocks, hence “blockchain”, and electronically validated by a 
decentralized network of users. The blockchain keeps track of all previous transactions 
since its inception, and all information on the blockchain is publicly available. Each 
block of transactions is linked to the one before it, ensuring that no one can alter data 
without it being visible to the other participants.  

These novel characteristics allow Bitcoin to be fully decentralized, escaping the need 
of centralized banks and clearing houses to control government-backed currencies. The 
code upon which this is built is open source, which means that it is free to modify and 
redistribute. As a result, multiple other cryptocurrencies, known as altcoins, have been 
created, each hosted on its own blockchain and with unique features and characteristics. 
One of them is Ethereum, the world's first programmable blockchain, which builds on 
the same fundamental technology as Bitcoin, but with the addition of smart contracts 
(Buterin, 2014). Smart contracts allow for, among other things, the creation of tokens. 
Tokens are similar to other cryptocurrencies in the sense that they are fungible 
blockchain-based assets that can be sent and received. The main difference is that tokens 
are issued on another blockchain network, instead of running their own (Cong et al. 
2019). In our analysis, we will test our postulated invariance hypothesis on both coins 
and tokens, which collectively are referred to as cryptocurrencies.  

 
Cryptocurrency Exchanges  
While cryptocurrency exchanges serve a similar function as a traditional stock exchange, 
i.e. to facilitate trades between accounts, the distinct technology underpinning this asset 
class have resulted in cryptocurrency exchanges being structured in a different way. 
Traditional exchanges execute trades through an order matching engine and they have 
no custody over the assets. Cryptocurrency exchanges, on the other hand, must custody 
their customers assets, match buyers and sellers, verify accounts, and finally process the 
trades (Forbes, 2019). The SEC has however expressed concerns that cryptocurrency 
exchanges are failing to set up sufficient barriers between different components of their 
businesses, such as custody, market-making, and providing a trading venue (Bloomberg, 
2022).  

A recent debate concerning the regulation of cryptocurrency exchanges has 
accelerated. In May 2022, the SEC declared initiatives to increase investor protection in 
this market (CNBC, 2022). Many of the major cryptocurrency exchanges are currently 
registered as Money Services Businesses (MSB), which requires them to register with the 
Financial Crimes Enforcement Network (FinCEN) in the US. It does however not imply 
that their trading activities are regulated and in reality, cryptocurrency exchanges lack 
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a high level of transparency and operational resilience, among other requirements, when 
compared to other Alternative Trading Systems (ATS) which are used in equity and 
fixed income markets (Walker, 2021). 

Bets  
When portfolio managers trade financial assets, risks are being transferred. Kyle and 
Obizhaeva (2016) describes a bet as a portfolio decision which implements a trading idea 
(a risk transfer). Practically speaking, it can be described as a decision to acquire or 
divest a long-term position of a specific size independent of other such decisions. A bet 
is seldom easily observable for researchers as it theoretically can be placed in a series of 
trades executed over several days due to its long-run and strategic characteristics, and 
therefore, individual orders are often treated as a proxy for larger bets. 

Business time 
Kyle et al. (2016) defines business time as the expected calendar time between the arrival 
of bets in the market. The business time concept can be described through a simple 
analogy where bets can be thought of as strategic moves in a game of chess. Then 
business time can then be viewed as the time in between new moves being executed. For 
actively playing parties, or as in our case for actively traded assets, moves are being 
made fast and business time passes quickly.  

Liquidity and Illiquidity  
In conventional terms, liquidity is described as the efficiency in which an asset or security 
can be converted into cash or cash equivalence without influencing its market price 
(Investopedia, 2022). Illiquidity is simply the inverse of this measurement. Kyle el al. 
(2016) introduces a new definition of illiquidity that distinguishes from the former 
definition. Their measure of illiquidity is volume weighted and is defined as the 
percentage dollar cost of executing an average bet, divided by the average dollar value 
of the bet.  

Market Microstructure Invariance 
Market microstructure studies how different trading mechanisms, for instance, tick size 
and clearing systems, influence the price formation process in financial markets. Market 
microstructure characteristics, such as bet size, bid-ask spread, and market impact cost 
vary across assets and time. The theory of market microstructure invariance 
hypothesizes that these characteristics become constant (or microstructure invariant), 
when converting calendar time into business time. Kyle and Obizhaeva (2016) formulate 
two invariance principles as empirical hypotheses, assumed to apply for all assets and 
across time, which may be used to render accurate predictions on price formation 
processes by utilizing easy-to-access data from exchanges. 
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III. Literature Review 
The theory of measuring and estimating liquidity in markets is nothing new. Various 
ways have been introduced and tested over many years of research. But it was not until 
2016, when Kyle and Obizhaeva introduced their market microstructure invariance 
hypothesis, that transaction costs could be measured through a generic model. They 
propose two invariance principles, Invariance of Bets and Invariance of Transaction 
Costs, conjectured to hold for all assets and across time. They perform empirical tests 
on portfolio transition orders, viewed as natural experiments for measuring transaction 
costs. The empirical tests support the postulated invariance hypothesis, which lay the 
foundation for further research in this exciting new field of financial study. 

One year later, Kyle and Obizhaeva (2017) follow up their previous work on market 
microstructure invariance by applying dimensional analysis to introduce scaling laws for 
different financial variables such as bid-ask spread, bet sizes, and transaction cost. 
Dimensional analysis is an analytical framework borrowed from physics, where the 
number of explanatory variables are restricted to simplify scientific inferences. The 
principle of leverage neutrality is also introduced as a financial analog to traditional 
conservation laws in physics. In isolation, dimensional analysis does not provide 
functional market microstructure predictions, as some of the quantities are not directly 
observable. To generate empirically useful predictions, assumptions implying that some 
quantities are invariant across assets and time are introduced. Kyle and Obizhaeva 
(2017) use data from the US and Russian stock market to test their hypothesis 
empirically. The introduced scaling laws were found to be consistent with the financial 
data. The derivations, methods, and quantitative models which will be of essential use 
in our thesis are all provided in this work. 

A paper published by Anderson et al. (2018) propose a new theory called Intraday 
Trading Invariance (ITI). In their study, they focus on how quantitative relationships 
between distinct market activity variables can be found on an intraday level, based on 
the invariance intuition of turning calendar time into business time. Anderson et al. 
measure and aggregate variables at one-minute frequency using tick-by-tick data, and 
we apply their proposed methodology when measuring and aggregating our variables.  

Although the microstructure invariance hypotheses should theoretically hold across 
all assets and time, the theory has this far only been tested on a few asset classes and 
markets in actuality. Bruneis et al. (2021) study the efficiency of liquidity measures on 
the two largest cryptocurrencies, Bitcoin and Ethereum. They compare high-frequency 
measures of liquidity with easy to compute low-frequency measures, and one of their key 
findings is that the Kyle and Obizhaeva (2016) estimator outperform. It is however 
important to note that the market microstructure invariance theory, which this 
estimator is based on, has only been confirmed empirically for equities, futures, and 
portfolio transitions, but not for cryptocurrencies.  
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IV. Theoretical Background 
The aim of our thesis is to test if there exists a proportional relationship between bid-
ask spread and illiquidity. In order to test this relationship empirically, we must first 
derive appropriate measures of these hypothesized microstructure characteristics. The 
dimensional analysis process used by Kyle and Obizhaeva (2017) will serve as the 
structural backbone for this section. Additionally, we introduce the Intraday Trading 
Hypothesis (ITI) by Andersen et al. (2018) as we intend to test our relationship on an 
intraday level as opposed to the daily averages examined by Kyle and Obizhaeva (2017). 
 
Dimensional analysis 
Dimensional analysis is a physics-based practice that studies the links between physical 
properties. The analysis begins by defining the base quantities (e.g. length, mass, and 
time) and units of measurement (e.g. kilometers and kilograms), which are then tracked 
as you carry out calculations or comparisons between these dimensions (Berenblatt, 
1996). Dimensional analysis has been utilized for a variety of objectives in the past. From 
inferring the size and number of molecules in a mole of gas to determining the magnitude 
of explosive energy in an atomic burst (Kyle et al., 2017). In this thesis, we employ a 
process established by Berenblatt (1996) that is similar to how dimensional analysis is 
applied to problems in physics, but for analyzing economic problems instead. In finance, 
the base dimensions are value (measured in units of currency), asset quantity (measured 
in units of shares), and time (measured in units of years, months, days, hours, minutes, 
seconds, milliseconds, or microseconds).  

When creating our variables, we use the subscripts jt to refer to cryptocurrency j at 
time t. Let Gjt denote the expected price impact cost of executing a bet of Qjt coins1. Let 
Pjt denote the cryptocurrency price, Vjt its volume in coins, σ2

jt its return variance, and 
Qjt as the number of coins traded in a bet. Kyle and Obizhaeva (2017) also introduce C 
as the unconditional expected dollar cost of executing a bet, which can be expressed as, 
 

 C :=E !GjtPjt|Qjt|" .       (1) 
 
The market microstructure hypothesis, which is explored in further detail below, allows 
C to be expressed without the subscript jt. Using dimensional analysis properly includes 
selecting the appropriate collection of variables to describe and explain the variables of 
interest, Gjt in our case. Kyle and Obizhaeva (2017) assume that the five aforementioned 
variables can be combined to a function explaining the market impact cost Gjt of 
executing a bet of Qjt coins, 

 
1 One unit of cryptocurrency is defined as a coin throughout this thesis, being analog to a share in 
traditional finance.   
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 Gjt :=g #Qjt, Pjt, Vjt,	σjt
2 , C% .      (2) 

 
Further, we provide a table below to clarify in which dimensions our main variables are 
measured in as dimensional analysis pays careful attention to maintaining consistency 
of dimensions and units of measurement. The variables are divided into two distinct 
groups, those measured in a base dimensional quantity, and those measured in 
dimensionless quantities. 

&Gjt' :=1,           &Vjt' :=coins/day, 

(Qjt)  :=coins,                                       &σjt
2 ' :=1/day, 

&Pjt' :=currency/coins,                     [C] :=currency. 

The expected price impact cost, Gjt, is measured as a fraction of the value traded, and 
can therefore be considered to be dimensionless. Using dimensional analysis in the finance 
field, we observe the three basic dimensional quantities that are time, quantity, and 
value. We can see that Pjt, Qjt, and σjt

2 span these three independent dimensions since 
Qjt has units of quantity, Qjt Pjt has units of currency, and 1/σjt

2 has units of days. In 
addition, the dimensions of these variables are complete in the sense that they can be 
combined to express the dimensions of the remaining two variables, C and Vjt. This 
allows us to construct two new dimensionless quantities, denoted Ljt and Zjt,  

 Ljt≔-m2PjtVjt

σjt
2 C

.
1
3
,       (3) 

 
 Zjt≔

PjtQjt

LjtC
	.       (4) 

 
A dimensionless scaling constant m2 is added when constructing these variables. The 
dimensionless nature of this scaling constant will be motivated in the market 
microstructure invariance section below. The exponent of one-third in the formulation 
of Ljt is selected purposefully for key reasons linked to leverage neutrality, which will be 
motivated in that section. Equation (2) can now be written as, 

 Gjt :=	g #Qjt,	Pjt,	σjt
2 ,	Ljt,	Zjt% .      (5) 
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In accordance with dimensional analysis, we can simplify this model further by dropping 
Qjt, Pjt, σjt

2, motivated by the fact that the function g(Qjt, Pjt, σjt
2, Ljt, Zjt) is dimensionless 

in itself, implying that it cannot depend on any of the dimensional quantities included 
in the model. According to Kyle and Obizhaeva (2017), the logic for this reduction is 
that physical laws do not depend on the units used to measure variables. We are now 
left with the following model,  
 
 Gjt :=	g0Ljt,	Zjt1.       (6) 
 
 
A more intuitive rationale to why we end up with this greatly simplified dimensionless 
model is that informed investors are not misled by different units of measure when 
calculating transaction costs. Then, the transaction costs should stay constant regardless 
of the currency in which the coin trades in, how it is divided, or what timescale (business 
time or calendar time) is used for measurement.  
  
Leverage neutrality  
Kyle and Obizhaeva (2017) continues by introducing leverage neutrality which is treated 
as a financial proxy for traditional conservation laws in physics. They make three 
different assumptions that support the use of leverage neutrality to simplify the 
transaction cost model further. The first assumption is that trading cash or cash-
equivalent assets incur no cost, and hence, trading a bundle of cash and risky securities 
will always result in the same economic cost regardless of the amount of cash included. 
For a numerical example, suppose that cash worth Pjt(A-1) is bundled with each share 
of stock for some number A, which will result in a new share price of PjtA. The economic 
risk transferred in a bet of Qjt remains unchanged, and hence, the number of shares Qjt 
and the trading volume Vjt remains unchanged as well. The dollar cost of executing a 
bet C is also intact since the economic risk is unaltered and trading cash incurs no costs. 
The dollar risk of each share Pjtσjt remains, but the return variance σjt

2 and standard 
deviation σjt changes to σjt

2/A2 and σjt/A, respectively. By incorporating the exponent of 
one third into the definition of Ljt, it can scale proportionally with A when leverage 
changes, just like price Pjt. As a result, Ljt is dimensionless but not leverage neutral, 
whereas Zjt is dimensionless and leverage neutral.  

The magnitude of the exponent has a straightforward notion that stems from the 
heart of invariance. The invariance hypothesis’ implications may be explained using the 
concept of trading activity, which is defined as the product of dollar volume and return 
volatility. Kyle and Obizhaeva (2016) proves that the number of bets per calendar day 
is proportional to two-thirds power of the trading activity, while the bet size is 
proportional to one-thirds power. This relationship implies that the arrival rate of bets 
must rise twice as rapidly as their size in order to maintain an invariant distribution. 
This composition may be shown with an example: assume that the arrival rate of bets 
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increases by a factor of four but volatility in calendar time remains constant. The 
volatility per business time is then reduced by a factor of two, necessitating the trade 
size to grow by a factor of two in order for the distribution to stay invariant. The 
resulting increase in volume by a factor of eight is stemming from an increase of bets by 
a factor of four (8⅔) and an increase in bet size of a factor of 2 (8⅓). Thus, if not 
including the cube root in our illiquidity measure, the ratio of return variance to dollar 
volume would increase by a factor of eight instead of doubling the percentage transaction 
cost as required.  

The percentage cost of executing a bet Gjt transforms to GjtA-1 due to the fact that 
the dollar cost of executing a bundled bet is invariant while the dollar value of the of 
the bundled bet scales proportionally with price. The transformations are summarized 
below, 

 
Qjt → Qjt ,   Ljt→LjtA, 

 

Vjt→Vjt 
 

  Zjt→Zjt, 

Pjt→PjtA, 
 

  C	→C,   

σjt
2 →	σjt

2A-2,   Gjt	→GjtA-1. 

 
The second assumption incorporates Modigliani Miller’s equivalence of capital structure 
to market microstructure in the sense that changing the firm's leverage ratio has no 
influence on the economic cost of trading the firm's securities, assuming that the firm's 
debt is riskless.  

The third assumption relates to repo-haircuts and margin requirements. Margin 
requirements state what percentage of cash or cash-equivalent assets is needed as 
collateral in order to trade on margin. A repo (repurchase agreement) is the sale of a 
security for cash in conjunction with the agreement to repurchase the security at a later 
date. If the seller defaults, the buyer assumes the collateral as repayment. The more 
volatile the collateral is, the more risk is assumed by the buyer. To compensate for this 
risk, the buyer applies a haircut to the valuation of the collateral. According to Kyle 
and Obizhaeva (2017), changes in repo-haircuts and/or margin requirements should not 
alter the economic cost of trading risky securities. 

Leverage neutrality imposes an additional restriction to the general transaction's 
cost formula, which implies that for any A, the function g should fulfill the following 
condition, 
       g0ALjt, Zjt1=A-1g0Ljt, Zjt1.    (7) 
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If we set A = Ljt
-1, the market impact cost function g can be written as, 

          g0Ljt, Zjt1=A-1g01, Zjt1.     (8) 
 

By defining the univariate function f as f(Zjt) := g(1, Zjt), a more simple market impact 
cost model now emerge,   

 Gjt=	Ljt
-1f0Zjt1.       (9) 

 
This illustrates that the market impact cost of executing a bet, Gjt that scales inversely 
with our illiquidity measure Ljt as a consequence of the proportional relationship with 
the cash included in the transaction. Moreover, Zjt is leverage neutral, which in 
combination with above results in the following simplified function,  

Gjt :=	g #Qjt,	Pjt,	Vjt,	σjt, C%=	g0Ljt,	Zjt1	=	
1

Ljt
f0Zjt1.           (10) 

 
Market Microstructure Invariance  
Dimensional analysis in itself will not suffice for testing our hypothesis empirically. To 
ultimately generate useful microstructure predictions, it is vital to understand how to 
measure the appropriate quantities. Kyle and Obizhaeva (2017) point out three of the 
quantities, return volatility σjt, trading volume Vjt, and asset price Pjt, as asset 
characteristics that are easy to observe from public data. It is less apparent, however, 
how to measure the cost of a bet C and the scaling parameter m2, and how these 
quantities vary across different assets. Kyle and Obizhaeva (2017) make the invariance 
assumption that C and m2 are constant across all assets and time. This assumption on 
invariance does not follow from dimensional analysis, nor leverage neutrality, it is solely 
motivated by Ockham’s razor: that it is the simplest possible empirical hypothesis.  

For simplicity in the exposition, the cost of a bet C and the dimensionless scaling 
parameter m2, is dropped. Further, it is assumed that function f in equation (10) takes 
the form of a power function with exponent w, f(Zjt) = λ|Zjt|w. By assuming that market 
microstructure invariance hold, Kyle and Obizhaeva (2017) derive a distinct transaction 
cost model used for the proportional bid-ask spread cost model by setting the exponent 
w to a value of zero,  

 
 Gjt= const ∙ 	 1

!!"
.                (11) 

 
The model suggests that the transaction cost Gjt is a constant fraction of the asset value 
and thus not dependent on the size of the bet Qjt. Kyle and Obizhaeva (2017) predict 
the bid-ask spreads to be inversely proportional to the illiquidity measure, and that the 
proportionality constant is invariant across all assets. As a last step before testing the 
model empirically, Kyle and Obizhaeva (2017) sets the market impact cost Gjt to the 
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relative bid-ask spread Sjt/Pjt. For clarification purposes, the relative bid-ask spread is 
the size of the bid-ask spread divided by mid-price, the latter being defined as the average 
of the current best bid and ask price. This is the relationship we will test empirically to 
answer our research question.    
 
Intraday Trading Invariance  
Andersen et al. (2018) develop an alternative hypothesis called Intraday Trading 
Invariance (ITI), which examines whether the same invariance relationships that apply 
to bets also apply to individual transactions conducted over short horizons. Many 
existing tests for market microstructure invariance are conducted over longer time 
horizons, typically monthly. Thus, the emphasis has naturally been on the variation of 
these monthly aggregates on distinct assets, and tests have relied heavily on cross-stock 
comparisons. Andersen et al. (2018), on the other hand, only test their hypothesis on 
one asset, the E-mini S&P 500 Futures, but analyze the variation in the distinct intraday 
trading cycle to determine if invariant relationships still remain. This is conceivable 
given today's nearly 24-hour-a-day global markets, where considerable variation in 
trading volatility and volume can be examined between the European, North American, 
and Asian trading hours. Conveniently, Andersen et al. (2018) confirm that the scaling 
laws introduced through dimensional analysis by Kyle and Obizhaeva (2017) are 
consistent with the intraday trading invariance relationships investigated.  

The intraday trading invariance is obtained by stipulating that the invariant 
relationships of transactions conducted over short horizons are similar to those 
discovered when the market microstructure invariance theory was first developed, when 
invariance principles were applied on large speculative bets over longer time horizons.  
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V. Hypotheses and Research Design 

Hypotheses 
In this section, we present our hypothesis concerning the invariant relationship between 
bid-ask spread and our illiquidity measure.  

 
Does the relative size of the bid-ask spread have a proportional relationship to the 
asset-specific illiquidity measure, defined as the cube root of the ratio of return 
variance to USD volume, for cryptocurrencies trading on the Kraken Exchange 

between 2019-01-01 and 2020-01-01? 
 
 ln -Sjt

Pjt
.= const + 1⋅ ln - 1

Ljt
.                (12) 

 
Where  

 ! 1
Ljt
"=	const∙ $PjtVjt

σjt
2 %

-13                 (13) 

 
And  
 
L = Liquidity  
S = Absolute bid-ask spread 
P = Mid-price 
V = Share Volume 
𝜎 = Volatility 
 
The relationship in equation (13) is statistically tested by assigning the log relative bid-
ask spread as the dependent variable and the log illiquidity measure as the independent 
variable. The log illiquidity measure's coefficient is denoted by β. The alternative 
hypothesis and null hypothesis can now be developed. 
 
H0: β = 1  
H1: β ≠ 1  
 
This hypothesis is postulated in accordance with how Kyle and Obizhaeva (2017) 
postulated their hypothesis. Under H0, the slope coefficient is equal to one, confirming 
the invariant relationship between relative bid-ask spread and illiquidity. Hence, failure 
to reject H0 implies that our postulated market microstructure invariance hypothesis 
holds for cryptocurrencies. 
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Research Design 
Our research question entails looking into and empirically testing a purported 
proportional relation between the defined illiquidity measure and the percentage bid-ask 
spread. Kyle and Obizhaeva (2017), like us, do not investigate causality between the 
two variables. As a result, the findings of this thesis cannot be used to determine whether 
the bid-ask spread causes illiquidity or vice versa.  

We collect data for 16 cryptocurrencies that were trading on Kraken from the 
beginning to the end of our chosen time interval (2019-01-01 to 2020-01-01). We perform 
both an individual statistical analysis for each cryptocurrency, and a cross sectional 
analysis as in Kyle and Obizhaeva (2017). Cross sectional analysis involves obtaining 
data from multiple participants at one point in time Allen (2017), the participants being 
different cryptocurrencies in this case. The cryptocurrencies trading on the Kraken 
exchange are not cherry-picked based on the size of their market capitalization, implying 
that our aggregation could potentially include smaller and less representative 
cryptocurrencies. However, the theory says that supposedly invariant relationships 
should hold across all assets and time, meaning that our dataset still can be used as a 
proxy to draw conclusions if market microstructure invariance relationships hold for 
cryptocurrencies.  

Our analysis will be performed along the time series dimension with daily averages 
over the course of one year. We will then supplement our empirical testing with an 
analysis performed along the intraday dimension, with variables aggregated at five-
minute intervals. When testing the invariance theory across the intraday pattern we are 
more likely to capture short-lived intraday fluctuations, and thus allow for a more 
granular check whether the invariance between the relative size of the bid-ask spread 
and illiquidity holds. When aggregating our empirical variables, we will apply the proven 
methodology that was used by Andersen et al. (2018) in which they aggregated their 
data for E-mini S&P 500 futures at one-minute intervals.  

It is worth emphasizing that a short time interval can result in several setbacks, e.g. 
statistically insufficient number of observations in each of our five-minute intervals, 
making our data potentially subject to higher standard errors of arithmetic means. 
Considering this, we perform an additional robustness check as part of the empirical 
testing of our hypothesis, as well as constructing a confidence interval centered around 
the regression slope, allowing us to confirm our postulated hypothesis if the predicted 
slope of one is contained in the confidence interval. As part of the robustness check, we 
also aggregate the data to a one-hour frequency. If the results remain quantitatively 
similar, we can present our intraday analysis with a higher degree of certainty, thus 
allowing for an as-granular-as-possible analysis without being too optimistic that there 
will be a sufficient number of observations or any other microstructure limitations 
interrupting our test.  

The hypothesis’ correlational nature makes regression analysis the obvious choice for 
establishing if there is a statistical link between the variables. The premise of 
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proportionality when multiplying the illiquidity measure with a constant provides further 
support to use the ordinary least square (OLS) regression model as the connection should 
provide a correlational, linear relationship regardless of the intercept and hence the value 
of this constant. This regression model creates a best-fit line for each time period based 
on observations, which in our instance are the relative magnitude of the bid-ask spread 
and the values of our calculated illiquidity measure.  
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VI.  Data 

Data source 
We use cryptocurrency trading data from the Kraken exchange, which has been 
purchased from CryptoTick, a well-reputed market data provider of cryptocurrency data. 
The cost of obtaining data from CryptoTick is relatively high, which is compensated for 
by backtested, bias-free, and processed data. Furthermore, CryptoTick gives us access 
to the Kraken exchange, which is one of the most reputable and established 
cryptocurrency exchanges, accounting for more than 10% of global cryptocurrency 
trading volume in 20192. According to a widely referenced article by Hougan et al. (2019), 
up to 95% of exchange-reported Bitcoin trading activity may not represent economically 
relevant transactions or may even be blatantly fake. The authors put 83 cryptocurrency 
exchanges through a series of tests. Ten exchanges passed and could be called “real-
volume exchanges”, one of them being the Kraken exchange. 

CryptoTick provides order book and trades data on intraday resolution. The order 
book data is a snapshot representing the 50 best levels of bid price, ask price, bid volume, 
and ask volume in one-minute intervals. The relevant trades data for this thesis is the 
trade volume and trade price, which is provided on a millisecond resolution. We use data 
from 2019-01-01 (BOD) to 2020-01-01 (EOD). 

 
Data cleaning process 
The exchange provides crossed books due to an internal matching engine that does not 
match orders immediately by design. This causes negative bid-ask spreads when large 
buy orders are placed and is purely a behavior that stems from how the matching engine 
is built. In an ideal world, matching orders should be executed immediately and not 
placed in the book. Therefore, we rigidly remove the order book updates where the bid-
ask spread is non-positive and thus avoid this undesired behavior. Furthermore, the 
minimum tick size appears to be binding, with more than 10% of the bid-ask spread 
equaling the minimum tick size. As a result, as part of the data cleaning process, we 
filter out these observations. We filtered out approximately 10 million negative bid-ask 
spread observations and nearly 30 million observations where the bid-ask spread matched 
the minimum tick-size, meaning that we in total left out 16% of the order book data as 
it did not display meaningful activity (see Appendix C for details). 

Several referenced articles discuss the remarkably high volatility profile of 
cryptocurrencies and even the largest cryptocurrency, Bitcoin, can even during regular 
market conditions be said to have over 2 times higher volatility than the average stock. 
For smaller cryptocurrencies, this number is even higher and it is not uncommon that 
the annualized volatility exceeds 100 percent. Even with these high oscillations in mind, 
we can still identify datasets with a few short-lived observations that deviate 

 
2 Average of 10 trading days in April, 2019. 
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significantly from the rest. We suspect them originating from individuals behaving in 
unpredictable and irrational ways, trading at low volumes, or flaws in the dataset caused 
by the exchange. As we test for invariance only when the market displays meaningful 
activity, we also remove what is below and above the 0.1th and 99.9th percentiles as a 
general outlier treatment. This filter is applied to all variables as a process of removing 
extraneous microstructure noise while retaining a high number of economically 
meaningful observations in our variables. 

 
Methodology for measuring High-Frequency Trading data 
When working with a hypothesis that requires a market microstructure scope, the 
measurement procedure will involve variables that are subject to high-frequency 
expectations or real-time interactions among rapidly fluctuating variables. Therefore, we 
must employ robust and powerful frameworks to explore the regressions. 
First, we present the measurement procedure we use for testing the invariance hypothesis 
on an intraday level. The systematic diurnal variation is captured by averaging the 
observations for each intraday interval across all trading days which formally can be 
described through the following scheme, 
 

yt	=	
1
D  ∙	6 y7dt

D

d=1

≈ c +	
1
D  ∙	6 ydt

D

d=1

,                for t=1,…, T,  

 
The intraday dimension consists of five-minute intervals, implying that t is ranging from 
1 to 288. The constructed five-minute intervals will serve as a foundation when testing 
the invariance hypothesis on a daily level. The time series variation is obtained by 
aggregating five-minute intervals each day, thus generating one data point per trading 
day. The daily time series is formally obtained by performing the following aggregation 
scheme, 
 

yd	=	
1
T  ∙	6 y7dt

T

t=1

≈ c +	
1
T  ∙	6 ydt

T

t=1

,                for d=1,…, D,  

 
Data processing 
To obtain a consistent dataset, we exclude 16 of 32 cryptocurrencies trading on the 
Kraken exchange as they either were introduced beyond the initiation of our time period, 
ceased trading, or were trading against a currency other than the US dollar. The mix 
between trading periods and trading conditions would merely confuse and result in a 
disproportionate comparison in the analysis of empirical results. 

As we aggregate our variables to five-minute intervals, it is critical to create 
consistency in the periods when constructing our main empirical variables. Therefore, 
we construct a dummy dataset that ticks one time every five minutes over the course of 
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our chosen time-interval. This is then merged with our original datasets, which leaves 
us with distinct five-minute trading periods in our data. The additional dummy rows are 
filled with duplicated data from the previous trade. We are aware that this manipulated 
dataset contains fictitious trades, and therefore, we solely use it in the construction of 
the empirical variables that are time-weighted inside five-minute intervals. For variables 
that are summed in five-minute periods and not weighted, we use the original dataset 
which contains no dummy data. 

 
Data limitations  
We collect data over a one year time span, similar to Kyle and Obizhaeva (2017). 
However, in addition to testing the invariance hypothesis on a time series dimension, we 
also perform tests on the intraday dimension with variables aggregated in five-minute 
intervals. Other studies that test the hypothesized intraday relationship often gather 
data over considerably longer time frames; for example, Anderson et al. (2018) collect 
data over a four-year period. 

Our choice of time period has been restricted by three factors. First, considering the 
research from Haugen et al. (2020) regarding fake trading volume discussed above, our 
set of exchanges to retrieve data from is considerably reduced. Second, most of the 
remaining exchanges all have very strict processes and requirements in respect to which 
cryptocurrencies are listed on the exchange, and hence, the further back we go in time, 
the fewer coins are listed. For instance, Coinbase, which is one of the most reputable 
exchanges in the industry, only supported trading of five cryptocurrencies in September 
2018. Third, due to the highly unusual trading activity caused by Covid-19, we deem 
the period from 2020 to 2022 as unsatisfactory and unrepresentative of normal market 
conditions. This leaves us with a period ranging from 2019-01-01 to 2020-01-01. 
Our conviction is that a shorter time horizon is worth as a trade off in order to get 
trading under normal market conditions. We have to reserve, however, that previous 
studies on the intraday dimension have had varying results when testing each year on a 
standalone basis, with many of the regressions statistically rejecting invariance. 
Nevertheless, it should have no effect on the empirical tests performed on the time series 
dimension.  

 
Construction of main empirical variables 
We rebase our trading data to five-minute intervals, leaving us with 288 trading periods 
per day. Our main empirical variables are order size Qjt, USD volume PjtVjt, realized 
volatility σjt, main illiquidity index 1⁄Ljt, and the percentage bid-ask spread Sjt⁄Pjt*, 
where subscript j denotes cryptocurrency j, ranging from 1 to 16, and subscript t denotes 
each five-minute interval per day, ranging from 1 to 288.3 

 
3 Asterix implies that the variable is calculated using order book data. Otherwise, it is calculated using 
trades data. 
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In the construction of our empirical variables, the time-matching of recorded 
quantities is critical. Our order book data is time stamped at irregular intervals which 
has no connection or similarity to the timing of trades in the other data set, making a 
direct matching procedure impossible. We are therefore left with two options. Either to 
average the order book data set per five-minute intervals, to then duplicate the average 
with the number of individual trades and timing from the other data set. This alternative 
gives a direct comparison between the two data sets, but it relies on a significant 
assumption when averaging the data. Instead, we construct the percentage bid-ask 
spread variable from the order book data, and the illiquidity measure from the trades 
data. The limitation of doing this is that we assume that the prevailing price is similar 
to the average of the best bid and the best ask, which intuitively makes a better estimate 
than averaging the data on five-minute periods. In this thesis, we use the best bid and 
offer when calculating the bid-ask spread. Further, it is worth emphasizing that we use 
quoted order book data instead of realized. It is not exactly similar, but it makes a 
prediction about bid-ask spreads that should still hold according to Kyle and Obizhaeva 
(2017).  

When creating our main empirical variables, we are first calculating Vjt,	𝜎jt, Pjt, Sjt, 
and Pjt* for each individual row in our datasets. The first two variables are calculated 
from the original trades data set, the third is created from the trades data set, including 
dummy trades, and the last two are calculated from the order book data set which also 
includes dummy data. Before we construct our main illiquidity index, 1⁄𝐿jt, and the 
percentage bid-ask spread, 𝑆jt⁄𝑃jt*, we aggregate the aforementioned variables into 
consecutive five-minute periods for all trading days. By doing this, we receive the same 
number of rows in all our data sets and can then construct the rest of our empirical 
variables. 

 
Robustness test  
We perform a robustness test where the intraday observations are aggregated at hourly 
intervals. By allowing for less granularity, we obtain periods consisting of more data 
points which in turn reduces microstructure noise. The constructed hourly intervals 
derive from the previously constructed five-minute periods, following the method Bruneis 
et al. (2021) use when they conduct similar liquidity tests for the cryptocurrency market. 
When forming their hourly time intervals, they require 80% of the subintervals to have 
available data, implying that if more than two five-minute periods inside one hour 
contain no data, the corresponding hour should be omitted from the analysis. We rigidly 
mimic Bruneis et al. (2021) in the aggregation of trades data, causing 67.2% of the hourly 
periods to be omitted from our one-hour robustness test (see appendix B for details). 

We discard the 80% rule when performing aggregations of the order book data as 
the original order book data is updated at frequent time stamps, leaving no sub-periods 
empty of data. Therefore, the rule would be meaningless. Instead, we form a new rule 
that omits an hourly interval if trading is absent in at least one of the hour’s five-minute 
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intervals. The attentive reader may suggest that this would leave no effect as all sub-
intervals should be filled with order book data, and therefore, we underline that we use 
an outlier cleaning technique removing 0.2% of the most extreme observations based on 
their bid-ask spread relationship. This implies that all data inside a five-minute interval 
possibly could be removed if it is within an extremely divergent trading period. By 
applying this filter, we remove 1,469 of 140,544 hourly periods. 

The fact that the two data sets have an unmatching number of remaining rows is 
not an issue as this test is run in an intraday dimension, with data for each 
cryptocurrency being averaged across 24 one-hour intervals after the date stamp is 
removed.  

We find that the intraday robustness check produces similar results to our main 
intraday test. Even though the slope of the cross sectional plot is broadly similar to our 
main result, we observe that the individual plots of each cryptocurrency is displaying a 
somewhat more vertical pattern, hinting on the insight that depending on which 
frequency our plots are presented on, mechanically constraining issues are more or less 
apparent. We will expand on this result in section VII. The specific results of the 
regression on the intraday robustness check can be observed in further detail in Appendix 
B.   
 
Summary statistics – Time series dimension 
The daily values for the activity variables are shown in figure 1 and summarized in table 
1, which were obtained by averaging the data throughout each trading day in our sample. 
Trading volume (dollar volume) and transaction intensity show a considerable degree of 
covariation, as anticipated. Return volatility is high, although it is decreasing on average 
throughout the year. Despite the fact that the volatility scheme does not follow a similar 
pattern as trading, we find that persistent volatility swings are paralleled by essentially 
comparable movements in trading, even if the latter series appears more erratic. 
 

TABLE 1 – Summary statistics for daily variables 
 Mean Median Min Max Ratio 

Q 361 621 244 964 3.9 
Dollar volume 18,802 14,412 2,984 116,198 38.9 
Volume 7,304 6,301 2,172 30,035 13.8 
N 14 12 5 55 10.4 
VAR 177% 165% 84% 398% 4.7 
1/L 3.36 3.19 2.25 7.13 3.2 
S/P 3.67 3.44 1.82 9.06 5.0 

TABLE 1. THIS SUMMARY STATISTICS ARE REPORTED FOR THE DAILY VARIABLES, FOLLOWING AVERAGES 
OF THE FOLLOWING FIVE-MINUTE OBSERVATIONS FOR EACH TRADING DAY. THE VOLATILITY MEASURE IS 
PRESENTED ON ANNUAL BASIS AND IS REPRESENTING THE REALIZED VOLATILITY. THE PERCENTAGE BID-ASK 
SPREAD AS WELL AS OUR ILLIQUIDITY MEASURE ARE PRESENTED IN 10-4. 
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FIGURE 1 – Trading patterns along the time-series dimension 

 

FIGURE 1. THESE FIGURES PLOT THE TIME SERIES AVERAGES OF THE FOLLOWING FIVE-MINUTE 
OBSERVATIONS FOR EACH TRADING DAY FOR DOLLAR VOLUME VdPd; IN 104, VOLATILITY 𝜎! (ANNUALIZED), 
NUMBER OF TRANSACTIONS Nd, TRADE SIZE Qd, OUR ILLIQUIDITY MEASURE 1/L; IN 10-3, AND PERCENTAGE BID-
ASK SPREAD S/P; IN 10-3. THE RED LINE INDICATES THE 2-WEEK MOVING AVERAGE. THE SAMPLE PERIOD 
RANGES FROM 2019-01-01 TO 2020-01-01. 
Summary statistics - Intraday dimension 
Our activity variables' intraday trends are shown in figure 2 and summarized in table 2, 
which were obtained by averaging the data for each five-minute intraday period for all 
trading days in the sample. The noticeable shadowing defines three regional trading 
zones. The green regime includes observations from 00:00 to 07:00, which corresponds to 
Asian trading hours; the blue regime includes observations from 07:00 to 16:00, which 
corresponds to European trading hours; and the red regime includes observations from 
13:30 to 20:00, which corresponds to American trading hours. 

Unlike Andersen et al. (2018), we will not devote as much attention to the different 
trading regimes and how these reflect in the intraday variation. This is motivated by 
three reasons. First, as cryptocurrency markets never open or close, the typical intraday 
patterns documented in stock markets will be difficult to observe. Second, we believe 
that the trading activity will be heavily skewed to the US trading regime because we 
gathered data from a US-based crypto exchange and only on USD trading pairs. Third, 
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it has been shown by Dyhrberg et al. (2018) that most cryptocurrency trades are still 
made by retail investors, implying that working hours should have less of an influence 
on intraday trading patterns. 

 
TABLE 2 – Summary statistics for intraday variables 
 Mean Median Min Max Ratio 

Q 679 680 534 836 1.6 
Dollar volume 32,414 31,978 21,659 56,448 2.6 
Volume 9,306 9,194 6,537 16,050 2.5 
N 20 20 15 33 2.2 
VAR 110% 109% 93% 158% 1.7 
1/L 2.24 2.23 2.01 2.65 1.3 
S/P 3.66 3.66 3.51 3.86 1.1 

TABLE 2. THIS SUMMARY STATISTICS ARE REPORTED FOR THE INTRADAY VARIABLES, FOLLOWING 
AVERAGES OF THE FOLLOWING FIVE-MINUTE OBSERVATIONS ACROSS ALL TRADING DAYS. THE VOLATILITY 
MEASURE IS PRESENTED ON ANNUAL BASIS AND IS REPRESENTING THE REALIZED VOLATILITY. THE 
PERCENTAGE BID-ASK SPREAD AS WELL AS OUR ILLIQUIDITY MEASURE ARE PRESENTED IN 10-4. 
 

FIGURE 2 – Trading patterns along the intraday dimension 
 

 
FIGURE 2. THESE FIGURES PLOT THE AVERAGES OF THE FIVE-MINUTE INTERVALS ACROSS ALL TRADING 
DAYS FOR DOLLAR VOLUME VdPd; IN 104, VOLATILITY σd (ANNUALIZED), NUMBER OF TRANSACTIONS Nd, TRADE 
SIZE Qd, OUR ILLIQUIDITY MEASURE 1/L; IN 10-3, AND PERCENTAGE BID-ASK SPREAD S/P; IN 10-3. THE RED LINE 
INDICATES THE 2-WEEK MOVING AVERAGE. THE GREEN ZONE HIGHLIGHTS ASIAN TRADING HOURS (00:00 TO 
07:00), THE BLUE ZONE HIGHLIGHTS EUROPEAN TRADING HOURS (07:00 TO 16:00), AND THE RED ZONE 
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HIGHLIGHTS AMERICAN TRADING HOURS (13:30 TO 20:00). THE SAMPLE PERIOD RANGES FROM 2019-01-01 TO 2020-
01-01. 

Considering that cryptocurrency markets lack opening and closing times, the typical u-
shaped intraday pattern documented in stock market volume by Jain and Joh (1988), 
and McInish and Wood (1985), should in theory not emerge. However, as depicted above, 
we still exhibit an interesting intraday pattern in which the number of trades and dollar 
volume is at its lowest around 08:00, corresponding to the opening times of the European 
markets. The trading activity then increases rapidly and reaches its peak around 16:00, 
two and a half hours after the US market opened and approximately the same time 
European markets close. This intraday pattern is similar to what Wang et al. (2020) 
found for Bitcoin, where volume and volatility are noticeably higher for periods that 
dovetail with the European and US exchange trading hours. The trading volume and 
number of trades decrease promptly following the 16:00 spike. A second, albeit smaller, 
spike appears around 20:00, corresponding to the closing of US markets. Interestingly, 
another spike in the trading activity appears around 00:00, as the Asian markets open. 
This despite Kraken being an US based exchange and all currency pairs being in USD.  

The intraday pattern that emerges across our main empirical variables can to some 
extent be compared to conventional intraday patterns, even though it cannot be drawn 
from similar arguments. Despite the fact that cryptocurrency exchanges do not have 
regular opening and closing hours, trading activity appears to occur during the same 
hours as traditional stock exchanges, which might be due to the fact that the average 
trader is most active when his equivalent stock market is open. This might lead to a 
correlation between cryptocurrencies' intraday variables and major international stock 
exchanges' opening hours. According to Wang et al. (2020), this relationship might 
indicate that cryptocurrencies are being used as an alternative investment by market 
participants. When trading conventional equities, investors may coordinate their trading 
operations and change their cryptocurrency positions in line with current market 
conditions.  
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VII. Empirical findings 
This section will present our empirical findings along with descriptive statistics. We will 
first present the results for the daily cross sectional regression, followed by the intraday 
cross-sectional regression with respective analysis.  
 
Daily invariance 
                         TABLE 3 -	Daily OLS regressions       CI Limits (β) 

No. obs. c β Se(c) Se(β) R2 95% LL 95% UL 
5,853 1.3161 1.1755 0.033 0.005 0.900 1.165 1.186 

TABLE 3. THIS TABLE DISPLAYS THE OLS REGRESSION OF OUR CROSS SECTIONAL TEST ALONG THE TIME 
SERIES DIMENSION. 16 CRYPTOCURRENCIES ARE INCLUDED IN THE REGRESSION, CORRESPONDING TO 5,853 
OBSERVATIONS WHICH ARE FOUND INSIDE OUR TIME PERIOD BETWEEN 2019-01-01 AND 2020-01-01. THE 
CONSTANT, C, AND SLOPE, β,	IS FOLLOWED BY THE STANDARD ERROR OF EACH. R2 AND A 95% CONFIDENCE 
INTERVAL ARE REPORTED AS AN INDICATION OF ROBUSTNESS OF THE EMPIRICAL RESULTS.  

 
Table 3 presents results from the OLS regression for the cross sectional analysis along 
the time series dimension. Figure 3 plots the log percentage bid-ask spread, ln(Sjt/Pjt), 
against log illiquidity, ln(1/Ljt), for all cryptocurrencies. Each point represents one daily 
observation, with different colors representing different cryptocurrencies. The predicted 
and empirical slopes are displayed in the figure by a dashed and solid line, respectively. 
The empirical slope is broadly consistent with our predicted slope of one, displayed by 
our fitted line which is represented by the function; ln(Sjt/Pjt) = 1.316 + 1.176 ∙ ln(1/Ljt). 
The confidence interval spans from 1.166 to 1.186, on a 95% confidence level, and the 
R2 is 0.900. As a result, we statistically reject the null hypothesis, that the slope is equal 
to one. The slope of 1.176 is however economically close to the one predicted.  
 

FIGURE 3 - Cross sectional plot along the time series dimension 
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FIGURE 3. THIS FIGURE PLOTS THE LOG PERCENTAGE BID-ASK SPREAD AGAINST THE LOG ILLIQUIDITY OF 
THE FOLLOWING FIVE-MINUTE OBSERVATION FOR EACH DAY. ALL OF THE 16 CRYPTOCURRENCIES IS 
REPRESENTED BY AN INDIVIDUAL COLOR, AND EACH POINT REPRESENTS ONE DAY BETWEEN 2019-01-01 AND 
2020-01-01. THE DASHED LINE IS ADDED AS A BENCHMARK TO REPRESENT THE PREDICTED REGRESSION SLOPE 
OF ONE ACCORDING TO OUR HYPOTHESIS. THE RED LINE IS THE BEST FITTED LINE FOR OUR SAMPLE AND IS 
GIVEN BY THE FOLLOWING EQUATION: LN(S/P) = 1.316 + 1.176 ∙ LN(1/L).  
 
As depicted above, the observations cluster around the benchmark line. In terms of R2, 
we observe a higher number compared to those found by Kyle and Obizhaeva (2017), of 
0.450 and 0.876 for US and Russian stocks, respectively, indicating that, even though 
the invariant relationship was statistically confirmed for both US and Russian stocks, 
the almost invariant relationship can be better explained in our sample. 

The fitted lines of individual cryptocurrencies have varying slopes, ranging from 0.1 
to 1.4, with a mean of 0.73. We statistically confirm the invariant relationship for six 
out of the 16 cryptocurrencies, on a 95% confidence interval. Moreover, we obtain slopes 
that are economically close to one for two more cryptocurrencies. For summary statistics 
on all individual cryptocurrency regressions, see Appendix A.   

 
Intraday Invariance  

                    TABLE 4 - Intraday OLS regressions       CI Limits (β) 

No. obs. c β Se(c) Se(β) R2 95% LL 95% UL 
4,608 0.7196 1.1216 0.040 0.007 0.865 1.109 1.134 

TABLE 4. THIS TABLE DISPLAYS THE OLS REGRESSION OF OUR CROSS SECTIONAL TEST ALONG THE 
INTRADAY DIMENSION. 16 CRYPTOCURRENCIES ARE INCLUDED IN THE REGRESSION, CORRESPONDING TO 4,608 
OBSERVATIONS WHICH ARE FOUND INSIDE OUR TIME PERIOD BETWEEN 2019-01-01 AND 2020-01-01. THE 
CONSTANT, C, AND SLOPE, β,	IS FOLLOWED BY THE STANDARD ERROR OF EACH. R2 AND A 95% CONFIDENCE 
INTERVAL ARE REPORTED AS AN INDICATION OF ROBUSTNESS OF THE EMPIRICAL RESULTS.  

 
Table 4 presents results from the OLS regression for the cross sectional analysis along 
the intraday dimension. Figure 4 plots the log percentage bid-ask spread, ln(Sjt/Pjt), 
against log illiquidity, ln(1/Ljt), for all cryptocurrencies. Each point represents one five-
minute interval, with different colors representing different cryptocurrencies. The 
predicted and empirical slopes are displayed in the figure by a dashed and solid line, 
respectively. Similar to the daily aggregation, the empirical slope is also broadly 
consistent with our predicted slope of one, displayed by our fitted line which is 
represented by the function; ln(Sjt/Pjt) = 0.720 + 1.122 ∙ ln(1/Ljt). The confidence 
interval spans from 1.109 to 1.134, on a 95% confidence level, and the R2 is 0.865. As a 
result, the null hypothesis that the slope is one is statistically rejected. However, the 
slope of 1.122 is economically close to the one predicted. 
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FIGURE 4 - Cross sectional plot along the intraday dimension 

    
 
FIGURE 4. THIS FIGURE PLOTS THE LOG PERCENTAGE BID-ASK SPREAD AGAINST THE LOG ILLIQUIDITY OF 
THE AVERAGES OF FIVE-MINUTE OBSERVATIONS ACROSS ALL TRADING DAYS. ALL OF THE 16 
CRYPTOCURRENCIES IS REPRESENTED BY AN INDIVIDUAL COLOR, AND 288 POINTS FOR ALL FIVE-MINUTE 
INTERVALS ACROSS THE DAY ARE PLOTTED. THE DASHED LINE IS ADDED AS A BENCHMARK TO REPRESENT 
THE PREDICTED REGRESSION SLOPE OF ONE ACCORDING TO OUR HYPOTHESIS. THE RED LINE IS THE BEST 
FITTED LINE FOR OUR SAMPLE AND IS GIVEN BY THE FOLLOWING EQUATION: LN(S/P) = 0.720 + 1.122 ∙ LN(1/L). 
THE SAMPLE PERIOD RANGES BETWEEN 2019-01-01 AND 2020-01-01. 

 
Interestingly, even though the cross sectional intraday sample lines up well in accordance 
with invariance, we observe puzzling results at a level of individual cryptocurrency. The 
slopes of the fitted lines are significantly lower compared to the cross sectional sample, 
ranging between -0.03 to 0.46. There seems to be a systematic issue binding the bid-ask 
spread in a mechanical way, especially pronounced for more illiquid cryptocurrencies. 
The R2 for the individual regressions is zero for five of the 16 cryptocurrencies, with the 
mean being 0.05.  
 
Discussion of empirical findings 
If market frictions are large, empirical invariance is unlikely to hold across all assets and 
time, according to Kyle and Obizhaeva (2016). There are several factors that can 
influence how well invariance holds, including tick size, fees, taxes, market maker 
competitiveness, regulation, and clearing systems. Table 5 shows that tick-sizes 
expressed in index points and notional values are reasonably normal for our sample.  
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TABLE 5 - Extensive tick-size statistics 
 Minimum tick-size Notional tick-size  
ADA                    0.01	 0.18  
BCH                    1,000 3.85  
BTC                    1,000 0.14  
DASH                    10 0.10  
ETC                    10 1.78  
ETH                    100 0.55  
EOS                    1 0.25  
GNO                    100 6.34  
LTC                    100 1.45  
QTUM                    0.1 0.04  
REP                    10 0.75  
XLM                    0.01 0.11  
XMR                    100 1.51  
XRP                    0.1 0.33  
XTZ                    1 1.00  
ZEC                    100 1.78  
 

TABLE 5. THIS TABLE DISPLAYS EXTENSIVE TICK-SIZE STATISTICS IN FORM OF MINIMUM AND NOTIONAL 
TICK-SIZES ACROSS ALL CURRENCIES. THE NOTIONAL TICK-SIZE IS CALCULATED BY DIVIDING THE MINIMUM 
TICK-SIZE WITH THE CURRENCY’S AVERAGE TRADING PRICE ACROSS THE YEAR AND IS EXPRESSED IN BASIS 
POINTS. MINIMUM TICK IS OBTAINED DIRECTLY FROM THE EXCHANGE AND IS PRESENTED IN 10-4.  
 
Anderson et al. (2018) find that the average bid-ask spread in their sample barely exceeds 
the minimum value, indicating that their tick size is binding. Despite this, they obtain 
almost perfect slopes in accordance with invariance, and therefore, we do not believe our 
striking results are attributable to the tick size. Another factor that could link to our 
puzzling results are the fees on the exchange. Kraken uses a tiered fee schedule, ranging 
from 0.26% to 0%, which results in no noteworthy difference to traditional stock 
exchanges. From a tax perspective, there are no dissimilarities to stocks either, as the 
IRS treats cryptocurrencies as property. Further, there are no reasons to believe that 
the competitiveness of market makers should be lower compared to traditional markets.  

This leaves two plausible factors to explain our surprising results, clearing 
mechanisms and regulation. As previously mentioned, we notice a large amount of 
negative bid-ask spread observations. This is caused by Krakens internal matching 
engine, which causes the book to be crossed, meaning that the orders are not 
instantaneously matched. This is far from ideal, and it leads us to believe that Kraken's 
flawed matching engine is affecting our intraday plots in a highly mechanical manner. 
Additionally, the debate of regulation has heated up recently. Traditional stock 
exchanges being regulated as Alternative Trading Systems (ATS) requires them to meet 
stringent transparency, operational resilience, and trading dependability standards, while 
cryptocurrency exchanges, such as Kraken, are evade these requirements. As a matter 
of fact, Kraken’s poor matching engine might stem from these insufficient regulations. 
But analyzing this further takes us beyond this thesis scope. 
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VIII. Concluding remarks 
 

In this paper we test if there exists a proportional relationship between the relative bid-
ask spread and a specific illiquidity measure, predicated on assumptions of market 
microstructure invariance. This relationship is tested on tick-by-tick data from 16 
cryptocurrencies trading on the Kraken exchange during the period from 2019-01-01 to 
2020-01-01. We do this in large part by replicating the Kyle and Obizhaeva (2017) 
process for applying dimensional analysis to finance, with the addition of testing the 
relationship along an intraday dimension as well, inspired by Andersen et al. (2018).  

We discover that the proportional relationship between relative bid-ask spread and 
illiquidity for cryptocurrencies is economically close to the predicted value along both 
the time series and intraday dimensions. We validate the invariant relationship for six 
out of 16 cryptocurrencies along the time series dimension at the level of individual 
cryptocurrency. Along the intraday dimension for individual cryptocurrencies, we 
strongly reject the invariant relationship. This puzzling result is moderately investigated 
and discussed, with the most probable explanation being Krakens flawed order matching 
engine, which in turn might be linked to careless regulation of cryptocurrency exchanges. 
We leave for further research to examine if this is an isolated event for the Kraken 
exchange over this specific timespan, or a more systemic phenomenon present in the 
broader cryptocurrency market. 

The illiquidity measure we test is composed of variables that are directly observed 
or readily estimated from public data on securities transactions. Its supposedly universal 
applicability to all assets and time would intuitively be of high value to risk managers 
and investors, who otherwise have to employ different transaction cost models depending 
on which market is being traded. Despite being relatively nascent, the cryptocurrency 
market has already reached a combined market capitalization of two trillion dollars, 
which corresponds to roughly 2% of the global equities market. Our paper contributes 
not only to the invariance literature by testing the hypothesized relationship on an 
unconventional market structure, but also, provides clarity for risk managers and traders 
seeking reliable transaction cost models applicable for this specific, albeit increasingly 
influential, asset class. Furthermore, the discovered problem with the bid-ask spread 
data can be of useful insight for financial authorities and provide arguments for imposing 
more stringent regulations for cryptocurrency exchanges. 
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Appendix A 

FIGURE A1 - Daily plots for individual cryptocurrencies 

 

FIGURE A1. DEPICTED ABOVE IS THE LOG PERCENTAGE BID-ASK SPREAD AGAINST THE LOG ILLIQUIDITY 
FOR EACH DAY AND CRYPTOCURRENCY. EACH POINT IS REPRESENTING A SINGLE DAY, RANGING BETWEEN 
2019-01-01 AND 2020-01-01. THE RED LINES REPRESENTS THE BEST FITTED SLOPE OF EACH REGRESSION. 

              TABLE A1 - Individual OLS regressions on a daily level CI Limits (β) 
 No. obs. c β Se(c) Se(β) R2 95% LL 95% UL 
ADA 365 -1.83 0.67 0.30 0.05 0.34 0.58 0.77 
BCH 366 -0.22 0.93 0.31 0.05 0.54 0.85 1.02 
BTC 366 0.45 1.10 0.60 0.07 0.37 0.93 1.21 
DASH 366 -3.85 0.28 0.34 0.06 0.06 0.17 0.39 
ETC 366 -1.14 0.79 0.38 0.07 0.29 0.66 0.92 
ETH 366 -4.53 0.41 0.58 0.10 0.07 0.26 0.56 
EOS 366 -3.82 0.39 0.34 0.05 0.14 0.30 0.50 
GNO 366 0.27 0.96 0.22 0.05 0.56 0.87 1.04 
LTC 366 -4.88 0.28 0.38 0.06 0.07 0.17 0.39 
QTUM 366 1.04 1.09 0.34 0.06 0.49 0.97 1.20 
REP 366 0.27 0.99 0.41 0.08 0.33 0.84 1.14 
XLM 366 -0.80 0.84 0.27 0.04 0.51 0.76 0.93 
XMR 366 -3.50 0.42 0.35 0.06 0.14 0.31 0.53 
XRP 365 -0.15 0.99 0.80 0.10 0.20 0.79 1.20 
XTZ 366 2.80 1.40 0.24 0.04 0.77 1.32 1.48 
ZEC 366 -5.28 0.10 0.24 0.04 0.02 0.02 0.19 
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TABLE A1. THIS TABLE DISPLAY A STATISTICAL OVERVIEW OVER THE INDIVIDUAL REGRESSIONS ALONG 
THE TIME SERIES DIMENSION. THE CONSTANT, C, AND SLOPE, β,	IS FOLLOWED BY THE STANDARD ERROR OF 
EACH. R2 AND A 95% CONFIDENCE INTERVAL ARE REPORTED AS AN INDICATION OF ROBUSTNESS OF THE 
EMPIRICAL RESULTS.  

FIGURE A2 - Intraday plots for individual cryptocurrencies 

 

FIGURE A2. DEPICTED ABOVE IS THE LOG PERCENTAGE BID-ASK SPREAD AGAINST THE LOG ILLIQUIDITY 
FOR EACH CRYPTOCURRENCY WHICH IS OBTAINED BY AVERAGING THE FIVE-MINUTE OBSERVATIONS ACROSS 
ALL TRADING DAYS BETWEEN 2019-01-01 AND 2020-01-01 ON AN INDIVIDUAL LEVEL. 288 POINTS FOR ALL FIVE-
MINUTE INTERVALS ACROSS THE DAY ARE PLOTTED. THE RED LINES REPRESENTS THE BEST FITTED SLOPE 
OF EACH REGRESSION. 

TABLE A2 - Individual OLS regressions on a intraday level 

       CI Limits (β) 

 No. obs. c β Se(c) Se(β) R2 95% LL 95% UL 
ADA 288 -6.11 -0.03 0.06 0.01 0.02 -0.05 0.00 
BCH 288 -6.60 -0.00 0.06 0.01 0.00 -0.02 0.02 
BTC 288 -4,38 0.46 0.57 0.07 0.13 0.33 0.60 
DASH 288 -5.18 0.06 0.06 0.01 0.10 0.04 0.08 
ETC 288 -5.43 0.05 0.11 0.02 0.02 0.01 0.09 
ETH 288 -7.84 -0.03 0.48 0.07 0.00 -0.16 0.10 
EOS 288 -4.87 0.24 0.19 0.03 0.18 0.18 0.30 
GNO 288 -4.14 0.00 0.06 0.01 0.00 -0.02 0.03 
LTC 288 -6.70 0.02 0.18 0.03 0.00 -0.04 0.07 
QTUM 288 -4.40 0.11 0.09 0.02 0.14 0.08 0.14 
REP 288 -4.47 0.10 0.11 0.02 0.07 0.06 0.14 
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XLM 288 -5.78 0.05 0.13 0.02 0.02 0.01 0.09 
XMR 288 -6.17 0.01 0.09 0.01 0.00 -0.02 0.03 
XRP 288 -6.57 0.10 0.27 0.04 0.02 0.03 0.18 
XTZ 288 -4.10 0.16 0.13 0.02 0.14 0.12 0.21 
ZEC 288 -5.72 0.03 0.07 0.01 0.02 0.01 0.06 

TABLE A2. THIS TABLE DISPLAY A STATISTICAL OVERVIEW OVER THE INDIVIDUAL REGRESSIONS ALONG 
THE INTRADAY DIMENSION. THE CONSTANT, C, AND SLOPE, β,	IS FOLLOWED BY THE STANDARD ERROR OF 
EACH. R2 AND A 95% CONFIDENCE INTERVAL ARE REPORTED AS AN INDICATION OF ROBUSTNESS OF THE 
EMPIRICAL RESULTS. 
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Appendix B 

TABLE B1 - Outliers for robustness check (trades data) 

 Initial observations Outliers detected and 
removed 

% removed 

ADA 8,784 7,449 84.8% 

BCH 8,784 3,063 34.9% 

BTC 8,784 59 0.7% 

DASH 8,784 8,400 95.6% 

ETC 8,783 7,862 89.5% 

ETH 8,784 272 3.1% 

EOS 8,784 7,536 85.8% 

GNO 8,782 8,724 99.3% 

LTC 8,784 4,133 47.1% 

QTUM 8,784 5,467 62.2% 

REP 8,783 8,577 97.7% 

XLM 8,781 7,190 81.9% 

XMR 8,784 7,939 90.4% 

XRP 8,784 2,236 25.5% 

XTZ 8,784 7,067 80.5% 

ZEC 8,784 8,427 96.0% 

Total 140,537 94,401 67.2% 

TABLE B1. THIS TABLE REPORTS THE OUTLIERS REMOVED FROM THE TRADES DATA FOR THE ONE HOUR 
ROBUSTNESS CHECK. A ONE HOUR PERIOD IS OMITTED IF IT IS MISSING TWO OR MORE FIVE-MINUTE PERIODS 
OF TRADING ACTIVITY WITHIN IT. FOR THE TWO LARGEST CRYPTOCURRENCIES, BITCOIN AND ETHEREUM, 
TRADING IS MORE FREQUENT AND THEREFORE ONLY 0.7 AND 3.1% FIVE-MINUTE INTERVALS ARE OMITTED, 
RESPECTIVELY, AND FOR THE SMALLER CRYPTOCURRENCIES, WE DELETE OVER 90% OF THE OBSERVATIONS. 

TABLE B2 - Outliers for robustness check (order book data) 

 Initial observations Outliers detected and 
removed 

% removed 

ADA 8,784 110 1.3% 

BCH 8,784 102 1.2% 

BTC 8,784 147 1.7% 

DASH 8,784 91 1.0% 

ETC 8,784 79 0.9% 

ETH 8,784 102 1.2% 
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EOS 8,784 113 1.3% 

GNO 8,784 94 1.1% 

LTC 8,784 97 1.1% 

QTUM 8,784 68 0.8% 

REP 8,784 69 0.8% 

XLM 8,784 69 0.8% 

XMR 8,784 86 1.0% 

XRP 8,784 79 0.9% 

XTZ 8,784 76 0.9% 

ZEC 8,784 87 1.0% 

Total 140,544 1,469 1.0% 

TABLE B2. THIS TABLE REPORTS THE OUTLIERS REMOVED FROM THE ORDER BOOK DATA FOR THE ONE 
HOUR ROBUSTNESS CHECK. A ONE HOUR PERIOD IS OMITTED IF IT IS MISSING ONE OR MORE FIVE-MINUTE 
PERIODS OF ORDER BOOK UPDATES WITHIN IT. AS WE HAVE REMOVED THE MOST EXTREME DAYS FROM OUR 
SAMPLE, THIS RULE IS REMOVING THE MOST EXTREME INTERVALS FROM OUR ROBUSTNESS TEST. 

FIGURE B1 - Cross sectional plot for the robustness test 

 
FIGURE B1. THIS FIGURE IS THE RESULT OF OUR ONE HOUR ROBUSTNESS TEST AND PLOTS THE LOG 
PERCENTAGE BID-ASK SPREAD AGAINST THE LOG ILLIQUIDITY OF THE AVERAGES OF ONE-HOUR 
OBSERVATIONS ACROSS ALL TRADING DAYS. ALL OF THE 16 CRYPTOCURRENCIES IS REPRESENTED BY AN 
INDIVIDUAL COLOR, AND 24 POINTS FOR ALL ONE HOUR INTERVALS ACROSS THE DAY ARE PLOTTED. THE 
DASHED LINE IS ADDED AS A BENCHMARK TO REPRESENT THE PREDICTED REGRESSION SLOPE OF ONE 
ACCORDING TO OUR HYPOTHESIS. THE RED LINE IS THE BEST FITTED LINE FOR OUR SAMPLE AND IS GIVEN 
BY THE FOLLOWING EQUATION: LN(S/P) = 4.5188 + 1.2660 ∙ LN(1/L). THE OLS REGRESSION OF THIS SAMPLE GIVES 
AN R2 OF 0.936. THE SAMPLE PERIOD RANGES BETWEEN 2019-01-01 AND 2020-01-01. 
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Appendix C 

TABLE C1 - Outliers removal (based on tick-size) 

 Negative Equal to minimum 
tick-size 

Total observations % removed 

ADA 643,652 193,650 14,799,986 6% 
BCH 690,282 7,803,473 16,631,565 51% 
BTC 715,553 6,721,055 20,052,584 37% 
DASH 664,229 123,322 15,966,830 5% 
ETC 622,077 436,885 14,555,249 7% 
ETH 705,155 5,502,487 18,512,424 34% 
EOS 588,878 360,534 15,243,666 6% 
GNO 191,637 83,314 4,019,522 7% 
LTC 626,413 2,733,812 15,874,329 21% 
QTUM 544,717 68,544 12,828,176 5% 
REP 495,109 207,512 12,262,771 6% 
XLM 691,596 381,691 15,144,778 7% 
XMR 536,128 566,950 12,545,375 9% 
XRP 835,929 2,906,114 17,612,230 21% 
XTZ 684,041 648,697 16,799,648 8% 
ZEC 450,582 218,622 12,162,470 6% 
Total 9,685,978 28,956,662 235,011,603 16% 

TABLE C1. THIS TABLE REPORTS THE OBSERVATIONS REMOVED FROM THE ORDER BOOK DATA WHERE 
THE TICK-SIZE EITHER WAS NEGATIVE OR EQUAL TO THE MINIMUM OF RESPECTIVE CURRENCY. EVEN 
THOUGH IT IS NOT FORMALLY INVESTIGATED, WE OBSERVE A PATTERN OF % REMOVED AND TRADING 
ACTIVITY. THIS MIGHT BE EXPLAINED BY THE LIMITATIONS OF KRAKEN’S MATCHING ENGINE’S WHICH IS 
MORE APPARENT WHEN LARGE ORDERS ARE PLACED. 
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Appendix D 
In this part of the appendix, we present the construction of our empirical variables more 
thoroughly. We ignore the subscript j below for simplification purposes. We distinguish 
the timing of observations by defining tn as the timestamp of an individual trade, where 
n ranges from 1 to Ni inside the five-minute interval i. 

Part I – Variables constructed using trades data 

Let Qtn
 denote the number of coins traded at time tn, 

then, let Qi = 1
Ni
∑ Qtn

Ni
n=1  denote the average trade size in the five-minute interval i, and  

Vi = ∑ Qtn
Ni
n=1  denote the total trade volume inside the five-minute interval i. 

Further, let Pi = ∑ Ptn ∙ (tn+1- tn)

T'-T
Ni
n=1  denote the volume-weighted price for the five-minute 

interval i. where t0 = T is the first trade, and TNi = T’ is the last trade, inside the 
interval i. Ptn is given by the execution price of the corresponding trade at time tn. 

Let σi
2
	 = ∑ 0ln(Ptn1

Ni
n=2 -ln(Ptn-1))

2
 denote realized variance over interval i. 

Then let 1
Li
 = -PiVi

σi
2
 
.

-1
3
 denote our defined illiquidity measure.  

Part II – Variables constructed using order book data 

Let Ptn = #Atn+ Btn
2

% denote the quoted mid-price at time tn, 

where Atn and Btn is representing the ask and bid, respectively, and is given by the top-
of-book at time tn.  

Let 𝑆&#  = Atn  - Btn denote the best bid-ask spread at time tn, 

then, we can compute the percentage bid-ask variable, #Si
Pi
% = ∑

'
Stn
Ptn

( ∙	(tn+1-	tn)

T'-T
Ni
n=1  

where t0 = T is the first trade, and 𝑇)$ = T’ is the last trade, inside the interval i. 

 

 
 


