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Abstract

This thesis builds upon existing research on the application of machine learning in

asset pricing in the US and European stock markets, by incorporating unique pre-

dictive indicators specific to the Chinese stock market, to explore whether machine

learning can also be successfully applied in the Chinese stock market. Empirical re-

sults show that machine learning models outperform OLS significantly in predicting

A-share returns, and this conclusion also applies to different portfolios we have con-

structed. In the analysis of feature importance, we found that the retail investors’

dominating presence in the Chinese stock market makes macroeconomic variables

and variables containing direct trading information, such as technical indicators,

trading volume, and turnover, more influential. This is in contrast to the US mar-

ket and reflects the characteristics of the Chinese stock market.
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Chapter 1

Introduction

1.1 Background

Return prediction has been a key area in the field of asset pricing. Whether it is

a comparison of cross-sectional individual stock returns or a time-series forecast of

index returns, the crucial issue is to determine the appropriate asset pricing model.

Cross-sectional predictions usually study stock-level characteristics, such as size,

value, and momentum (Fama French 1993; Lewellen 2014). While time-series pre-

dictions generally conduct regressions on a handful of macroeconomic indicators,

namely interest rates and valuation ratios, and also on some technical indicators

(Rapach and Zhou 2013). Most applications for cross-sectional and time-series

predictions align with the established literature on asset pricing. They typically

consider only linear relationships between indicators and expected returns. For ex-

ample, the traditional capital asset pricing model (CAPM) based on Markowitz’s

mean-variance portfolio theory, assumes that the excess return of a stock or portfolio

arises only from its sensitivity to systematic risk. However, the subsequent arbitrage

pricing model (APT) and the classical Fama-French factor model point out that the

factors affecting returns go beyond market factors and should include other factor

variables in other areas such as corporate fundamentals and macro environment,

i.e., multi-factor models. Afterward, many scholars start to explore nonlinear rela-

tionships in pricing factors. Bansal et al. (1993), Chapman (1997), and Asgharian

and Karlsson (2008), to name a few, show that incorporating nonlinear relationships

between indicators and expected stock returns add more explanatory power. Asset
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pricing is moving into the era of big data. Some issues, such as the importance rank-

ing of predictive variables, cannot be explained by traditional econometric models,

but need to be explored and studied with a high-dimensional perspective combined

with machine learning.

In the face of the challenges posed by big data in finance, the improvement

and application of machine learning algorithms have become a hot topic of aca-

demic research in recent years. Machine learning models can effectively handle

high-dimensional data during the training process, avoiding the overfitting and un-

derfitting problems of traditional regression models such as least squares regression

(OLS) and other statistical tools.

Although machine learning has performed well in many fields, its application

in financial markets cannot be accomplished by simple transplantation. The main

reason for this is the unique characteristics of financial data. First, financial data are

intrinsically noisy, making it difficult to accurately model financial phenomena. Also,

models may overfit the noise, capturing the idiosyncrasies of the training data rather

than generalizable patterns. In addition, the efficient market hypothesis suggests

that a perfectly efficient market cannot take advantage of past information to obtain

excess returns. Although such a perfect market does not exist in reality, the existence

of arbitrage by market traders does absorb most of the efficient information, reducing

the validity of historical data. The second characteristic is that financial data have

a short sample time span. Modern stock markets are only 100 years old, and more

new financial data can only be obtained over time. Most of the literature studying

asset pricing use daily or even monthly data, making the data sample size limited

and thus constraining the estimation and validation process of the models.

After solving the ”transplantation” problem, machine learning can provide a

rich set of algorithms to support asset pricing. Although the theoretical structure

of some methods has been built in statistics for a long time, the generation of big

data has made it possible to apply the models widely. By applying proven models

to asset pricing, we can analyze the joint effect of a large number of indicators. A

typical example is Gu et al. (2020), who use machine learning algorithms including

LASSO, ridge regression, elastic net, PCA, PLS, random forest, and neural network

models for asset return forecasting and find that non-linear models such as neural

Bao Liu & Chuyue Huan
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networks have significantly better cross-sectional return forecasting power than lin-

ear regression models, and overall, machine learning models are able to deliver a

more significant economic return.

By far, the Chinese stock market has been particularly attractive for academic

research, not only due to its increasing size but also because of its specificity. Con-

sidering the differences between the Chinese stock market and mature stock markets

in various aspects such as economic environment, regulatory policies, and trading

systems, some conclusions proposed before may not apply to it. For example, Liu

et al. (2019) and Hu et al. (2019) similarly find that the profit-to-price factor is

more applicable to asset pricing models in the Chinese stock market than the book-

to-market ratio factor. The differences in pricing models highlight the significance

of asset pricing studies for the Chinese stock market.

Our empirical study follows that of Gu et al. (2020) but with some key dif-

ferences. First, we use Chinese stock market data and add some Chinese-specific

indicators into models. Second, instead of building a comprehensive set of 94 char-

acteristics, we use a parsimonious set of only 36 characteristics, dividing the stock-

level characteristics into 6 categories according to Hou et al. (2015). To examine

our model’s performance for predicting aggregate portfolio returns, we build equal-

weighted and value-weighted portfolios based on predicted individual stock returns

and compare the Sharpe ratios of the portfolios. Finally, through comparative anal-

ysis, we find that nonlinear machine learning models outperform linear regression

models in predicting the excess return of A-shares. Additionally, we are able to

examine the indicators that have a greater impact on the predictions in the Chinese

stock market.

The remainder of this paper is structured as follows. Chapter 2 surveys the

existing literature on asset pricing theories, machine learning applications in finance,

and an overview of the Chinese stock market. Chapter 3 describes the data and also

covers the methodology of our study, including a brief introduction to the different

models we used. Chapter 4 shows our empirical analysis results, including out-of-

sample tests and feature importance demonstration. Chapter 5 conducts a study on

the expected return-sorted portfolios. Finally, Chapter 6 contains a short conclusion

based on the results.

Bao Liu & Chuyue Huan
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1.2 Limitations

In this paper, there are several limitations that need to be acknowledged:

First, our methodology employs walk-forward validation, which has led us to

select a stock pool comprising only those non-ST stocks that have been consistently

trading since 2003, excluding stocks from the financial and real estate sectors. This

selection criterion may limit the generalizability of our findings to other stocks and

sectors.

Second, due to the absence of publicly available forums or websites in China

discussing stocks, it is not feasible to mine and analyze retail investor sentiment for

sentiment analysis. Consequently, our study does not incorporate any investor senti-

ment indicators in the selection of metrics, which may affect the comprehensiveness

of our results.

Third, the Chinese stock market has a relatively short history of established rules

and regulations, leading to a lack of data for many early years. Although we have

attempted to fill in missing values to the best of our ability, it is possible that this

data limitation may impact the accuracy of our predictions.

Last but not least, in this study, a limitation is manifested in the form of selection

bias. To ensure the uniformity and coherence of our dataset, we incorporated stock

data spanning from January 2003 to September 2022, deliberately excluding delisted

stocks. Consequently, our data selection is inherently susceptible to forward-looking

bias, given the inherent difficulty in accurately anticipating the delisting of stock

prior to the event transpiring. Moreover, an array of factors may precipitate the

delisting of stock, including but not limited to corporate bankruptcy, mergers, and

buyouts. It is noteworthy that stocks delisted due to bankruptcy frequently demon-

strate poor performance. By omitting delisted stocks from the dataset during the

specified study period, an inadvertent overestimation of the overall performance of

the dataset occurs when compared to real-world stock performance. This ultimately

gives rise to the presence of forward-looking bias within our scholarly investigation.

Bao Liu & Chuyue Huan



Chapter 2

Literature Review

2.1 The Development of Assets Pricing Models

Introduced by William Sharpe (1964), John Lintner (1965), and Jan Mossin (1966),

the Capital Asset Pricing Model formed the basis of Asset Pricing Theory. The

CAPM is a valuable tool to estimate a company’s cost of capital and measure the

expected returns of an investor’s portfolio. It effectively demonstrates the connection

between risk and expected return, stating that an asset’s expected rate of return is

equal to the compensation it receives for its exposure to market risk.

At first, the studies were mainly based on individual stock returns to test the

CAPM. However, the empirical results were not encouraging. Lintner (1969) and

Douglas (1967) both discovered that the intercept in the CAPM had significantly

higher values than the risk-free rate of return. Conversely, the beta coefficient had a

comparatively lower value. Miller and Scholes (1972) also found the same problem

when they were studying individual stocks. After then, some scholars replaced

individual stock returns with portfolio returns, managing to avoid the statistical

problem mentioned above. Black et al. (1972) created portfolios that included all

stocks listed on the New York Stock Exchange (NYSE) between 1931 and 1965,

suggesting that the expected excess return on an asset was not always directly

proportional to its beta, thereby presenting significant evidence that contradicted

the CAPM. Fama and MacBeth (1973) also formed 20 portfolios of all the stocks

listed on the NYSE between 1935 and 1968, but the difference is that they employed

monthly data for a time series regression model to estimate the beta. Their research
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pointed out that the coefficient of beta was significant and the value remained small

over several sub-periods.

However, many scholars still held doubts about the validity of the CAPM. For

example, an insignificant relationship between beta and returns was discovered by

Lakonishok and Shapiro (1986). And meanwhile, they detected a significant rela-

tionship between market capitalization and returns. Tinic and West (1984) followed

Fama and MacBeth (1973), applying the same NYSE data from 1935 to 1982, yet

their findings were contrary. In the early 1980s, several studies identified that the

single-factor CAPM was not adequate and the beta was not sufficient in clarifying

the relationship between excess risk and return. Therefore, many studies turned to

other potential factors that could affect the assets’ risk-return relationship.

Basu (1977) proposed a hypothesis that in an efficient capital market, stock

prices would immediately and impartially reflect all available information, thus pro-

viding unbiased estimates of fundamental values. He also evaluated the performance

of common stocks to investigate whether their performance was linked to their P/E

(price-to-earnings) ratios. The evidence demonstrated that the stocks with lower

P/E ratios had higher expected returns than predicted by the CAPM. Then, Banz

(1981) obtained a similar conclusion for small stocks which had lower market capi-

talization. Meanwhile, Stattman (1980) and Rosenberg et al. (1985) also reached a

conclusion that stock returns were positively related to the B/M (book-to-market)

ratio by conducting the study on U.S. stocks. Bhandari (1988) found that expected

stock returns had a positive correlation with the debt-to-equity ratios when beta

and firm size were under control. These studies above suggested that a single-factor

CAPM did not hold and that other factors could also contribute to asset returns.

Hereby, the multifactor CAPM appeared.

First, Chan et al. (1991) studied the Japanese stock market, attempting to re-

late cross-sectional differences in stock returns to the four variables: yield, size, cash

flow returns, and B/M ratio. Their results proved these variables were significantly

related to expected returns in the Japanese market. Among them, cash flow re-

turns and the B/M ratio had the most significant positive effect. Then, Fama and

French (1992) used a more indirect approach. Their arguments suggested that the

higher average returns of stocks with small sizes but high B/M ratios could reflect

Bao Liu & Chuyue Huan



10

unidentified state variables that generate undiversifiable risk, which was also called

covariance, in returns that were not able to be captured by market returns and priced

separately from market betas, though size and B/M ratio are not state variables.

Griffin (2002) found the three-factor model more useful, especially in explaining

stock returns when applied to specific countries. In order to estimate time-varying

betas, Koutmos and Knif (2002) introduced a dynamic vector GARCH model, find-

ing that there was a probability of 50% that betas are higher when the market falls.

Their opinion about this result was that the market model which was static could

exaggerate the unsystematic risk and that betas which were dynamic followed a sta-

tionary, mean-reverting process. Then, Fama and French (2004) further confirmed

the failure of the traditional CAPM in empirical tests. Thompson et al. (2006)

showed some crucial evidence against the CAPM in their study as well.

In all, the key assumptions of CAPM have been severely criticized, including the

assumption of a linear relationship between risk and return, and the assumption

of a unique risk factor. Therefore, many researchers have proposed new models to

overcome the shortcomings of the CAPM, especially machine learning methods.

2.2 The Application of Machine Learning in As-

set Pricing

Utilizing machine learning methodologies enables us to overcome many constraints

inherent in conventional asset pricing approaches, specifically addressing the chal-

lenges of predictive accuracy, feature selection, and functional form determination.

Firstly, most machine learning tools are designed for prediction. Machine learning

algorithms can automatically and efficiently learn patterns and relationships from

existing datasets and adapt the algorithm to new data, improving their predictive ac-

curacy over time. Secondly, technical, financial, and macroeconomic variables have

customarily been considered the most influential indicators affecting stock prices.

As the advancement of artificial intelligence persists, and the accumulation of sig-

nals expands over multiple decades, researchers can leverage increasing features in

machine learning models to enhance asset pricing. Nevertheless, these predictors

are usually highly correlated. Machine learning tools can provide dimension re-

Bao Liu & Chuyue Huan
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duction and variable selection or shrinkage tools to optimize degrees of freedom.

For example, Freyberger et al. (2020) employ the nonparametric adaptive group

LASSO technique to discern vital independent variables that furnish incremental

insights regarding expected returns. Kozak et al. (2017) claim that the task of

estimating cross-sectional stock returns with a limited number of predictors is con-

sidered unfeasible. To address this issue, they use the joint explanatory power of the

high dimensional set of predictors to construct a robust stochastic discount factor,

contrasting L1-penalty (lasso) and L2-penalty (ridge). They also present economic

rationales for the superior empirical performance of L2-penalty. Harvey and Liu

(2016) identified that the market factor is essential in explaining the cross-section

of expected returns; the study challenged the common notion that individual stocks

are unsuitable as test sets due to excessive noise by operating on stock-level data.

Additionally, they also offered a novel bootstrap implementation approach to test

multiplicity. Giglio and Xiu (2019) employ a principal component analysis (PCA)

method and find that market frictions (e.g., liquidity) have a robust and significant

influence on risk premia in the application. Kelly et al. (2019) propose an In-

strumented Principal Component Analysis (IPCA) method to re-estimate common

predictors and identify IPCA factors that are statistically significant.

Thirdly, the association between the risk premium and the predictors may be

characterized as either linear or non-linear. Through the application of effective

machine learning algorithms, the optimal functional form can be ascertained with

minimal computational expense. Moritz and Zimmermann (2016) conducted a com-

parison between excess returns derived from the Fama-MacBeth framework and

tree-based models. Their research focused on relating past returns to future re-

turns. The study revealed that tree-based models could generate more stable excess

returns. This finding indicates that the current linear framework may only partially

capture some relevant information in the dataset. Consequently, tree-based machine

learning models demonstrate more outstanding prowess in forecasting stock returns.

Messmer (2017) leverages a deep feedforward neural network (DFN) predicated on

an extensive array of firm attributes to forecast the United States’ cross-sectional

stock return, thereby illuminating the inherent non-linear relationship between re-

turns and firm-specific characteristics. Gu et al. (2019) conducted a comparative

Bao Liu & Chuyue Huan
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evaluation of eleven distinct machine learning techniques in the realm of asset pric-

ing, utilizing a comprehensive dataset of US stocks. Their results highlight the

capacity of machine learning approaches to enhance comprehension in the field of

asset pricing. They advocate that neural networks and regression trees exhibit the

highest performance, while all methods converge on a relatively compact array of

prevailing predictive indicators. The most robust forecasting predictors identified are

return reversal and momentum. Although machine learning substantially improves

asset pricing, the author emphasizes that unsupervised learning cannot identify deep

fundamental economic mechanisms. Some studies applied classification-based ma-

chine learning methods. Leung et al. (2000) emphasized predicting the direction of

stock movements using classification-based machine learning models, as opposed to

estimating the precise rate of return for individual stocks.

2.3 Overview of the Chinese Stock Market

The Chinese stock market was born in 1990 with the establishment of the Shanghai

Stock Exchange. Over the past 20 years, it has experienced multiple stages of

initial exploration, policy regulation, and rapid development. With the launch of

the Sci-Tech Innovation Board and the implementation of the registration system

in 2019, more IPOs of high-quality enterprises will further promote the prosperous

development of the Chinese stock market. By the end of 2022, the total market

capitalization of the Shanghai and Shenzhen stock exchanges reached 78.8 trillion

yuan, accounting for more than 60% of China’s total GDP and ranking second in

the world.

The Chinese stock market possesses certain unique characteristics. First, due to

Chinese government regulations, most foreign investors are not allowed to acquire

shares in Chinese companies, and Chinese investors are restricted from participating

in foreign markets. Second, Chinese stock markets are dominated by retail investors,

in contrast to developed markets that are dominated by institutional investors. For

example, individual retail investor transactions accounted for about 60% of the

total A-shares turnover in late 2022, with the figure being less than 25% in the

US. Moreover, some studies show that there is a weak connection between stock

Bao Liu & Chuyue Huan
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returns and macro factors. To be specific, the Chinese stock market is always with

a long downturn after a spike, which is hard to explain. These distinctive market

characteristics trigger many scholars’ interest in predicting stock returns.

Jordan, Vivian, and Wohar (2014) presented an interesting finding that the

returns of China’s 15 largest trading partners could predict China’s A-share index

returns. Cakici, Chan, and Topyan (2017) found that predictions of stock returns in

the Chinese stock market were usually out of expectations, making the predictability

a little bit weak. Nevertheless, they insisted that stock returns in the Chinese stock

market were still predictable if using some specific factors, such as the B/M ratio.

Chen, Jiang, Liu, and Tu (2017) also believed that stock returns in China were

predictable and found a useful variable, international volatility, which could predict

returns in subsequent days. Lin et al. (2017) examined the empirical application of

the Fama-French five-factor model and the momentum effect in the Chinese stock

market. They used the data of listed companies in the Chinese stock market between

July 1994 and August 2015 to test whether the five-factor model could be effectively

applied in different periods and found that the size and B/M ratio are the most

significant factors under the full sample. And then they divide the full sample

into a two-stage subsample test according to the reform of ownership structures in

China’s listed companies and find that the market portfolio risk dominates before

the reform, and the risk premium of three factors, profitability, investment style, and

momentum factor, becomes significant after the reform. Hu et al. (2019) found that

the traditional B/M ratio in the Chinese stock market was not suitable as a value

factor due to the structural changes in the Chinese market during its development.

Liu, Stambaugh, and Yuan (2019) confirmed that size and value factors could help

explain most of the anomalies that appeared in China. However, they still doubted

whether the U.S. model can be replicated in the Chinese market, considering that

the two countries have very different economic and financial systems.

Looking at the contrasting results found by the researchers when trying to predict

Chinese stock returns, further analysis is needed in order to assess whether returns

are predictable in China and which factors should be chosen to better match the

distinctive characteristics of the Chinese market.

Bao Liu & Chuyue Huan



Chapter 3

Data and Methodology

3.1 Data

The market and fundamental data of Chinese firms are collected from Wind Finan-

cial Terminal and Wind Economic Database. Our sample consists of firms that were

publicly listed in the Chinese stock market before January 2003 and are still pub-

licly listed as of September 2022, totaling 237 months. For our empirical analysis,

we have exclusively incorporated firms that provide comprehensive data on monthly

returns and all thirty specific characteristics. Furthermore, we have excluded stocks

from the real estate and finance industries in our analysis due to their significantly

higher leverage ratios compared to other industries. Finally, our sample comprises a

total of 1010 stocks. To calculate excess returns, we use the Chinese 10-year treasury

bond yield as the risk-free rate.

The thirty firm-level indicators we choose are based on some asset pricing lit-

erature written by Gu et al. (2020) and Hou et al. (2015). We have categorized

the indicators into six groups: Basic Info, Profitability, Liquidity, Valuation, In-

vestment, and Trading Info. Within these, four are refreshed on an annual basis,

fifteen are updated every quarter, and seventeen undergo monthly updates. The

detailed description of each predictor is elaborated in Table 3.1 below. In addition,

we include six Chinese-specific macroeconomic characteristics following Hou et al.

(2015), which are also shown in Table 3.1. Considering dummy variables used to

encode different values of categorial variables, there are 56 predictors in total.

14
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Table 3.1: Descriptive Statistics

# Indicators Avg Std Definition

target excess return1 -2.0 16.22 the monthly return of an individual stock over Chi-

nese 10-year treasury bond yield.

1 firm size Categorical variable. The size of a firm, is mea-

sured by its market value. It is divided into

four dummies: firm size large, firm size medium,

firm size small, firm size micro.

2 firm age 17.80 7.24 The number of years a firm has been founded

3 employ no 5836.78 16672.51 The number of employees in a firm

4 ind type Categorical variable. The industry a firm belongs

to, including 18 industries. It is also divided into

18 dummy variables.

5 roe 3.33 58.11 Return on Equity: net income divided by average

shareholders’ equity in the prior quarter

6 roa 3.08 27.04 Return on Assets: net income divided by average

total assets in the prior quarter

7 roic 3.12 90.57 Return on Invested Capital: net income minus div-

idends divided by average shareholders’ equity and

debt in the prior quartor

8 gp margin -79.55 69933.04 Gross Profit Margin

9 op margin 31.26 62311.14 Operating Profit Margin

10 ocf to a 1.58 20.08 Operating net cash flow divided by average total

assets in the prior quarter. It is designed to eval-

uate the ability of a firm to generate cash from all

of its assets.

11 z score2 13.33 3218.66 Z=1.2X1+1.4X2+3.3X3+0.6X4+0.999X5, where

X1=working capital/total assets, X2=retained

earnings/total assets, X3=EBT/total as-

sets, X4=market value/total liabilities, and

X5=operating income/total assets. The score

is used to analyze and predict the likelihood of

financial failure or bankruptcy of a firm. The

lower the Z-score, the more likely the firm is to

experience bankruptcy.

12 current ratio 1.73 9.00 Current assets divided by current liabilities at the

end of the prior quarter

13 quick ratio 1.27 8.29 Current assets minus inventories at the end of the

prior quarter divided by current liabilities at the

end of the prior quarter

14 cf to debt 0.72 7.86 Cash plus cash equivalents at the end of the prior

quarter divided by current liabilities at the end of

the prior quarter

15 bm 0.49 0.44 Book value of the equity divided by market value

of the equity at the end of the prior month

16 pe 99.07 12688.68 Share price at the end of the prior month divided

by the last four quarterly EPS

17 pb 5.00 415.14 Share price at the end of the prior month divided

by the book value per share at the end of the most

recent interim period

18 pcf -36.51 18294.77 Share price divided by cash flow per share at the

end of the prior month

Continued on next page

1Equal-weighted excess return
2This factor is Altman Z-Score proposed by Edward Altman to determine whether a company

is headed for bankruptcy. See Altman(1968).

Bao Liu & Chuyue Huan



16

Table 3.1 – Continued from previous page

# Indicators Avg Std Definition

19 Itdebt capital 18.75 274.48 Average long-term debt divided by average total

capital in the prior quarter

20 a to e 3.39 31.35 Average total assets divided by average total eq-

uity in the prior quarter

21 ocf to invest 0.03 93.98 Cash Flow Adequacy Ratio: cash flow from oper-

ations divided by capital expenditure plus manda-

tory debt repayment plus dividends in the prior

quarter

22 capex to da 1.99 15.58 Capital expenditure divided by depreciation and

amortization in the prior quarter

23 fixed growth 447.74 55611.43 The growth rate of fixed assets (quarterly)

24 market beta 1.04 0.35 Market beta, estimated from weekly returns from

month-25 to month-1

25 volatility 45.66 20.84 Standard deviation, estimated from weekly returns

from month-25 to month-1

26 turnover monthly 40.72 42.39 Average monthly turnover volume from month-25

to month-1

27 volume month 25277.84 62755.98 Total trading volume in million shares

28 macd 0.27 3.33 Technical indicator. Moving Average Con-

vergence/Divergence: subtracting the 26-period

EMA from the 12-period EMA, where EMA is ex-

ponential moving averages.

29 kdj 40.11 22.65 Technical indicator. It is also known as the ran-

dom index. It is used to analyze and predict

changes in stock trends and price patterns in a

traded asset.

30 momentum index 0.15 11.03 Technical indicator. Moving average calculated us-

ing the closing price. It is used to determine if an

asset is overbought or oversold.

31 inf rate 2.50 1.84 We use the Consumer Price Index as an indicator

of the inflation rate

32 money multip 5.04 1.12 Money Multiplier measures the amount of new

money that is created in the economy for every

unit of currency held in reserve by the central

bank. It can be used as a tool to predict infla-

tion or deflation.

33 pi 99.94 11.55 The Macroeconomic Business Cycle Indicator

(MEBCI) in China is a composite index that mea-

sures the overall health and growth of the coun-

try’s economy. It is the Chinese prosperity index.

34 pmi 46.50 15.40 Purchasing Managers’ Index is a widely used eco-

nomic indicator that measures the health of a

country’s manufacturing sector.

35 cei 111.12 9.32 Consumer Expectations Index is an economic in-

dicator that measures the confidence of consumers

in the future performance of the economy.

36 vix 19.36 8.39 VIX is a measure of the market’s expectation of

volatility in the near term, based on the price of

options on the S&P 500 index. We use it to mea-

sure the impact of the global markets.

Sample size 1010 Number of firms with non-missing observations for

the excess return and each of the thirty-six char-

acteristics

Continued on next page
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Table 3.1 – Continued from previous page

# Indicators Avg Std Definition

Table 3.1 presents the description of each indicator. #1-#4 belong to the group Basic Info, #5-#11

belong to the group Profitability, #12-#14 are in the group Liquidity, #15-#20 are included in the

group Valuation, #21-#23 are in the group Investment, #24-#30 belong to the group Trading Info,

and the rest are macroeconomic variables.

3.2 Sample Splitting

The dataset utilized in this paper comprises 56 independent variables (including

dummy variables) and one dependent variable. Independent variables in our paper

are primarily divided into stock-level data, which are mainly derived from company

financial statements, and macroeconomic indicators. In real life, these data are

interrelated and highly correlated, such as the fact that a company’s net income is

the numerator of ROE, ROA, and ROIC. When independent variables exhibit a high

degree of correlation, multicollinearity issues may arise, consequently diminishing

the accuracy of the model. Furthermore, forecasting models for stock data are

highly susceptible to underfitting problems, as the stock market is characterized

by complexity, nonlinearity, and frequently changing dynamics. The presence of

a significant amount of noisy data makes it challenging to capture the underlying

patterns within the model effectively.

To overcome such issues, we applied machine learning algorithms and optimized

hyperparameters to control the complexity of the model to yield dependable out-of-

sample predictive performance. For example, the random forest model has multiple

parameters, such as n estimators, the maximum number of features, and the max-

imum depth, and different parameter values can affect the model’s performance.

We improve the model’s predictive accuracy by finding the optimal combination of

parameters using the grid search method. Although this automated approach con-

sumes a large amount of computing resources, it can avoid human bias and errors,

ensuring the robustness and reliability of the model.

In the context of finance, it is crucial to retrain our models as new data becomes

available over time. In our study, we employed the walk-forward validation approach,

which involves tuning parameters and training models on a specific period (referred

to as the training data) and evaluating their predictive power in the subsequent

Bao Liu & Chuyue Huan



18

period (referred to as the testing data), and then rolling the fixed window forward

until the last available data point is reached.

First, we divided the entire dataset into multiple segments from January 1, 2003,

to September 31, 2022. Instead of gradually expanding the training window, we

maintained a fixed window length and rolled it forward by one year. We set the

fixed window to two years and the step length to one year.

Second, we separated the dataset within each window into two distinct subsam-

ples: a training sample and a test sample. It is imperative to highlight that, as

evidenced by Table 3.1, our independent variables’ means and standard deviations

display substantial disparities in their respective ranges. For example, the mean

number of employees per company stands at 5,836.78, while the Cash Flow Ade-

quacy Ratio (ocf to invest) exhibits a mean value of merely 0.03. Machine learning

models demonstrate pronounced sensitivity to the scale of features, and such pro-

nounced discrepancies in ranges may compromise model performance. As a result,

we have undertaken the standardization of independent variables within each win-

dow to bolster the robustness and consistency of our model, thereby promoting more

efficacious training. The training sample is used to fit models, tuning parameters,

and evaluate the in-sample performance. The test sample is employed to evaluate

the out-of-sample predictive power based on optimal parameters. We consistently

allocated one and a half years for training and half a year for testing. Figure 3.1

illustrates the walk-forward validation method.

By conducting training across 19 separate windows, we generate 19 distinct mod-

els, each characterized by a unique set of parameters. The optimal model is identified

according to its out-of-sample performance and subsequently employed within the

entire dataset. To elaborate, we utilize the independent variables from the preceding

month as input data, enabling the model to predict the excess stock returns for the

ensuing month.

3.3 Machine Learning Methodology

This section covers the machine learning methods we employed in our empirical

analysis. Each subsection introduces a new model and explains its fundamental
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Figure 3.1: Walk-Forward validation

(a) In Figure 3.1, we demonstrate the process of walk-forward validation, a technique
for validating time series data by progressively rolling the training and validation data
windows.

elements. We explain the statistical model of each method, which facilitates un-

derstanding of the model structure for readers with limited background knowledge

without the need for external references.

We undertake a comparative evaluation of diverse machine learning models to

scrutinize their predictive performance. Following Gu et al. (2020), a stock’s excess

return could be described as:

ri,t+1 = Et(ri,t+1) + ei,t+1 (3.1)

where ri,t+1 is the excess return of stock i = 1, 2, ..., N in month t = 1, ..., T − 1.

The expected excess return Et(ri,t+1) is estimated by the function of a series of

independent variables.

Our research objective is to compare the predictive accuracy of linear and non-

linear models, allowing nonlinear predictor interactions missed by traditional asset

pricing models. In the context of the Chinese A-share market, we aim to identify

the most effective machine learning model for predicting a stock’s excess returns and

to determine the dominant set of independent variables affecting the excess returns

of Chinese stocks.
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3.3.1 Linear Models

Ordinary Least Squares

Linear regression is a widespread statistical method commonly used in machine

learning to model the relationship between a dependent variable (also known as the

response or target variable) and one or more independent variables (also known as

predictors or features). The central focus of linear regression is to establish the

best-fit line or hyperplane that describes the underlying relationship between the

variables in order to predict the value of the dependent variable of the independent

variables.

In simple linear regression, we have one dependent variable Y and one indepen-

dent variable X, and we assume that there is a linear relationship between the two

variables. The mathematical model representing this relationship is:

Yi,t+1 = β0 + β1Xi,t + ϵi,t+1 (3.2)

where Yi,t+1 is the dependent variable in month t+1, Xi,t is the independent variable

in month t, β0 is the intercept, β1 is the slope, and ϵ is the error term, accounting

for the differences between the observed and predicted values of Y .

Multiple linear regression is an extension of simple linear regression. The equa-

tion for multiple linear regression can be written as follows:

Yi,t+1 = β0 + β1X
1
i,t + β2X

2
i,t + ...+ βpX

p
i,t + ϵi,t+1, (3.3)

where X1
i,t, X2

i,t, ..., Xp
i,t are the features and β1, β2, ..., βp are the coefficients

associated with each independent variable.

To maximize the out-of-sample explanatory power for realized return, OLS is

designed to approximate the true forecast model by minimizing the out-of-sample

mean squared error (MSE), also known as loss function:

MSE =
1

NT

N∑
i=1

T∑
t=1

(Yi,t+1 − Ŷi,t+1)
2 (3.4)

Linear regression is used in many fields, including economics, finance, engineer-

ing, and biology, to model and predict a wide range of phenomena. However, it is
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important to consider the independence of the features when using OLS to estimate

the coefficient values. When the features are highly correlated, multicollinearity can

occur. In such cases, the design matrix becomes close to singular, and the OLS

estimate becomes highly sensitive to random errors in the target variable, leading

to a high variance in the results.

Penalized Regression

In order to address the potential overfitting issue of OLS, especially when dealing

with high-dimensional datasets where the number of predictors is much larger than

the number of observations, we employed regularized linear regression methods, in-

cluding LASSO, ridge regression, and elastic net. Essentially, regularized linear

regression modifies the cost function of OLS by introducing different regularization

terms in the loss function, which can constrain the number and magnitude of pa-

rameters and prevent overfitting and enhance the robustness of the model, thereby

increasing its out-of-sample explanatory power.

Among them, the model incorporating L1 regularization is called LASSO regres-

sion, and mathematically, its loss function is as follows:

J(β) =
1

2NT

N∑
i=1

T∑
t=1

(Yi,t+1 − β0 −
p∑

j=1

xij,tβj)
2 + λ1

p∑
j=1

|βj| (3.5)

where NT represents the total number of samples, p represents the number of fea-

tures, Yi,t+1 represents the target variable value of the i-th sample in month t + 1,

xij,t represents the value of the j-th feature of the i-th sample in month t, βj rep-

resents the coefficient of the j-th feature, β0 represents the intercept, and λ1 is the

L1 regularization parameter that controls the strength of the penalty term. The

first term in the objective function represents the ordinary least squares (OLS) loss

function, while the second term represents the L1 penalty term.

The L1 regularization can generate a sparse weight matrix, which means a matrix

with many zero elements and only a few non-zero values. LASSO regression has

several advantages over traditional linear regression. It can handle high-dimensional

datasets with many potential predictors and can perform the variable selection by

shrinking irrelevant coefficients to zero. This can improve the interpretability of the
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model and reduce its complexity. Additionally, the L1 penalty can lead to sparse

solutions, meaning that only a subset of the predictors is used in the model, which

can reduce the risk of overfitting.

Ridge regression is a type of linear regression that adds an L2 regularization

term to the OLS loss function. Similar to LASSO, ridge regression can also address

overfitting and mitigate the effects of multicollinearity. However, unlike LASSO,

ridge regression (L2) does not have the ability to generate sparse solutions, which

means that the parameters do not actually become many zeros. Mathematically, its

loss function is as follows:

J(β) =
1

2NT

N∑
i=1

T∑
t=1

(Yi,t+1 − β0 −
p∑

j=1

xij,tβj)
2 + λ2

p∑
j=1

β2
j (3.6)

where λ2 is the L2 regularization parameter that controls the strength of the penalty

term. The first term in the objective function represents the ordinary least squares

(OLS) loss function, while the second term represents the L2 penalty term.

Elastic net is a type of linear regression that combines the L1 (LASSO) and L2

(ridge regression) regularization parameters in the loss function. Elastic net can be

seen as a compromise between the LASSO and ridge regression methods, providing

a more general and flexible approach to regularization. The loss function can be

formulated as follows:

J(β) =
1

2NT

N∑
i=1

T∑
t=1

(Yi,t+1 − β0 −
p∑

j=1

xij,tβj)
2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j (3.7)

where λ1 and λ2 are the L1 regularization parameter and the L2 regularization

parameter that controls the strength of the penalty term.

Penalized Regression Models have been widely used in the field of asset pric-

ing. Rapach et al. (2015) employed the adaptive LASSO technique from statistical

learning literature, aiming to identify economically linked industries within a com-

prehensive framework that accounts for intricate interdependencies among various

industries. Chinco et al. (2017) found rare, short-lived, ’sparse’ variables that pre-

dict returns using the LASSO.
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Principal Component Regression and Partial Least Squares

As the number of dimensions increases, the amount of data required to represent the

space accurately increases exponentially. This leads to several problems, such as the

sparsity of data samples, increased computational complexity, difficulty in visual-

ization, and overfitting. When addressing high-dimensional data, there are usually

two kinds of methods: the first is shrinkage, as demonstrated by the penalized re-

gression section above, which shrinks some parameter values near or to exactly zero;

the second method is dimension reduction, such as Principal Component Regression

(PCR) and Partial Least Squares (PLS). These methods can transform the data and

map the high-dimensional data into a lower-dimensional space while preserving as

much original information as possible.

PCR is a multivariate regression method that examines the correlation among

multiple variables. It consists of two procedures: first, using principal component

analysis (PCA), multiple independent variables are transformed into a small set

of principal components that preserve as much information from the original vari-

ables as possible while being uncorrelated with each other. Then, these principal

components are used for regression analysis.

First, we convert Equation 3.3 into a vectorized form:

R = Zθ + E (3.8)

where R is the NT × 1 matrix, representing the forecasting excess return. Z is the

NT × P matrix of stacked predictors, θ is the vector of the predictive coefficient,

and E is the vector of residuals.

PCR and PLS condense the dimensionality of predictors to a smaller number of

K. Thereafter, the predictive model could be written as:

R = (ZΩK)θK + Ẽ (3.9)

where ΩK is the P ×K matrix with columns ω1, ω2, . . . , ωK . ZΩK is the dimension-

reduced version of the set of predictors. Each column ωj in the matrix represents

a linear weight or feature vector used to construct the new dimensions. The ob-

jective is to find the coordinates with maximum variance among the variables for
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dimensionality reduction while maintaining orthogonality and eliminating duplicate

information among different feature variables. The objective function of the feature

vectors for PCR can be expressed as:

wj = argmax
w

Var(Zw), s.t.w′w = 1,Cov(Zw,Zwl) = 0, l = 1, 2, ..., j − 1. (3.10)

It is important to note that the selection of components is not influenced by the

forecasting objective. Rather, PCR places emphasis on identifying components that

capture as much common variation within the predictor set as possible. PCA, as an

early and classical algorithm, has been widely used in the academic field. In the field

of asset pricing, Giglio et al. (2016) used PCA to extract potential omitted predictors

when constructing factor pricing models. Lettau and Pelger (2020) propose a new

estimator that can find asset-pricing factors by generalizing PCA with accounting

for pricing error in a large-dimensional panel of financial data. Overall, there are

relatively few research studies that solely use PCA as the algorithm, and most

studies combine it with other algorithms for comparative analysis.

Unlike PCA, PLS’s objective is seeking K linear combinations of Z that have a

maximal predictive association with the forecast target. The objective function can

be expressed as:

wj = argmax
w

Cov(R,Zw), s.t.w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ..., j−1. (3.11)

From the formula, we can see that compared to PCA, which only considers the

internal correlation of variables, PLS introduces the research objective-stock returns

and examines the correlation between variables and returns. PLS then reconstructs

and reduces the coordinate system according to the dimensions most correlated with

returns.

Recent studies on the PLS algorithm can be found in Kelly and Pruitt (2012),

where the algorithm is applied to the study of return prediction, and it is found that

the covariance between variables and predicted values is more important than the re-

lationships among the variables. The authors suggest that some effective predictors

may be ignored by the PCA algorithm due to their small variances, while PLS can

improve prediction by increasing the weights of these variables. Similarly, Huang
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et al. (2015) introduce the PLS algorithm into the measurement of investor senti-

ment, using stock return volatility as an instrumental variable to extract investor

sentiment and giving higher weights to proxy variables that are sensitive to investor

sentiment and have strong predictive power for stock returns, and constructing a

new investor sentiment index accordingly.

3.3.2 Non-Linear Models

Decision Tree and Random Forest

A decision tree is a hierarchical tree structure, where each node in the tree repre-

sents a specific condition related to the input data, and each branch represents a

possible outcome based on the answer to that condition. As the tree progresses,

each subsequent condition is based on the previous condition, until a final decision

or outcome is reached. A path from the root node of the decision tree to the leaf

nodes forms a prediction of the category of the corresponding object. There are

many algorithms for decision trees, such as ID3, C45, CART, etc. These algorithms

all use a top-down greedy algorithm, where each node selects the attribute with the

best classification and splits the node into two or more sub-nodes, continuing the

process until the tree can accurately classify the training set, or all attributes have

been used.

However, the decision tree model has significant drawbacks. First, this model

is prone to overfitting, leading to a low generalization ability. Second, decision

trees are susceptible to sample imbalance. We need to balance the samples before

training the model to avoid the situation where one category is in the absolute

majority of the dataset. Third, the stability of the decision tree is low. A very small

change to the dataset may result in training a completely different tree. When the

number of features is large, it is difficult to solve the above problems. According

to the researches, bagging can improve the model performance, so we introduce the

random forest model.

Random forest is an ensemble learning method that combines multiple weak

and diverse models to make the overall model performance with high accuracy by

averaging or taking the majority vote. The “forest” of random forest is built in

a random way consisting of many decision trees. Each tree is trained on a subset
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of the original dataset and each tree is unrelated to the other. The procedure of

bagging for trees can be explained as follows: Given a training set X = x1, ..., xN

with responses Y = y1, ..., yN , bagging repeatedly (B times) selects a random sample

with replacement of the training set and fits trees to these samples: For b = 1, ..., B:

Select, with replacement, N training examples from X, Y , and they are called Xb,

Yb. Train a classification or regression tree fb on Xb, Yb. After training, predictions

can be made by averaging the results from all the regression trees or taking the

majority vote of all the classification trees. Compared with the decision tree model,

the random forest model is more robust and better able to handle noise and outliers

in the data. That is to say, it can decrease the variance of the model, without

increasing the bias.

Figure 3.2: Decision Trees

(a) In the Figure 3.2, we present an example of a random forest, an ensemble learning
method that improves model accuracy and stability by constructing multiple decision
trees and combining their predictions. During the training process, the random forest
uses bootstrap sampling to generate different training sets and randomly selects feature
subsets to build each decision tree. The final prediction is derived from the average of the
predictions made by all the decision trees (for regression problems)

Deep Neural Networks

Deep neural network (DNN) is a type of artificial neural network (ANN). DNN can

learn and perform complex tasks by using multiple layers of interconnected nodes or

”neurons”. Therefore, DNN is also known as Multi Layer Perceptron (MLP). These

layers allow the network to process and analyze large amounts of data, enabling it
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(a) Sigmoid (b) Tanh (c) ReLu

Figure 3.3: Common activation functions

(a) In the Figure 3.3, we showcase three commonly used activation functions: Sigmoid,
Tanh, and ReLU. Activation functions play a crucial role in neural networks, as they
introduce non-linearity, enhancing the model’s expressive power.

to recognize patterns and make predictions with a high degree of accuracy. The

specific model we apply in the empirical study is feedforward neural network.

The neuron is the basic computation unit, also called a node. The node receives

input, where each input has a weight, from other nodes and then computes the

output. It applies a function to the weighted sum of all the inputs. The function

is called the Activation Function. Some common activation functions are as Figure

3.3

Sigmoid: scale the output to [0, 1]

σ(x) =
1

1 + e−x
(3.12)

Tanh: scale the output to [−1, 1]

tanh(x) = 2σ(2x)− 1 (3.13)

ReLu:

f(x) = max(0, x) (3.14)

In a deep neural network, each layer of neurons processes the input data, and the

output from one layer serves as the input for the next layer. The input layer receives

the input data and processes it, passing it to the hidden layer, which processes the

data further. This process continues until the data has passed through all the hidden

layers. Finally, the network generates an output or prediction based on the input.

Figure 3.5 is an example of the feedforward neural network with three hidden
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layers, where each hidden layer has 32, 16, and 8 neurons.

We follow Gu et al. (2020) in constructing our feedforward neural network with

up to five hidden layers. The first neural network, which is the shallowest one, has

a hidden layer with 32 nodes. We call it FFN1. Then the second neural network

FNN2 has two hidden layers with 32 and 16 nodes separately. The third neural

network FNN3 has three hidden layers with 32, 16, and 8 nodes, respectively. The

fourth neural network FNN4 has four hidden layers with 32, 16, 8, and 4 nodes,

respectively. And the last neural network FFN5 has five hidden layers with 32, 16,

8, 4, and 2 nodes separately. By comparing the five neural networks, we can detect

the trade-offs of network complexity in the predicting problem.

To ensure computational feasibility and prevent overfitting, we employ addi-

tional types of regularization in conjunction with a ReLU activation function. Our

approach for estimating the weight parameters of the neural network is to use L2

regularization by penalizing weights with large magnitudes. To train the neural net-

works, we apply the stochastic gradient descent (SGD) algorithm which can divide

the whole training sample into smaller random subsamples.

Figure 3.5: Neural Network

(a) In Figure 3.5, we present the structure of a Neural Network with three hidden layers,
consisting of 32, 16, and 8 neurons, respectively. Neural networks are computational mod-
els that mimic biological neural systems for recognizing and processing complex patterns
and data. These networks comprise input, hidden, and output layers, with nodes (neu-
rons) connected by weights between the layers.
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3.3.3 Performance Evaluation

We conduct whether these models differ in predictive performance from two aspects:

First, we used the out-of-sample R2, also known as the coefficient of determination,

to assess predictive performance for individual stock excess returns. Then, we use

Sharpe Ratio to evaluate predictive performance at the portfolio level.

R-squared

In machine-learning models, the variance of the dependent variable (Y ) can be

referred to as the total sum of squares (TSS), which consists of two parts: the

model sum of squares (MSS), representing the information that can be explained

by the model, and the residual sum of squares (RSS), representing the information

that cannot be explained by the model. The definition of R2 is the proportion of the

variance of the dependent variable that is explained by the predicted values, which

measures the goodness of fit of the predicted values to the true values. The formula

for R2 is:

R2
oos = 1−

∑ntest
i,t (yi,t+1 − ŷi,t+1)

2∑ntest
i,t (yi,t+1 − ȳi,t+1)2

(3.15)

where yi,t+1 and ŷi,t+1 are the actual and predicted values of the dependent variable

for the ith observation in the test dataset, respectively. ȳi,t+1 is the mean of the

dependent variable in the test dataset. The range of the R2 value is from (−∞, 1],

where a higher value indicates a better predictive ability of the model. When the

model predicts the returns of stocks for all periods perfectly, R2 equals 1.

We also follow Gu et al. (2020) to evaluate the forecasting performance of

machine learning models with a different kind of out-of-sample R2; the formula is:

R2
oos = 1−

∑ntest
i,t (yi,t+1 − ŷi,t+1)

2∑ntest
i,t (yi,t+1)2

(3.16)

The difference of the R2 is the denominator is the sum of squared excess returns

without demeaning.

Sharpe Ratio

In this paper, we use the Sharpe Ratio to assess the predictive accuracy of the ma-

chine learning models employed for portfolio analysis. Sharpe Ratio is a widespread
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measure of risk-adjusted return used in finance regions. By using Sharpe Ratio, we

can evaluate the risk-adjusted performance of an investment. The function is shown

as:

Sharpe Ratio =
Rp −Rf

σp

(3.17)

where Rp is the mean return of portfolio, Rf is the risk-free rate, and σp is standard

deviation of the portfolio’s excess return.

A higher Sharpe Ratio indicates better risk-adjusted performance, as it implies

that the portfolio earns a higher return per unit of risk taken.
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Chapter 4

Empirical Analysis

In this chapter, we start by comparing the stock-level prediction performance of

both linear and non-linear models we elaborated above via out-of-sample predictive

R2 and exploring the contribution of each variable within each model. Then, we

employ portfolio analysis to examine the portfolio-level prediction performance for

each model. Please be informed that our empirical analysis was conducted within

the Python environment, utilizing packages such as numpy, pandas, matplotlib, and

scikit-learn among others.

4.1 Empirical Test Results

Table 4.1 presents the comparison of each model by means of their predictive R2.

Totally, we include 12 models within the comparison: ordinary least squares (OLS)

with all variables, ridge regression (RR), LASSO, elastic net (ELNT), PCR, PLS,

random forests (RF), and feedforward neural network with different layers from 1

to 5 (FFN1, FFN2, FFN3, FFN4, FFN5).

Table 4.1: Monthly prediction performance (Percentage R2
oos and R2

is)

OLS RR LASSO ELNT PCR PLS RF FFN1 FFN2 FFN3 FFN4 FFN5

R2
is 29.26 26.90 24.56 24.57 24.64 24.64 82.06 49.34 52.49 55.15 55.37 51.89

R2
is−dm

45.46 27.64 24.60 24.61 24.67 24.67 85.01 57.91 60.52 62.73 62.91 60.02

R2
oos -269 6.52 23.84 23.84 23.81 23.78 35.84 39.50 33.99 42.51 42.07 37.15

R2
oos−dm

-127 6.73 24.00 24.00 23.98 23.94 41.51 47.83 43.08 50.42 50.04 45.80

(a) In Table 4.1, R2
is represents the in-sample R2 of each model and R2

is−dm represents the
in-sample R2 with demeaning. Similarly, R2

oos and R2
oos−dm are out of sample R2 without

and with demeaning respectively of each model.
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OLS model generates positive in-sample R2 values, which are similar to other

linear models, but negative out-of-sample R2 values of −269% and −127%, show-

ing a naive prediction of a negative value to all stocks. It is unsurprising since

the absence of regularization in OLS can make it highly vulnerable to overfitting.

Therefore, regularization via dimension reduction can significantly improve predic-

tion performance. First, by shrinking the coefficients of the less important features

towards zero and reducing the impact of highly correlated features, LASSO and

elastic net reduce the number of factors to 38 and 40 respectively, and raise the

out-of-sample R2 to more than 23%. Second, by forming a few linear combinations

of predictors, PCR and PLS also raise the out-of-sample R2 to over 23%. In detail,

PCR uses 30 to 50 components and PLS finds a smaller group of 9 components.

Neural networks are the best-performing models overall. The out-of-sample R2

ranges from 30% to 50%, among which FFN3 has the highest R2 of 50.42%. The

results suggest that a more complex neural network model does not necessarily lead

to better performance, which is a common phenomenon because the additional layers

may introduce noise or overfit the model to the training data, leading to poorer

performance on new or unseen data. Random forest is competitive with neural

networks with the out-of-sample R2 of 35.84% and 41.51%. The forests generally

estimate deep trees, with about 20 layers on average.

4.2 Feature Importance

Following Drobetz et al. (2021), we utilize a two-step method to calculate the

variable importance matrix for each model. In the first step, we determine the

absolute variable importance by evaluating the reduction in R2 that results from

setting all values of a specific predictor to zero within the training sample. In the

second step, we normalize the absolute variable importance measures so that they

add up to 1, indicating the proportional contribution of each variable to a model.

Figure 4.1 and Figure 4.2 depict the top 10 relative variable importance measures

for each model1. We find that the different forecasting models identify almost the

same variables as the most informative, except the OLS model.

1For the whole relative variable importance measures, please see Appendix A
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(a) ols(10) (b) ridge(10) (c) LASSO(10)

(d) elnt(10) (e) pcr(10) (f) pls(10)

Figure 4.1: Top 10 Feature Importance(a)

(a) Figure 4.1 contains the top 10 feature importance obtained from six different machine
learning models. (totaling 12 models)
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(a) rf(10) (b) nn1(10) (c) nn2(10)

(d) nn3(10) (f) nn5(10)

(a) Figure 4.2 contains the top 10 feature importance obtained from six different machine
learning models. (totaling 12 models)
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(e) nn4(10)

Figure 4.2: Top 10 Feature Importance(b)
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Most of the forecasting models favor the macroeconomics predictors, including

ridge regression (RR), PCR, PLS, random forest (RF), and neural networks (FFN1-

FFN5). For RR, RF, and FNNs, vix us has the largest variable importance. Mean-

while, these models also put significant weight on Chinese inflation rate (inf rate)

and money multiplier (money multi), suggesting these macroeconomic indicators are

also significant. In addition, PLS, ELNT, and LASSO strongly favor the Chinese

prosperity index (pi) and Chinese Purchasing Managers’ Index (pmi). Considering

the characteristics of Chinese stock market, we think it is reasonable that macroe-

conomic variables are more influential. First, China is an economy with a strong

dependence on the global economy. Therefore, factors such as global economic fluc-

tuations, trade frictions and changes in international financial markets can directly

or indirectly affect the performance of China’s stock market. Second, the structural

characteristics of China’s stock market also increase the likelihood that it will be

affected by macroeconomic factors. Many companies in the Chinese stock market

are state-owned or have close relationships with the government, which can lead

to changes in stock prices based on government policies or announcements. For

instance, on December 4, 2012, the Central Committee of the Chinese government

issued the ’Eight-point Regulation’, which strictly stipulated the standards for offi-

cial receptions, specifically prohibiting the consumption of high-end alcohol during

such events. As Kweichow Moutai (Stock Index: 600519.SS), the highest-grade bai-

jiu brand characteristic of China, was significantly affected by this policy, its stock

price fell nearly 50% within a year. Third, the investor structure of the Chinese

stock market is also an important factor contributing to its exposure to macroeco-

nomic factors. The Chinese stock market is dominated by a large proportion of retail

investors, who are more sensitive to news and macroeconomic events compared to

institutional investors. Finally, the Chinese stock market is highly speculative, with

many investors relying on rumors and market gossip to make investment decisions,

which can further amplify the impact of macroeconomic factors.

For stock-level characteristics, variables turnover monthly,macd,momentum index,

kdj, and volume month, which all belong to the category Trading Info have high

priority in RR, LASSO, ELNT, and PLS. However, our findings in machine learning

models contrast those in Gu et al. (2020) for the US market. Random trees and
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neural networks are highly skewed toward macroeconomic characteristics. Com-

pared with other stock-level characteristics, variables in the group Profitability

and Trading Info, namely kdj, roa, and turnover monthly are relevantly signifi-

cant. We believe that this outcome is in line with the characteristics of the Chinese

stock market, primarily because it is dominated by retail investors who tend to make

decisions based on short-term trends and news rather than long-term fundamentals.

As a result, indicators that can reflect trading information are more influential on

the market. This is particularly important given the lack of mature regulations

and institutions in the market, which can make it more volatile and susceptible to

sudden changes in sentiment.

4.3 Portfolio Analysis

So far, we have discussed using multiple machine-learning models to predict stock-

level excess returns. However, most rational investors tend to hold investment port-

folios (such as mutual funds and ETFs). The advantage of holding portfolios is that

they can minimize and diversify the idiosyncratic risk caused by noise in individual

stock predictions as much as possible. To analyze the forecasting power of machine

learning models at the portfolio level, we employed portfolio analysis in this section.

Last but not least, another reason for doing so is to test the predictive accuracy

using the portfolio approach.

From January 2003 to September 2022, we conduct an analysis on a monthly

basis in which we sort the predicted returns of various models in the entire sample in

ascending order. Subsequently, we partition the sorted returns into ten equal parts,

resulting in the formation of ten investment portfolios. These portfolios comprise

p low, which consists of the bottom 10% of stocks by predicted return, and p high,

which consists of the top 10% of stocks by predicted return. The intermediate

portfolios range from the 2nd to the 9th. Meanwhile, we build a long-short investment

portfolio, designated as H-L, by longing stocks in the p high portfolio and short-

selling those in the p low portfolio. As depicted in Table 4.2, we compute equal-

weighted and value-weighted monthly predicted excess returns, monthly realized

excess returns, standard deviations of actual returns, and annualized Sharpe ratios

Bao Liu & Chuyue Huan



37

for each of the distinct portfolios.

We construct the equal-weighted portfolio return with:

r̂pt+1 =
N∑
i=1

1

N
∗ r̂i,t+1 (4.1)

The value-weighted portfolio return with:

r̂pt+1 =
N∑
i=1

wp
i,t ∗ r̂i,t+1 (4.2)

Table 4.2: portfolio analysis result

equal-weighted value-weighted

Pred(%) Avg(%) Std(%) SR Pred(%) Avg(%) Std(%) SR

ols

Low -3.13E+11 -2.16 16.62 -0.45 1.5E+11 -3.10 12.65 -0.85

2 -7.71E+10 -2.20 15.11 -0.50 4.92E+11 -2.56 12.08 -0.74

3 -4.87E+10 -3.00 16.03 -0.65 5.9E+11 -3.13 14.35 -0.76

4 -4.87E+10 -3.00 16.03 -0.65 4.94E+11 -2.55 13.49 -0.65

5 -4.87E+10 -1.71 14.69 -0.40 5.17E+11 -2.53 12.78 -0.69

6 -4.87E+10 -1.50 15.27 -0.34 5.61E+11 -2.72 12.14 -0.78

7 -1.90E+10 -2.07 15.26 -0.47 5.37E+11 -3.11 12.60 -0.85

8 2.64E+10 -2.05 14.40 -0.49 4.59E+11 -2.89 12.54 -0.80

9 1.69E+11 -2.17 22.34 -0.34 7,72E+11 -3.45 12.91 -0.93

High 4.09E+11 -2.03 16.63 -0.42 9.39E+11 -3.08 13.31 -0.80

H-L 7.22E+11 0.13 13.41 0.03 7.88E+11 0.03 15.35 0.01

ridge

Low -5.79 -3.46 16.27 -0.74 -14.33 -3.33 13.60 -0.85

2 -3.62 -2.68 15.26 -0.61 -5.12 -3.05 13.67 -0.77

3 -2.88 -2.34 15.29 -0.53 -4.93 -3.05 13.36 -0.79

4 -2.37 -2.22 14.43 -0.53 -4.24 -2.81 12.96 -0.75

5 -1.95 -2.10 14.59 -0.49 -4.04 -2.97 12.57 -0.81

6 -1.58 -1.94 13.77 -0.48 -3.48 -3.03 12.41 -0.85

7 -1.22 -1.81 14.75 -0.43 -2.16 -2.77 12.67 -0.76

8 -0.87 -1.70 14.10 -0.41 -1.49 -2.69 12.35 -0.76

9 -0.45 -1.49 14.00 -0.36 -1.71 -2.31 11.79 -0.68

High -0.44 -1.12 26.06 -0.15 0.27 -2.73 11.79 -0.80

H-L 5.35 2.14 16.48 0.45 14.60 0.60 16.44 0.13

lasso

Low -6.93 -3.43 15.93 -0.74 -9.03 -3.16 13.56 -0.80

2 -2.91 -2.68 14.97 -0.62 -3.56 -3.32 13.61 -0.84

3 -1.65 -2.38 14.64 -0.56 -3.01 -3.17 13.07 -0.84

4 -0.82 -2.08 14.35 -0.50 -2.67 -2.90 12.95 -0.77

5 -0.18 -2.09 14.57 -0.50 -2.78 -3.29 12.61 -0.90

6 0.36 -2.01 13.87 -0.50 -2.19 -2.86 12.36 -0.80

7 0.88 -1.92 13.49 -0.49 -1.71 -2.66 12.31 -0.74

8 1.42 -1.64 13.64 -0.41 -1.60 -2.89 12.71 -0.78

9 2.09 -1.67 13.75 -0.42 -1.16 -2.60 12.47 -0.72

High 3.84 -0.97 27.81 -0.12 -0.27 -2.50 13.03 -0.66

H-L 10.77 2.46 17.08 0.49 8.76 0.66 17.30 0.13

elnt

Low -6.95 -3.40 15.92 -0.74 -23.46 -3.22 13.23 -0.84
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Table 4.2: portfolio analysis result

equal-weighted value-weighted

Pred(%) Avg(%) Std(%) SR Pred(%) Avg(%) Std(%) SR

2 -2.91 -2.68 14.98 -0.62 -1.73 -3.08 13.28 -0.80

3 -1.65 -2.38 14.62 -0.56 0.39 -2.86 13.19 -0.75

4 -0.82 -2.08 14.35 -0.50 1.64 -2.70 12.69 -0.74

5 -0.18 -2.10 14.61 -0.49 2.06 -3.15 11.87 -0.92

6 -0.37 -2.01 13.85 -0.50 2.10 -2.85 12.44 -0.79

7 -0.88 -1.92 13.49 -0.49 3.24 -3.00 12.32 -0.84

8 1.42 -1.64 13.65 -0.42 3.38 -2.51 12.19 -0.71

9 2.09 -1.68 13.75 -0.42 4.55 -2.61 12.56 -0.72

High 3.86 -0.96 27.81 -0.12 8.67 -2.63 13.73 -0.66

H-L 10.81 2.44 17.09 0.49 32.13 0.59 17.51 0.12

pcr

Low -7.31 -3.33 15.88 -0.72 -24.52 -3.10 13.14 -0.82

2 -3.09 -2.70 14.98 -0.62 -1.60 -3.18 13.50 -0.82

3 -1.77 -2.43 14.55 -0.58 0.19 -3.15 13.12 -0.83

4 -0.88 -2.03 14.32 -0.49 1.63 -2.68 12.76 -0.73

5 -0.20 -2.12 14.40 -0.51 2.02 -2.96 11.93 -0.86

6 0.38 -2.00 13.63 -0.50 2.67 -3.05 12.49 -0.84

7 0.93 -1.87 13.92 -0.47 3.12 -2.86 12.15 -0.82

8 1.52 -1.77 13.53 -0.45 3.79 -2.55 12.20 -0.72

9 2.27 -1.59 14.04 -0.39 4.42 -2.56 12.69 -0.70

High 4.25 -0.96 27.79 -0.12 9.05 -2.68 13.61 -0.68

H-L 11.56 2.37 17.10 0.48 33.57 0.42 17.31 0.08

pls

Low -7.29 -3.35 15.86 -0.73 -24.56 -3.16 13.15 -0.83

2 -3.09 -2.71 14.99 -0.62 -1.57 -3.16 13.49 -0.81

3 -1.77 -2.40 14.62 -0.57 0.31 -3.03 13.21 -0.79

4 -0.89 -2.06 14.31 -0.50 1.54 -2.75 12.74 -0.75

5 -0.21 -2.10 14.36 -0.50 1.96 -2.89 12.12 -0.83

6 0.36 -2.04 13.59 -0.52 2.73 -2.90 12.26 -0.82

7 0.92 -1.89 13.75 -0.48 3.26 -3.05 12.40 -0.85

8 1.51 -1.73 13.75 -0.44 3.89 -2.56 12.00 -0.74

9 2.27 -1.65 13.94 -0.41 4.19 -2.60 12.76 -0.71

High 4.30 -0.93 27.90 -0.11 9.14 -2.64 13.53 -0.68

H-L 11.59 2.42 17.09 0.49 33.7 0.70 17.32 0.14

rf

Low -7.58 -3.81 18.93 -0.70 -3.75 -3.58 12.55 -0.99

2 -6.03 -3.24 14.36 -0.78 -2.71 -3.32 12.68 -0.91

3 -5.26 -2.57 15.09 -0.59 -2.36 -3.41 13.05 -0.94

4 -4.65 -2.45 14.65 -0.58 -1.96 -2.83 13.02 -0.75

5 -4.08 -2.26 13.65 -0.57 -1.67 -2.76 13.48 -0.71

6 -3.51 -2.00 14.01 -0.49 -1.24 -3.11 13.49 -0.80

7 -2.87 -1.84 13.75 -0.46 -0.96 -2.56 12.77 -0.69

8 -2.07 -1.71 13.86 -0.43 -0.80 -2.31 12.56 -0.64

9 -0.85 -1.31 14.08 -0.32 -0.61 -2.73 12.68 -0.75

High 3.40 0.34 25.62 0.05 -0.22 -2.49 13.01 -0.66

H-L 10.98 4.15 16.08 0.89 3.53 1.09 16.04 0.24

ffn1

Low -3.10 -4.03 17.05 -0.61 -17.18 -2.72 12.27 -0.77

2 0.17 -2.81 14.55 -0.67 1.10 -3.38 13.57 -0.86

3 1.28 -2.44 14.43 -0.58 2.09 -3.01 13.39 -0.78

4 2.06 -2.20 16.33 -0.47 2.64 -3.05 13.03 -0.81

5 2.72 -2.25 14.17 -0.55 3.19 -2.90 13.06 -0.77

6 3.30 -1.99 14.82 -0.47 3.67 -2.83 12.64 -0.78

7 3.88 -1.73 15.12 -0.40 3.72 -2.55 13.22 -0.67
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Table 4.2: portfolio analysis result

equal-weighted value-weighted

Pred(%) Avg(%) Std(%) SR Pred(%) Avg(%) Std(%) SR

8 4.53 -1.68 14.32 -0.41 4.23 -3.04 13.17 -0.80

9 5.40 -1.58 15.96 -0.34 4.36 -3.07 12.54 -0.85

High 7.92 -1.57 23.43 -0.17 6.01 -3.05 12.75 -0.82

H-L 11.02 2.46 15.68 0.54 23.19 -0.33 16.03 -0.07

ffn2

Low -11.89 -2.84 16.02 -0.61 -23.27 -3.03 12.84 -0.82

2 -8.59 -2.50 14.99 -0.58 -8.82 -2.56 13.47 -0.66

3 -7.27 -2.43 14.60 -0.58 -7.70 -3.08 12.77 -0.84

4 -6.31 -2.20 14.37 -0.53 -6.75 -2.88 12.51 -0.80

5 -5.51 -1.98 14.50 -0.47 -6.41 -2.66 12.86 -0.71

6 -4.76 -1.96 14.76 -0.46 -5.93 -2.92 12.96 -0.78

7 -4.00 -1.75 16.53 -0.36 -5.59 -2.80 13.43 -0.72

8 -3.11 -1.98 13.96 -0.49 -5.25 -3.18 12.91 -0.85

9 -1.90 -1.79 14.81 -0.42 -4.37 -3.18 12.57 -0.88

High 1.07 -1.40 24.89 -0.19 -2.25 -3.08 12.73 -0.84

H-L 12.96 1.44 16.08 0.31 21.02 -0.05 16.18 -0.01

ffn3

Low -12.83 -2.97 15.25 -0.67 -21.33 -2.78 12.92 -0.75

2 -8.97 -2.49 16.38 -0.52 -8.12 -2.95 13.25 -0.77

3 -7.59 -2.38 14.68 -0.56 -6.54 -3.03 13.03 -0.81

4 -6.62 -2.21 13.98 -0.54 -5.90 -3.20 12.84 -0.86

5 -5.79 -2.12 15.48 -0.47 -5.28 -2.92 12.75 -0.79

6 -5.02 -1.89 14.65 -0.44 -4.72 -2.86 12.99 -0.76

7 -4.20 -1.87 16.65 -0.38 -3.80 -2.77 13.39 -0.72

8 -3.27 -1.59 16.81 -0.32 -3.27 -2.92 13.23 -0.76

9 -2.03 -1.84 14.78 -0.43 -2.16 -2.94 12.63 -0.81

High 0.85 -1.46 22.15 -0.22 0.80 -3.20 12.12 -0.91

H-L 13.68 1.51 14.73 0.36 22.13 -0.42 15.71 -0.09

ffn4

Low -11.78 -2.83 15.70 -0.62 -12.69 -3.19 13.59 -0.81

2 -8.10 -2.39 14.93 -0.55 -8.19 -2.81 13.67 -0.71

3 -6.61 -2.05 15.14 -0.47 -6.73 -2.80 13.34 -0.73

4 -5.51 -2.16 14.78 -0.51 -5.86 -2.57 13.45 -0.66

5 -4.53 -1.97 15.00 -0.45 -5.08 -2.44 13.41 -0.63

6 -3.59 -2.01 15.08 -0.46 -4.09 -3.38 13.14 -0.89

7 -2.64 -1.99 14.90 -0.46 -23.09 -2.95 12.91 -0.79

8 -1.60 -1.83 14.87 -0.42 -2.13 -2.91 12.68 -0.80

9 -0.30 -1.76 21.45 -0.28 -1.38 -2.91 12.25 -0.82

High 2.26 -1.84 19.05 -0.33 0.21 -3.19 11.63 -0.95

H-L 14.04 0.99 13.85 0.25 12.90 0.00 15.38 0.00

ffn5

Low -11.35 -2.67 18.61 -0.49 -28.82 -2.96 12.55 -0.81

2 -5.58 -2.57 14.80 -0.60 -6.89 -3.47 13.39 -0.89

3 -3.74 -2.23 14.72 -0.52 -4.94 -2.97 13.11 -0.78

4 -2.67 -2.12 14.82 -0.49 -3.16 -2.92 12.93 -0.78

5 -1.87 -2.13 14.74 -0.50 -2.36 -2.74 13.20 -0.71

6 -1.17 -1.84 15.49 -0.41 -1.19 -2.89 12.77 -0.78

7 -0.49 -1.90 14.34 -0.45 -0.75 -3.04 12.78 -0.82

8 0.24 -1.93 14.35 -0.46 0.61 -2.98 13.03 -0.79

9 1.20 -1.86 16.03 -0.40 0.93 -2.81 12.89 -0.75

High 2.71 -1.59 22.55 -0.24 2.24 -2.52 12.59 -0.69

H-L 14.06 1.08 15.93 0.23 31.06 0.44 15.99 0.10
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In general, the patterns for equal-weighted and value-weighted decile portfolios

are similar, with their realized excess returns being nearly monotonically increasing

in relation to the average predicted excess returns (except for a few value-weighted

investment portfolios constructed based on FFN models, which is similar to the

findings obtained by Gu et al. (2020) in the empirical analysis of the U.S. stock

market). Evaluating the performance based on the Sharpe Ratio reveals that the

equal-weighted schemes for all machine learning models significantly surpass the

value-weighted schemes. We believe the primary reason for this observation is that

smaller companies predominantly contribute to the excess returns.

According to Table 3.1, the average equal-weighted realized monthly excess re-

turn for this database is -2% with a standard deviation of 16.22%, resulting in

an annualized Sharpe ratio of -0.43. Therefore, we can conclude that the H-L in-

vestment portfolios constructed based on machine-learning models are capable of

generating statistically and economically significant profits, with the exception of a

few value-weighted investment portfolios based on neural networks.

When comparing the equal-weighted H-L investment portfolios for different mod-

els, the similar Sharpe Ratio performance of linear regression models suggests a lim-

ited relationship between statistical measurement and financial profitability. The

results further reveal that the random forest model-based H-L portfolio delivers

the best performance, boasting an annualized Sharpe ratio of 0.89. Therefore, it

is posited that incorporating non-linear relationships into asset pricing models can

lead to improved predictions of stock excess returns and the construction of superior-

performing investment portfolios.
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Chapter 5

Conclusion

Utilizing market and fundamental data of Chinese A-shares, we examine the pre-

dictive performance of machine learning methods in forecasting stock excess re-

turns. Our investigation encompasses variable selection, dimensionality reduction

techniques, tree-based models, and neural networks. To account for the distinctive

characteristics of the Chinese stock market, we adjust the set of indicators based

on Gu et al. (2020) and Hou et al. (2015). Our empirical research indicates that,

regardless of whether it is at the stock-level or portfolio-level, non-linear machine

learning models outperform linear models in predicting stock excess returns. This

demonstrates that incorporating non-linear relationships into asset pricing models

can effectively improve the accuracy of predictions. However, we note that ”deep”

learning does not consistently outperform ”shallow” learning due to the limited

amount of data and low signal-to-noise ratio in asset pricing. Moreover, our find-

ings indicate that macroeconomic variables are the most prominent factor group

among almost all the models, followed by Trade Info. This can be viewed as a

reflection of the unique traits of the Chinese stock market, which is dominated by

retail investors who tend to be speculative in their decision-making process.
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Figure A.1: Feature Importance (ordinary linear regression)

(a) In Figure A.1, we present the feature importance of all the features included in ordinary
linear regression. Feature importance is used to evaluate the contribution of each feature
to the predictive power of the model. By ranking features based on their importance, we
can identify those with the most significant impact on model performance, gain a better
understanding of the relationships between features and how they collectively influence
the predicted outcomes.
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Figure A.2: Feature Importance (ridge)

(a) In Figure A.2, we present the feature importance of all the features included in ridge
regression. Feature importance is used to evaluate the contribution of each feature to the
predictive power of the model. By ranking features based on their importance, we can
identify those with the most significant impact on model performance, and gain a better
understanding of the relationships between features and how they collectively influence
the predicted outcomes.
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Figure A.3: Feature Importance (lasso)

(a) In Figure A.3, we present the feature importance of all the features included in LASSO.
Feature importance is used to evaluate the contribution of each feature to the predictive
power of the model. By ranking features based on their importance, we can identify those
with the most significant impact on model performance, and gain a better understanding
of the relationships between features and how they collectively influence the predicted
outcomes.
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Figure A.4: Feature Importance (elastic net)

(a) In Figure A.4, we present the feature importance of all the features included in Elas-
tic Net. Feature importance is used to evaluate the contribution of each feature to the
predictive power of the model. By ranking features based on their importance, we can
identify those with the most significant impact on model performance, and gain a better
understanding of the relationships between features and how they collectively influence
the predicted outcomes.

Bao Liu & Chuyue Huan



52

Figure A.5: Feature Importance (pcr)

(a) In the Figure A.5, we present the feature importance of all the features included in
Pricinpal Components Regression. Feature importance is used to evaluate the contribution
of each feature to the predictive power of the model. By ranking features based on their
importance, we can identify those with the most significant impact on model performance,
gain a better understanding of the relationships between features and how they collectively
influence the predicted outcomes.
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Figure A.6: Feature Importance (pls)

(a) In the Figure A.6, we present the feature importance of all the features included
in Partial Least Squares. Feature importance is used to evaluate the contribution of
each feature to the predictive power of the model. By ranking features based on their
importance, we can identify those with the most significant impact on model performance,
gain a better understanding of the relationships between features and how they collectively
influence the predicted outcomes.
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Figure A.7: Feature Importance (random forest)

(a) In the Figure A.7, we present the feature importance of all the features included in
Random Forest. Feature importance is used to evaluate the contribution of each feature
to the predictive power of the model. By ranking features based on their importance, we
can identify those with the most significant impact on model performance, gain a better
understanding of the relationships between features and how they collectively influence
the predicted outcomes.
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Figure A.8: Feature Importance (neural network with one hidden layer)

(a) In the Figure A.8, we present the feature importance of all the features included
in Neural Network with one hidden layer. Feature importance is used to evaluate the
contribution of each feature to the predictive power of the model. By ranking features
based on their importance, we can identify those with the most significant impact on
model performance, gain a better understanding of the relationships between features and
how they collectively influence the predicted outcomes.
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Figure A.9: Feature Importance (neural network with two hidden layer)

(a) In the Figure A.9, we present the feature importance of all the features included
in Neural Network with two hidden layer. Feature importance is used to evaluate the
contribution of each feature to the predictive power of the model. By ranking features
based on their importance, we can identify those with the most significant impact on
model performance, gain a better understanding of the relationships between features and
how they collectively influence the predicted outcomes.
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Figure A.10: Feature Importance (neural network with three hidden layer)

(a) In the Figure A.10, we present the feature importance of all the features included
in Neural Network with three hidden layer. Feature importance is used to evaluate the
contribution of each feature to the predictive power of the model. By ranking features
based on their importance, we can identify those with the most significant impact on
model performance, gain a better understanding of the relationships between features and
how they collectively influence the predicted outcomes.
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Figure A.11: Feature Importance (neural network with four hidden layer)

(a) In the Figure A.11, we present the feature importance of all the features included
in Neural Network with four hidden layer. Feature importance is used to evaluate the
contribution of each feature to the predictive power of the model. By ranking features
based on their importance, we can identify those with the most significant impact on
model performance, gain a better understanding of the relationships between features and
how they collectively influence the predicted outcomes.
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Figure A.12: Feature Importance (neural network with five hidden layer)

(a) In the Figure A.12, we present the feature importance of all the features included
in Neural Network with five hidden layer. Feature importance is used to evaluate the
contribution of each feature to the predictive power of the model. By ranking features
based on their importance, we can identify those with the most significant impact on
model performance, gain a better understanding of the relationships between features and
how they collectively influence the predicted outcomes.
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