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Hai visto? Questa è la mia tesi di laurea. Molto di quello che c’è qui dentro
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1 Introduction

Nikola Tesla’s alternating current, Guglielmo Marconi’s Radio device, the wheel.
These inventions are arguably among the most important in the history of hu-
mankind. They provide a basis for most of today’s technology. The knowledge
spread related to these inventions triggered a chain reaction where every new
finding was based upon the previous one, leading to modern cars, computers,
smartphones, and to the popular tv show “Wheel of fortune” (for which all of
the three technologies mentioned in the beginning are necessary). Neverthe-
less, not every piece of knowledge is forever. What happened to Greek Fire and
Damascus Steel? Why is no one able to fabricate a Stradivari violin today? It
is clear that not all knowledge spreads in the same way, spreads at the same
speed, or even spreads at all. Throughout this paper, we will use game the-
ory and machine learning to model how knowledge spreads in social networks,
finding equilibria and recurring patterns.

The literature recognizes the value of knowledge creation through the process
of knowledge sharing within organizations and economies. Knowledge, consid-
ered as technological growth or human capital, is the driving input for economic
growth (Romer 1993). But, as Friedrich Hayek (1945) points out, knowledge
and its benefits can be maximized only by bringing together unique pieces
that are spread across a wide distribution. On the other hand, Stauffer in
his 1999 paper “Why people hoard knowledge” discusses knowledge hoarding
as an innate need that arises out of the relative power that knowledge pro-
vides. Keeping this dichotomy in mind, knowledge sharing becomes a strategic
choice. Many variables, like knowledge’s nature and social ties, have been iden-
tified as affecting knowledge sharing by individuals (Cummings, 2003). Social
network analysis offers an effective technique for understanding information-
sharing networks (Haythornthwaite, 1996). More precisely, this technique, as
well as strategic decision-making, will be considered and studied through our
game theoretical model. We aim to bring together into one model separate
studied aspects of knowledge sharing, such as relative knowledge distribution,
knowledge-sharing networks, and the strategic choice of players to participate
in this knowledge-sharing process.

The paper will introduce a new game-theoretical model, the Know-It-All (KIA)
game. Consider the following set-up: players are connected to each other in
a given network. Each player possesses a share of knowledge and decides to
either share this knowledge with one of their connections or not. There is no
direct cost of sharing this knowledge and players’ knowledge increases when
their neighbours decide to share knowledge with them. The question we seek
to answer with this model is simple: “How is knowledge shared within the
given network?”. More generally, our Know-It-All game attempts to mimic
how players share knowledge in a network where other players’ actions define
their payoff. The process that we use to determine this payoff is inspired by
the PageRank mechanism.
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To observe the strategies adopted by players in large and more complex net-
works, we use a machine learning algorithm that replicates the model. By
showing the algorithm’s fitness to the model for 3-player networks, we illus-
trate the converging strategies in more extensive and complex networks. These
converging strategies point towards the existence of stable knowledge-sharing
loops. We find that the size and the stability of these loops are positively
related to the complexity and the transmissibility of the shared knowledge.

We start with the literature review, followed by an informal explanation of
the functioning of the model. We will then discuss formal definitions, player
strategies, and expected equilibria. Then, we present the simulation and its
results. In the final sections, we discuss limitations and possible extensions of
the model.

6



Nobody Takes It All

2 Literature Review

2.1 PageRank Literature

In order to understand how knowledge-sharing networks are formed, we took
inspiration from the PageRank mechanism, the PageRank game and the buck-
holding game. Therefore, we start by explaining the PageRank mechanism,
its purpose, and its applications. We then discuss the papers highlighting the
strategic decision-making aspect of this mechanism through a game-theoretic
approach.

2.1.1 The PageRank Mechanism

In the 1998 paper “The Anatomy of a Large-Scale Hypertextual Web Search
Engine”, Sergey Brin and Lawrence Page presented Google and how this large-
scale search engine will use hyperlinks to bring order to the numerous webpages
available on the world wide web. The idea was to attach dynamic hierarchies
to the websites based on the number and quality of links attached to them.
The paper provides details on the PageRank algorithm to create this index
and provides an objective value. This value is allotted such that a page can
have a high PageRank under two conditions:

• Many pages point towards it through a hyperlink

• A page with high PageRank points towards this page

More understandably, this method provided a relative value – PageRank – to
each page available on the internet based on its positioning in the network.
This value is not only impacted by connections attached to the page but also
by the value of its connections.

Looking at how this value is allocated to each web page, it can be understood
that PageRank can not be ascertained through a single interaction, since the
PageRank of each page is interdependent. However, it is necessary to converge
to a stable value for the web pages to be indexed for Google search. To solve
this issue, the PageRank algorithm uses iterative calculations. The idea is to
count the value of in-links pointing to the webpage over several iterations, such
that it eventually stabilizes to one value, which can be called its final PageRank.

This value, provided to each node of the web in the network, could be considered
their “social value” (Pasquinelli, 2009). Interestingly, this was inspired by the
academic citation system, which in itself is a system built to map knowledge
creation.
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2.1.2 The PageRank Game

Hopcroft and Sheldon (2008) describe the PageRank mechanism as a “link-
based reputation measure” which can be dealt with as a network formation
game, where players act strategically to increase their PageRank. The paper
treats this strategic behaviour as a manipulation of the mechanism and at-
tempts to understand its consequences. The paper finds equilibrium strategies
in network reputation games where players maximize their reputation. In the
model played on a directed graph, the players have no control over the in-
links that they receive and the out-links are placed randomly. The important
conclusions from the paper that are relevant to the thesis are as follows:

• The best response strategy for the player is to point towards the connec-
tions that are pointing towards the player

• The best response strategy set for players receiving no in-link is an empty
set

2.1.3 The Buck-holding Game

Another game that has inspired our model looks at the PageRank game from
an alternative perspective.

In the buck-holding game, described by Cominetti et al (2022), the players are
passing a “buck” to other players in a network. The buck is provided randomly
to a player at the beginning of the game, then it is passed around by the players
aiming to maximize the probability of receiving it back. The players’ strategy
set is the set of players connected to them in the network. The paper describes
the model theoretically with deterministic strategies, where single players play
one strategy throughout the game, or in a stochastic manner, where the players
assign probabilities to their strategies. The authors show that the game has
multiple nash equilibria.

8
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2.2 Knowledge Literature

Our question heavily depends on understanding knowledge, its properties and
its definitions. This part of the literature review explores how knowledge is
shared, how sharing impacts its value, and what happens to the resulting net-
work.

2.2.1 Definition of Knowledge

The definition of knowledge has varied across disciplines and time. In eco-
nomics, knowledge has often been interchangeably used with terms like tech-
nology and information.

In his book “The Economics of Knowledge”, Dominique Foray (2004) discusses
how knowledge and information differ from other tangible goods and require
special attention regarding how their creation and distribution can be opti-
mized. As the book points out, knowledge is a partially non-excludable and
non-rivalrous good with a cumulative growth rate. Many papers like Lin (2007),
Ohlsson (2011), and Foray (2004) have highlighted knowledge as an output and
an essential input of itself. More precisely, knowledge is critical for generating
and analyzing new information and innovation, leading to the creation of more
knowledge. Furthermore, the quality of knowledge produced in this process also
depends on the novelty of the combination and transfer of previous knowledge
(Galunic & Rodan, 1998).

Antonelli (2005b, 2006) elaborates on how knowledge can be classified based on
four major properties - level of tacitness, indivisibility, complementarity, and
appropriability. A high level of tacitness implies increased difficulty in commu-
nicating knowledge with another agent. Knowledge indivisibility refers to how
information can be divided and distributed among the agents. Complemen-
tarity highlights how knowledge differs from the existing one. Based on these
features, how the knowledge is appropriated depends on the strategic conduct
of the agents.

Due to the role of context and specialization, knowledge is often fragmented
(Machlup, 1978). Therefore, gathering this dispersed knowledge becomes a
fundamental economic problem, highlighting issues associated with centrality
(Hayek, 1945). This centrality of knowledge distribution also emphasises its
localized nature (Atkinson & Stiglitz, 1969).
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2.2.2 Knowledge Sharing and Game Theory

Decisions and choices regarding how to share knowledge can be posed as a
dilemma. Given that knowledge is a highly valued good, sharing it involves
partially giving up the right to earn its benefits exclusively. Hence, it can be
studied as a conflict between individual and group interests (Kimmerle et al.,
2011). Sharing of knowledge can be perceived by agents as a loss of personal
competitive advantage which can incentivize players to hold on to their share
and preserve this advantage (Anand et al., 2020). Cabrera and Cabrera (2002)
discuss the cooperation and public-good dilemma related to knowledge.

McLure-Wasko and Faraj (2005) discuss motivations for knowledge sharing
in detail. In organizations, individuals prefer sharing knowledge for altruistic
reasons like helping others or egoistic reasons, including improving personal
reputation and influence. Lam and Lambermont-Ford (2010) and Hung et
al. (2011) also suggest a combination of altruism and reciprocity drivers for
knowledge sharing. It might also depend on the agent’s position in the network.
If the agent has a higher number of connections and a higher level of knowledge,
their role is very consequential for knowledge sharing in the whole network.

Various theoretical and empirical studies have investigated knowledge sharing
for research and development efforts. For example, Paier and Scherngell (2010)
empirically study the network effect on R&D collaborations in Europe. The
paper highlights that prior acquaintance, thematic proximity, and geographical
proximity influence collaboration choices and the resulting network. The idea
of a cooperative equilibrium, where firms share their R&D effort, is a plausible
situation in certain conditions. Saint-Paul (2003) shows that this equilibrium is
more likely when there are more firms and it is not as dependent on punishment
strategies. The paper also argues for the cumulative nature of innovation and
the higher rate of growth of innovation in the case of more cooperative equi-
libria. Yang and Wu (2008) study knowledge sharing in a firm by considering
different player strategies - competitive, tit-for-tat and uncooperative. They
conclude that the non-competitive strategy is the most dominant; however, the
cooperative strategy can be persistent if the knowledge-sharing profits are high
enough.

Networks based on interpersonal bonds influence how and why certain in-
formation and knowledge are shared most effectively (Hansen, 1999). Kelly
and Grada (2000) empirically show how market panic spread through social
networks depending on agents’ place of origin and how these networks were
the critical determinants of agents’ behaviour. Additionally, Conley and Udry
(2010) illustrate how helpful information about technology and its use spreads
across friends and family networks. Chaudhary et al. (2016) studied knowledge
sharing in hunter-gatherer communities based on the similarity of the medici-
nal plants they use. The study shows the impact of social structures based on
family and kin relationships above the ecological variations.
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Al-Gharaibeh and Ali (2020) review the different game theoretical approaches
used in the literature to study knowledge-sharing frameworks. The paper shows
the use of prisoner’s dilemma games and assurance games (Fehr & Gachter,
2000) with repeated interactions to establish the dominant strategies and the
conditions for convergence towards knowledge-sharing equilibria.

2.2.3 Network Theory and Knowledge Networks

Network theory mainly deals with the mechanisms and processes that form
a network and how its structure can be defined. In a network, nodes are
connected to each other through certain ties. The pattern in which these ties
are related defines the network structure and the position of the different nodes
(Borgatti & Halgin, 2011; Brass, 2002).

Along similar lines, knowledge networks are defined as a set of nodes. Each of
them holds some knowledge and tries to maximize it through the social net-
work, where they receive, share, and develop this knowledge (Phelps et al.,
2012). Different disciplines, including sociology (Bothner, 2003) and manage-
ment studies (Reagans & McEvily, 2003), have further studied the influence
of the social network on information and knowledge diffusion. Podolny (2001)
highlights how the relationships within these networks act as a medium for
knowledge sharing and a lens through which they evaluate other agents. Wang
(2013) studies how knowledge transfer motivated by knowledge exchange mech-
anisms in a dynamic set-up affects the evolution of knowledge networks.

Scale-free networks are often used in network algorithms to represent complex
real-world networks. The main characteristic of scale-free networks is that
their expansion is based on preferential attachment (Barabási & Albert, 1999).
Barabási (2009) discusses the universality of scale-free network topology in the
several networks present in nature, technology, and societies. For example,
it is possible to observe many connections and alliance networks among firms
and R&D following a scale-free network pattern (Barabási & Bonobeau, 2003).
Barabási-Albert (1999) scale-free network has been widely used across social
network analysis as it adopts a “richer gets richer” model, which is not consid-
ered by random networks. Liao (2021) explores network mechanisms, mainly
preferential attachment of the Barabási network, to study knowledge sharing
by users in virtual communities.

11
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3 The Know-It-All Game (KIA)

KIA is a game in which agents share knowledge with their neighbours in a given
network. The game is inspired by the PageRank mechanism, the PageRank
Game and the Buck-holding game.

The general model of the KIA game consists of a finite number of players
represented as vertices of a directed graph. The game begins with Nature evenly
allocating knowledge to players which then proceed to share it strategically
with one another. In the subsequent iterations of the game, Nature issues
new knowledge which is rewarded to players based on the knowledge received
by them in the previous iteration. Agents aim to receive knowledge (from
neighbours or Nature) as much as possible or, more formally, to maximize
personal utility. Utility obtained by players is given by the received knowledge.

Before we move on to the formal definition of the game, we would like to clarify
the following definitions:

• Knowledge: In the model, knowledge refers to acquaintance or under-
standing of scientific and technical information and know-how. Addi-
tionally, knowledge is not a product of experience but rather could be
understood by anyone with whom it is shared. Knowledge is defined
by its complexity and transmissibility which will be discussed further in
section 3.2.

• Nature: It refers to the overarching entity/unit that distributes knowl-
edge as per the mechanisms of the game.

• Iterations: The number times this mechanism is repeated to arrive at a
stable utility. This is discussed further in sections 3.1 and 3.3.

In the following section, we will provide a formal definition of the KIA game.
We will then discuss the parameters, their definitions, and their impact on the
game. Finally, we discuss the implicit assumptions and features of our model.

12
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3.1 Formal Definition

Formally, a KIA game Σ is defined in the form Σ = (G , d, δ). G = (V ,E ) is
a directed graph in which V = {1, ..., n} is the set of vertices and E is the
set of edges. d represents knowledge complexity and δ represents knowledge
transmissibility (sections 3.2.2 and 3.2.3 are entirely dedicated to these two
parameters). They are bounded as follows:

0 < d < 1 , d ∈ R ; (3.1)

0 < δ < 1 , δ ∈ R . (3.2)

In the game, V represents the set of players. For i ∈ V , call Ei the set of edges
that connects player i with their out-neighbours in G such that Ei = {(i, j) |j ∈
V : (i, j) ∈ E }. The set of strategies of player i is Si = Ei. Note that (i, i) ∈ Si,
as it represents the decision of player i to share their piece of knowledge with
no one but themselves. S = ×i∈V Si is the set of strategy profiles. We define
ρi,j(x) to be the set of edges that describes the shortest network path that
connects player i to player j, given a set of edges x. For example:

ρi,j(x) =

{
{(i, a); (a, b); (b, j)} if a path exists

{∅} otherwise
. (3.3)

Given a strategy profile s = {(s1); (s2); ...; (sn)}, where si is the strategy se-
lected by player i, the random variable Φi,j(s) is defined:

Φi,j(s) =

{
δ(|ρi,j(s)|−1) if ρi,j(s) ̸= {∅}
0 otherwise

. (3.4)

Φi,j represents the amount of knowledge possessed by player i which is transmit-
ted to player j directly or indirectly (see section 3.2.3). For example, Φi,j = 1
means that player j will receive 100% of player i’s knowledge, Φi,j = 0 stands
for 0%.

The KIA game has a structure similar to the PageRank algorithm, where pay-
offs are calculated through an iteration process. Nevertheless, it is important
to note that players’ strategies do not change over the iterations. The game
begins with Nature dividing a unit of knowledge in equal parts and assigning
one portion to each player. We name kti the knowledge that player i receives
from Nature in iteration t. In the beginning, every agent i receives k0i = 1

n
knowledge where n is the total number of agents. During any iteration, players
simultaneously share the knowledge just received by Nature accordingly to their
selected strategy. Note that players share all the knowledge that they possess

13
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and knowledge is not “lost” when shared. We name k̄ti the total knowledge
received by player i during iteration t. k̄ti is calculated by:

k̄ti = kti +

n∑
j=0,j ̸=i

ktjΦj,i . (3.5)

At this point, the iteration is concluded.

Every new iteration t begins with Nature issuing a new unit of knowledge to
replace the older one. Older knowledge is removed and it will not be counted
or shared in any future step. New knowledge is then divided among players
proportionally to the level of knowledge achieved in the previous iteration.
More precisely:

kti =
d× k̄t−1

i∑n
j=0 k̄

t−1
j

+
1− d

n
. (3.6)

Note that this equation is the sum of two elements. 1−d
n is identical for every

player and stands for the portion of new knowledge that is sporadically cre-
ated, without the need of a previous finding. Whereas, the first part represents
the portion of new knowledge which depends on a previous one. This mecha-
nism rewards players for being knowledgeable and at the same time does not
completely exclude less knowledgeable players.

This process of sharing and issuing new knowledge is iterated until iteration
t∗, such that |k̄t

∗−1
i − k̄t

∗

i | < ϵ for every i ∈ V , where ϵ is an arbitrarily close to
0. Players receive utility, ui accordingly to the amount of knowledge received
at iteration t∗:

ui = k̄t
∗

i . (3.7)
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3.2 Parameters

Every KIA game is shaped by the network structure as well as the parameters
d and δ. In this section, we will discuss each parameter with motivations and
examples.

3.2.1 The Network

As the players’ strategic choices depend on their connection and the position
of their connections in the network, the exogenously provided network plays
an essential role in the model.

The game is designed such that it can be implemented for any directed graph.
Directed graphs represent the connection of nodes through edges in a speci-
fied direction. The KIA games should not be bounded by a limited network
structure. This way, many different scenarios can be analyzed, from a simple
3-player complete network to much more complex Barabási–Albert networks.

1

2 3

Figure 1: Graphical representation of a 3-player complete network (on the left) and a
Barabási–Albert network (on the right). (parameters for the Barabási–Albert network:

n = 30, m = 2)

Complete networks: Complete networks refer to fully connected networks
where each node is directly connected to all the nodes. This network struc-
ture enables the model to provide an equal positioning to each player at the
beginning of the game. Hence, the impact of knowledge transmissibility and
knowledge complexity (discussed in the later sections) can be easily observed
in the equilibrium strategies.

Barabási networks: The Barabási network allows us to incorporate a scale-
free network into the model. As discussed in the literature review, scale-free
networks replicate many real-life networks, including academic networks, com-
munity networks, the world-wide-web, etc. The most important feature is the
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asymmetric distribution of connection to the nodes, affecting their relative po-
sition in the network. Therefore, this network can provide the model with a
more realistic set-up where the players are not equally endowed with similar
connections. Testing the model on networks, where certain players are more
likely to receive knowledge because of their connections, can provide insight
into the real-life patterns of knowledge-sharing.

3.2.2 Complexity of Knowledge: d

Complexity of knowledge is represented by parameter d. It ranges between
1 and 0 where d = 1 − ϵ stands for complex knowledge and d = ϵ for basic
knowledge.

In a primordial world in which knowledge is extremely basic (d = ϵ), we argue
that new discoveries can be made by anyone, regardless of their knowledge
background. For example, fire could have been discovered by anyone who went
for a walk after a thunderstorm with no need for particular skills. In this world,
knowledge distribution at the beginning of every iteration (eq 3.6) would look
like:

kti =
d× k̄t−1

i∑n
j=0 k̄

t−1
j

+
1− d

n
=

1

n
. (3.8)

On the other hand, in a highly evolved world in which knowledge is extremely
complex (d = 1 − ϵ), we argue that new discoveries can be made only by
knowledgeable agents. For example, coding knowledge cannot exist in a society
that does not know how to use electricity. In this particular world, knowledge
distribution at the beginning of every iteration (eq 3.6) would look like:

kti =
d× k̄t−1

i∑n
j=0 k̄

t−1
j

+
1− d

n
=

k̄t−1
i∑n

j=0 k̄
t−1
j

. (3.9)

In this world, agents that do not receive any knowledge are destined not to be
relevant from a technological viewpoint as their portion of knowledge becomes
smaller and smaller at every iteration. An example of this phenomenon in
today’s world is the Sentinelese community, an indigenous tribe living on North
Sentinel Island, part of the Andaman Islands, an Indian archipelago in the
Bay of Bengal. Sentinelese are among the few reclusive societies remaining on
Earth, unexposed to the technological state of the world. Returning to our
model, it is fairly improbable for the Sentinelese community to develop a piece
of knowledge that can contribute to the highly complex knowledge state of the
rest of the world, and thus their share of knowledge would be close to zero.
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3.2.3 Transmissibility of Knowledge: δ

We believe that knowledge propagates not only through direct connections but
also through indirect connections.

Direct knowledge transfer

We define direct knowledge transfer to be an instance in which player i receives
kj directly form player j. Given a strategy profile s, a direct knowledge transfer
happens whenever:

|ρi,j(s)| = 1 . (3.10)

In the following graphical example, player 1 shares knowledge directly with
player 2 and vice versa.

Player1 Player2

k1

k2

Figure 2: Graphical representation of player 1 and player 2 directly sharing knowledge with
each other.

Indirect knowledge transfer

We define indirect knowledge transfer to be an instance in which player i re-
ceives kj not from player j but instead from a player l ̸= j. Given a strategy
profile s, an indirect knowledge transfer occurs whenever:

|ρi,j(s)| > 1 . (3.11)

Nevertheless, we believe an indirect transfer of knowledge to be less profitable
than a direct one. For example: let us consider a scenario in which player 1
shares knowledge with player 2 who, in turn, shares with player 3. In this case,
player 2 will learn k1 directly from player 1 and player 3 will learn k2 directly
from player 2. We argue that player 3 will get to know k1 indirectly through
player 2. We believe that in this indirect transfer of knowledge some value
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is lost due to “lost in translation” and time-depreciation, which is adjudged
through this discount factor.

Player1 Player2 Player3

k1 k2

δk1

Figure 3: Graphical representation of direct and indirect knowledge transfer.

In order to capture this effect, we implemented the random variable Φi,j (eq.
3.4). Every transfer of knowledge is compound discounted by 0 < δ < 1 for each
player in between the original owner and the receiver of knowledge. Mathemat-
ically, this is given by δ|ρi,j |−1 , where |ρi,j | stands for the number of elements
inside the set ρi,j .
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3.3 Features of the Model

The KIA game is not only shaped by the parameters themselves but also by
their interactions. Features like the creation of new knowledge, iterations, and
costs of sharing are peculiar to the model and will be discussed in this section.

3.3.1 Creation of New Knowledge

In every iteration of the game, total new knowledge is normalized to 1. There-
fore, what is provided to each player at the beginning of each iteration can
be viewed as their share of new knowledge. This can also be regarded as how
likely the players are to “create” or “understand” new pieces of knowledge.

No matter how the knowledge is shared in the game, this normalized value of
knowledge does not change, only its distribution among the players changes.
The total amount of new knowledge, therefore, does not reflect knowledge
growth (as it is always equal to 1). Hence, the model is not interested in
assessing the growth of knowledge or the creation of new knowledge. It focuses
instead on how this “new” knowledge is distributed among the players and how
this distribution is impacted by the knowledge-sharing strategies of the player.

3.3.2 Iterations and Utility

In the model, players receive knowledge from Nature depending on the knowl-
edge previously received and the total knowledge shared in the previous period.
This follows a similar pattern as the PageRank mechanism, where pages receive
scores according to two factors:

• The number of other pages providing links to the page in ques-
tion: The more websites providing links to page A, the higher the score
of Page A.

• The PageRank of these pages: The higher the PageRank of pages
offering links to page A, the higher the score of Page A.

As explained in the literature review section, PageRank solves this problem
by calculating the score over many iterations to ascertain a stabilized value.
Following a similar approach, the KIA game also looks at the convergence of
knowledge received and obtained after many iterations to calculate players’
utility. However, differently from PageRank, we believe that iterations in the
KIA game have a clear place in reality and are not just artificial constructs.
In the model, the players who are receiving many pieces of knowledge are
expanding their knowledge share faster than the ones who are occasionally
receiving it. In this process, the latter kind of players become obsolete.
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3.3.3 Cost of Sharing

In the KIA game, players can share knowledge at no direct cost. However,
there are indirect costs. Whenever player 1 shares knowledge with player 2,
player 2 becomes more knowledgeable. In turn, this allows player 2 to receive a
higher portion of knowledge in the following iteration. And since knowledge is
normalized to 1 in each iteration, this results in a smaller portion of knowledge
for player 1. Therefore, as a unidirectional transfer, knowledge sharing has
an implicit cost. That is, by choosing to share their knowledge with another
player, players are indirectly reducing their relative knowledge share in the
network.

Intuitively, this should only lead to complete non-sharing of knowledge, how-
ever, as we will see in the equilibria and the results section, this is not necessarily
the case. Like any other cost-payoff model, despite the cost, the utility received
by players can still incentivize them to share their knowledge.

3.3.4 Other Assumptions Regarding the Players

• Players do not lie or share partial knowledge. Whenever a player decides
to share their knowledge, all of it is transmitted to the second player and
nothing is omitted.

• Every player possesses the intellectual capabilities to understand and
bring together knowledge when it is shared with them.

• Players do not communicate or interact in any way other than by sharing
knowledge. Therefore, they cannot agree to collude on a strategy that
will bring mutual benefits (similar to the prisoner’s dilemma case).

• It is important to note that the players are not altruist or revengeful (by
design).
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4 Simulation Setup

Equilibria in the KIA game can be easily identified when simple and small
networks are analysed. However, as the number of players grows, it might be-
come challenging to discover stable patterns and equilibrium points. In order
to overcome this issue, we have decided to use a machine learning-based al-
gorithm. Throughout this chapter, we will describe the algorithm, explaining
parameters and working dynamics.

4.1 The Algorithm

The algorithm has been coded in Python. It is one of the most accessible
programming languages, widely understood, easy and fast to use, and ade-
quate to support the required complexity. The code has been structured in a
parametrized manner in order to be scalable and potentially reusable in other
Python functions. The algorithm consists of repeated single iterations of a
KIA game. The players learn by playing the game as at each iteration they
can observe their payoff. Basing decisions on their experience, they select the
most profitable strategy (at least according to their forecast). A copy of the
code can be found in Appendix B.

4.2 Adaptive Players

In our simulations, players must have the ability to change their minds, adapt
their strategies, and try every possibility. Note that this is not the case for
the formal model. The KIA game is a one-shot game that uses iterations to
calculate payoffs, and thus, strategies are fixed for every iteration. However,
only by allowing players to obtain a complete picture of the situation, they can
reliably converge on equilibria.

As the KIA game uses iterations to calculate final payoffs, we decided to use
machine learning to break into the iteration process. Agents will be allowed to
change strategies at every iteration. They build experience by trying strategies
and learning from the amount of knowledge received during each iteration,
recognizing the differences, improvements, and reductions in payoffs. As players
obtain sufficient experience in the initial iterations, they will confidently stick
to their selected strategy for the rest of the simulation. The game is then
iterated until the final payoffs are reached.

To refer to the strategies selected by each player at every iteration, we add a
time dimension to the strategy profile (presented in section 3.1). Therefore, st

stands for the strategy profile during iteration t and sti stands for the strategy
selected by player i during iteration t.
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4.3 The Learning Mechanism

The learning mechanism generates the data upon which decisions are taken
and strategies are selected. During the game, players observe the received
knowledge and build experience. The “Experience matrix”, Π, associates an
amount of knowledge to each strategy of each player:

Π =



π1,1 π1,2 . . . π1,j . . . π1,n

π2,1 π2,2 . . . π2,j . . . π2,n

...
...

. . .
...

. . .
...

πi,1 πi,2 . . . πi,j . . . πi,n

...
...

. . .
...

. . .
...

πn,1 πn,2 . . . πn,j . . . πn,n


, (4.1)

where πi,j is equal to the amount of knowledge that player i believes they will
receive as a result of playing strategy (i, j) (share with player j). Moreover,
when Π is divided into vectors we obtain single players experiences. More
precisely, the row vector πi includes all the beliefs of player i:

πi =
[
πi,1 πi,2 . . . πi,j . . . πi,n

]
. (4.2)

Note that Π and πi do not represent the real expectations but just the beliefs
of the players. These are similar to forecasts and are based on the experience
acquired while playing the game. This matrix evolves through iterations and
depends on parameters α and oti.
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4.3.1 Observed Knowledge Payoff

This subsection is dedicated to the fundamental values assigned to the elements
of the “Experience matrix”. As they are the cornerstones upon which decisions
are taken, they should include direct and indirect payoffs of playing any given
strategy.

Let oti be the knowledge payoff observed by player i when playing sti in iteration
t. More precisely, we mathematically define oti as:

oti = kt+1
i +

n∑
j=0,j ̸=i

ktjΦj,i . (4.3)

Note that this is very similar to the total knowledge received in a single iteration
k̄ti (eq. 3.5). Nevertheless, oti includes kt+1

i instead of kti . In other words, oti
counts knowledge received from other players at iteration t plus knowledge
received from Nature at iteration t + 1. This is the case because the amount
of knowledge received from Nature during iteration t does not get affected
by players’ actions during iteration t, however these actions have an effect on
knowledge distributed by Nature in iteration t+ 1.

4.3.2 How Experience Evolves: Parameter α

In this subsection, we will clarify how players learn and adapt their Experience
vector through iterations.

Alpha, such that 0 ≤ α ≤ 1 and α ∈ R, is a coefficient that represents players’
memory. A high α is associated with players that believe the most recent
observations to be the most important, forgetting older experiences easily. A
low α is associated with players that rely more on past experience, attributing
limited importance to new observations.

In formal terms, players update their experience at every iteration depending
on the value of α. More precisely:

πt
i,j =

{[
oti × α

]
+

[
πt−1
i,j × (1− α)

]
if sti = (i, j)

πt−1
i,j otherwise

, (4.4)

where πt
i,j is the experience value at iteration t that will replace the old value

πt−1
i,j .
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4.4 The Decision-Making Mechanism

In this final step, the players select their strategies according to their experience.
Agents will select the strategy which they believe to be the most profitable.
More precisely:

sti = (i, j) subject to maxπt
i = πt

i,j . (4.5)

In the case in which different values of j satisfy maxπt
i = πt

i,j , the strategy is
determined by randomly selecting one of the equal options.

For example:

Let us consider player 2 experience vector π2:

πt
2 =

[
0.3 0.5 0.3 0.8

]
.

In this moment of the game, player 2’s experience suggests that sharing knowl-
edge with player 4 will provide 0.8 pieces of knowledge. This value is the highest
in the vector, therefore player 2 will set their strategy to be:

st2 = (2, 4) .
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5 The Complete Network

In this section, we will first analyse the simple 3-player complete network from
a theoretical viewpoint. We will proceed by simulating the game on this simple
network in order to understand how parameters affect convergence to equilibria
and which equilibria occur more frequently. We will then focus on a bigger
complete network with 10 players and analyse the game from a theoretical
viewpoint and through simulations.

5.1 The 3-Player Complete Network

The 3-Player complete network includes the simplest interactions that we will
discuss in our paper. Three players are connected with each other, allowing
every agent to choose among three strategies. We will introduce the network
with the following graphical representation.

1

2 3

Figure 4: The 3-Player Complete Network
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5.1.1 Theoretical Approach

We begin by writing the game in strategic form. However, the payoff calcula-
tions depend on many factors and are quite complex. Therefore, we decided to
present one set of tables assuming d = 1. The complete payoffs are presented
in appendix A.2.

d = 1:

s3 = (3,3) s2

(2,2) (2,1) (2,3)

s1

(1,1) ( 13 ,
1
3 ,

1
3 ) (1, 0, 0) (0, 0, 1)

(1,2) (0, 1, 0) (1, 1, 0) (0, 0, 1)

(1,3) (0, 0, 1) (0, 0, 1) (0, 0, 1)

s3 = (3,1) s2

(2,2) (2,1) (2,3)

s1

(1,1) (1, 0, 0) (1, 0, 0) (1, 0, 0)

(1,2) (0, 1, 0) (1, 1, 0) ( 2+δ
3 , 2+δ

3 , 2+δ
3 )

(1,3) (1, 0, 1) (1, 0, 1) (1, 0, 1)

s3 = (3,2) s2

(2,2) (2,1) (2,3)

s1

(1,1) (0, 1, 0 (1, 0, 0) (0, 1, 1)

(1,2) (0, 1, 0) (1, 1, 0) (0, 1, 1)

(1,3) (0, 1, 0) ( 2+δ
3 , 2+δ

3 , 2+δ
3 ) (0, 1, 1)

Table 1: Strategic representation of the KIA game played on a 3-player complete network
(d = 1).
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We then proceed to find pure Nash equilibria using best-responses. In order
not to overload the paper with tables, we present strategy tables with best-
responses in Appendix A.2. The tables show the following Nash equilibria:

NE = {(1, 1), (2, 2), (3, 3)}; {(1, 1), (2, 1), (3, 1)}; {(1, 1), (2, 3), (3, 2)};

{(1, 2), (2, 1), (3, 3)}; {(1, 2), (2, 1), (3, 1)}; {(1, 2), (2, 1), (3, 2)};

{(1, 2), (2, 2), (3, 2)}; {(1, 2), (2, 3), (3, 2)}; {(1, 3), (2, 3), (3, 3)};

{(1, 3), (2, 1), (3, 1)}; {(1, 3), (2, 2), (3, 1)}; {(1, 3), (2, 3), (3, 1)};

{(1, 3), (2, 3), (3, 2)} . (5.1)

However, these equilibria strongly rely on the fact that d is set to 1. In order
to understand which of these equilibria also hold true for other values of d, we
introduce lemma 1.

Lemma 1:

Any player i who is not receiving any pieces of knowledge from other players
is strategically better off by playing strategy (i, i).

This can be proven by recalling the equation 3.5:

k̄ti = kti +

n∑
j=0,j ̸=i

ktjΦj,i . (5.2)

In a scenario in which player 1 does not receive any pieces of knowledge other
than the one received from Nature, we have that

∑n
j=0,j ̸=1 k

t
jΦj,1 = 0. There-

fore by combining this with eq 3.6, we obtain:

kt1 = k̄t1 =
d× k̄t−1

1∑n
j=0 k̄

t−1
j

+
1− d

n
. (5.3)

Note that
∑n

j=0 k̄
t−1
j represents the sum of all the knowledge shared in a given

period. Therefore, by sharing their knowledge, player 1 increases this value
and reduces kt1 (as [d× k̄t−1

1 ] does not increase).
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By taking Lemma 1 into account, we can reduce the amount of Nash equilibria
presented in eq 5.1 to the following list:

NE’ = {(1, 1), (2, 2), (3, 3)}; {(1, 2), (2, 1), (3, 3)}; {(1, 1), (2, 3), (3, 2)};

{(1, 3), (2, 2), (3, 1)} . (5.4)

These equilibria can be graphically represented as follows:

1

2 3

1

2 3

1

2 3

1

2 3

Figure 5: Graphical representation of the equilibria in a 3-player complete network. In bold
are the selected strategies. The light arrows represent all the possible non-selected

strategies.
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For this type of network, there are four pure Nash equilibria. However, they
are only of the following 2 kinds:

• Type 1: All the players not sharing knowledge with anyone else.

• Type 2: Two players sharing knowledge with each other and the third
player not sharing knowledge with anyone else.

The first type of equilibrium is clearly proven by Lemma 1 (each agent is better
off by not sharing when nobody shares with them). We will now proceed to
prove the existence of equilibria for the Type 2 strategies.

Let us consider the following strategy profile s∗ = {(1, 2)(2, 1)(3, 3)}. In this
scenario, player 3 is playing their dominant strategy as suggested by Lemma
1. Player 1 can either deviate by playing (1, 1) or (1, 3). As suggested by
table 1, (1, 3) is not a viable strategy. In this case, all the knowledge would be
channelled to player 3 and player 1 will end up with a lower payoff. Regarding
strategy (1, 1), it can be said that deviating from s1 = (1, 2) to s1 = (1, 1)
given s2 = (2, 1) and s3 = (3, 3) is profitable only if:

u1{(1, 2)(2, 1)(3, 3)} − u1{(1, 1)(2, 1)(3, 3)} < 0 . (5.5)

In appendix A.1, the final utility formulas are reported. In order to check
inequality 5.5, we will borrow the two needed functions:

u1{(1, 2)(2, 1)(3, 3)} =
4d− 1 +

√
16d2 − 32d+ 25

6
, (5.6)

u1{(1, 1)(2, 1)(3, 3)} =
4− d−

√
(d− 1) (d− 4)

3
. (5.7)

The relationship u1{(1, 2)(2, 1)(3, 3)} − u1{(1, 1)(2, 1)(3, 3)} is proven to be
positive for every 0 < d < 1. Therefore, ceteris paribus player 1 prefers
s1 = (1, 2) to s1 = (1, 1). By symmetry, the same can be inferred about player
2. Again by symmetry, we can conclude that every equilibrium of type 2 is a
pure Nash equilibrium.
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5.1.2 Machine Learning Approach

Now that we have shown the Nash equilibrium strategies for the 3-player com-
plete network, we can proceed with the simulation. We will observe the results
of the algorithm and we will test its accuracy for different values of parameters
d and δ as well as learning parameter α.

We run 5999 iterations for each game. As discussed previously, iterations allow
the players to converge to a single strategy, stabilising playoffs and utilities.
The game is then replayed 100 times. Note that it is not repeated but rather
replayed. Players do not have a memory from previous games. We decided
to replay the game a sufficient amount of times to limit randomness in results
and outliers. In this way, the algorithm provides more consistent results than
with longer single games. This number is set to 100 to make the results more
understandable and easier to read.

5.1.3 Simulation Results: Parameter d

In this section, we will present the results for the effect of parameter d, knowl-
edge complexity, which is an exogenously provided parameter in the KIA model.
Given its crucial role in payoff calculations, we would now like to explore how
the parameter’s value changes the behaviour of the players in our simulation.
We will keep the other parameters constant (α = 0.15, δ = 0.5) in order to
obtain easily interpretable results (ceteris paribus).

The results from the algorithm are as it follows:

d NE Type 1 NE Type 2 Non-Converging

0.15 2% 95% 3%
0.5 4% 94% 2%
0.85 9% 91% 0%

Table 2: Simulation results: d in the 3-Player complete network. 100 Replays, 5999
Iterations, α = 0.15, δ = 0.5

Table 2 summarizes the percentage distribution of Nash Equilibria and non-
converging players. The results suggest that a high value of d helps players
in finding an equilibrium. This is reasonable as, generally, the higher the
d the higher the reward for being knowledgeable (in other words players are
incentivized to play competitively). Moreover, the table suggests that the lower
the d, the more the equilibria are polarized on Type 2.

We believe that the network size did not allow us to really understand the
impact of d on the game. We will repeat the simulation with different values
of d and more players in sections 5.2.1, 6.1 and 6.2.
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5.1.4 Simulation Results: Parameter δ

In this section, we will present the results for the effect of parameter δ, knowl-
edge transmissibility, which is an exogenously provided parameter in the KIA
model. As done with the other parameters, we will keep everything else con-
stant (α = 0.15, d = 0.5) in order to obtain easily interpretable results (ceteris
paribus).

The results from the algorithm are as it follows:

δ NE Type 1 NE Type 2 Non-Converging

0.2 0% 100% 0%
0.5 4% 94% 2%
0.8 11% 82% 7%

Table 3: Simulation results: δ in the 3-Player complete network. 100 Replays, 5999
Iterations, α = 0.15, d = 0.5

Table 3 summarizes the percentage distribution of Nash Equilibria and non-
converging players. The results suggest that a low value of δ highly polarizes
the game towards equilibria of Type 2. This is reasonable as a high δ rewards
the creation of loops of many players. However, these results show that a high
δ allows different types of equilibria to be reached at the cost of diminished
accuracy.

Again, the network size did not allow us to really understand the impact of δ
on the game. We will repeat the simulation with different values of δ and more
players in the section 5.2.2.

5.1.5 Selection of Parameter α

To recap from previous sections, the learning mechanism of the players depends
on the parameter α. A higher α represents a higher trust in the most recent
observation, and a lower α represents a higher trust in the experience collected
during the game.

Keeping this variation in mind, we identify 3 values that we will use to test the
model:

• α = 0.05 ,

• α = 0.15 ,

• α = 0.5 .
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We test these three values for d = 0.5 and δ = 0.5. The values of these param-
eters are kept at their mid-point to simplify our analysis (ceteris paribus).

The results from the algorithm are as it follows:

α NE Type 1 NE Type 2 Non-Converging

0.5 4% 91% 5%
0.15 4% 94% 2%
0.05 17% 83% 0%

Table 4: Simulation results: α in the 3-Player complete network. 100 Replays, 5999
Iterations, d = 0.5, δ = 0.5

Table 4 summarizes the percentage distribution of Nash Equilibria and non-
converging players. It can be interpreted as follows:

• α = 0.5 - Players converge to one of the two equilibria 95% of the times.
This set up seems to favour Type 2 equilibria. However, 5 % of the games
do not converge to any Nash equilibria.

• α = 0.15 - Players converge to one of the two equilibria 98% of the times,
strongly favouring Type 2 equilibria.

• α = 0.05 - Players converge to one of the two equilibria 100% of the times.
In this setup, Type 1 equilibria are met a substantial amount of times.

Based on these results, we decided to use α = 0.05 in future simulations. Re-
sults showed 0% non-converging players as well as a good variety of equilibria.
Note that there are 3 different Type 2 equilibria while only one Type 1. This
might be one of the reasons behind the high percentages of Type 2 equilibria
in the above results.
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5.2 The 10-Player Complete Network

This section aims to scale up the model for more extensive networks through
machine learning simulation. Given that the players are symmetrically con-
nected, the scope for knowledge-sharing also significantly increases. To observe
the converging knowledge-sharing patterns and loops over the changing param-
eters, we will run simulations for different values of d and δ. The 10-Player
complete network is illustrated in the following figure.

1

2

34
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8 9
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Figure 6: The 10-Player Complete Network

The simulation is run for 10 players in a complete network. The players play
the game for 5999 iterations. In the previous section, α = 0.05 was shown to
offer the most consistent converging patterns. Therefore, α will be set to 0.05
for the whole simulation. The numbers related to the knowledge-sharing loops
are calculated over 100 replays of the game.

1 1

2 2 3

1 4

2 3

Figure 7: Example of knowledge-sharing loops. From left to right: 2-player loop, 3-player
loop, and 4-player loop
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5.2.1 Simulation Results: Parameter d

We will run three set of simulations, one for each value of d that we are testing
for. The values are: d = 0.85, d = 0.5 and d = 0.15. All the other parameters
will not vary (δ = 0.5 and α = 0.05).

Figure 8: Simulation results: d in the 10-player complete network. 100 Replays, 5999
Iterations, α = 0.05, δ = 0.5. x-axis: Dimension of sharing-loops. y-axis: Players involved

in a x dimensional sharing-loop

d 0.15 0.5 0.85

Non-Conv. Players 0.4% 0.5% 0.2%

Table 5: Non-Converging Players in the 10-player complete network. Analysis: d

Considering that the network size increased, setting α = 0.05 proved to be a
sound decision. The percentages of non-converging players are low and similarly
distributed across d.

We observe that, in large networks like this, there is a possibility of players
converging to stable knowledge-sharing loops that are bigger in size. It is
interesting to see that while a 3-player loop is not a stable equilibrium for a
3-player game, as the players will always be better off by deviating and not
sharing the knowledge (shown in section 5.1.1), this is not the case for 10
players.

Furthermore, as shown in Figure 8, the average sharing-loop size is increasing
through d. Intuitively, it can be comprehended as follows: for higher knowledge
complexity, the player’s knowledge portion depends heavily on the received
knowledge from neighbours (the share of new knowledge distributed randomly
by nature is significantly small). Therefore, the incentive to receive more and
more knowledge from neighbours is also higher, resulting in players converging
into bigger knowledge-sharing loops.
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5.2.2 Simulation Results: Parameter δ

We will run three set of simulations, one for each value of δ we are testing for.
The values are: δ = 0.8, δ = 0.5 and δ = 0.2. All the other parameters will not
vary (d = 0.5 and α = 0.05).

Figure 9: Simulation results: δ in the 10-player complete network. 100 Replays, 5999
Iterations, α = 0.05, d = 0.5. x-axis: Dimension of sharing-loops. y-axis: Players involved

in a x dimensional sharing-loop

δ 0.2 0.5 0.8

Non-Conv. Players 0% 0.5% 0.1%

Table 6: Non-Converging Players in the 10-player complete network. Analysis: δ

As in the previous section (5.2.1), the percentages of non-converging players
are low.

Intuitively, data suggests that the higher knowledge transmissibility the bigger
the variety of sharing loops. When δ = 0.8 (blue line) similar amounts of
players get involved in 2, 3, and 4-player sharing loops. This can be explained
by the fact that when knowledge is highly transmissible, players are highly
rewarded for being involved in big loops.

However, as the value of δ decreases, players tend to polarize into pairs, sharing
reciprocally. As suggested during the 3-player complete network simulations,
decreasing knowledge transmissibility removes incentives for big loops. More-
over, smaller loops are generally easier to form. These two factors combined
almost guarantee players to end up in a 2-player loop.
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6 The Barabási–Albert Network

We will continue our simulation journey by moving to real-life networks. In this
section, we aim to extend the model’s applications to more complex networks.
Backed by the theoretical understanding discussed in the previous sections, we
will play the Know-It-All game on networks created using the Barabási–Albert
model.

As discussed in previous chapters, we conduct simulations using scale-free
Barabási networks. A directed graph created using the Barabási–Albert model
is provided to the algorithm by specifying n, the number of nodes (players),
and m, the number of edges (links) established between the nodes. This results
in an uneven distribution of connections among the nodes, with some nodes
becoming more central and well-connected.

Our focus will be on observing the nature of knowledge-sharing loops and how
they vary over the parameter d for two different kinds of Barabási networks
of 30 players. First, we will set m = 1. This network contains many players
with a single neighbour and sharing loops of more than 2 players are impossible
(because of the structure of the network). Then we will set m = 3. In this
case, players will be well connected with each other, allowing bigger sharing
loops to form.

In this section, we will run simulations varying only networks and knowledge
complexity (d). Learning parameter α will be set at 0.05. Knowledge trans-
missibility (δ) will be set at 0.8. We decided to keep δ constant in order to
simplify the analysis and results. We decided to set δ = 0.8 because it allows
for different loop sizes (shown in the previous section) and does not polarize
the results.
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6.1 Results from Network 1: n = 30 and m = 1

This network consists of 30 players, with at least one connection each (example
in Figure 10). In our simulation, agents play the game for 9999 iterations. As
previously explained, we set α = 0.05 and δ = 0.8. Then the game is replayed
100 times. Note that on each new game, the network is replaced with a new
randomly generated graph with the same characteristics.

Figure 10: Example of a network obtained using the Barabási–Albert model. n = 30 and
m = 1.

We run the model for the same 3 values of d used in the previous sections:
d = 0.85, d = 0.5 and d = 0.15. The results are presented in the following
table:

d Not Sharing Sharing Non-Converging

0.15 32.2% 50.5% 17.3%
0.5 30.7% 52.1% 17.2%
0.85 25.5% 59.6% 14.9%

Table 7: Simulation results: d in the Barabási–Albert network. 100 Replays, 9999
Iterations, α = 0.05, δ = 0.8, n = 30, m = 1

It appears clear that the structure of this network rarely allowed players to
try different strategies. Agents are often connected to only one other player,
who is in turn connected to many other players. In this situation, the “famous”
neighbour will share knowledge back only with one of their connections, making
many players solitary. Here, the “famous” player refers to the player with more
connections, like Player 5 in Figure 10. This phenomenon explains why we see
many players not sharing knowledge with anyone else.

Nevertheless, there is a visible pattern in results: sharing slightly grows as
the knowledge complexity d increases. At the same time, the amount of non-
converging players decreases with the value of d.
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To conclude, we have to acknowledge that the ratio of non-converging players
in this set of simulations was extremely high. Thus, the results are likely
inaccurate. The cause might be, as mentioned before, the particular structure
of the network, not allowing many interactions to take place.
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6.2 Results from Network 2: n = 30 and m = 3

In this section, we will simulate the KIA game on a Barabási–Albert model
network with parameters n = 30 and m = 3. The other parameters are set as
in the previous section.

Figure 11: Example of a network obtained using the Barabási–Albert model. n = 30 and
m = 3.

Again, we run the model for 3 values of d: d = 0.85, d = 0.5 and d = 0.15. The
following graph and table represent the results.

Figure 12: Simulation results: d in the Barabási–Albert network. 100 Replays, 9999
Iterations, α = 0.05, δ = 0.8, n = 30, m = 3. x-axis: Dimension of sharing-loops. y-axis:

Players involved in a x dimensional sharing-loop

d 0.15 0.5 0.85

Non-Conv. Players 3.1% 4.1% 6.4%

Table 8: Simulation results: d in the Barabási–Albert network. 100 Replays, 9999
Iterations, α = 0.05, δ = 0.8, n = 30, m = 3
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These results are more convincing than the ones obtained in the previous sec-
tion. In these simulations, the non-converging players were around 5% for every
value of d. Even if this is still a high ratio, considering the dimensions and the
complexity of the network, we can consider the simulation satisfactory. The
results suggest:

• Knowledge complexity (d) increases dispersion in the size of sharing loops,
thus increasing the average size of loops. This result can be interpreted
as follows: players cooperate better to form bigger loops when knowledge
is complex. In comparison with the other distributions, the fat tail of
the d = 0.85 distribution suggests that, after a certain threshold, players
might become substantially more willing to share.

• In this network, players rarely isolate themselves and often end up sharing
knowledge with each other. This aspect is weakly affected by knowledge
complexity (d), as the graph shows a similar amount of single players
across d.

• The two simulated Barabási–Albert networks (m = 1 and m = 3) share
a common trend. In both cases, simulation accuracy increases in d.

• 2-player sharing loops are the most common outcome for every value of
d. This can be explained by the fact that it is easier for two players to
converge on a strategy than it would be for three players.
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7 Discussions

In this thesis, we developed a model that aims to interpret how knowledge is
distributed in a network. The purpose of the model is, therefore, to simplify
and provide a set-up that fits with the real-life behaviour of agents. However,
like any model which aims to boil down the complexities of the real world to
mathematical constructs, this model faces some limitations. Some of these lim-
itations offer possibilities for further model development, while others require
a different approach. In this section, we would like to bring these discussions
into light, further improving the scope and applicability of the model.

Firstly, this paper mainly focuses on a deterministic model. More under-
standably, players are only allowed to play pure strategies (e.g., Player 1 can
choose player 2 as his strategy with a probability of 1 or 0 for every itera-
tion). While this provides the model with some interesting insights about the
player’s knowledge-sharing behaviour and equilibria, it leaves out the mixed-
nash equilibria and mixed strategies. By adapting the model to a stochastic
game, the potential related to the observed player’s strategies, equilibria, and
knowledge-sharing loops can be expanded further.

Secondly, the model does not account for knowledge growth caused by the
spread of knowledge through the network. It can be argued that a society in
which knowledge spreads widely should grow quicker than a society of egoists.
Our model only accounts for how its relative values are provided to the players,
not considering overall growth. This setup works when players are more inter-
ested in their personal share than the overall growth in knowledge. However,
accounting for side-utility obtained by players because of overall improvements
in knowledge levels can be quite complicated. One way to incorporate this is
to make the parameter d dynamic within the game.

Thirdly, we assume that players interact on a static network. This allows us
to observe the players’ interactions with lesser variations in the background.
Nevertheless, real-life networks are often more dynamic and evolve as per the
interactions of their nodes. Allowing the network to evolve through iterations
is an interesting path, making the model more adaptable to real-life networks.

Fourthly, in a fast globalizing world, we can observe that knowledge can be
shared with more than one player at the time. The KIA game only allows
players to select one player as their knowledge-sharing strategy. Under specific
premises, the assumption can hold up. For example, to be in a knowledge-
sharing relationship with one other agent in a network of 20 players makes
more sense than it would for a network of 1000 players. Additionally, only
certain kinds of knowledge can be transferred in a closed network. However,
going forward with a higher number of players and with a specific definition of
knowledge would require more inquiry into this assumption of the model.

Finally, we believe that the KIA game provides us with a good fundamental
understanding of the knowledge-sharing theory and patterns, which we would
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now like to test on some real-life data like research networks and historical
knowledge-sharing networks.
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8 Conclusions

The idea’s genesis for this thesis started with a simple question: Why are some
agents more knowledgeable than others?

Through this paper, we have attempted to come closer to the answer to this
question. The KIA game shows that agents can share knowledge among them-
selves and arrive at stable equilibria. However, in the KIA game, no player can
obtain the most utility alone. Cooperation is the only way to “win” the game.
For example: in a world where nobody shares knowledge, 2 players can take
the market simply by cooperating. In turn, 3 other players may join the forces
to dethrone the other 2. This chain can repeat many times. However, when the
cooperation circle becomes big enough, players may find it profitable to betray
their companions, incentivizing everyone to leave the coalition (returning to
the world where nobody shares).

Additionally, we observed that the game often stabilizes on scenarios where
certain players are better off than others. This indicates that the exclusion
of a few players from the knowledge loops could be out of design. After all,
monopolizing the knowledge share among the few players leads to higher rel-
ative knowledge for them, and an equal distribution benefits none. This is an
important insight to understand the distribution of knowledge and the network
patterns that we can observe worldwide.

While the model has essentially focussed on understanding the knowledge-
sharing and distribution processes in a network, other applications can be ex-
plored. For instance, the model can be used within welfare and care context.
Let us consider a model similar to the KIA game in which the value shared by
the player is care instead of knowledge, which then translates to welfare for the
receiving player. We can view this as an iterative process where higher care
leads to higher welfare, which in turn provides players with a higher amount
of care to share. By finding the right setting for every parameter, we can ob-
serve the size, nature, and distribution of welfare among the care-units formed
(in terms of family, partners, or communities) in society. However, as people
usually provide care to multiple individuals with varying degrees, a stochastic
version of the game is needed to exploit the model’s full potential.

We had many discussions and considerations regarding the implementation of
some mechanisms of “punishment” or “war” while developing the model. We
agreed that the model’s best feature was not to have harmful threats. With
this in place, we played the game on many different networks with a dozen
parameters and obtained numerous patterns and equilibria. However, the most
recurring social structure was made by two players reciprocally sharing with
one another. This is a curious fact, as (in the algorithm) players had no way
of knowing who shared knowledge with them.
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9 Glossary

Glossary arranged by sections. The terms are located in the section in which
they first appeared and in order of appearance.

Section 3:

• KIA game: Know-It-All game.

Section 3.1:

• Σ: A Know-It-All game.

• G (V ,E ): A directed graph.

• d: Parameter that represents knowledge complexity.

• δ: Parameter that represents knowledge transmissibility.

• V : The set of vertices (players).

• E : The set of edges (connections).

• n: The number of players. (also parameter of Barabási-Albert model)

• Ei: The set of edges that connect player i to their out neighbours.

• (i, j): Edge that connects player i to player j in a network.

• Si: The set of strategies of Player i.

• S: The set of strategy profiles.

• ρi,j(x): The set of edges that describes the shortest network path that
connects player i to player j in the set of edges x.

• {∅}: The empty set.

• s: A strategy profile in a Know-It-All game.

• si: The strategy selected by player i.

• |ρi,j |: The number of elements in set ρi,j .

• Φi,j(s): The amount of knowledge possessed by player i which is trans-
mitted to player j directly or indirectly.

• kti : The knowledge that player i receives from Nature in iteration t

• k̄ti : The total knowledge received by player i during iteration t.

• ui: Utility of player i.

• t: An iteration
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Section 3.2

• m: Parameter used in Barabási-Albert Model Networks.

Section 4.2

• st: In simulation, the strategy profile during iteration t.

• sti: In simulation, the strategy selected by player i during iteration t.

Section 4.3

• Π: The Experience Matrix.

• πi,j : In simulation, the amount of knowledge that player i believes they
will receive as a result of playing strategy (i, j).

• πi: In simulation, the vector that includes all the believes of player i
regarding each strategy

• oti: In simulation, the knowledge payoff observed by player i when playing
sti in iteration t.

• α: In simulation, the learning parameter represents players’ memory.

Section 5.1

• NE: Nash Equilibrium / Nash Equilibria.
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A Appendix 1: The 3-Player Complete Net-
work

A.1 The Best Response Table

d = 1:

s3 = (3,3) s2

(2,2) (2,1) (2,3)

s1

(1,1) ( 13 ,
1
3 ,

1
3 ) (1, 0, 0) (0, 0, 1)

(1,2) (0, 1, 0) (1, 1, 0) (0, 0, 1)

(1,3) (0, 0, 1) (0, 0, 1) (0, 0, 1)

s3 = (3,1) s2

(2,2) (2,1) (2,3)

s1

(1,1) (1, 0, 0) (1, 0, 0) (1, 0, 0)

(1,2) (0, 1, 0) (1, 1, 0) ( 2+δ
3 , 2+δ

3 , 2+δ
3 )

(1,3) (1, 0, 1) (1, 0, 1) (1, 0, 1)

s3 = (3,2) s2

(2,2) (2,1) (2,3)

s1

(1,1) (0, 1, 0 (1, 0, 0) (0, 1, 1)

(1,2) (0, 1, 0) (1, 1, 0) (0, 1, 1)

(1,3) (0, 1, 0) ( 2+δ
3 , 2+δ

3 , 2+δ
3 ) (0, 1, 1)

Table 9: Strategic representation of the KIA game played on a 3-player complete network.
d = 1.
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A.2 Players’ Utility Functions

u1{(1, 1)(2, 2)(3, 3)} =
1

3
(A.1)

u2{(1, 1)(2, 2)(3, 3)} =
1

3
(A.2)

u3{(1, 1)(2, 2)(3, 3)} =
1

3
(A.3)

u1{(1, 2)(2, 3)(3, 1)} =
2 + δ

3
(A.4)

u2{(1, 2)(2, 3)(3, 1)} =
2 + δ

3
(A.5)

u3{(1, 2)(2, 3)(3, 1)} =
2 + δ

3
(A.6)

u1{(1, 3)(2, 1)(3, 2)} =
2 + δ

3
(A.7)

u2{(1, 3)(2, 1)(3, 2)} =
2 + δ

3
(A.8)

u3{(1, 3)(2, 1)(3, 2)} =
2 + δ

3
(A.9)

u1{(1, 2)(2, 1)(3, 3)} =
4d− 1 +

√
16d2 − 32d+ 25

6
, (A.10)

u2{(1, 2)(2, 1)(3, 3)} =
4d− 1 +

√
16d2 − 32d+ 25

6
(A.11)

u3{(1, 2)(2, 1)(3, 3)} =
7− 4d−

√
16d2 − 32d+ 25

6
(A.12)

u1{(1, 1)(2, 1)(3, 3)} =
4− d−

√
(d− 1) (d− 4)

3
. (A.13)

u2{(1, 1)(2, 1)(3, 3)} =
d− 1 +

√
(d− 1) (d− 4)

3
(A.14)

u3{(1, 1)(2, 1)(3, 3)} =
d− 1 +

√
(d− 1) (d− 4)

3
(A.15)

Due to space constraints, we have only specified strategies to prove the theo-
retical aspects of the KIA model. Please contact us at 41872@student.hhs.se
or 41885@student.hhs.se for utility values for other strategies.
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B Appendix 2: Algorithms

B.1 Python Code: KIA

# IMORT ING PAKAGES
import networkx as nx
import random as rm
import matp lo t l ib . pyplot as p l t
import numpy as np
import math
np . s e t p r i n t o p t i o n s ( suppress=True )
import matp lo t l ib . pyplot as p l t
from sympy import Eq , var , s o l v e
from c o l l e c t i o n s import Counter
import os
import c on t ex t l i b

# P A R A M E T E R S

#A = Adjacency matrix (Graph )

#alpha = Learning parameter ( p layers ’ memory)

#i t e r a t i o n s = number o f i t e r a t i o n s

#Delta = Parameter f o r knowledge t r a n sm i s s i b i l i t y

#d = Parameter f o r knowledge complexity

#DATAGAP = gap in terms o f i t e r a t i o n s between a data point and another (when making
graphs )

#rep lay s = Number o f t imes the KIA game i s repeated

# T H E K I A F U N C T I O N

def KIA(A, i t e r a t i o n s , d , Delta , alpha , DATAGAP) :

# S E T U P

#number o f p l aye r s
n = len (A)

#l i s t o f p l aye r s
p l = 0
Players = [ ]
whi le p l < n :

Players . append ( pl )
p l = pl + 1

#va r i ab l e s needed during the i t e r a t i o n proce s s
tot = 1 .
I n i t i a l B e l i e f = 2 .
f o r x in range (0 , n) :

g l oba l s ( ) [ ’ CasePlayer ’+ s t r (x ) ] = −1
E f f e c t i v eTran s f e r = np . array ( [ [ 0 . ] ∗ n ]∗n)
Par t i a lTran s f e r = np . array ( [ [ 0 . ] ∗ n ]∗n)
PropagatedPlayers = [ ]
t r u s t = 1

#l i s t s f o r p l o t s
PlotListTotalD = [ ]
TimeList = [ ]
f o r x in range (0 , n) :

g l oba l s ( ) [ ’ P lotL i s t ’+ s t r (x ) ] = [ ]
g l oba l s ( ) [ ’ PlotListU ’+ s t r (x ) ] = [ ]

#l i s t s o f edges
Connections = [ ]
f o r x in range (0 , n) :

f o r y in range (0 , n) :
Connections . append ( s t r (x )+” ”+s t r (y ) )

Connections = np . array ( Connections )

#st ra t egy p r o f i l e matrix
S t r a t e gyP ro f i l e = np . array ( [ [ 0 . ] ∗ n ]∗n)

#Var iab l e s needed in the ana l y s i s o f r e s u l t s ( counting the loops o f p l aye r s )
LoopsChecker = np . array ( [ [ 0 . ] ∗ n ]∗n)
BigLoopsChecker = np . array ( [ [ 0 . ] ∗ n ]∗n)
LoopsChecker vector = np . array ( [ 0 . ] ∗ n)
NONCONVERGINGChecker vector = np . array ( [ 0 . ] ∗ n)

#Vector f o r k i ( and a second one need to update the f i r s t one )
KI = ( [ 1 . / n ]∗n)
KI update = np . array ( [ 0 . ] ∗ n)

#Making L i s t s o f out neighbours o f every p layer and l i s t s f o r t h e i r
expec ta t i ons

f o r x in range (0 , n) :
g l oba l s ( ) [ ’ OutNeighbors Player ’+ s t r (x ) ] = [ ]
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f o r i in range (0 , n) :
i f A[ x ] [ i ] == 1 :

( g l oba l s ( ) [ ’ OutNeighbors Player ’+ s t r (x ) ] ) . append ( s t r ( i ) )
g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] = [ I n i t i a l B e l i e f ]∗n
f o r y in range (0 , n) :

i f s t r ( y ) not in ( g l oba l s ( ) [ ’ OutNeighbors Player ’+ s t r (x ) ] ) :
g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] [ y ] = 0

# I T E R A T I O N S B E G I N

fo r i in range (1 , i t e r a t i o n s ) :

# FROM EXPERIENCE TO STRATEGIES

S t r a t e gyP ro f i l e = np . array ( [ [ 0 . ] ∗ n ]∗n)
f o r x in range (0 , n) :

P o s s i b i l i t i e s = [ ]
MAX = max( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] )
f o r y in range (0 , n) :

i f MAX == ( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] ) [ y ] :
P o s s i b i l i t i e s . append (y )

Play = in t (rm . cho i ce ( P o s s i b i l i t i e s ) )
S t r a t e gyP ro f i l e . i t emset ( ( x , Play ) , 1 . )

# PARTIAL TRANSFER OF KNOWLEDGE (STEP 1)
# (PHI funct i on in formal model )

Pa r t i a lTran s f e r = np . array ( [ [ 0 . ] ∗ n ]∗n)
E f f e c t i v eTran s f e r = np . array ( [ [ 0 . ] ∗ n ]∗n)
Par t i a lTran s f e r = Par t i a lTran s f e r + S t r a t e gyP ro f i l e

# EFFECTIVE TRANSFER OF KNOWLEDGE (STEP 2)

f o r x in range (0 , n) :
Propagation = 0
PropagatedPlayers = [ ]
PropagatedPlayers . append (x )
g l oba l s ( ) [ ’ CasePlayer ’+ s t r ( Propagation ) ] = np . random . cho i ce ( ( Players ) ,p

=(Par t i a lTran s f e r [ x ] ) )
whi le Propagation < n :

i f Pa r t i a lTran s f e r [ x ] [ x ] == 1 :
Propagation = n

e l s e :
i f g l oba l s ( ) [ ’ CasePlayer ’+ s t r ( Propagation ) ] in

PropagatedPlayers :
Propagation = n

e l s e :
i f Propagation == n :

pr in t (”PROPAGATION ERROR”)
e l s e :

E f f e c t i v eTran s f e r . i t emset ( ( x , g l oba l s ( ) [ ’ CasePlayer ’+
s t r ( Propagation ) ] ) , ( Delta ∗∗Propagation ) )

PropagatedPlayers . append ( g l oba l s ( ) [ ’ CasePlayer ’+ s t r (
Propagation ) ] )

Propagation = Propagation + 1
g l oba l s ( ) [ ’ CasePlayer ’+ s t r ( Propagation ) ] = np . random .

cho i ce ( ( Players ) ,p=(Par t i a lTran s f e r [ g l oba l s ( ) [ ’
CasePlayer ’+ s t r ( Propagation −1) ] ] ) )

E f f e c t i v eTran s f e r . i t emset ( ( x , x ) , 1)

# K I AND UT IL ITY MECHAN I SM

Ut i l i t y upda t e = np . array ( [ 0 . ] ∗ n)
SUM = 0
fo r x in range (0 , n) :

f o r y in range (0 , n) :
Ut i l i t y upda t e [ y ] = Ut i l i t y upda t e [ y ] + (KI [ x ] ∗ Ef f e c t i v eTran s f e r [

x ] [ y ] )
SUM = SUM + (KI [ x ] ∗ Ef f e c t i v eTran s f e r [ x ] [ y ] )

KI update = np . array ([((1 −d) /n) ]∗n)
f o r x in range (0 , n) :

KI update [ x]=KI update [ x ]+((d∗( Ut i l i t y upda t e [ x ] ) /SUM) )

f o r x in range (0 , n) :
Ut i l i t y upda t e [ x]= Ut i l i t y upda t e [ x ] − KI [ x ]
KI [ x]=KI update [ x ]
Ut i l i t y upda t e [ x]= Ut i l i t y upda t e [ x ] + KI [ x ]∗ kkk

# SETT ING EXPER I ENCE

fo r x in range (0 , n) :
PlayerXPassedTo = np . random . cho i ce ( ( Players ) ,p=(Par t i a lTran s f e r [ x ] ) )
( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] ) [ PlayerXPassedTo ] = round

( ( ( alpha ∗( Ut i l i t y upda t e [ x ] ) ) + ( ( ( g l oba l s ( ) [ ’
ExpectedReturns Player ’+ s t r (x ) ] ) [ PlayerXPassedTo ] ) ∗(1−alpha ) ) ) ,
10)

i f i % in t ( ( i t e r a t i o n s ) /20) == 0 :
t ru s t = t ru s t + 1
f o r x in range (0 , n) :

f o r y in range (0 , n) :
i f ( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] ) [ y ] != 0 :
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( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] ) [ y ] = ( g l oba l s
( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] ) [ y ] + (
I n i t i a l B e l i e f /(2∗∗ t r u s t ) )

# EXTRA (PLOTS AND COUNTERS)

tot = (sum( Ut i l i t y upda t e ) )
Onepercent = i t e r a t i o n s //10
i f i % Onepercent == 0 :

p r in t ( s t r ( i //Onepercent ∗10)+”%”)

i f i % DATAGAP == 0:
TimeList . append ( i )
f o r x in range (0 , n) :

( g l oba l s ( ) [ ’ P lotL i s t ’+ s t r (x ) ] ) . append (KI [ x ] )
( g l oba l s ( ) [ ’ PlotListU ’+ s t r (x ) ] ) . append ( Ut i l i t y upda t e [ x ] )

PlotListTotalD . append ( tot )

# R E S U L T S

f o r x in range (0 , n) :
p r in t (” Player ”+s t r (x ) )
p r in t ( ’ ExpectedReturns Player ’ )
p r in t ( g l oba l s ( ) [ ’ ExpectedReturns Player ’+ s t r (x ) ] )
p r in t ( ’ OutNeighbors Player ’ )
p r in t ( ( g l oba l s ( ) [ ’ OutNeighbors Player ’+ s t r (x ) ] ) )
f o r y in range (0 , n) :

S t r a t e gyP ro f i l e . i t emset ( ( x , y ) , round ( ( S t r a t e gyP ro f i l e [ x ] ) [ y ] , 4) )
p r in t ( ’KI ’ )
p r in t (KI )
p r in t (sum(KI) )
p r in t ( ’ S t r a t egyPro f i l e ’ )
p r in t ( S t r a t e gyP ro f i l e )

g l oba l equ i l i b r ium

equ i l i b r ium = round ( tot , 2)

p r in t (A)

i f DATAGAP < i t e r a t i o n s :

f o r x in range (0 , n) :
p l t . p l o t ( TimeList , ( g l oba l s ( ) [ ’ P lotL i s t ’+ s t r (x ) ] ) )

p l t . show ( )

f o r x in range (0 , n) :
p l t . p l o t ( TimeList , ( g l oba l s ( ) [ ’ PlotListU ’+ s t r (x ) ] ) )

p l t . show ( )

p l t . p l o t ( TimeList , PlotListTotalD )
p l t . show ( )

Connections = np . array ( [ 0 ] ∗ n)
f o r x in range (0 , n) :

Connections . i t emset ( ( x ) , ( l en ( g l oba l s ( ) [ ’ OutNeighbors Player ’+ s t r (x ) ] ) )
)

p l t . s c a t t e r ( Connections , KI )
p l t . show ( )

# C O U N T I N G L O O P S

NONCONVERGING = [ ]
LOOPS = [ ]
NONCONVERGING Players = 0
f o r x in range (1 , n+1) :

#g loba l ( g l oba l s ( ) [ ’ N ’+ s t r (x )+’ Player Loops ’ ] )
g l oba l s ( ) [ ’ N ’+ s t r (x )+’ Player Loops ’ ] = 0

f o r x in range (0 , n) :
f o r y in range (0 , n) :

NONCONVERGINGChecker vector [ x ] = NONCONVERGINGChecker vector [ x ] +
S t r a t e gyP ro f i l e [ y ] [ x ]

BigLoopsChecker . i t emset ( ( x , y ) , S t r a t e gyP ro f i l e [ x ] [ y ] )
i f NONCONVERGINGChecker vector [ x ] == 0 :

NONCONVERGING Players = NONCONVERGING Players + 1
NONCONVERGING. append (x )
f o r y in range (0 , n) :

BigLoopsChecker . i t emset ( ( x , y ) , 0)

f o r x in range (0 , n) :
f o r y in range (x , n) :

i f NONCONVERGINGChecker vector [ y ] != 0 :
LoopsChecker . i t emset ( ( x , y ) , S t r a t e gyP ro f i l e [ x ] [ y ] + S t r a t e gyP ro f i l e

[ y ] [ x ] )
e l s e :

BigLoopsChecker . i t emset ( ( x , y ) , 0)

f o r x in range (0 , n) :
i f LoopsChecker [ x ] [ x ] == 2 :

LoopsChecker . i t emset ( ( x , x ) , 0)
BigLoopsChecker . i t emset ( ( x , x ) , 0)
LOOPS. append ( s t r (x ) )
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f o r y in range (x+1, n) :
i f LoopsChecker [ x ] [ y ] == 2 :

LOOPS. append ( s t r (x )+” ”+s t r (y ) )
LoopsChecker . i t emset ( ( x , y ) , 0)
BigLoopsChecker . i t emset ( ( x , y ) , 0)
BigLoopsChecker . i t emset ( ( y , x ) , 0)

LoopsChecker vector . i t emset (x , sum( LoopsChecker [ x ] ) )

L = 0

LOOP = [ ]
SAME LOOP = False
whi le L < n :

i f sum( BigLoopsChecker [ L ] ) == 0 :
i f SAME LOOP == False :

L = L + 1
e l s e :

i f L in LOOP:
whi le l en (LOOP) > 0 :

i f L == LOOP[ 0 ] :
L = 0
LOOPS. append ( ’ ’ . j o i n ( s t r ( e ) f o r e in LOOP) )
LOOP = [ ]
SAME LOOP = False

e l s e :
NONCONVERGING. append (LOOP[ 0 ] )
de l LOOP[ 0 ]
NONCONVERGING Players = NONCONVERGING Players + 1

e l s e :
f o r x in range (0 , l en (LOOP) ) :

NONCONVERGING Players = NONCONVERGING Players + 1
NONCONVERGING. append (LOOP[ x ] )

LOOP = [ ]
SAME LOOP = False
L = 0

e l i f sum( BigLoopsChecker [ L ] ) == 1 :
i f SAME LOOP == False :

LOOP = [L ]
L = np . random . cho i ce ( ( Players ) ,p=(BigLoopsChecker [ L ] ) )
BigLoopsChecker . i t emset ( ( i n t (LOOP[ −1]) , L) , 0)
SAME LOOP = True

e l s e :
LOOP. append (L)
L = np . random . cho i ce ( ( Players ) ,p=(BigLoopsChecker [ L ] ) )
BigLoopsChecker . i t emset ( ( i n t (LOOP[ −1]) , L) , 0)

e l s e :
p r in t (”LOOPS ERROR”)

pr in t (”NON−CONVERGING: ” + s t r (NONCONVERGING) )
pr in t (”LOOPS: ” + s t r (LOOPS) )
f o r x in range (0 , l en (LOOPS) ) :

Dimension = (LOOPS[ x ] ) . count (” ”) + 1
g l oba l s ( ) [ ’ N ’+ s t r ( Dimension )+’ Player Loops ’ ] = g l oba l s ( ) [ ’ N ’+ s t r (

Dimension )+’ Player Loops ’ ] + 1

pr in t ( ’NON−CONVERGING Players : ’+ s t r (NONCONVERGING Players) )
TotalPlayersinLOOPS = 0
f o r x in range (1 , n+1) :

p r in t ( s t r (x )+’ Player Loops : ’+ s t r ( g l oba l s ( ) [ ’ N ’+ s t r (x )+’ Player Loops ’ ] )
)

TotalPlayersinLOOPS = TotalPlayersinLOOPS + ( x ∗ i n t ( g l oba l s ( ) [ ’ N ’+ s t r (x )
+’ Player Loops ’ ] ) )

p r in t (” TotalPlayersinLOOPS : ” + s t r ( TotalPlayersinLOOPS ) )

# T H E E N D
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B.2 Python Code: TESTER

# IMORT ING PAKAGES

import networkx as nx
import random as rm
import matp lo t l ib . pyplot as p l t
import numpy as np
import math
np . s e t p r i n t o p t i o n s ( suppress=True )
import matp lo t l ib . pyplot as p l t
from sympy import Eq , var , s o l v e
from c o l l e c t i o n s import Counter
import os
import c on t ex t l i b

# P A R A M E T E R S

#A = Adjacency matrix (Graph )

#alpha = Learning parameter ( p layers ’ memory)

#i t e r a t i o n s = number o f i t e r a t i o n s

#Delta = Parameter f o r knowledge t r a n sm i s s i b i l i t y

#d = Parameter f o r knowledge complexity

#DATAGAP = gap in terms o f i t e r a t i o n s between a data point and another (when making
graphs )

#rep lay s = Number o f t imes the KIA game i s repeated

# THE TESTER FUNCT ION

# This func t i on r ep lay s the KIA funct i on a predetermined amount o f t imes

de f Tester (A, i t e r a t i o n s , d , Delta , alpha , DATAGAP, r ep l ay s ) :

# S E T U P

# Set t ing bas i c neces sary va r i a b l e s
g l oba l r e s u l t s
r e s u l t s = [ ]
r = 0

# Number o f p l aye r s
n0 = len (A)

# L i s t s f o r p l o t s
PlotLOOP = [ ]

# Var iab l e s needed to count loops
PLAYERSINLOOP = 0
f o r x in range (1 , n0+1) :

g l oba l s ( ) [ ’ TN ’+ s t r (x )+’ Player Loops ’ ] = 0

# GAME REPET IT IONS

whi le r < r ep l ay s :

#the funct i on i s run in a s p e c i a l environment in order to
#avoid p r i n t i ng r e s u l t s at every r e p e t i t i o n o f the game
with open ( os . devnul l , ”w”) as f , c on t ex t l i b . r e d i r e c t s t d ou t ( f ) :

KIA(A, i t e r a t i o n s , d , Delta , alpha , DATAGAP)

#r e s u l t s are saved
r e s u l t s . append ( equ i l i b r ium )

#The number o f the game i s pr inted in order to keep track
#of the p rog r e s s e s o f the funct i on
pr in t ( ’GAME: ’+ s t r ( r+1) )

#Store the count o f p l aye r s in loops
f o r x in range (1 , n0+1) :

f o r y in range (0 , ( g l oba l s ( ) [ ’ N ’+ s t r (x )+’ Player Loops ’ ] ) ) :
PlotLOOP . append (x )

#New game !
r = r+1

# P R I N T I N G R E S U L T S

p l t . h i s t ( r e s u l t s )
p l t . show ( )
p l t . h i s t (PlotLOOP)
p l t . show ( )
pr in t ( )
f o r x in range (1 , max(PlotLOOP)+1) :

p r in t ( s t r (x ) + ”−player loop : ” + s t r (PlotLOOP . count (x ) ) )
PLAYERSINLOOP = PLAYERSINLOOP + (PlotLOOP . count (x ) ∗x)

56



Nobody Takes It All

pr in t (”PLAYERS IN LOOP: ”+ s t r (PLAYERSINLOOP) )
pr in t (”NON CONVERGING PLAYERS: ”+ s t r ( ( r ep l ay s ∗ n0 ) − PLAYERSINLOOP) )

# T H E E N D
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