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1 Introduction

Climate change is a global phenomenon that is already affecting many aspects of our lives, from

the food we eat and the water we drink, to the air we breathe and the weather we experience. As

temperatures continue to rise due to the increasing levels of greenhouse gases in the atmosphere,

extreme weather events such as heatwaves, droughts, and storms are becoming more frequent

and intense (Doblas-Reyes et al., 2021). Both higher temperatures and extreme weather has

far reaching consequences for economic growth, development and human health (Henseler and

Schumacher, 2019). In addition, climate change can exacerbate existing inequalities and hinder

the growth and development of vulnerable communities, particularly in developing countries.

Some of the most vulnerable countries are those that already today have lower incomes, here

the effects of changing environments are more salient. The salience comes from a multitude of

factors such as more fragile health, so that even small changes in environmental conditions can

have large effects on health outcomes (Woodward et al., 2014, Ebi et al., 2021). In India, for

example, the mortality of rural populations is adversely affected by higher temperatures, while US

rural populations are not affected at all (Burgess et al., 2017). A lower income also often means

that there are fewer available coping mechanisms or that the available coping mechanisms become

too risky. One example is that while the high-return option of migrating during seasonal famines

in Bangladesh exists, many individuals still do not take the option (Bryan et al., 2014).

The combination of a higher a priori fragility and fewer options available risks increasing the

already existing inequalities between low- and high-income countries. If high income countries are

anti-fragile and have access to coping mechanisms, the effects of climate change may be mutable

to some extent. The inequalities also extend to the ability for further development and economic

growth—especially if the environmental changes have effects on the ability to form human capital,

use productive land, and to build a capital stock (Fankhauser and Tol, 2005; Garg et al., 2020;

Hertel and Rosch, 2010). Human capital is an important driver of economic growth. And so far,

research has shown that environmental factors have an effect on human capital in both high- and

low-income countries. With heat, more specifically, it has been shown that heat waves lead to worse

mental health and hotter temperatures also affect learning outcomes negatively (Garg et al., 2020;

Hansen et al., 2008). Heat is not the only environmental factor that reduces human capital, similar

negative findings have been found for the effects of pollution on health and cognitive performance

(Landrigan, 2017; X. Zhang et al., 2018).

This paper presents a large-scale analysis of the effects of in utero exposure to heat on cognitive

abilities in Indonesia. The analysis uses individual-level survey data that spans from 1961 to 2014,

giving us a large sample taken born in different years. The survey includes completing a few tasks

designed to measure cognitive ability in different forms—respondents answer Raven’s progressive

matrices, test their numeracy, recall words, and continue number series. I combine the demographic
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data from the survey with the performance on the cognitive tasks and match it to weather data.

The weather, both daily average temperatures and daily precipitation, the individual has been

exposed to while in utero, is calculated through matching gridded data with the regency the

individual was born in. Using this data, I estimate a fixed effects model that allows us to create

exogenous variation in temperatures and precipitation. This exogeneity allows me to estimate the

causal effect of in utero exposure to heat. This also allows me to test a number of hypotheses

about the effect and nature of in utero exposure to heat and the effect on cognitive abilities later

in life.

I initially find an effect of heat on cognitive abilities—specifically, there’s a large negative

effect of exposure to additional days that are hotter than 29.5◦ degrees on performance in two

memory tasks, immediate recall and delayed recall. At the same time, there is no effect on general

intelligence, as measured by Raven’s progressive matrices. Then, I further investigate a model of

heat interfering with the brain development of the fetus by analysing the trimester heterogeneity

of the effects. Contrary to previous research on the health outcomes of prenatal exposure to heat,

there is no clear evidence of trimester heterogeneity (Hu and Li, 2019). However, when shifting the

focus to a critical period of prenatal brain development—corticogenesis—there is strong evidence

suggesting that being exposed to heat in utero has a large negative effect on immediate as well as

delayed recall. This result also suggest that heat, through some biological mechanism, affects the

brain development of the fetus, an effect that is non-reversible.

These results are extended by an analysis of one of the potential mechanisms that creates

this effect—the economic mechanism. Comparing rural and urban populations show that urban

populations are more adversely affected by heat, a finding that is contrary to previous literature

(Hu and Li, 2019). Digging deeper into this finding, by using employment rates in agriculture and

manufacturing, I find that the most plausible explanation for this result is that rural populations

are able to mitigate the negative effects of heat through higher incomes from agriculture during

heat. In rural regencies, a higher employment rate in agriculture in the regency an individual

is born in is associated with a lower negative effect of prenatal exposure to heat on cognitive

abilities later-in-life. On the contrary, in the same rural regencies, a higher employment rate in

manufacturing leads to worse effects from prenatal exposure to heat. Suggesting that households

that get their income from manufacturing work are worse off relative to their peers in agriculture.

In urban populations, this difference is close to non-existent—suggesting that heat affects these

populations directly and that they cannot mitigate it through increased incomes.

This paper therefore contributes to the literature on the effects of prenatal exposure to heat on

longer term outcomes. A large number of studies have investigated the health effects, by looking at

health outcomes at birth. Deschênes et al. (2009), and more recently Conte Keivabu and Cozzani

(2022), McElroy et al. (2022), and Bekkar et al. (2020), find negative effects of prenatal exposure
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to hot days on birth weight as well as on the likelihood of preterm births and stillbirths.1 Even

more recently, further studies have shown that these birth outcome effects extend to later in life.

The long-term effects of hot weather on income and educational attainment has been shown

to be negative by Isen et al. (2017) that use US data to find a negative effect on annual income

and by Fishman et al. (2019) that use data from Ecuador to show that a 1◦ C increase in average

temperature during pregnancy reduces both future income and educational attainment for the

child. Hu and Li (2019) extend this research by looking at both educational attainment and

later-in-life health, they find similar results and they also provide evidence in favor of an income

mechanism. So far, there has only been one positive result, Wilde et al. (2017) find that higher

average temperatures during conception leads to higher educational attainment and literacy, an

effect that likely arises due to fetal selection. This literature weakly suggests negative effects on

cognition, since studies have shown that cognition is a strong predictor for educational attainment,

however there is little direct evidence of this effect as it may be that the effect on educational

attainment arises only from poorer health (Guerra-Carrillo et al., 2017). Adhvaryu et al. (2015)

investigate the relationship between in utero exposure to heat and mental health, and find that

a higher temperature in the year before birth is positively associated with a higher likelihood of

depression later in life.

To this day, little work has been done on the cognitive effects of in utero exposure to heat. Ku-

ate et al. (2021) investigate the relationship between monthly average temperatures experienced

while in utero and cognitive aging, they find that there’s a relation between temperatures and

higher cognitive aging. However, they find that the effect is positive for the lowest and highest

temperatures, while average temperatures are negative—leading to a U-shaped effect over temper-

atures. In comparison, this study uses daily average temperatures, which makes sure that eventual

nonlinearities are not left out and allows me to find the effects of short-term exposure to hot tem-

peratures. The more precise data also allows me to pinpoint critical brain development phases,

to get more precise estimates of vulnerability. There is also a focus on a younger population in

this paper, the mean age in our sample is 26.57 years, which gives valuable insights into the effects

on the working population in a period of their life that they are supposed to be at their highest

cognitive ability and the most productive.

This paper also contributes to the wider literature on the relationship between early-life condi-

tions in general and later-in-life outcomes.2 Very rare shocks early in life have been well-studied,

such as the effects of the Chernobyl disaster, the spanish influenza pandemic, and the Korean war

(Almond, 2006; Almond et al., 2009; Lee, 2014). Less rare events such as famines and hurricanes

have also been studied (Chen and Zhou, 2007; Currie and Rossin-Slater, 2013). The effects on

long-term outcomes are in most cases negative, even though these shocks are less generalizable due

1For a review of the epidemiological literature on heat and birth outcomes, see Y. Zhang et al. (2017)
2See Almond and Currie (2011) as well as Almond et al. (2018) for comprehensive reviews of the literature.
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to their rareness. More recently, the literature has been starting to study the effects of more com-

mon shocks in early life. Using data from Denmark, Schwandt (2018) shows the long-term effects

of in utero exposure to the flu and finds that earnings decrease. Similarly, studies using prenatal

exposure to pollution find that cognitive ability, educational attainment, and health are all affected

adversely (Bharadwaj et al., 2017; Landrigan, 2017). Among the more positive examples, there are

Maccini and Yang (2009) who find that early life rainfall increase educational attainment. This

analysis complements this rather broad literature by exploring the effects of prenatal exposure

to heat on cognitive performance, another critical factor in development, economic growth, and

later-in-life outcomes.

Through the focus on cognitive abilities and brain development, the analysis also contributes

to the neuroscientific and neuro-developmental literature that has previously been able to show

in detail that several species of mammals are negatively affected by prenatal exposure to heat as

well as other factors such as influenza and pollution (Hinoue et al., 2001; Short et al., 2010). M.

Edwards (1969), M. Edwards et al. (1971), M. Edwards et al. (1974), and Upfold et al. (1989)

show that prenatal exposure to heat has a causal effect on the brain weight, brain growth, the

risk of microencephaly and learning capabilities of guinea pigs. Similar results have been found for

pregnant mice that were exposed to brief hyperthermia, as their offspring were slower to learn than

their counterparts (Shiota and Kayamura, 1989). More specifically, Hinoue et al. (2001) found that

brief exposure to hyperthermia while in utero led to interference in the production and migration

of neocortical neurons. Chang et al. (2011) also find that brief heat exposure leads to increased

neuronal apoptosis in the hippocampus. These effects have also been shown to depend on the

timing of the exposure (M. J. Edwards et al., 2003; Hinoue et al., 2001). Even though these effects

have been established for animals, there is no direct evidence of a similar effect in humans and

there is also reason to expect that the effects need not be similar in humans and mice or guinea

pigs both due to the brains being too dissimilar and due to the experimental conditions being too

far from the type of conditions that most human fetuses experience.

The rest of this paper is organized as follows. Section 2 discusses the background for the hy-

pothesis of the paper as well as some potential mechanisms an effect could arise through. Section 3

describes the data sources, the key variables, and reports summary statistics. Section 4 shows the

empirical method our analysis uses and Section 5 reports the main results of the paper. Section 6

extends and discusses the main results and Section 7 concludes.

2 Background

The causal theory that underlines the analyses in this paper is based on the recorded effects of

heat on pregnant mothers, the brain development of fetuses, and on the health and human capital

outcomes of exposed fetuses. There’s evidence of an effect of prenatal exposure to heat on the
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health of the fetus, leading to reduced birth weight, increased risk of stillbirth, and later-in-life

height (Bekkar et al., 2020; Conte Keivabu and Cozzani, 2022; Hu and Li, 2019). There’s also

solid evidence on the effect of heat on the health and stress of the mother (Beroukhim et al., 2022;

Weinstock, 2008; Y. Zhang et al., 2017). Finally, the evidence from the effect of heat exposure on

the brain development of mice and guinea pigs suggests a third effect of heat—interference with

the brain development of the human.

I therefore hypothesize that prenatal exposure to heat affects the brain development of the

human fetus. Further, this interference, due to happening in vital periods of brain formation, may

have long-lasting and, potentially, non-reversible effects that affect the cognitive abilities of the

exposed fetus when they are adults. The long-lasting and non-reversible effects of brain develop-

ment interference have been recorded for multiple other factors, such as for prenatal exposure to

alcohol and pollution (Welch-Carre, 2005; X. Zhang et al., 2018).

Biologically, there are a few plausible mechanisms through which the negative effect of prenatal

exposure to heat on brain development can arise. The first mechanism is a direct interference with

cell migration, proliferation, and apoteosis that is caused by increased heat, i.e. heat disturbs the

normal functioning of the processes that create and migrate brain cells. This process is what is

indicated in the mice and guinea pig studies (Chang et al., 2011; M. J. Edwards et al., 2003; M.

Edwards et al., 1974; Hinoue et al., 2001; Shiota and Kayamura, 1989). Cell migration and prolif-

eration start to happen in the human brain development during the beginning of corticogenesis—a

period starting approximately 7 weeks after conception. This period is critical for the formation of

the cerebral cortex, which includes the frontal cortex and the neocortex—both critical for human

cognition (Hawkins et al., 2017; Reilly et al., 2015).

Another plausible biological mechanism arises through prenatal stress exposure. A multitude

of studies on both animals and humans have shown that increased activation of the hypothala-

mic–pituitary–adrenal (HPA) axis leads to an increased level of cortisol in both the mother and

the fetus. The excess cortisol can affect fetal growth and brain development. More specifically,

animal studies have shown that exposure prenatal stress led to higher cortisol levels, interference

with neurogenesis, and smaller hippocampuses in the fetuses (Charil et al., 2010; Coe et al., 2003;

Weinstock, 2008). Another plausible mechanism involving the HPA axis is the concentration of

placental corticotropin-releasing hormone (CRH). Prenatal stress activates the HPA axis, which

produces CRH in the placenta. The CRH reaches the fetal brain, activating CRH receptors in

the hippocampus and other brain areas rich on CRH receptors, such as the frontal cortex, and

thus causing interference in brain development (Charil et al., 2010). Finally, a third plausible

biological mechanism is the effect of nutritional deficiencies on brain development. The develop-

ment of the brain is an expensive process, both in terms of energy and in terms of the material

needed. Therefore, nutritional deficiencies during the prenatal period can have negative effects on

cognitive ability later in life (Georgieff et al., 2018). A number of nutrients have been shown to
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be of importance in brain development, such as iron, zinc, folate, and choline (Zeisel, 2006). If

heat leads to nutritional deficiencies, then this may be a plausible mechanism through which heat

affects the cognitive abilities of fetuses.

Even though all three of these potential biological mechanisms are directly affecting the brain

development and brain functioning of the fetus, we can separate them into two separate categories

to more easily refer to them. The mechanism of nutritional deficiencies can be characterized by its

indirect character—it mainly arises if the mother’s income or behavior is affected, which can create

insufficient nutrient intake. The effects on cell proliferation, migration, or apoteosis, on the other

hand, may arise only through the simultaneous exposure to heat. The prenatal stress mechanism

can be classified as both an indirect and a direct effect, as there’s evidence that the HPA axis is

activated both by psychological stress factors and, potentially, by heat itself (Gaab et al., 2005;

Joseph and Whirledge, 2017). Heat can directly create the indirect effects—of prenatal stress

and nutritional deficiencies—through either directly increasing the psychological or physiological

stress on the mother or through affecting the income of the mother, which can affect the mother

psychologically and by reducing her endowment to be spent on nutrition. The direct effects are

hard to test for, as the data does not include biological markers such as brain weight or cortisol level

measures. However, the economic effect, meaning the effect on prices, incomes, budget constraints,

and return, is more salient.

Figure 1: The causal graph of how prenatal exposure to heat affects cognitive abilities

Note: This graph shows the mechanisms through which prenatal exposure to heat can affect later-in-life cognitive
abilities. Overall, one can separate the three pathways into direct (blue paths) and indirect paths (red paths).
Prenatal stress and nutritional deficiencies arise through heat first affecting the mother. Cell proliferation and
migration, as well as prenatal stress are direct effects on the fetus. All three effects affect the formation of the fetal
brain, which has negative effects on later-in-life cognitive abilities.

The causal theory is summarized in Figure 1. Based on this model of heat affecting the brain

development of the fetus and thus affecting the fetus’ cognitive abilities later in life, there are a

few hypotheses that are testable. First, the hypothesis that there is a causal link between prenatal

heat exposure and cognitive abilities later in life. Second, if this effect is due to interference in the

prenatal brain development process then we would expect a larger effect during critical periods
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of brain development, which is tested through examining the effect of exposure to heat during

corticogenesis. These analyses and tests are presented in Section 5 and then complemented with

additional analysis in Section 6.

3 Data

To investigate the relationship between heat exposure in-utero and cognitive ability later in life, we

created a comprehensive Indonesian individual-level data set for the period between 1961 - 2007.

We combined gridded daily average temperature and precipitation data for the 522 regencies and

cities in Indonesia with data from the Indonesian Family Life Survey (IFLS) to create a data set

with individuals that are born in different periods of time in 229 different regencies. This will allow

the analysis to look at the differences between individuals born in the same district at different

times.

Indonesia has 4 different administrative levels—Provinces (level 1), Regencies (level 2), Counties

(level 3), and Villages (level 4). The second level, regencies, is used for identification. In principle, it

could have been possible to use counties as well though that would reduce the power of subsequent

regressions by too much. 3

3.1 Weather

Previous studies have shown that non-linearities are common in the relationship between tem-

perature and health outcomes (Burgess et al., 2017; Hu and Li, 2019). To not exclude these

non-linearities a priori, daily average temperature data is used in this paper. Monthly or even

weekly aggregated data does not suffice for identification of the non-linearities. The ideal setup for

the weather data would have been to use data from weather stations in each regency. In reality, it

would have been close to impossible to create a large scale complete weather data set from Indone-

sian weather stations. The weather stations in Indonesia are sparse and they are often missing

data from much of the time series we are interested in.

Therefore, I use daily weather data gridded on a 0.25◦ (longitude) × 0.25◦ (latitude) grid.

The data comes from the Asian Precipitation - Highly-Resolved Observational Data Integration

Towards Evaluation of Extreme Events (APHRODITE) project that creates gridded data sets of

precipitation and temperatures over all of Asia. The specific data sets used are the Monsoon

Asia daily average temperature and precipitation data sets. The gridded fields are defined by

interpolating observations that are obtained from meteorological and hydrological stations across

the region. This is done on a 0.05◦ (longitude) × 0.05◦ (latitude) grid that is then re-gridded to the

0.25◦ (longitude) × 0.25◦ (latitude) grid that I use in the analysis (Yasutomi et al., 2011; Yatagai

et al., 2012). The data sets start in 1961 and includes data until 2007.

3See Table 1 below for summary statistics and Figure 2 for a distribution of daily temperatures.
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The gridded datasets do not offer a simple way of connecting individuals with the weather they

experience while in-utero, since there is no exact location data in the IFLS surveys. Instead, I

use a shapefile of the administrative boundaries. The shapefile contains multipolygon coordinates

for each regency in Indonesia, this allows me to match the grid coordinates to the mulipolygon

coordinates. From this match, I calculate the daily average temperature in a district by calculating

the weighted average of all the grid cells covering the regency. The weights are determined by how

much of the grid cell that is covering the regency (Hijmans et al., 2022).

When the data has been interpolated to the regencies, we create a number of variables to be

used in analyses. The daily average temperature variable is divided into 6 different bins, < 21.5◦

C, 21.5−23.5◦ C, 23.5−25.5◦ C, 25.5−27.5◦ C, 27.5−29.5◦ C, and > 29.5◦ C. For each individual,

I count the number of days in each bin in their regency while being in utero. I use these bins to be

able to catch as much of the non-linearities as possible without loosing too much power. Further,

as previous literature on the relationship between in-utero exposure to heat and health have shown,

the trimester in which the exposure happens may matter and thus I also divide the count of days

in each bin into the three trimesters (Basu et al., 2010; Bekkar et al., 2020).

I define conception to be 270 days before the birth date. As this is not an exact date, this

means that there will be some measurement error in the weather variables as there is a possibility

of missing some days in the case of late births or including some days that should not be included

in the case of early births. The same problem arises when defining the trimesters. I have defined

the first trimester to be from conception until 12 weeks later (84 days) and the second trimester

to be from the end of the first trimester until 13 weeks later (94 days).

With precipitation, I create a variable that sums the total precipitation exposed to while in-

utero for each individual. Here, I also create a sum for each trimester. I then create the natural

log of the sums to use them in the analysis.

3.2 Indonesian Family Life Survey

The IFLS is an on-going longitudinal survey in Indonesia that is representative for 83% of the In-

donesian population. The surveys are ran by RAND in collaboration with the Research Population

Center, University of Gadhja Mada, and the first wave of the survey was conducted in 1994 and

the fifth wave was conducted in 2014-2015. I use data from the final three survey waves, IFLS3-5,

as they are the only waves that include data on cognitive abilities (Strauss et al., 2004; Strauss

et al., 2016; Strauss et al., 2009).

The surveys obtain data of interest for all adults above 15 years old in the sample. From this

main sample, I restrict the data to only include those individuals that have not moved since they

were born. This insures that I do not attribute the weather of the regency they currently live in

to the weather they were exposed to while in-utero. This still leaves out the possibility that some
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Figure 2: Daily average temperatures in Indonesia between 1961 and 2007

Note: The temperature data is taken from the APHRODITE project (Yasutomi et al., 2011; Yatagai et al., 2012).

mothers may have moved during the pregnancy, though the likelihood of that happening seems

negligible. In total, this leaves me with a sample of 17,371 individuals from 229 regencies. The

birth years of the sample range from 1961 to 1999. Sample summary statistics are found in Table 1.

The outcome variables of interest are those that measure cognitive abilities in some way. Start-

ing from IFLS3, the surveys include a module called EK. This module is completed by all 7-24 year

olds in the sample and it is a test with 22 questions that tests pattern-matching and mathematics,

I remove the mathematics-questions and create a variable only based on pattern-matching skill.

Appendix section A shows a sample of the type of questions asked in module EK. The questions

asked are akin to Raven’s progressive matrices, which means it tests fluid intelligence (Strauss

et al., 2016).

Further, IFLS4 and IFLS5 include a module on memory in Book B3B which each individual

older than 15 is supposed to complete. In the module, the individual is given a list of 10 words

which are then repeated back to the interviewer. (See appendix section A for the word list in IFLS5)

First directly and then with a delay, consisting of completing another module of the survey. This

gives us a measure of both direct memory and long-term working memory for each individual above

15 that completed IFLS4 or IFLS5. This measure helps me highlight another aspect of cognitive

performance that affects human capital formation and productivity. Engle et al. (1999) argue

that word recall, especially delayed word recall, can be used to determine working memory (WM)

capacity. They also find that WM predicts fluid intelligence, as measured by Raven’s progressive

matrices and Catell Culture Flair Test. Additionally, theories of memory and learning, such as the

10



cognitive load theory, suggest that working memory is a key component in the ability to learn and

acquire skills and knowledge (Sweller, 2010). A large literature suggests that improving working

memory also improves learning outcomes and educational outcomes, though I could find no studies

suggesting that regular education causally increases working memory (Cowan, 2014). If that is the

case, then memory measures serves as a good outcome variable that is not mediated by educational

attainment.

Finally, in IFLS5 an additional cognitive capacity test was included in Book B3B. In this version,

the respondents were given sequences of 4 numbers with one number left out. The respondents had

to fill in the missing number. The test was created in collaboration with Dr. John McArdle, who

also created a scoring algorithm that scored each respondent based on their result on this module

(Strauss et al., 2016). This gives me two alternative measures of pattern-matching ability. Since

this module was only included in IFLS5, the number of observations for this measure are low and

all analyses using these measures are reported in the Appendix (See Table B.1).

From the IFLS I also obtain data for control variables such as parents’ level of education,

parents’ age at birth, age, birth year and month, location, education, ethnicity, gender, and the

number of siblings.

3.3 Indonesian Census

The Minnesota Population Center (2020) provides the Integrated Public Use Microdata Series, a

set of census microdata from all over the world.4 The Indonesian data includes censuses made in

1976-2010, in five year intervals. Full censuses are performed only every tenth year, and in between

inter-censal surveys are performed. In total, the sample includes more than 55 million people. In

each census, respondents are chosen randomly in each strata and then they are asked questions

about family situation, employment, and more. In the analysis of potential mechanisms, I use

the employment data from each census. More specifically, each respondent in the census records

their occupational status. The occupation the respondent has is recoded, roughly, according to

the International Standard Industrial Classification (ISIC). This allows me to construct variables

of employment rate in key industries in each regency of our sample.

I match each individual with the employment statistics of the regency they were born in. Due

to the censuses only being performed every 5 years, I match the employment statistics taken closest

in time to the birth year of the individual. In this way, the employment variable comes as close as

possible to representing the state of the labor market at the time of birth.

4I also wish to acknowledge the statistical offices that provided the underlying data making this research possible:
BPS Statistics Indonesia, Indonesia.
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3.4 Summary Statistics

Table 1 summarizes the data used in the analysis. The main outcome variables used are immediate

recall, delayed recall, and EK score. The average individual in the sample recalls just under 5.8

(out of 10) words directly after having heard them and after a slight delay (on average 2 minutes)

they recalled just under 4.9 (out of 10) words. In the EK cognitive assessment, the average sample

respondent had 6.3 correct answers out of 8 possible. On the cognitive assessment with number

series, COB Score, the average individual in our sample answers correctly 3.2 times out of 7.

In regards to the exposure to temperatures, the summary statistics show us that there is quite

little variation. Most of the prenatal days are spent in temperatures ranging between 23.5−27.5◦C.

On average, an individual in the sample is only exposed to one day hotter than 29.5◦C and the

median individual exposure is zero days above 29.5◦C.5 Across the entire weather sample, from

1961 - 2007, the daily average temperature was 25.57◦C and the daily average precipitation was

4.78 millimeters.6

The individual characteristics show us that the sample skews younger, with an average age of

24. Further, the average individual has close to 3 siblings and has attended at least 6 years of

school.7

4 Empirical Method

To identify the causal effect of in utero exposure to heat on cognitive ability later in life, the model

exploits the plausibly random variation in temperature for any given regency and year. There are

some potentially confounding variables in the unobserved differences between regencies and years,

but these are accounted for by using using the following fixed effects specification:

Yirym =

6∑
j=1

βjDaysjiry + γPrecipiry +X ′iδ + λry + ηrm + θym + εirym (1)

This specification captures the presumed heterogeneity in the effect of temperatures on cognitive

abilities, where Yiry denotes the outcome variable (e.g., measures of cognitive ability) for individual

i, in regency r, born in year y. The variables of interest here are the six Daysjiry that count the

number of in-utero days in each of the eight temperature bins in regency r within year y. I use

Precipiry, the natural logarithm of precipitation while in-utero in regency r within year y, as a

weather control. Including precipitation, which likely correlates with temperature and that may

also have an effect on cognitive ability (Maccini and Yang, 2009), is necessary to avoid bias in

the variables of interest, though I will not take any particular interest in the effect of rainfall

5This is quite low, e.g the individuals in the sample of Hu and Li (2019)) experience approximately 53 days over
29.5◦C on average.

6See Figure 2 for the entire distribution of temperatures
7Primary school for 6 years was made fully mandatory in Indonesia in 1984, by 1994 this was extended to include

secondary school for a total compulsory education of 9 years (Lewis and Nguyen, 2020).
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during pregnancy on cognitive abilities. X ′i is a vector of control variables including the age of the

parents at birth, the parents’ educational attainment, the age of the individual, the ethnicity of

the individual and the number of siblings the individual has.

The specification uses three two-way fixed effects to control for unobserved variables—Regency-

by-year, regency-by-month, and year-by-month. λry denotes regency-by-year fixed effects which

control for nonlinear changes that may affect the human capital formation of individuals born in

the regency. For example, Indonesia adapted the 1970s Sekolah Dasar INPRES program during

our sample, which affected human capital formation in regencies nonlinearly (Duflo, 2001). ηrm

denotes regency-by-month fixed effects which control for factors that may be correlated with both

temperature and early development such as seasonal employment. These factors are most likely

county- and month-specific. And θym denotes year-by-month fixed effects that control for year-

specific shocks that affect all counties. An example of this type of shock is the Asian economic crisis

in the 1990s, which affected Indonesia severely. These three sets combined with the precipitation

controls isolates the plausibly random fluctuations in temperatures in a given regency for each year

and month. This random fluctuation is what gives identification to the study.

The main specification for the overall effects during the entire pregnancy is eq. (1). How-

ever, previous studies on the relationship between health and temperature exposure in utero have

shown that there may be considerable heterogeneity in the timing of the temperature shocks as

well. Therefore, I complement the main results with an additional specification making use of the

pregnancy trimesters.

Yirym =

3∑
a=1

6∑
j=1

βjaDaysjairy +

3∑
a=1

γPrecipairy +X ′iδ + λry + ηrm + θym + εirym (2)

This is essentially the same specification as eq. (1), but now each bin has three instances, one

for each trimester a of the pregnancy. The same goes for the precipitation variable. Further,

previous neuroscience and biology research on the negative effects of different conditions on brain

development have shown that the period of corticogenesis, i.e the period where the cortical regions

of the brain are formed, is especially sensitive to different stressors (Kostović and Judaš, 2015).

Therefore, I run a third specification where I divide the pregnancy into two periods a, corticogenesis

and non-corticogenesis.

Despite these specifications and the set of three twoway fixed effects, there is still some concerns

abut coefficient bias that remain in the data. First, there’s a concern about migration. Even

though the sample is made up of individuals whose families have not moved outside of their

regency since their first child was born, it is still possible that some pregnant mothers have moved

during pregnancy or spent significant time outside of the regency where the family is living during

pregnancy. This we cannot control for, but it may affect the results slightly. Second, the dates

of birth in the sample are inaccurately measured, due to many families in Indonesia not having
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access to their birth certificates. This inaccuracy leads to coefficient bias if the inaccuracies are

not randomly distributed in the sample. Unfortunately, there is no way of testing this possibility.8

Another factor related to birth dates that may lead to coefficient bias is the recorded issue of high

temperatures affecting the length of the gestation period (Basu et al., 2010). These effects also seem

to be larger in the third trimester, though the evidence is somewhat inconclusive (Conte Keivabu

and Cozzani, 2022). If that is the case and pre-term delivery is correlated with worse cognitive

abilities later in life, then this would bias the estimated coefficients on temperature shocks in the

later stages of the pregnancy downwards. At the same time, this would make me set the time

of conception too early, effectively making me over-count the exposure to heat while in utero—

leading to an over-estimation of the effects during early pregnancy. There is unfortunately no way

to measure the true gestation length from the data, and therefore one should interpret the results

with these limitations in mind.

5 Results

This section reports the estimated effects of in utero exposure to heat on cognitive ability. The

main outcome variables are referred to as Fluid Intelligence (EK Score), Immediate Recall, and

Delayed Recall. The main results, using Equation (1) as specification, are presented in Figure 3.

All three of these models are estimated with the full set of controls and the standard errors are

clustered at the Regency-level throughout. These initial estimates show that the exposure to an

additional day with temperature above 29.5◦C has a negative effect on immediate as well as delayed

word recall—the effect on fluid intelligence, on the other hand, is slightly positive.

5.1 Fluid Intelligence

The first outcome of interest is the fluid intelligence measure from Book EK in IFLS. Table 2

reports the results from the regressions with the standardized number of correct answers on the

eight common Raven’s progressive matrices. Column (1) and (2) reports the effect when only

taking exposure to the hottest days into account. The point estimates are slightly positive, but very

inaccurately estimated. Common to all specifications is that including the individual characteristics

controls decreases the estimates slightly, while having very small effects on the standard errors.

When all of the bins are included, with bin 3 (23.5 − 25.5◦C) as a reference point, in column (3)

and (4) the estimates for the hottest days increase slightly. These results show the non-linear

nature of temperature exposure, where the temperature bins that are below 29.5◦C have much

smaller effects. This corroborates previous results from Burgess et al. (2017), Hu and Li (2019),

and Adhvaryu et al. (2015) that also show the non-linearity of the effect of temperature exposure.

Finally, in the last two columns, (5) and (6), the estimates show that there is a positive effect

8A priori, it seems unlikely that the measurement error is randomly distributed.

14



Figure 3: Total effects

of exposure to hotter days in all the trimesters—though without controls exposure in the second

trimester has a larger effect. I also estimate the same specification, but using the score on COB and

the W-ability score as outcomes instead. The results of these estimations are found in Table B.1,

and they are very similar to the results in Table 2.

Under the assumption that there is a negative effect on cognitive ability, these first results

are somewhat surprising. Especially as Kuate et al. (2021) find that their measure of cognition

is negatively affected by an increase in average ambient temperatures while in utero. However,

their z-score variable is constructed from a number of different tasks, such as immediate word

recall, delayed word recall, number skips, and orientation questions, i.e their cognition measure

does not include a measure for fluid or general intelligence. Raven’s matrices are generally seen as

a good way to measure intelligence without too many disturbing factors such as cultural differences

(Brouwers et al., 2009). However, as shown in Section 2, there may be brain region specific effects

of prenatal exposure to heat, meaning that some cognitive capacities are affected by the exposure,

while others remain unaffected.

5.2 Memory

Another important part of cognitive ability and performance, and certainly of human capital

formation, is memory (Cowan, 2014; St Clair-Thompson et al., 2010). Importantly, Chang et al.

(2011) find that prenatal exposure to heat in mice leads to increased neuronal cell death in the

hippocampus—a brain area that is important for memory functions—and worse performance on

learning tasks (Eichenbaum et al., 1999). There is thus a precedence in studies on animals for a
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Figure 4: Trimester effects

negative effect on memory, though generalizations across species are not sure to hold.

Table 3 reports the estimated effects of prenatal exposure to heat on the normalized performance

in the immediate word recall test. The performance on the immediate word recall test is measured

by having a list of 10 words read to each individual and right after the initial reading the individual

is going to repeat as many of the words as possible. Thus this measure reasonably measures the

short-term memory capacity of each individual. In column (1) and (2) the estimated effect of the

total number of days over 29.5◦C degrees exposed to while in utero is shown. The effect is more

negative and significant with controls and it shows that one additional hot day while in utero

decreases performance on the immediate word recall by .016 standard deviations. The effect size

is similar when comparing all of the temperature bins in columns (3) and (4). The nonlinear effect

of temperature is shown in that it is only the hottest days that have a significant effect, the other

bins are not significant and the effects are very close to 0. In column (5) and (6) the hottest days

in each trimester are compared to each other. Column (6), where controls are included, shows

tentative evidence that the effects of exposure to hot days is larger in the first two trimesters but

the estimates are not very accurately estimated.

The estimates for Equation (2), where all bins from all three trimesters are included, are

reported in Figure 4. The plot shows a central problem when using this dense specification, where

the full set of 15 bins are included. The variation in the data is not enough to estimate the

parameters with sufficient accuracy. The immediate and delayed recall estimates show negative

effects for additional days in the 6th bin, while other estimates are close to zero.

Though short-term memory likely has some implications for human capital formation and pro-
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ductivity, there are stronger links between working memory and human capital formation (Cowan,

2014). Short-term memory differs from working memory, in most accounts, by only being about in-

formation storing—typically only for a few seconds. Working memory, on the other hand, involves

both information storing and an attention component—which allows working memory to store

and use information over a longer period of time (Baddeley, 2012; Engle et al., 1999). Therefore,

working memory seems to be a more important component to activities such as planning, creating

strategies, and solving complex problems, than only short-term memory. Table 4 reports the effects

of prenatal exposure to heat on the standardized score on delayed word recall, a commonly used

task to measure working memory capacity (Engle et al., 1999).

Broadly, the results in Table 4 are similar to the results in Table 3 with slightly smaller effect

sizes across the board. In columns (1)-(4), the estimates for the 6th bin are all negative. The

estimate in column (4), where controls are included, implies that exposure to one additional day

hotter than 29◦C leads to getting a .017 standard deviations lower score on the delayed word recall.

In column (5) and (6), the hottest days in each trimester are compared. None of the estimates

are significant, but all effects are negative. Further, the estimate for the hottest days in the third

trimester is larger than the other estimates—this is contrary to the point estimates in columns

(5) and (6) in Table 3 which suggest that exposure in the first and second trimesters have larger

effects.

Overall then, the results when using the two word recall tasks as outcomes indicate a negative

effect of prenatal exposure to heat. The results imply that prenatal exposure to one week of days

hotter than 29.5◦C lead to a 0.14 standard deviation decrease in immediate recall performance

and a 0.11 standard deviation reduction in delayed recall performance. Compared to Kuate et al.

(2021), who find that moderate temperatures are worst for cognition when aging, we find that

the hottest temperatures have negative effects. Though, it is important to note that Kuate et al.

(2021) only have average temperatures in the range of 17 − 25◦C, which means that they miss

the nonlinear effects of hotter temperatures and they also use average temperatures during the

entire pregnancy rather than daily average temperatures. Instead, these results are more similar

to Hu and Li (2019) and Adhvaryu et al. (2015) who find that the effects on health and mental

health are larger the hotter the temperatures. Hu and Li (2019) also find that the effects on

health outcomes is largest during the first trimester, while for educational outcomes the effects

are larger in the second trimester. The results presented here indicate a similar importance of the

first trimester for immediate recall, while the third trimester has the largest coefficients for delayed

recall. The effects are not significant though, and therefore I cannot draw any strong conclusions

about trimester heterogeneity. However, under the hypothesis that heat exposure affects cognitive

abilities through affecting brain development, using trimesters to gauge timing heterogeneity may

not be the best method. Therefore, I now turn to investigating the effects of being exposed to heat

while in the critical period corticogenesis.
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5.3 Corticogenesis

As previously discussed, in Section 2, one of the potential mechanisms through which a negative

effect on cognitive ability may appear is the direct effect of increased heat on the brain formation

of the fetus. This is hard to test for directly, as I have no measures of brain weight or the like.

Yet if there’s increased damage on the brain from heat exposure during critical brain formation

stages, then one would expect hotter days to have a larger negative effect during those development

stages than when less critical brain formation is happening. Therefore, I estimate Equation (2) but

with corticogenesis and non-corticogenesis as periods rather than the trimesters of the pregnancy.

Corticogenesis is a period roughly between the gestational weeks 7 and 18 during the fetal develop-

ment in which the structure and neuronal content of the cerebral cortex is formed through neural

proliferation and migration. Between postconceptional weeks 7 and 14, the cortical plate is formed.

It is through this plate, or mold, that radial glial cells and neurons can form and, later, migrate

from. The period from week 14 until week 18 is characterized by the addition of more neurons

and the initial formation of synaptic connectivity (Kostović and Judaš, 2015). Towards the end of

corticogenesis, in mid-gestation, the hippocampal and entorhinal areas start to differentiate—two

areas that are important for memory (Eichenbaum et al., 1999; Takehara-Nishiuchi, 2014). Due to

this important developmental period, which forms the base of subsequent cerebral cortex develop-

ment, and the evidence that neuronal proliferation and migration can be damaged by heat stress

from Hinoue et al. (2001) and M. J. Edwards et al. (2003), investigating this period more closely

can give evidence of potential direct effects.

The coefficients from the estimation using cortogenesis and non-cortogenesis as periods are

presented in Table 6. Columns (1) and (2) use EK score as the outcome variable. The coefficients

here are similar to the coefficients in Table 2, no significant results and the estimated effects for the

hottest days are slightly positive. In column (2), there’s a slightly larger effect on fluid intelligence

during corticogenesis than outside of corticogenesis. The positive, though quite small, effect on

fluid intelligence is surprising and it may indicate that the fetal brain development is interfered

with in some regions of the brain and aided in other regions of the bran at the same time by heat

exposure.

Columns (3) and (4), on the other hand, use immediate recall as the outcome variable. The

coefficient on days in bin 6 during corticogenesis is significantly negative, both in terms of effect

size and it is statistically significant at the .1% level. A cleaner comparison to exposure to heat

outside of corticogenesis is given in column (4), where both periods are included. Exposure to

hot days has a significantly larger negative effect if it occurs during corticogenesis, the effect

is more than 4 times as large compared to exposure outside of corticogenesis. The estimated

coefficients in columns (5) and (6), where delayed recall is used as the outcome, are very similar.

Again, the coefficients imply that exposure to one additional day above 29.5◦ degrees has a large
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negative effect, as long as the exposure occurs inside the period of corticogenesis. When the fetus is

exposed outside of corticogenesis, the effect is still negative but much smaller and not statistically

significant. The estimates imply that exposure to a week f days with average temperatures above

29.5◦C, while in utero and during corticogenesis, leads to a 0.37 standard deviation decline in

performance on immediate recall and a 0.27 standard deviation decline in performance on delayed

recall. To facilitate comparisons between the estimates on the hottest days from both inside and

outside corticogenesis, from columns (2), (4), and (6), are plotted in Figure 5.

Figure 5: Corticogenesis

This final set of results provide evidence in favor of the hypothesis that the brain development

of the fetus is harmed when the mother is exposed to heat while pregnant.9 However, it may

still be that the negative effect arises as a result of economic effects during corticogenesis. It may

be that reduced incomes lead to psychological stress or a reduction in nutritional intake, which

can affect brain development, and this possibility still exists even though we have shown that the

negative cognitive effects are larger during corticogenesis. That is why I in the next section try to

provide some evidence on some potential mechanisms and heterogeneities in the effects.

6 Discussion

In this section I present additional evidence and robustness checks for the previous results. Despite

the above evidence on the cognitive effects of prenatal exposure to heat, a few question remains.

First, I provide some evidence on one of the potential mechanisms—the economic mechanism. Un-

9It is important to note that corticogenesis necessarily overlaps with many other important processes in brain
development and we should not immediately conclude that heat affects or interferes with corticogenesis.
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fortunately, the data does not permit me to further explore the direct biological mechanism nor the

indirect biological mechanism. After that, I provide some robustness checks and an investigation

of the possibility that cognitive ability is affected by exposure to heat before conception and after

birth.

6.1 Potential Mechanisms

I have no data on the incomes and economic changes in each regency when there’s a hot day—

however, using the rural-urban distinction as well as employment in different industries across

regencies, I investigate the economic pathway. (See Figure 1 for the causal graph) Previous re-

search has shown that urban populations are less affected by heat, plausibly due to having better

opportunities to mitigate and avoid heat as well as being richer in general. Crucially, many in

the urban environment also work in industries that are not affected much by weather (Hu and Li,

2019). On the other hand, rural populations often work in agriculture which is more affected by

weather. If heat affects the economic situation, one would then expect that rural populations are

more affected.

Comparing the effect of prenatal exposure to heat between rural- and urban-born individuals

can thus provide a test of the expectation that rural populations are more strongly affected by

heat-exposure. This test is carried out by estimating eq. (1), with additional interactions between

each bin and the indicator variable for being born in a rural-regency. Since previous results have

shown that there are no clear effects of prenatal exposure to heat on fluid intelligence, I limit the

further investigation to immediate and delayed recall. The results of the estimations are presented

in Table 6. To facilitate comparisons with previous results, column (1) and (3) are reproductions

of column (3) in Table 3 and Table 4. Thus, the new results are presented in columns (2) and (4)

in Table 6.

On immediate recall, the effect of being prenatally exposed to another day in bin 6 is associated

with a .0222 standard deviation decline in immediate recall score. This is the effect on the urban

population. The effect on immediate recall on the rural population, on the other hand, is only

−0.005 standard deviations. In other words, based on the point estimates, the rural population on

average experiences no negative effects on immediate recall from exposure to heat while in utero.

The effect on delayed recall for the rural population, based on point estimates, is also slightly

positive, at 0.0027 standard deviations.

Compared to the results of a similar exercise done by Hu and Li (2019), where they use health

outcomes, educational attainment, and illiteracy as outcomes, these results are completely oppo-

site to what they find. They find that rural-born individuals experience larger and statistically

significant negative effects on literacy and adult height, while the effect is small and statistically

insignificant for urban-born individuals. The opposite results from my estimation is therefore
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somewhat surprising, however there are several plausible explanations. For example, it may be

that coping mechanisms are more readily available in rural areas, such as access to shadowy areas

or water structures that one can cool down in. Another potential explanation may be heat islands

in cities. These heat islands lead to higher temperatures in cities as well as stagnant air that leads

to higher concentrations of toxic air pollution (Piracha and Chaudhary, 2022). Thus it may be

that the urban environment in combination with heat is a particularly dangerous combination.

Overall though, these results indicate that direct effects is not the only mechanism through

which the effects of prenatal exposure to heat is propagated. If that were the case, the expectation

would be that urban and rural populations would not differ in any way except for their exposure

to heat.

To further explore this difference between rural and urban populations, I investigate hetero-

geneous effects based on employment rates in different industries. From the IPUMS database,

I obtain census data from Indonesia which I use to create regency-specific employment rates in

three different industries—agriculture, manufacturing, and services (Minnesota Population Center,

2020). These are matched to each individual, based on the census closest to the birth year of the

individual. Thus I can estimate Equation (1) with additional interactions between the temperature

bins and the employment rate in industry x. The results of this estimation are reported in Table 7.

The first three columns report these estimations using Immediate Recall as the outcome variable

and the final three columns use Delayed Recall as the outcome. In column (1), the coefficient on

the interaction term is positive for agricultural employment rates and the hottest temperatures,

implying that higher employment rates in agriculture help negate part of the negative effect of

exposure to heat. The result is similar but the effect is stronger in column (4)—implying that

at 50% employment in agriculture, the effect of one additional day of exposure to a day above

29.5◦C on delayed recall is negated. Interestingly, exposure to days in the two lowest bins leads

to decreased performance on memory tasks when employment in agriculture is increasing. The

most plausible explanation for this effect is that rice and corn is the most important and common

crop in Indonesia. Rice, contrary to many other crops, thrives in average temperatures between

22 − 28◦C(Krishnan et al., 2011). Therefore, temperatures below that may reduce the yield of

rice and thus affect the incomes of households negatively, leading to prenatal stress or nutritional

changes that affect the fetal brain development negatively.

The opposite effect appears in columns (2) and (5), where increased employment in manufac-

turing leads to decreased performance on the memory task during days above 29.5◦ degrees. A

plausible explanation for this effect is that it is harder to avoid or mitigate high temperatures when

one works in manufacturing. However, another plausible explanation is that most manufacturing

jobs are located in urban areas—meaning that the effect of manufacturing is rather an effect of

something else in the urban environment. I investigate this potential explanation by estimating

an extension of the above estimation, where I add one more interaction-level—the rural-urban
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distinction.

The results of this estimation are presented in Table 8. The results for the days above 29.5◦

degrees are also presented in Figure 6. The uppermost panel of the table presents the effects of

exposure to days in each temperature bin interacted with the employment rate in either agriculture

or manufacturing. The lower panel presents the coefficients when we add the rural indicator to

that interaction. This way, we see the differences between employment in rural and urban areas.

Figure 6: Employment effects, Rural v. Urban

The pattern that emerges from this estimation is easy to spot—the coefficients on the days

above 29.5◦ degrees in the lower panel are one or two orders of magnitude larger than the estimated

coefficients in the upper panel. This indicates that the effects coming from different employment

rates in different industries is mainly coming from the effects this has on the rural population. These

results imply that the reason that the effect of prenatal exposure to heat on cognitive abilities is

larger in urban areas is because a larger part of the population is employed in non-agriculture—

meaning that they cannot counteract the negative effects of heat through an increased income.

Rural populations are mainly employed in agriculture, and thus hotter days plausibly improve crop

yields, mainly rice and corn yields, and thus they have a positive economic effect that counteracts

the negative effects of exposure to heat. Corn is a C4-crop, and those are generally more resistant

to heat stress than C3-crops such as wheat, and the literature on the response of rice to heat has

shown that damage to rice mainly arise at temperatures above 33◦C10 (Krishnan et al., 2011).

Therefore it is plausible that the higher temperatures improve yield and thus affect the incomes

10See e.g Figure 1 in Krishnan et al. (2011) for an overview of optimal and critical temperatures in the growth of
rice.

22



of rural populations positively. This effect is very likely nonlinear in nature as well, meaning that

there is some temperature where this improvement in yield breaks. This potential mechanism is

similar to what Hu and Li (2019) propose for their results. The important difference being that

they compare provinces that have a higher fraction of C4-plants in their crop production to those

that do not. C4-plants are plants that are more resistant to heat and they find that provinces with

higher rates of C4-plant production are less affected by prenatal heat exposure, presumably due

to less heat-caused damage to crop yields.

From this perspective, the large negative effect on the interaction between manufacturing em-

ployment and the hottest days in the rural population (as seen in the lower left panel of Figure 6)

arises due to the employed in manufacturing being worse off in real terms compared to their peers

working in agriculture.

Overall, these results point to the importance of the economic pathway—an indirect effect of

prenatal heat exposure—as it allows individuals to mitigate the negative effects. At the same time,

for urban populations it seems like economic effects have little effect. Instead they are more directly

affected, as shown in Table 6. Unfortunately, since the census only covers 269 unique regencies

(out of more than 500 total) I loose quite a few observations, leading to less power and though the

estimates give an indication, they are by no means conclusive evidence. Further studies on these

effects are needed.

6.2 Pre-conception and Post-birth Effects

Investigating the pre-conception and post-birth effects is interesting for a couple of reasons. First,

there is the question of the impreciseness of the conception and birth date variables. The impreci-

sion means that I may discard or miss some variation or effect. Exploring the time before and after

birth is also interesting in that it can give an idea about the magnitude and importance of the in

utero effects. Brain development continues after birth, and it may be that there’s a larger effect

on cognitive ability after birth than while in utero, which has implications for coping mechanisms

and behavioral changes. Therefore, I estimate a version of the specification in Equation (2), where

I use the 3 months before birth, the pregnancy, and the 6 months after birth as the periods instead

of the pregnancy trimesters.

The estimated coefficients on each of the outcomes are reported in Table 9 and they are visu-

alized in Figure 7. Beginning with the three months before conception, the estimates show that

there’s an opposite effect of exposure to hotter days. On immediate recall, the coefficient on days

in the hottest bin, Days > 29.5◦C, is positive and implying that one additional day of hot tempera-

tures increase the immediate word recall score by 0.0159 standard deviations. A similar, but larger

effect is estimated for delayed word recall, where the estimate implies that an additional day of ex-

posure to hot temperatures increase the score by 0.0224 standard deviations. These pre-conception
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results run contrary to the results of Hu and Li (2019) and Kuate et al. (2021) that do not find

evidence of a pre-conception effect. Even though this pre-conception effect is quite surprising, it

is not the first time such an effect has been recorded. Wilde et al. (2017) find a positive effect

of higher temperatures around conception on educational attainment and the likelihood of being

literate later in life.11 Their preferred explanation for the result is that fetal loss is a likely driver

of the higher health and human capital outcomes later in life—this effect arises due to fetuses

being very sensitive in the very early days of gestation, the weakest fetuses do not survive harsher

conditions and thus the fetuses that do survive the harsher conditions are stronger, on average,

than fetuses that do not experience the harsher conditions. This effect varies between genders, as

male fetuses are more vulnerable than female fetuses (Wilde et al., 2017).

This effect might similarly be a driver in our results, as otherwise it seems unlikely that pre-

conception weather has an effect on the cognitive abilities of the fetus. One of the pieces of evidence

that Wilde et al. (2017) use to pin down the fetal loss hypothesis is to explore the differential effects

on genders. I investigate the pre-conception effects in a similar way to them in Table B.2. In short,

the results from this estimation with Immediate Recall as the outcome are very similar to the

results Wilde et al. (2017) find—males in the sample drive this effect, while females have no pre-

conception effect. However, when it comes to Delayed Recall, there is no gender heterogeneity

in the pre-conception effect—further suggesting that there is a qualitative difference in the brain

functions used to perform Immediate Recall and Delayed Recall.

The post-birth effects of exposure to heat on cognitive effects are very similar to the effects

while in utero, they imply that an additional day of exposure to a day in the hottest temperature

bin in the six months after birth decrease immediate recall score by .0125 standard deviations

and delayed word recall score by 0.0180 standard deviations. Though only the estimate for the

delayed word recall score is statistically significant. These results are not very surprising, given

that brain development keeps going long after birth 12 (Kostović and Judaš, 2015). Given that

the effects are similar during and after pregnancy, further research should aim to establish more

granular estimates for when the damage to cognitive ability and brain development is largest since

this could determine where mitigation strategies might be most efficient.

The main focus in this paper is not on pre-conception or post-birth effects, but if there are

gender heterogeneity effects in pre-conception effects there may as well be for the in utero effects

as well. The next subsection will therefore investigate gender heterogeneity of the in utero effects.

11It is important to note though, that Wilde et al. (2017) use average monthly temperatures as their explanatory
variable. This difference may be important.

12See e.g. Figure 1 in Kostović and Judaš (2015) for an overview of the development processes in the cerebral
cortex that continue post-birth.

24



Figure 7: Pre-conception & Post-birth effects

6.3 Gender Heterogeneity

As Wilde et al. (2017) have shown, gender heterogeneity can give important insights into the

mechanisms of the negative effects on cognitive ability. Other previous results have also established

that males require more maternal resources and are more fragile in utero compared to females.

Therefore, the gender ratio skews female during periods of fetal stress (Basu et al., 2010). To my

knowledge, the only evidence on gender heterogeneity in the effect of heat on brain development

comes from Kuate et al. (2021), who find that there is no large difference between males and females

in the effect of exposure to higher average ambient temperatures during the entire prenatal period

on cognition when aging. Animal studies, such as Hinoue et al. (2001) or M. Edwards et al. (1971)

have not reported any such differences either. However, there is more evidence from studies that

show that the effect of exposing pregnant mice to stress has different effects on the fetus depending

on whether the fetus is a female or a male. Stress for the pregnant mother increases corticosterone in

the fetal brain, for males it also decreases fetal testosterone and brain aromatase, while for females

it alters brain catecholamine activity. Further, this difference in brain chemistry effect leads to

”learning deficits, reductions in hippocampal neurogenesis, LTP and dendritic spine density in

the prefrontal cortex” being more prevalent in male mice that have been prenatally exposed to

stress. In female mice, increased anxiety, depression, and increased response of the HPA axis to

stress is more prevalent after being exposed, prenatally, to stress (Weinstock, 2007). Thus a gender

differential in the effect of in utero exposure to heat may arise from the different effects of increased

stress in the pregnant mother. Therefore, if the evidence shows a gender difference that would be
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some evidence (though not conclusive) in favor of the indirect biological pathway. The opposite

case, wherein different genders have similar effects, would weakly provide evidence in favor of the

direct biological pathway.

To investigate these hypotheses, I estimate a version of Equation (1), where I also include

interaction terms between each temperature bin and an indicator for females. The results of this

estimation are presented in Table 10. Columns (1) and (3) are previous the results of previous

estimations with no interaction between the temperature bins and the female indicator. In column

(2) the outcome variable is immediate recall, and the coefficients of interest are the coefficients on

the interaction terms. The coefficients show that there is no difference between males and females

in the effect of exposure in utero—the coefficient on the hottest bin interacted with the female

indicator is -0.0074 standard deviations and it is statistically insignificant. The result is similar

for delayed recall in column (4), the coefficients on the interaction terms are all very small and

insignificant indicating there’s no difference between males and females in the effect of prenatal

exposure to heat.

These results differ from some of the previous literature showing that males are more fragile

in utero than females (Catalano et al., 2008; Pongou et al., 2017). It may thus be that the health

and mortality of fetuses are differently affected based on gender, while brain development is not.

The evidence is not strong enough to draw any strong conclusions though, since the coefficients

for our interaction terms are not significant.

7 Conclusion

Using individual-level survey data from the Indonesian Family Life Survey (IFLS), combined with

weather data, this paper shows that prenatal exposure to heat affects cognitive abilities later in

life. More specifically, in utero exposure to heat has a negative effect on memory, leading to worse

performance on word recall—both direct recall and with a delay. On the other hand, there is no

strong effect on performance on Raven’s progressive matrices, suggesting that fluid intelligence is

not adversely affected. The strong effect on memory and the non-existent effect on fluid intelligence

measures suggests that exposure to heat damages specific structures in the brain or interferes

with very specific development processes. The effects are larger during corticogenesis, a critical

period for brain formation, which points to the interference with some development process in that

period—establishing where the timing of the exposure has the largest effect can help narrow down

the potential processes that are affected by heat.

Beyond that, I also try to provide some tentative and suggestive evidence about the potential

mechanisms—I find that a higher rate of employment in agriculture has a positive effect on memory,

counteracting the negative effects of heat. This effect is also only visible in rural areas, suggesting

that agriculture affects incomes positively in rural areas which allow them to mitigate the effects
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of heat. This surprising result, that is contrary to previous research, is not strong evidence in

favor of the mechanism—due to having few observations in the analysis. Even though one should

be careful in drawing strong conclusions from the analysis on mechanisms—it suggests a potential

path for future research towards understanding the mechanisms. This can help design policies to

mitigate and avoid the potential damage of prenatal exposure to heat.

Apart from lacking power in some of the analyses, there is a general lack of more cognitive

tests that test other cognitive abilities apart from pattern-matching á la Raven’s matrices and

simple memory tasks. It may be that heat exposure specifically damages the parts of the brain

that handle memory, and thus that no other cognitive abilities are harmed, however we cannot

rule out alternative hypotheses without testing other cognitive capabilities.

The results, as presented, imply that efforts that target pregnant mothers has the potential

to improve productivity, human capital formation, and ultimately economic development. The

results also imply another harmful aspect of climate change, that populations all over the world

may need to adapt to and mitigate. Further, that the fact that memory is affected but not fluid

intelligence, combined with attention being an important part of memory—especially working

memory—leads me to predict that prenatal exposure to heat increases the likelihood of developing

attention disorders, such as ADHD. I’m not aware of any research investigating this potential

link—researching that link would be a good way to extend and validate the research presented in

this paper.
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Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The

physical science basis. contribution of working group i to the sixth assessment report of the

intergovernmental panel on climate change (pp. 1363–1512). Cambridge University Press.

https://doi.org/10.1017/9781009157896.012. (Cit. on p. 2)

Duflo, E. (2001). Schooling and labor market consequences of school construction in indonesia:

Evidence from an unusual policy experiment. American economic review, 91 (4), 795–813

(cit. on p. 13).

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats,

R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O.

(2021). Hot weather and heat extremes: Health risks. The Lancet, 398 (10301), 698–708.

https://doi.org/https://doi.org/10.1016/S0140-6736(21)01208-3 (cit. on p. 2)

29

https://doi.org/10.1017/9781009157896.012
https://doi.org/https://doi.org/10.1016/S0140-6736(21)01208-3


Edwards, M. J., Saunders, R. D., & Shiota, K. (2003). Effects of heat on embryos and foetuses.

International journal of hyperthermia, 19 (3), 295–324 (cit. on pp. 5, 6, 18).

Edwards, M. (1969). Congenital defects in guinea pigs: Prenatal retardation of brain growth of

guinea pigs following hyperthermia during gestation. Teratology, 2 (4), 329–336 (cit. on

p. 5).

Edwards, M., Lyle, J., Jonson, K., & Penny, R. (1974). Prenatal retardation of brain growth by hy-

perthermia and the learning capacity of mature guinea-pigs. Developmental Psychobiology

(cit. on pp. 5, 6).

Edwards, M., Penny, R., & Zevnik, I. (1971). A brain cell deficit in newborn guinea-pigs following

prenatal hyperthermia. Brain Research, 28 (2), 341–345 (cit. on pp. 5, 25).

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus,

memory, and place cells: Is it spatial memory or a memory space? Neuron, 23 (2), 209–226

(cit. on pp. 15, 18).

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-

term memory, and general fluid intelligence: A latent-variable approach. Journal of exper-

imental psychology: General, 128 (3), 309 (cit. on pp. 10, 17).

Fankhauser, S., & Tol, R. S. (2005). On climate change and economic growth. Resource and Energy

Economics, 27 (1), 1–17 (cit. on p. 2).

Fishman, R., Carrillo, P., & Russ, J. (2019). Long-term impacts of exposure to high temperatures

on human capital and economic productivity. Journal of Environmental Economics and

Management, 93, 221–238 (cit. on p. 4).

Gaab, J., Rohleder, N., Nater, U. M., & Ehlert, U. (2005). Psychological determinants of the cortisol

stress response: The role of anticipatory cognitive appraisal. Psychoneuroendocrinology,

30 (6), 599–610 (cit. on p. 7).

Garg, T., Jagnani, M., & Taraz, V. (2020). Temperature and human capital in india. Journal of

the Association of Environmental and Resource Economists, 7 (6), 1113–1150 (cit. on p. 2).

Georgieff, M. K., Ramel, S. E., & Cusick, S. E. (2018). Nutritional influences on brain development.

Acta Paediatrica, 107 (8), 1310–1321 (cit. on p. 6).

Guerra-Carrillo, B., Katovich, K., & Bunge, S. A. (2017). Does higher education hone cognitive

functioning and learning efficacy? findings from a large and diverse sample. PloS one,

12 (8), e0182276 (cit. on p. 4).

Hansen, A., Bi, P., Nitschke, M., Ryan, P., Pisaniello, D., & Tucker, G. (2008). The effect of heat

waves on mental health in a temperate australian city. Environmental health perspectives,

116 (10), 1369–1375 (cit. on p. 2).

Hawkins, J., Ahmad, S., & Cui, Y. (2017). A theory of how columns in the neocortex enable

learning the structure of the world. Frontiers in neural circuits, 81 (cit. on p. 6).

30



Henseler, M., & Schumacher, I. (2019). The impact of weather on economic growth and its pro-

duction factors. Climatic change, 154 (3), 417–433 (cit. on p. 2).

Hertel, T. W., & Rosch, S. D. (2010). Climate change, agriculture, and poverty. Applied economic

perspectives and policy, 32 (3), 355–385 (cit. on p. 2).

Hijmans, R. J., Bivand, R., Forner, K., Ooms, J., Pebesma, E., & Sumner, M. D. (2022). Package

‘terra’ (cit. on p. 9).

Hinoue, A., Fushiki, S., Nishimura, Y., & Shiota, K. (2001). In utero exposure to brief hyperthermia

interferes with the production and migration of neocortical neurons and induces apoptotic

neuronal death in the fetal mouse brain. Developmental brain research, 132 (1), 59–67 (cit.

on pp. 5, 6, 18, 25).

Hu, Z., & Li, T. (2019). Too hot to handle: The effects of high temperatures during pregnancy

on adult welfare outcomes. Journal of Environmental Economics and Management, 94,

236–253 (cit. on pp. 3, 4, 6, 8, 12, 14, 17, 20, 23, 24).

Isen, A., Rossin-Slater, M., & Walker, R. (2017). Relationship between season of birth, tempera-

ture exposure, and later life wellbeing. Proceedings of the National Academy of Sciences,

114 (51), 13447–13452 (cit. on p. 4).

Joseph, D. N., & Whirledge, S. (2017). Stress and the hpa axis: Balancing homeostasis and fertility.

International journal of molecular sciences, 18 (10), 2224 (cit. on p. 7).
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Tables

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Max

Immediate Recall 15,232 5.836 1.576 0 10
Delayed Recall 15,232 4.916 1.769 0 10
W Score 11,794 531.137 57.116 299 635
EK Score 17,371 6.363 1.760 0 8
COB Score 11,794 3.168 1.297 0 7
Educational attainment 17,012 10.968 2.897 6 21
Trimester 1
ln(Precipitation) 17,371 5.650 1.123 −5.661 7.614
Days < 21.5◦C 17,371 2.596 12.013 0 85
Days 21.5 − 23.5◦C 17,371 8.515 18.582 0 84
Days 23.5 − 25.5◦C 17,371 23.114 25.067 0 84
Days 25.5 − 27.5◦C 17,371 34.504 26.804 0 84
Days 27.5 − 29.5◦C 17,371 11.607 18.478 0 82
Days > 29.5◦C 17,371 0.339 2.119 0 58
Trimester 2
ln(Precipitation) 17,371 5.769 1.175 −13.378 7.685
Days < 21.5◦C 17,371 2.965 13.538 0 94
Days 21.5 − 23.5◦C 17,371 9.332 20.280 0 93
Days 23.5 − 25.5◦C 17,371 25.651 27.516 0 92
Days 25.5 − 27.5◦C 17,371 38.540 29.535 0 94
Days 27.5 − 29.5◦C 17,371 12.485 19.786 0 88
Days > 29.5◦C 17,371 0.348 2.075 0 43
Trimester 3
ln(Precipitation) 17,371 5.627 1.287 −7.768 7.550
Days < 21.5◦C 17,371 2.909 13.382 0 92
Days 21.5 − 23.5◦C 17,371 9.223 19.894 0 88
Days 23.5 − 25.5◦C 17,371 24.976 27.181 0 91
Days 25.5 − 27.5◦C 17,371 37.446 29.073 0 92
Days 27.5 − 29.5◦C 17,371 12.677 19.968 0 88
Days > 29.5◦C 17,371 0.317 1.861 0 71
Controls
Age 17,371 24.078 8.974 15 53
Siblings 17,051 2.848 2.002 0 25
Age at birth, Father 16,945 32.493 8.719 15 97
Age at birth, Mother 16,441 27.235 7.261 15 50
Educational attainment, Father 16,973 8.407 3.239 6 21
Educational attainment, mother 17,111 7.723 2.772 6 18
Rural 17,371 0.414 0.493 0 1
Female 17,371 0.520 0.500 0 1
Weather
Daily temperatures 7,869,812 25.569 2.179 8.025 33.499
Daily precipitation 8,953,130 4.783 6.778 0.000 238.206

Note: The full sample contains 17,371 individuals from 229 regencies in Indonesia. The weather data is obtained
from the APHRODITE project (Yasutomi et al., 2011; Yatagai et al., 2012). The individual-level data is obtained
from IFLS, survey waves 3-5 (Strauss et al., 2004; Strauss et al., 2016; Strauss et al., 2009). Immediate recall and
delayed recall is the number of words remembered. W Score is a score based on the answers in module COB. EK
Score is the number of correct answers in the EK cognitive assessment, a mix of numeracy and Raven’s progressive
matrices. Female and Rural are indicators for the individual being a female and living in an rural region, respectively.
The temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C

34



Table 2: Fluid Intelligence

Dependent variable:

EK

(1) (2) (3) (4) (5) (6)

Entire pregnancy
Days > 29.5◦C 0.0063 0.0049 0.0079 0.0060

(0.0070) (0.0071) (0.0077) (0.0077)

Days 27.5 − 29.5◦C 0.0012 0.0012
(0.0016) (0.0016)

Days 25.5 − 27.5◦C 0.0012 0.0010
(0.0016) (0.0016)

Days 21.5 − 23.5◦C 0.0006 0.0010
(0.0017) (0.0016)

Days < 21.5◦C -0.0024 -0.0016
(0.0042) (0.0040)

Trimester 1
Days > 29.5◦C 0.0038 0.0047

(0.0133) (0.0133)

Trimester 2
Days > 29.5◦C 0.0101 0.0064

(0.0136) (0.0138)

Trimester 3
Days > 29.5◦C 0.0067 0.0050

(0.0143) (0.0140)

Observations 15,907 15,907 15,907 15,907 15,907 15,907
Controls No Yes No Yes No Yes
Regency-by-Year FE Yes Yes Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes Yes Yes
R2 0.64569 0.65226 0.64577 0.65232 0.64587 0.65247
Within R2 0.00013 0.01866 0.00034 0.01884 0.00064 0.01927

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variable EK, is a standardized measure
of the number of correct answers on 8 questions of Raven’s progressive matrices. Control variables are the natural
log of precipitation, an indicator for females, an indicator for rural-born individuals, the mother’s educational
attainment, the mother’s age at birth, and the number of siblings. The temperature bins are defined as follows:
Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4: 25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6:
> 29.5◦C. Bin 3 is used as the reference bin in models including the full set of bins.
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Table 3: Immediate Recall

Dependent variable:

Immediate Recall

(1) (2) (3) (4) (5) (6)

Entire pregnancy
Days > 29.5◦C -0.0151∗∗ -0.0160∗∗ -0.0192∗∗ -0.0199∗∗

(0.0075) (0.0076) (0.0080) (0.0083)

Days 27.5 − 29.5◦C 0.0022 0.0023
(0.0023) (0.0023)

Days 25.5 − 27.5◦C -0.0016 -0.0014
(0.0017) (0.0017)

Days 21.5 − 23.5◦C 0.0026 0.0030
(0.0023) (0.0023)

Days < 21.5◦C 0.0053 0.0047
(0.0041) (0.0036)

Trimester 1
Days > 29.5◦C -0.0189∗ -0.0196∗

(0.0107) (0.0110)

Trimester 2
Days > 29.5◦C -0.0173 -0.0219

(0.0147) (0.0152)

Trimester 3
Days > 29.5◦C -0.0084 -0.0072

(0.0109) (0.0109)

Observations 14,090 14,090 14,090 14,090 14,090 14,090
Controls No Yes No Yes No Yes
Regency-by-Year FE Yes Yes Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes Yes Yes
R2 0.59290 0.59758 0.59374 0.59844 0.59319 0.59801
Within R2 0.00134 0.01283 0.00340 0.01493 0.00206 0.01387

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variable Immediate Recall, is a stan-
dardized measure of the number of correctly recalled words from a 10 word long list. Control variables are the
natural log of precipitation, an indicator for females, an indicator for rural-born individuals, the mother’s educa-
tional attainment, the mother’s age at birth, and the number of siblings. The temperature bins are defined as
follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4: 25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C,
Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the full set of bins.
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Table 4: Delayed Recall

Dependent variable:

Delayed Recall

(1) (2) (3) (4) (5) (6)

Entire pregnancy
Days > 29.5◦C -0.0105 -0.0115 -0.0152∗ -0.0160∗∗

(0.0081) (0.0081) (0.0080) (0.0081)

Days 27.5 − 29.5◦C 0.0021 0.0022
(0.0022) (0.0021)

Days 25.5 − 27.5◦C -0.0022 -0.0020
(0.0015) (0.0015)

Days 21.5 − 23.5◦C 0.0039∗ 0.0042∗∗

(0.0021) (0.0021)

Days < 21.5◦C -0.0010 -0.0016
(0.0037) (0.0038)

Trimester 1
Days > 29.5◦C -0.0031 -0.0042

(0.0132) (0.0137)

Trimester 2
Days > 29.5◦C -0.0065 -0.0101

(0.0127) (0.0131)

Trimester 3
Days > 29.5◦C -0.0197 -0.0190

(0.0137) (0.0135)

Observations 14,090 14,090 14,090 14,090 14,090 14,090
Controls No Yes No Yes No Yes
Regency-by-Year FE Yes Yes Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes Yes Yes
R2 0.59110 0.59454 0.59230 0.59576 0.59120 0.59470
Within R2 0.00050 0.00888 0.00343 0.01188 0.00072 0.00928

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variable Delayed Recall, is a standardized
measure of the number of correctly recalled words, after a short delay, from a 10 word long list. Control variables
are the natural log of precipitation, an indicator for females, an indicator for rural-born individuals, the mother’s
educational attainment, the mother’s age at birth, and the number of siblings. The temperature bins are defined as
follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4: 25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C,
Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the full set of bins.
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Table 5: Corticogenesis

Dependent variable:

EK Immediate Recall Delayed Recall

(1) (2) (3) (4) (5) (6)

Corticogenesis
Days > 29.5◦C 0.0131 0.0146 -0.0511∗∗∗ -0.0535∗∗∗ -0.0367∗∗ -0.0384∗∗

(0.0120) (0.0131) (0.0137) (0.0141) (0.0167) (0.0163)

Days 27.5 − 29.5◦C 0.0041 0.0042 0.0051 0.0054 0.0022 0.0028
(0.0026) (0.0026) (0.0040) (0.0040) (0.0047) (0.0047)

Days 25.5 − 27.5◦C 0.0020 0.0022 -0.0043 -0.0042 -0.0058∗ -0.0056∗

(0.0017) (0.0018) (0.0032) (0.0032) (0.0032) (0.0032)

Days 21.5 − 23.5◦C -0.0025 -0.0022 -0.0010 -0.0011 0.0046 0.0045
(0.0036) (0.0036) (0.0040) (0.0040) (0.0042) (0.0042)

Days < 21.5◦C 0.0016 0.0002 -0.0025 -0.0038 -0.0019 -0.0051
(0.0067) (0.0068) (0.0089) (0.0092) (0.0108) (0.0104)

Non-corticogenesis
Days > 29.5◦C 0.0025 -0.0120 -0.0110

(0.0074) (0.0088) (0.0101)

Days 27.5 − 29.5◦C -0.0003 0.0002 0.0011
(0.0020) (0.0023) (0.0023)

Days 25.5 − 27.5◦C 0.0002 -0.0007 -0.0009
(0.0018) (0.0027) (0.0019)

Days 21.5 − 23.5◦C 0.0022 0.0048∗ 0.0042∗∗

(0.0018) (0.0027) (0.0019)

Days < 21.5◦C -0.0022 0.0091∗∗ 0.0006
(0.0049) (0.0038) (0.0033)

Observations 15,907 15,907 14,090 14,090 14,090 14,090
Controls Yes Yes Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes Yes Yes
R2 0.65250 0.65260 0.59949 0.59995 0.59625 0.59682
Within R2 0.01934 0.01963 0.01751 0.01864 0.01307 0.01446

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. Corticogenesis is defined as the period between
7 and 18 weeks of gestation, Non-corticogenesis is negatively defined as the gestational period that is not in
corticogenesis. The outcome variables EK, Immediate Recall, Delayed Recall, are standardized measures of the
number of correct answers on different tests, see Section 3 for detailed descriptions. Control variables are the
natural log of precipitation, an indicator for females, an indicator for rural-born individuals, the mother’s educational
attainment, the mother’s age at birth, and the number of siblings. The temperature bins are defined as follows:
Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4: 25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6:
> 29.5◦C. Bin 3 is used as the reference bin in models including the full set of bins.

38



Table 6: Rural and Urban Populations

Dependent variable:

Immediate Recall Delayed Recall

(1) (2) (3) (4)

Entire pregnancy
Days > 29.5◦C -0.0199∗∗ -0.0220∗∗ -0.0160∗∗ -0.0181∗∗

(0.0083) (0.0087) (0.0081) (0.0079)

Days 27.5 − 29.5◦C 0.0023 0.0023 0.0022 0.0023
(0.0023) (0.0024) (0.0021) (0.0022)

Days 25.5 − 27.5◦C -0.0014 -0.0015 -0.0020 -0.0017
(0.0017) (0.0018) (0.0015) (0.0015)

Days 21.5 − 23.5◦C 0.0030 0.0031 0.0042∗∗ 0.0044∗∗

(0.0023) (0.0025) (0.0021) (0.0021)

Days < 21.5◦C 0.0047 0.0049 -0.0016 -0.0014
(0.0036) (0.0034) (0.0038) (0.0039)

Days > 29.5◦C × Rural 0.0198 0.0220
(0.0190) (0.0256)

Days 27.5 − 29.5◦C × Rural 0.0005 0.0002
(0.0013) (0.0011)

Days 25.5 − 27.5◦C × Rural 0.0006 0.0003
(0.0007) (0.0007)

Days 21.5 − 23.5◦C× Rural -0.0002 -0.0006
(0.0009) (0.0008)

Days < 21.5◦C × Rural 0.0001 -0.0005
(0.0017) (0.0014)

Observations 14,090 14,090 14,090 14,090
Controls Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes
R2 0.59844 0.59875 0.59576 0.59605
Within R2 0.01493 0.01570 0.01188 0.01258

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-
born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The
temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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Table 7: Employment

Dependent variable:

Immediate Recall Delayed Recall

(1) (2) (3) (4) (5) (6)

Entire pregnancy
Days > 29.5◦C -0.0493 -0.0070 -0.0169 -0.0590 0.0105 -0.0311

(0.0321) (0.0213) (0.0568) (0.0390) (0.0289) (0.0625)

Days 27.5 − 29.5◦C 0.0126∗∗ 0.0046 0.0034 0.0066 0.0059 0.0036
(0.0050) (0.0044) (0.0060) (0.0070) (0.0037) (0.0054)

Days 25.5 − 27.5◦C 0.0009 -0.0033 0.0009 0.0038 -0.0016 -0.0044
(0.0048) (0.0029) (0.0039) (0.0046) (0.0030) (0.0037)

Days 21.5 − 23.5◦C 0.0306∗∗∗ -0.0042 -0.0104 0.0181∗ -0.0004 -0.0057
(0.0081) (0.0070) (0.0069) (0.0098) (0.0057) (0.0060)

Days < 21.5◦C 0.0366∗∗ -0.0037 0.0109 0.0398 -0.0104 0.0050
(0.0162) (0.0115) (0.0130) (0.0256) (0.0149) (0.0250)

Industry Agri Manu Serv Agri Manu Serv
Days > 29.5◦C 0.0820 -0.0703 -0.0331 0.1043 -0.1718 0.0716
× Employment (0.0702) (0.1338) (0.4325) (0.0756) (0.1406) (0.4316)

Days 27.5 − 29.5◦C -0.0196 0.0002 0.0090 -0.0073 -0.0209 -0.0059
× Employment (0.0119) (0.0171) (0.0420) (0.0127) (0.0217) (0.0398)

Days 25.5 − 27.5◦C -0.0056 0.0086 -0.0265 -0.0138 -0.0095 0.0117
× Employment (0.0095) (0.0174) (0.0260) (0.0105) (0.0150) (0.0250)

Days 21.5 − 23.5◦C -0.0515∗∗∗ 0.0668 0.1093∗∗ -0.0269 0.0389 0.0770
× Employment (0.0146) (0.0562) (0.0464) (0.0170) (0.0509) (0.0478)

Days < 21.5◦C -0.0580∗ 0.0771 -0.0268 -0.0809∗ 0.0692 -0.0388
× Employment (0.0303) (0.0745) (0.0948) (0.0485) (0.1012) (0.1887)

Observations 9,423 9,423 9,423 9,423 9,423 9,423
Controls Yes Yes Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes Yes Yes
R2 0.60762 0.60662 0.60709 0.60925 0.60882 0.60870
Within R2 0.01873 0.01623 0.01740 0.01505 0.01398 0.01367

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-
born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The
temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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Table 8: Employment pt.2

Dependent variable:

Immediate Recall Delayed Recall

(1) (2) (3) (4)

Heat × Employment, Urban Agri Manu Agri Manu
Days > 29.5◦C × Emp -0.0181 0.0732 -0.0028 0.0016

(0.0702) (0.1327) (0.0709) (0.1566)

Days 27.5 − 29.5◦C × Emp -0.0133 0.0019 -0.0054 -0.0185
(0.0123) (0.0177) (0.0141) (0.0213)

Days 25.5 − 27.5◦C × Emp -0.0044 0.0214 -0.0160 -0.0020
(0.0095) (0.0183) (0.0111) (0.0160)

Days 21.5 − 23.5◦C × Emp -0.0432∗∗∗ 0.0863 -0.0234 0.0540
(0.0095) (0.0553) (0.0111) (0.0480)

Days < 21.5◦C × Emp -0.0494 0.0855 -0.0775 0.0774
(0.0305) (0.0761) (0.0494) (0.0983)

Heat × Employment, Rural Agri Manu Agri Manu
Days > 29.5◦C × Emp × Rural 0.1912 -0.5587 0.2068 -0.9236∗

(0.1631) (0.3791) (0.1752) (0.4818)

Days 27.5 − 29.5◦C × Emp × Rural -0.0139 0.0040 -0.0047 0.0067
(0.0089) (0.0143) (0.0096) (0.0175)

Days 25.5 − 27.5◦C × Emp × Rural -0.0036 -0.0266∗∗∗ 0.0036 -0.0176∗

(0.0047) (0.0074) (0.0060) (0.0094)

Days 21.5 − 23.5◦C× Emp × Rural -0.0125∗ -0.0258∗∗ -0.0052 -0.0207
(0.0069) (0.0109) (0.0066) (0.0167)

Days < 21.5◦C × Emp × Rural -0.0176∗∗∗ 0.0097 -0.0065 0.0087
(0.0046) (0.0085) (0.0074) (0.0149)

Observations 9,423 9,423 9,423 9,423
Controls Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes
R2 0.60885 0.60810 0.61024 0.61051
Within R2 0.02180 0.01995 0.01756 0.01822

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-
born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The
temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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Table 9: Pre-conception & Post-birth effects

Dependent variable:

Immediate Recall Delayed Recall

(1) (2)

Pre-conception
Days > 29.5◦C 0.0159 0.0224∗

(0.0132) (0.0125)

Days 27.5− 29.5◦C 0.0078∗ 0.0073
(0.0042) (0.0045)

Days 25.5− 27.5◦C 0.0042∗ 0.0029
(0.0022) (0.0027)

Days 21.5− 23.5◦C 0.0029 -0.0019
(0.0044) (0.0039)

Days < 21.5◦C -0.0107 -0.0250∗∗∗

(0.0071) (0.0057)
Pregnancy
Days > 29.5◦C -0.0183∗∗ -0.0158∗∗

(0.0079) (0.0080)

Days 27.5− 29.5◦C 0.0036 0.0028
(0.0024) (0.0023)

Days 25.5− 27.5◦C -0.0007 -0.0023
(0.0018) (0.0018)

Days 21.5− 23.5◦C 0.0012 0.0017
(0.0030) (0.0024)

Days < 21.5◦C -0.0037 -0.0121∗∗

(0.0039) (0.0048)
Post-birth
Days > 29.5◦C -0.0125 -0.0180∗

(0.0084) (0.0094)

Days 27.5− 29.5◦C 0.0005 -0.0022
(0.0034) (0.0032)

Days 25.5− 27.5◦C 0.0009 -0.0022
(0.0019) (0.0020)

Days 21.5− 23.5◦C -0.0055∗∗ -0.0057∗∗

(0.0026) (0.0023)

Days < 21.5◦C -0.0069 -0.0059
(0.0056) (0.0041)

Observations 14,090 14,090
Controls Yes Yes
Regency-by-Year FE Yes Yes
Regency-by-month FE Yes Yes
Year-by-month FE Yes Yes
R2 0.59971 0.59736
Within R2 0.01804 0.01580

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Pre-conception is defined as the three months before conception. Post-birth is defined as the six
months after birth. Control variables are the natural log of precipitation, an indicator for females, an indicator for
rural-born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings.
The temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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Table 10: Gender Heterogeneity

Dependent variable:

Immediate Recall Delayed Recall

(1) (2) (3) (4)

Entire pregnancy
Days > 29.5◦C -0.0199∗∗ -0.0156 -0.0160∗∗ -0.0155

(0.0083) (0.0122) (0.0081) (0.0115)

Days 27.5 − 29.5◦C 0.0023 0.0023 0.0022 0.0023
(0.0023) (0.0024) (0.0021) (0.0022)

Days 25.5 − 27.5◦C -0.0014 -0.0015 -0.0020 -0.0017
(0.0017) (0.0018) (0.0015) (0.0015)

Days 21.5 − 23.5◦C 0.0030 0.0031 0.0042∗∗ 0.0044∗∗

(0.0023) (0.0025) (0.0021) (0.0021)

Days < 21.5◦C 0.0047 0.0049 -0.0016 -0.0014
(0.0036) (0.0034) (0.0038) (0.0039)

Days > 29.5◦C × Female -0.0087 -0.0009
(0.0129) (0.0115)

Days 27.5 − 29.5◦C × Female 0.0001 −7.33 × 10−5

(0.0009) (0.0008)

Days 25.5 − 27.5◦C × Female 6.25 × 10−5 -0.0006
(0.0006) (0.0005)

Days 21.5 − 23.5◦C× Female -0.0002 -0.0004
(0.0008) (0.0005)

Days < 21.5◦C × Female -0.0002 -0.0004
(0.0005) (0.0006)

Observations 14,090 14,090 14,090 14,090
Controls Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes
R2 0.59844 0.59856 0.59576 0.59587
Within R2 0.01493 0.01523 0.01188 0.01215

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-
born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The
temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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Appendices

A Samples from IFLS

Figure A.1: Example of questions in the Cognitive Measurement in Book EK of IFLS5

Figure A.2: The word lists used for word recall in Section CO in Book B3B of IFLS5
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B Tables

Table B.1: Alternative measures of fluid intelligence

Dependent variable:

COB Score W Ability Score

(1) (2) (3) (4)

Entire pregnancy
Days > 29.5◦C 0.0046 0.7260

(0.0109) (0.5594)

Days 27.5 − 29.5◦C 0.0056∗ 0.2335
(0.0029) (0.1458)

Days 25.5 − 27.5◦C 0.0017 0.0924
(0.0021) (0.0964)

Days 21.5 − 23.5◦C 0.0023 0.0947
(0.0031) (0.1572)

Days < 21.5◦C 0.0062 0.3247
(0.0140) (0.7285)

Trimester 1
Days > 29.5◦C -0.0003 0.5608

(0.0132) (0.8777)

Trimester 2
Days > 29.5◦C -0.0035 0.1112

(0.0144) (0.9062)

Trimester 3
Days > 29.5◦C 0.0150 1.217

(0.0155) (0.8606)

Observations 10,784 10,784 10,784 10,784
Controls Yes Yes Yes Yes
Regency-by-Year FE Yes Yes Yes Yes
Regency-by-month FE Yes Yes Yes Yes
Year-by-month FE Yes Yes Yes Yes
R2 0.69626 0.69547 0.69369 0.69339
Within R2 0.03257 0.03005 0.02006 0.01911

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables COB Score, W Ability Score,
are standardized measures of the number of correct answers on different tests, see Section 3 for detailed descriptions.
Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-born individuals,
the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The temperature bins
are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4: 25.5 − 27.5◦C, Bin 5:
27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the full set of bins.
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Table B.2: Gender heterogeneity in pre-conception

Dependent variable:

Immediate Recall Delayed Recall

(1) (2)

Pre-conception
Days > 29.5◦C 0.0468∗∗∗ 0.0414∗∗∗

(0.0142) (0.0131)

Days 27.5 − 29.5◦C 0.0055 0.0061
(0.0045) (0.0046)

Days 25.5 − 27.5◦C 0.0044∗∗ 0.0038
(0.0022) (0.0028)

Days 21.5 − 23.5◦C 0.0033 -0.0021
(0.0041) (0.0040)

Days < 21.5◦C -0.0071 -0.0182∗∗∗

(0.0067) (0.0054)

Days > 29.5◦C × Female -0.0369∗∗∗ -0.0098
(0.0127) (0.0117)

Days 27.5 − 29.5◦C × Female 0.0014 -0.0003
(0.0018) (0.0020)

Days 25.5 − 27.5◦C × Female -0.0011 -0.0014
(0.0013) (0.0013)

Days 21.5 − 23.5◦C × Female -0.0008 -0.0010
(0.0019) (0.0018)

Days < 21.5◦C × Female -0.0015 -0.0010
(0.0014) (0.0015)

Observations 14,090 14,090
Controls Yes Yes
Regency-by-Year FE Yes Yes
Regency-by-month FE Yes Yes
Year-by-month FE Yes Yes
R2 0.59862 0.59550
Within R2 0.01538 0.01124

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: All standard errors are clustered at the Regency-level. The outcome variables Immediate Recall, Delayed
Recall, are standardized measures of the number of correct answers on different tests, see Section 3 for detailed
descriptions. Control variables are the natural log of precipitation, an indicator for females, an indicator for rural-
born individuals, the mother’s educational attainment, the mother’s age at birth, and the number of siblings. The
temperature bins are defined as follows: Bin 1: < 21.5◦C, Bin 2: 21.5 − 23.5◦C, Bin 3: 23.5 − 25.5◦C, Bin 4:
25.5 − 27.5◦C, Bin 5: 27.5 − 29.5◦C, Bin 6: > 29.5◦C. Bin 3 is used as the reference bin in models including the
full set of bins.
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