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Abstract

We investigate the efficacy of historical accounting data and consensus forecasts for relative

valuation of stocks, employing tree-based machine learning methods. We run an XGBoost

model for monthly cross-sections of financial and pricing data of US equities from 1984 to

2021. We find that our model is effective for predicting pricing multiples based on non-linear

relationships among various financial ratios calculated from historical financial reports, and

consensus forecasts contribute to improving prediction errors of valuation. Although some

predictors based on analyst forecasts score high in variable importance ranking based on

SHAP, overall, they do not become consistently more important than variables based on

accounting reports, when analyst forecast data is added to the models. Furthermore, when

we use valuation errors as a trading signal for convergence trade, the performance is the

best for the trading signals based only on historical accounting data. The convergence trade

is successful for small-cap firms, earning sizable abnormal returns with limited portfolio

turnover, drawdown and exposure to the Fama French 6 factors. It is suggested that the

machine learning method could help to detect cheap and expensive companies within the

small-cap universe while avoiding distressed firms.
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Chapter 1

Introduction

Machine Learning (ML) applications in Finance have been gaining popularity over

the recent years. Much research has been dedicated to predicting stock returns with ML

methods, due to the ability of ML to discover complex non-linear relationships in various

types of data (Blitz et al., 2023). However, applying ML methods to equity financial data

and performing fundamental valuation is still a topic that has not been explored deeply

enough, as most researchers have been focusing on time series predictions of future returns.

Hanauer et al. (2022) and Geertsema and Lu (2023) implemented a novel approach of using

ML models to perform relative valuation of stocks. Inspired by this process we apply our

own version of the authors’ ML modeling process and explore further what drives the relative

valuation of stocks, and whether resulting ML-based valuation can be used as a mispricing

signal to earn superior returns for investors.

Relative valuation is a frequently used technique by practitioners to determine the

value of a company, find market implied mispricing, and stock picks. The method involves

comparing pricing multiples, such as the P/E ratio for a target company against that of a

selection of peer companies that have similar characteristics to the target. Pricing equities

this way is based on a fundamental idea in finance that two assets with the same risk

characteristics should have the same price. However, every company is different, there are no

perfect substitutes in the stock market, and many analysts can have different interpretations

on what constitutes a good peer group for a single stock. Thus, relative valuation remains

an ambiguous subject in finance and company analysis.
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New and powerful algorithms in ML have demonstrated success in clustering, classi-

fying, and comparing data according to patterns that are embedded in the data generating

process. Thus, finding the right peer group, based on company financial data, appears to be

a useful application of ML techniques, as machine can discover new patterns in the financial

data, that is not fully obvious to a human, while taking in many different variables describing

a company at once. With this motivation, we follow the process of Geertsema and Lu (2023)

and attempt to predict pricing multiples for US stocks, based on their financial data.

Decision tree based models, which are easy to implement, can handle a lot of irreg-

ularities in the data, and are computationally efficient, have excelled in these applications.

Geertsema and Lu (2023) have showed that Gradient Boosting Regression Trees (GBRT)

implemented with Light GBM model outperforms traditional regression models in predicting

pricing multiples for stocks. We show that relative valuation based on GBRT implemented

with XGBoost, another popular ML model similar to Light GBM, generates similar predic-

tions to those of Geertsema and Lu (2023).

What kind of information is used in relative valuation can be completely up to the

analyst to decide in practice. Company financial data reports tell us a lot about the business

and its performance but may not capture the full picture of the business’s future. Therefore,

we expand the original framework of ML-based relative valuation to include data from stock

analyst consensus forecasts. We expect that as many efforts are put into equity research

globally, consensus forecasts should offer more accurate valuation on relative basis, especially

as earlier research has found links between stock prices and analyst forecasts (Beaver et al.,

2008; Da & Schaumburg, 2011). Therefore, expanding the original framework by Geertsema

and Lu (2023) to include consensus data in the ML models is our contribution to this topic.
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We find that the inclusion of consensus data lowers out-of-sample prediction errors, although

the improvement in prediction accuracy is marginal.

One application of relative valuation is to integrate the techniques into trading strate-

gies. We use the difference between ML-suggested valuation and actual valuation observed

in the financial market as a mispricing signal, and examine the efficacy of convergence trade

(Liu & Timmermann, 2013; Bartram & Grinblatt, 2018; Hanauer et al., 2022; Geertsema

& Lu, 2023). Following Geertsema and Lu (2023), we construct quintile portfolios and

long/short portfolios based on ML-suggested valuation errors.

We find that, in line with Geertsema and Lu (2023), the efficacy of the aforementioned

strategy drops as we weight the long/short portfolios by market capitalization. By grouping

companies based on their market capitalization and constructing long/short portfolios within

each group, we report that the long/short portfolios consisting of small companies achieve

higher sharpe ratio with significantly low drawdown and smaller exposure to well-known

factors. While transaction costs and liquidity consideration would be important for actual

trading (Avramov et al., 2021), it is suggested that ML can contribute to detecting better

trading opportunities for small companies that are less scrutinized and transparent.
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Chapter 2

Related Literature

Valuation Theory and Multiples

Our study is most directly related to the literature focused on relative valuation of

equity shares. Equity valuation can be divided into four categories: discounted cash flow

valuation, liquidation and accounting valuation, relative valuation, and contingent claim

valuation (Damodaran, 2007). While the discounted cash flow valuation attempts to estimate

the present value of expected future cash flows on the firm, relative valuation estimates the

value of a firm by comparing the pricing of similar firms relative to underlying factors, such

as earnings, cash flows, efficiency, and financial soundness. Therefore, it is possible that

a company valued fairly on a relative basis is overvalued based on absolute valuation (i.e.

discounted cash flow valuation: DCF) when comparable firms are overvalued compared with

their intrinsic value in such cases as a stock market bubble (Bartram & Grinblatt, 2018).

In theory, the DCF valuation can be embedded in a single pricing multiple. Justified

pricing multiples is an approach, where simplified expressions for multiples are derived from

the cash flows of a company. Damodaran (2007) derives expressions for price-to-book (P/B),

and price-to-sales (P/S) multiples. This approach can give an insight into what kind of

financial data needs to be included among the predictors to get results that are grounded in

valuation theory. For P/B and P/S multiples, which will be our target variables in the ML

models, ROE and net profit margin appear directly in these equations, and we will explore

how ML models take these variables, among others, into account.
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Agudze and Ibhagui (2020) find that valuation multiples for aggregate stock indices

depend on a set of fundamental variables, such as profit margins, ROA, and ROE. However,

the paper only uses 4 different financial metrics, thus it is not clear how a broader set of

fundamental variables and analyst forecasts can affect relative valuation from this study.

Rabier (2018) find that growth, R&D, relative size of target companies, are signif-

icant in predicting deal pricing in acquisitions. Growth assumptions are a key ingredient

in company valuation based on the model of O’Brien (2003). However, Kulshrestha and

Nanda (2006) find that payout and beta are important when predicting P/E, but growth is

only secondary, although still significant. Another variable, empirically important for stock

returns, and consequentially, pricing is firm spending on R&D, especially when done by firms

with good corporate governance (Chan et al., 2015). Booth et al. (2006) also perform an

empirical study, suggesting that R&D expenses are an important value driver for stocks,

arguing that innovative investments are necessary for firms have positive residual incomes,

but the valuation of R&D expenses varies in different markets.

Stock analyst growth forecasts are associated with higher analyst target multiples,

while higher measures of financial risk of a company are correlated with lower multiples, based

on the study by Yin et al. (2014). Beaver et al. (2008) explore analyst forecast revisions

and previous forecast errors and detect significance in explaining abnormal stock returns.

Furthermore, analyst target price implied relative valuation multiples do carry important

content for investors when valuing firms in the same industry or sector, based on the findings

of Da and Schaumburg (2011). Johnston et al. (2021) explore how the relevance of analyst

forecasts has evolved through time and find that although including analyst information

helps to improve the explanatory power for book values and earnings, such relevance has
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been declining over time. Thus, based on previous research, analyst forecasts appear to have

some informational content for stock prices, although to a varying degree.

Different studies have variations in determining which financial variables affect pric-

ing multiples the most. However the common factor from most of these studies revolves

around profitability, payouts, riskiness of the company, and growth being the fundamental

drivers behind valuation multiples. Hence, using ML as an innovative approach on differ-

ent datasets to uncover relationships between pricing and financial metrics can add to the

existing understanding of relative stock valuation.

Relative Valuation and Return Predictability

The earlier works on relative valuation include Bhojraj and Lee (2002), Liu et al.

(2002), Rhodes–Kropf and Viswanathan (2004), and Rhodes–Kropf et al. (2005). Bhojraj

and Lee (2002) estimate firms’ ”warranted” multiples using each firm’s fundamentals and

its deviation from industry means as drivers of valuation, and show that comparable firms

suggested by the warranted multiples forecast future valuation. Liu et al. (2002) investigate

the relationship between stock prices and value drivers within the same industry and cross

section. Rhodes–Kropf and Viswanathan (2004) and Rhodes–Kropf et al. (2005) decompose

the market-to-book ratio to three components: the firm-specific pricing deviation from short-

run industry pricing, sector-wide short run deviations from firms’ long-run pricing, and long-

run pricing to book and show that mispricing drives mergers.

More recent works by Cooper and Lambertides (2014) and Bartram and Grinblatt

(2018) examine whether relative valuation can be exploited to predict stock returns. While

Cooper and Lambertides (2014) find no evidence that a valuation error (mispricing) predicts
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a future return, Bartram and Grinblatt (2018) report that a convergence strategy constructed

on relative valuation-based mispricing signals earns risk-adjusted returns ranging from 4%

to 10% on annual basis.

While prior works (Bhojraj & Lee, 2002; Liu et al., 2002; Rhodes–Kropf & Viswanathan,

2004; Rhodes–Kropf et al., 2005; Cooper & Lambertides, 2014; Bartram & Grinblatt, 2018)

assume a linear relationship between target and explanatory variables and employs ordinary

least squares method, Hanauer et al. (2022) and Geertsema and Lu (2023) applied tree-based

ML method to relative valuation. Hanauer et al. (2022) report quintile portfolios based on

mispricing signals result in substantially higher risk-adjusted returns compared with that

of linear regression models in European stock markets. Geertsema and Lu (2023) find that

ML-based relative valuation outperforms traditional models in out of sample tests in terms of

prediction accuracy in the US stock markets. The outperformance of ML-based approaches

relative to traditional approaches suggests the importance of allowing for non-linearities and

interconnections among underlying variables to estimate valuation multiples (Hanauer et al.,

2022; Geertsema & Lu, 2023).

It should be noted that identifying comparable firms for relative valuation requires

judgment in some cases. While the concept of grouping economically similar firms is simple,

companies operate in multiple business areas, and the classification can be arbitrary with

multiple classification standards, such as the Standard Industrial Classification (SIC), the

North American Industry Classification System (NAICS), and the Global Industry Classifi-

cation Scheme (GICS) (Kim & Ritter, 1999; Weiner, 2005; Lee et al., 2015). For example,

Ding et al. (2019) report the effectiveness of applying ML methods for identifying peer firms.

The merit of using the tree-based algorithm is that companies with similar features fall on
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the same leaf based on fundamental variables, therefore decreasing the reliance on a certain

industry classification standard. Geertsema and Lu (2023) include industry codes from Fama

and French’s 48 industry classification as one of the features.

Machine Learning and Data Handling Methods

ML models, have been growing in popularity over recent years as they can handle

complex data and generate accurate predictions (Blitz et al., 2023). Although regression

models are widely used in financial and economic research, they rely on a specified set of

assumptions, which are not always true in real-world conditions. In contrast, ML models

can learn the underlying relationships in the data without many pre-set assumptions. In

addition, ML models can learn complex, non-linear data relationships. The ability to handle

missing data, outliers, and noise is another advantage of ML. Tree based models, which are

used in our case, perform especially well with these irregularities in the data, and are well

suited as an ”off the shelf” application for ML (Hastie, 2009). Missing values and outliers

are prevalent in our dataset, which strengthens the case for ML algorithms for our specific

problem.

At the same time, there are some caveats related to ML methods. As Gu et al.

(2020) and Hanauer et al. (2022) point out, the number of parameters increases dramatically

when applying ML models compared with traditional linear models, possibly leading to

unreliable estimated parameters in the absence of enough observations. Avramov et al.

(2021) also report the profitability of ML-based trading performance while the existence of

trading costs and high turnover erode the performance. Another caveat is that only specific

traditional econometric methods can work well when confronted with a panel dataset. One
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of the main challenges in these datasets is accounting for both time-series and cross sectional

dependencies, and badly specified models can make inaccurate predictions (Tayebi et al.,

2021). We split the dataset up into monthly cross sections and estimate separate models for

each month, which was also done by Geertsema and Lu (2023). This acts as a work-around

for the temporal dependency issue.

Cross sectional splitting for stock fundamental data and relative valuation due to

varying time trends in variables has been also discussed by Bartram and Grinblatt (2018),

who employed cross-sectional regressions relating market values to accounting information,

in a similar approach to Geertsema and Lu (2023). Based on the authors’ arguments, each

firm’s regression peer-implied fair value evolves month to month for two reasons. Firstly,

market capitalizations, the cross-sectional regression’s dependent variable, change, influenc-

ing predictor coefficients. Thus, even if the financial information does not change month to

month, regression coefficients and fitted values can be different. Relative pricing of market

sectors can also have a similar effect on predictions. A cross-sectional approach to relative

valuation can capture these effects almost in real time. Also, when new accounting infor-

mation arrives, the regression equation coefficients change as well, thus new information

becomes fully incorporated as soon as it is available. However, as Bartram and Grinblatt

(2018) admit, that this approach does not take into account the time varying market pref-

erences for certain stocks or the market over or under valuation as a whole. For example,

a certain stock may be fairly valued relative to its peer companies, but may be expensive

relative to its own history, if the price of the target company and the peer group have been

rising. Therefore, such pure relative valuation may not fully capture the intrinsic value of a

company. However, Aswath Damodaran (2009) suggests that comparing valuation multiples
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across time is difficult, as outside factors, such as interest rates can have effects on pricing

multiples. Thus, to correctly include both cross sectional and time varying effects into a

single econometric or ML model may require more data transformations, extra exogenous

variables, and tailored model specifications.

ML models are generally used on large datasets. In our case, the monthly cross section

used to train the model is a relatively small sample by ML standards. Although splitting

into cross sections is done to avoid issues arising from temporal dependencies, the accuracy

of XGBoost, which is our main ML model, and other models may decline with a reduction

in sample size. However, tree-based models, such as XGBoost have built-in regularization

terms, that assist in preventing overfitting of the data and have been found to perform better

than other ML algorithms when sample size is small (Chen & Guestrin, 2016; dmlc, 2022;

Zou et al., 2022).

Nevertheless, Geertsema and Lu (2023), show the success of ML applications to rela-

tive valuation, and academic evidence provides a link between stock analyst forecasts, target

prices carry and returns. Therefore, our hypothesis is that including consensus forecast data

in a ML approach could improve prediction accuracy and uncover new relationships in the

relative valuation field.
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Chapter 3

Data and Methodology

Main Database

Our dataset contains US equities from 1984 to 2021 that exist in the Financial Ratios

Firm Level by WRDS. The stock universe contains companies from CRSP dataset. The

financial ratios database takes company financial data from Compustat, CRSP and IBES.

The dataset contains over 70 different financial ratios, from which we use valuation multiples

as our target variables and the rest as predictors. The dataset is compiled on a monthly

frequency where financial data for a given balance sheet date is lagged by two months to

avoid a look ahead bias.1 However, Geertsema and Lu (2023) use three months as the period

before financial data becomes publicly available.

In addition, we include S&P Capital IQ industry classification, and a few other histor-

ical data variables as predictors, taken from the Compustat monthly and quarterly databases

in WRDS. All variable descriptions can be found in Table 3.2 and List of Variables in Ap-

pendix. Monthly total returns, used in testing ML based trading strategies are taken from

the Compustat monthly dataset as well.

Stock Universe and Variable Selection

Following the process by Geertsema and Lu (2023), we select only US stocks that

have been trading on NYSE, Nasdaq, and AMEX. Furthermore, we filter out the 10% of

companies with lowest assets, sales, and book equity, to mitigate the effect from micro and

1. See: WRDS Industry Financial Ratio.
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cap stocks. Size filtering is done based on accounting variables, not market capitalization,

to avoid the effect of market capitalization on valuation multiples.

We note that the WRDS Compustat Financial ratios database does not contain fi-

nancial companies, while Geertsema and Lu (2023) have included these in their analysis.

Most of the financial ratios in the WRDS do not have a solid economic meaning for financial

companies (Damodaran, 2009, 2013). Thus, we choose to proceed with leaving the financial

companies out, which can also test the robustness of this approach by having a different set

of companies in the main dataset.

There is a range of valuation multiples in the WRDS Compustat Financial ratios

database. For our analysis, we select P/B ratio and P/S ratio as the target multiples to be

used in ML models. We proceed to filter out observations where both target multiples are

missing, and transform these with the natural logarithm.

Practitioners generally use a range of other multiples, such as price to earnings,

enterprise value to EBITDA, price to cashflow, and others. We make a choice to optimize

for the multiples with the most non missing and non-negative values. Therefore, we focus

solely on P/B and P/S. P/B multiple can be compared to market-to-book value ratio, used

by Geertsema and Lu (2023), who also used EV/Sales and EV/Assets as their targets. We

use prediction error statistics for P/B to compare our model with market-to-book value

model of Geertsema and Lu (2023).

After performing data fltering described above, we end up with a dataset containing

1,297,423 observations from 1984 to 2021. This appears to be relatively in line with the

Geertsema and Lu (2023) 1,811,786 observations on a comparable time period (1980 – 2019),

which also included financial sector companies. We use all the financial ratios, except for the
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valuation multiples in the Compustat Financial Ratios dataset, and include CAPM beta and

Capital IQ industry classification. Furthermore, we add total asssets, sales, and equity, last

twelve-month growth in Sales, EBIT, EBITDA, Net Income, and Common Equity, together

with a measure of operating leverage as predictors, which we calculated from the quarterly

financial database from Compustat. After these steps, we end up with 70 predictor variables

for our target multiples, while Geertsema and Lu (2023) used 97 predictors in total.

Exploratory Analysis

Summary statistics for the size of our dataset and correlation metrics for selected

predictors are represented in table 3.1 and Figure 3.1, respectively. We note, that missing

values are prevalent among the predictor variables in our dataset, as we only have 122,579

observations with no missing values. Tree based ML models, such as XGBoost are capable

to deal with missing values on their own, emphasizing the flexibility of ML approach to our

problem (Hastie, 2009; Chen & Guestrin, 2016).

Simple correlation analysis for the target multiples and predictors unveils a few key

insights. Firstly, certain predictors, such as EBITDA margin, Net Profit margin, R&D to

Sales ratio are strongly correlated, which means they give less distinct patterns for the ML

model to recognize. In practice, this means that some highly correlated variables may be

redundant, however in tree based models, dropping highly correlated variables can result in

significantly decreased performance (Kuhn, Johnson, et al., 2013). We use all the variables

in our dataset, following the process by Geertsema and Lu (2023).

Secondly, the same highly inter-correlated variables have strong correlation with our

P/S target multiple, meaning that either they carry important economic information, or
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company sales being in the numerator, or the denominator of these ratios cause the correla-

tion to be high without much economic meaning. We proceed to estimate our models and

re-examine this issue in the next sections.

Table 3.1: Monthly Observations
# Observations # Complete cases

Min 2103 43
Q1 2613 61
Median 2715 83
Mean 2851 269.4
Q3 3085 617.5
Max 3833 749
Total # observations 1297423 122579
Total # unique firms 10606 1646

Data is taken from WRDS Compustat Financial Ratio Suite. Observations are filtered
from 1984 February to 2021 December. Complete cases describe the number of rows (ob-
servations) in the dataset, without a single missing value.

Figure 3.1: Dependent and Independent Variables Correlation Matrix

Average of monthly cross-sectional correlation over the sample period.

See List of Variables for variable definitions.
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Consensus Forecast Dataset

Our extension to the approach by Geertsema and Lu (2023) is to include consen-

sus data from stock analyst forecasts as explanatory variables when predicting our target

multiples. We use S&P Capital IQ analyst consensus data for the purpose of analyzing the

information value of analyst forecasts. To avoid the differences in the company fiscal years,

we use the next twelve-month consensus forecasts for all financial variables in our selection.

Consensus forecast variables that are used in the model, their summary statistics and cor-

relation with the target variables are described in Table 3.2 and Figure 3.2. Missing values

are prevalent in this dataset as well, but as already described, XGBoost can deal with these

efficiently (Chen & Guestrin, 2016). The data from our Capital IQ sample is available start-

ing the year 2000 for most companies, thus we have a shorter time frame to evaluate the

predictive power of analyst forecasts.

From the correlation matrix of the consensus forecast dataset, we can see that vari-

ables related to profit margin are highly inter-correlated, as is the case with our main dataset.

However, there is no high correlation between these and our target variables, in contrast to

the main dataset. ROA, ROE, average broker recommendation, and EPS revisions have the

highest correlation coefficients with our target multiples.

We also take market capitalization numbers from Capital IQ, which we use later

to analyze the distribution of prediction errors and construct trading strategies. This is

available from 2000s, as well as the variables from the consensus forecast dataset. Therefore,

our trading strategy analysis will be done from the year 2000, to have all versions of our

model on a comparable time frame, even as the main dataset starts in 1984.
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Table 3.2: Consensus Forecast Descriptive Statistics
Variable Name Q1 Median Mean Q3 Missing

roe ntm ROE 7.40 11.70 12.40 18.30 90%
roa ntm ROA 1.10 4.60 4.80 8.80 92%
nd ebitda ND/EBITDA 1.00 2.04 3.74 3.61 53%
avg rec Ave. Broker Reccom. 1.75 2.14 2.16 2.64 16%
eps revi EPS Revisions -3.00 0.00 0.08 3.00 39%
ep ntm g EPS Growth -0.10 21.23 58.91 53.76 20%
rev ntm g Revenue Growth 2.39 7.53 13.10 16.22 26%
ni ntm g Net Income Growth -28.60 8.09 11.73 37.55 44%
ebitda ntm m EBITDA margin 9.07 15.0 -24.13 24.99 45%
ebit ntm m EBIT margin 5.43 11.40 -50.18 20.62 45%
fcf ntm m FCF margin 2.14 6.38 -79.74 12.27 72%
ebt ntm m EBT margin 4.86 11.11 -68.55 21.01 61%
ni ntm m Net Income Margin 3.31 7.51 -50.50 14.41 44%

Number of observations: 730987
Average broker recommendation is defined between 0 to 5 points (the higher, the better). EPS
revision is calculated as the number of upward revisions divided by the number of downward
revisions per last 3 months. Other variables are in percent. The data is from August 2000 to
December 2021.
For other variable definitions, see List of Variables in Appendix.

Source: S&P Capital IQ

Figure 3.2: Consensus Forecasts Correlation Matrix

Average of monthly cross-sectional correlation over the sample period.
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Boosted Tree Implementation through XGBoost

Our main method for using ML for relative stock valuation closely follows the one

used by Geertsema and Lu (2023). We use XGBoost2, which is a model implementing

Gradient Boosted Regression Tree framework, to generate out-of-sample estimation for target

multiples for different US equities (Chen & Guestrin, 2016). The whole model is implemented

in R statistical programming language using xgboost package as our main workhorse for

model estimation and evaluation.

XGBoost works by building and sequentially adding decision trees to the model, with

each new tree attempting to correct the errors of previous trees. The objective function is

the sum of a desired loss function and a regularization term, which reduces overfitting. The

model employs gradient-based optimization, which calculates the gradient of the loss function

with respect to the model parameters and updates them in a direction that minimizes the loss

function. In addition, XGBoost employs a voting system that combines the predictions of all

trees to create one strong prediction, which is known as gradient boosting. Furthermore, the

model employs feature and training data subsampling in addition to shrinkage techniques,

allowing to extract signals from challenging data, while reducing overfitting and improving

the generalization of the model (Chen & Guestrin, 2016; Jason Brownlee, 2021; dmlc, 2022).

2. Geertsema and Lu (2023) uses LightGBM, another implementation of decision tree models.
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Main Machine Learning Model

In our procedure, following the steps of Geertsema and Lu (2023), we divide the whole

dataset of monthly observations of company financials and pricing multiples into monthly

cross-sections. For each month, we split the available stock database on 60-20-20% ratios

for model training, validation, and testing respectively. We use 60% of the monthly cross-

sectional data to train our model, then we proceed to optimize the number of trees parameter

using 20% of the monthly sample as the validation set. The validation is performed using

the built-in early stopping function of XGBoost, where predictions are generated for the

validation set for every number of trees and the model continues to add more trees until the

prediction error of the validation set stops improving. We use the number of trees chosen

at the validation step and then proceed to generate out-of-sample stock multiple predictions

for the test set.

This process is repeated 5 times per month where 5 monthly test sets are generated

using random sampling without replacement, stratified by industry, while training and vali-

dation sets are generated from the leftover data for each choice of the test set. The monthly

estimation and prediction procedure is performed separately for each month on the given

cross-section. This way, we estimate a total of 2275 separate ML models for our dataset (455

months x 5 models per month). This allows us to generate out-of-sample predictions for the

whole monthly sample of stock pricing multiples.

Normally, other hyperparameters for tree-based models also need to be optimised in

the validation step to improve prediction accuracy. While there exist various hyperparameter

tuning techniques, such as grid search and Bayesian optimization, given our case, where we
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estimate over 2000 different models, tuning hyperparameters becomes too computationally

and time intensive. Therefore, we use the default values for other hyperparameters, except

for the learning rate, which we set to 0.1, as in Geertsema and Lu (2023).

Machine Learning Model with Consensus Forecasts

ML model with consensus forecast is our extension to the main ML model, designed

to include analyst forecasts as additional features. Estimation and prediction process for

ML model with consensus forecast is identical to the main ML model, but we make our

extension by changing the dataset. From the output of the main model, we calculate the

mean absolute percentage SHAP values for each explanatory variable, averaged across all

months. Percentage SHAP (SHapley Additive exPlanations) values are obtained by dividing

the mean absolute SHAP value for each variable by the sum of mean absolute SHAP values.

SHAP values are commonly used to explore how important a variable is in the model (den

Broeck et al., 2022). Then we select variables with the mean absolute percentage SHAP

values above 1% from the original dataset used in the main ML model to retain the key

information from the original dataset.

Afterwards, we merge the selected variables with analyst forecast data to create a

combined dataset. We do not exclude observations that contain missing feature values from

any of the two datasets. We expect that model using analyst forecast data can improve

prediction accuracy over the main model, if stock pricing reflects forward looking information

that can be incorporated in analyst forecasts, but not necessarily be represented in historical

financial data. Next, we proceed to estimate the models and make out-of-sample predictions

as in the main ML model.
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Chapter 4

Result

Machine Learning Model Perfornamce

After running the model estimation and out of sample prediction processes described

above, we obtain the out of sample predicted multiples. We use Root Mean Squared Error

(RMSE) and Out of Sample R Squared (ROOS) calculated from out of sample prediction

errors to evaluate our models. Firstly, we compare the RMSE and ROOS for the P/B model

from our main dataset with the results from Geertsema and Lu (2023). The RMSE of 0.52

is comparable to 0.56 of Geertsema and Lu (2023). Although the difference does not appear

to be significant, our RMSE is slightly lower, which can be due to several factors such as:

• Differences of predictive accuracy between XGBoost and Light GBM.

• The fact that Geertsema and Lu (2023) include financial companies in their analysis,

which might result in lower predictive accuracy, especially as most of the predictive variables

used by in the authors’ study relate to non-financial companies. Hence, having financial

company multiples without the relevant predictors could lower the predictive accuracy of

the Geertsema and Lu (2023) models.

• Other variations in the dataset, such as the different time lag used to deal with look

ahead bias (2 months used by Compustat Financial Ratios database, compared with 3 months

used by Geertsema and Lu (2023). However, given that RMSE is not dramatically lower

in our model, the look-ahead bias should not be significant. Variations in stock universe

selection process and some of the predictor variables can also cause a slight difference in

RMSE.
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Comparing the ROOS measure with that of the Geertsema and Lu (2023), results

also look similar: 0.56 in our case, versus 0.54. Given that there are only slight variations

in the predictive accuracy measures for the price to book multiple between our analysis and

Geertsema and Lu (2023), we presume that our model reasonably tracks the original. Details

on predictive accuracy for different models can be found in Table 4.1.

Table 4.1: ML-Valuation Performance
Model RMSE ROOS Sample Period # Obs.

P/B 0.52 0.56 Feb 1984 - Dec 2021 1297101
P/B (Cons. Forecast) 0.50 0.64 Aug 2000 - Dec 2021 730987
P/B (Sample) 0.53 0.58 Aug 2000 - Dec 2021 730987
P/S 0.53 0.53 Feb 1984 - Dec 2021 1297101
P/S (Cons. Forecast) 0.51 0.79 Aug 2000 - Dec 2021 730437
P/S (Sample) 0.54 0.76 Aug 2000 - Dec 2021 730437

RMSE and ROOS are defined as in Geertsema and Lu (2023). Sampled errors of main models
are calculated from August 2000 for direct comparison with the consensus forecast versions.

One of the main goals of our analysis is to see whether adding consensus forecasts can

improve predictive accuracy of the ML models. Based on the results displayed in Table‘4.1,

we can see that there is some improvement in predictive error on fully comparable data

length with the same number of observations. For P/B, RMSE drops from 0.53 to 0.50,

representing a 6% improvement in RMSE. ROOS also improves from 0.58 to 0.64. For P/S,

RMSE drops by 6% as well (from 0.54 to 0.51), while ROOS improves from 0.76 to 0.79.

Although the difference in predictive measures is not significant, given that there is

no variation in the dataset, but only in predictors, we suggest that there is some predictive

power in consensus analyst forecasts, but its contribution is marginal. Thus, analyst forecasts

can assist in the relative valuation process, but based on our ML analysis, they need to be

taken in the context of historical financial data as well. Because consensus forecast data

21



offered a small improvement in our analysis, we suggest that historical financial data should

still form the basis for fundamental relative valuation analysis, when used in practice.

Prediction Errors Through Time

Geertsema and Lu (2023) note that prediction errors from ML models vary through

time. In their analysis, the predictive error increased during times of financial crises or

market stress. We display the calculated RMSE for our models per month in Figure 4.1 and

Figure 4.2. Our results follow a similar pattern to that of Geertsema and Lu (2023).

Given that prediction errors rise during times of market stress, we compare the pattern

of RMSE from our P/S model to the VIX index, which is generally understood as the proxy

of market stress (CBOE, 2017). From a simple time series chart in Figure 4.3, we show that

the VIX index and prediction errors follow a similar pattern.

Furthermore, the time series of RMSE has been trending upwards since 2018. Given

that the ML error captures some relationship between the price and the fundamental value

of a stock, as discussed by Geertsema and Lu (2023), and extremely loose monetary policy

has caused stock multiples to rise, our ML based valuation error increase could be a result

of the recent monetary policy measures by the global central banks (McKinsey, 2014).
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Figure 4.1: RMSE and ROOS for P/B Valuation

Figure 4.2: RMSE and ROOS for P/S Valuation

RMSE and ROOS measures, calculated for monthly cross sections.
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Figure 4.3: Valuation Error and Market Stress

RMSE for the Price to Sales model, calculated for monthly sections and the VIX index.

Patterns in Prediction Errors

Geertsema and Lu (2023) slice the ML prediction errors based on a few variables to

explore how do the ML models behave. We follow a similar process, where we calculate the

RMSE based on errors divided into quantile ranges of ROE, beta, valuation multiples, and

market capitalization. These are reported in Figure 4.4 and Figure 4.5.

There are some interesting results when we split up the valuation error by quantiles

of underlying variables. Firstly, higher beta stocks tend to have a higher valuation error.

Although high error can be caused both by high over and under valuation, this partly

corresponds to the discussion of Zhang (2005), where a low multiple, or undervaluation, can

go hand in hand with distress or riskiness of the stock. Therefore, it could be suggested that
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trading strategies based on our ML framework could fall into value traps – where a stock

has a low valuation, but such valuation is justified.

However, separating errors by the multiples themselves, we can see that the highest

model errors lie in the tails of the multiple distribution – both high and low valued stocks

have high RMSE. If the ML valuation error contains information about the discrepancy

between pricing and fundamental value, then this shows that such discrepancy is valid for

both cheap and expensive stocks. As tree-based ML prediction can be calculated as a

weighted average of peer multiples, as in Geertsema and Lu (2023), then low multiple stocks

could get a prediction higher than the actual multiple, and vice versa for expensive stocks.

Thus, trading strategies, which we explore later, could be correlated with a value factor.

Interestingly, observations with low ROE also tend to have higher valuation errors.

This result is similar to Geertsema and Lu (2023). This raises a further question of value

traps – high error prevalence among low ROE firms, could mean that the ML model could

suggest an undervaluation that is in reality well justified due to low profitability. If this is

true, then our trading strategies, which we explore later, should not perform well. On the

other hand, if a trading strategy, where a buy signal is generated for ML undervalued stocks

performs well, this could testify that ML framework correctly identifies fundamental value

irrespective of profitability and pricing discrepancies relative to fundamentals is simply more

prevalent among low profitability companies.
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Figure 4.4: RMSE by Quantile for P/B Valuation

Figure 4.5: RMSE by Quantile for P/S Valuation

Target quantiles are the quantiles of the target multiples of each model. Data is split up into
quantiles of underlying variables and RMSE is calculated for each quantile.
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Looking at the errors in market capitalization quantiles, small cap companies tend to

have higher ML error. This is consistent with the findings of Avramov et al. (2021), where

ML based mispricing signals and inclusion in long portfolios based on these are more frequent

for small companies. This raises a question, if ML mispricing signals are only profitable for

small, illiquid stocks, hence are correlated with the size factor.

Observations with missing values for beta and ROE also tend to have higher prediction

errors. A few reasons could contribute to this effect. Firstly, ROE and beta have high variable

importance scores, which we discuss in the section below. If these variables are missing

then the model does not have the full information needed, and the resulting prediction

error is higher. Secondly, the absence of beta and ROE could indicate that other predictor

variables for an observation are missing as well, suggesting that the general completeness of

an information set for a given observation is important in the prediction process.

Observations where the market capitalisation is missing have higher valuation errors

for models with forecast data, but not for the original dataset. This could be a result from

the differences in data bases between WRDS and Capital IQ. Observations with missing

market capitalisation values from Capital IQ can also have many other missing variables

from this database, possibly due to identification mismatches, contributing to the lower

accuracy. However, we find that that there are only 11,373 observations with missing market

capitalisation out of the whole Capital IQ dataset (730,987 observations), therefore, this

represents only a small part of the overall stock universe. Nevertheless, this effect could

skew our trading strategy, discussed in the next chapter, towards picking the lesser known

stocks, with data contribution issues in the consensus forecast version of the model.
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Insights from Variable Importance

We use the mean absolute SHAP values, expressed in percentages to analyze which

features are dominant in our ML models. While XGboost has a built-in function to summa-

rize features that are used frequently to construct the boosted decision trees, SHAP values

show the influence of each explanatory variable for each prediction and are commonly used

to investigate the impact of predictor variables in ML models, therefore, thought to be more

appropriate for our analysis (den Broeck et al., 2022). The variable importance tables con-

taining 20 highest scoring predictor variables for our main and consensus forecast models

are given in Figure 4.6 and Figure 4.7.

For P/B models, ROE is the dominant variable used in predictions, which is supported

by the justified P/B multiple:

justified P/B =
ROE − g

r − g

where g is the sustainable growth rate (ROE × Retention rate) and r is the required rate

of return on equity. For P/S, the most important variable is Sales/Equity ratio, followed by

net profit margin, which also enters the equation for justified P/S multiple:

justified P/S =
E1/S0(1− b)(1 + g)

r − g

where E0 is the net income, S0 is the sales and b is the retention rate (Damodaran, 2007).

Hence, ML models appear to capture the main theoretical determinants of pricing

multiples. R&D to Sales ratio ranks highly up in all versions of our ML models. This
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coincides with the findings of Geertsema and Lu (2023), and related literature describing

that R&D spending can impact stock returns (Booth et al., 2006; Chan et al., 2015). Also,

we can see that different versions of the model capture short-term growth through sales

growth in the last twelve months, or the expected next twelve months in the case for the

consensus forecast model.

In the Geertsema and Lu (2023), industry classification is ranked as the most impor-

tant variable for the P/B version of the model. However, in our case, industry is only the

14th most important variable in the SHAP ranking. This could be partly due to the different

classification systems between S&P Capital IQ and the Fama-French industry classification.

Also, the dataset of Geertsema and Lu (2023) contains financial companies, which can make

the industry distinction more important in the ML decision trees than in our dataset that

is without financial companies.

A test of our consensus forecast dataset is to look if any of the new variables become

highly ranked based on SHAP. Models for P/B and P/S have NTM margins of Net Income,

EBITDA, and FCF, NTM growth for Revenue, Net Income, and EPS, and average broker

recommendations among the 20 most important variables. In addition, P/S model with con-

sensus forecast has NTM Net Income margin as the top 2 variable. The fact that ML models

choose the variables from our consensus forecast dataset suggests that these variables carry

important information for stock valuation and justifies the use of the extended dataset. How-

ever, we observe, that the top ranked variables continue to be based on historical accounting

information.
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Figure 4.6: SHAP for P/B and P/S Valuation

Figure 4.7: SHAP for P/B and P/S Valuation with Consensus Forecast

Mean absolute SHAP values for different predictors. SHAP Values are averaged across monthly
cross sections and expressed in percentage such that SHAP values for all predictors sum up to
100%.
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Variable importance can vary over time – we report SHAP values for top 5 important

features by month in the Figure 4.8 and Figure 4.9. From these figures, it appears that

some profitability-based measures such as ROE, Sales/Equity ratio have lost their impor-

tance over the recent years. For P/B valuation, the importance of ROE has been decreasing

constantly from around 2010, while the importance of Sales/Equity has been decreasing

since from around 2005 for P/S valuation. Interestingly, R&D/Sales ratio has been gain-

ing importance, which can suggest that information in R&D spending is becoming more

important for investors, and the fundamental value difference between high and low R&D

spending companies could be increasing (Booth et al., 2006; Chan et al., 2015; Geertsema

& Lu, 2023).

For the models with consensus forecast versions, growth in NTM revenue was among

the top 5 important predictors for both P/B and P/S versions. Its importance was almost

constant for the P/S version and decreased since the 2005 for the P/B version. NTM Net

Income margin also has been declining in importance for the P/S forecast model. This

suggests that analyst forecasts, already lagging behind historical based predictors based on

SHAP, are not becoming more important through time. Thus analyst forecasts bring only

marginal contribution towards relative stock pricing, even though ML prediction errors are

lower.
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Figure 4.8: SHAP (P/B and P/B with Consensus Forecast)

Figure 4.9: SHAP (P/S and P/S with Consensus Forecast)

Mean absolute SHAP values for different predictors. Monthly SHAP values are expressed in
percentage such that SHAP values for all predictors sum up to 100% and a 4 year rolling mean
is represented in the chart.

For variable definitions, see Table 3.2 and List of Variables.
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Correlated Variables

Correlation matrices for our main and consensus forecast datasets showed that some

variables, especially those related to profit margins are highly inter-correlated. In the variable

importance section, we see, however, that many margin based predictors are ranked highly in

the feature importance charts, meaning that the ML models use some of the inter-correlated

predictors together, even as based on the correlation analysis, one variable should suffice.

Having highly correlated variables as explanatory variables causes multicollinearity

when it comes to ordinary least squares regression. To test if these intercorrelations do not

cause problems in the model, we run a P/S model version on our main dataset, where we

remove some of the variables, which had the highest inter-correlation and were also correlated

with the target multiple (cash flow margin, pre-tax margin, EBIT margin), leaving only net

profit margin from this group. Our resulting RMSE is 0.53, which is the same as for the

main P/S model. Therefore, we suggest that even as the variables are inter-correlated in our

framework, which should be the same in Geertsema and Lu (2023) as many of the margin-

based profitability variables are used there as well, this does not cause significant problems

for our ML models.
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Chapter 5

Strategy

Machine Learning-Valuation and Convergence Trade

This section investigates whether relative valuation with ML can be used to generate

superior trading performance, in terms of abnormal return (alpha), risk factors, and practi-

cality. If the ML method provides a more accurate stock valuation by considering non-linear

relationships among underlying fundamental variables, one can engage in a convergence trade

by going long under-valued stocks and going short over-valued stocks, since divergence from

the fundamental value is expected to decrease over time (Liu & Timmermann, 2013; Bartram

& Grinblatt, 2018).

Following Bartram and Grinblatt (2018), Hanauer et al. (2022), and Geertsema and

Lu (2023), we sort stocks into quintiles by the difference (error) between actual market

valuation (P/B and P/S ratio) and corresponding valuation suggested by ML in the previous

chapter. If ML-based valuation overshoots actual market valuation, the stock is thought to

be under-valued and vice versa.

We construct five long-only portfolios for each quintile and one long/short portfolio by

going short Q1 (most over-valued quintile) and going long Q5 (most under-valued quintile).

The long/short portfolio is expected to be less affected by the overall market direction (beta)

and offer downside protection during a market downturn. The aforementioned portfolios are

held for the next month and rebalanced at the month end, from January 2001 to December

2021, given the data availability for S&P Capital IQ consensus forecasts (ML valuation period

from December 2000 to November 2021). Monthly total returns take dividends reinvestment
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into consideration, and when companies are delisted during the holding period, delisting

returns acquired from CRSP are added. We use the risk-free rate from the data library

website of Prof. Kenneth French, which is the 1-month US Treasury bill rate, and transaction

costs are not considered.

We analyze both value-weighted (VW) and equal-weighted (EW) portfolios. VW

portfolios are thought to be affected more by the movements of large-cap companies, while

EW portfolios offer more diversification benefits by giving more weight to small-cap com-

panies. EW portfolios are usually associated with higher costs from high turnover and

transaction costs, but (Novy-Marx & Velikov, 2019), Qin and Singal (2022) point out trad-

ing costs of EW portfolios are limited, keeping EW portfolios superior to VW portfolios.

Ilmanen (2011, p. 257–258) summarizes that VW has a tendency to overweight overpriced

stocks, and EW has a contrarian bias, since the latter sells stocks whose prices have risen and

buys those whose prices have declined in rebalance to keep the weight constant. Therefore,

It is important to be aware of the tendencies caused by the weighting schemes.

Our stock universe used for ML valuation in the previous chapter includes approx-

imately 2000 to 4000 stocks (also see Table 3.1), however, nano and micro-cap companies

are associated with low liquidity, high volatility and high trading costs (Rabener, 2018). To

control the effect of those companies and ensure the practicality of trades, smallest 20% of

stocks in the investable universe are removed every month, since market capitalization grows

over time and the definition of nano and micro-caps by company size in absolute term can

change accordingly.

One caveat for our long/short strategy based on ML-valuation is that it might still

be exposed to several risk factors, such as systematic risk (beta), size and value (Fama &
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French, 1995). For example, as Figure 4.4 and Figure 4.5 suggest, small-sized companies

tend to have higher valuation errors. Unless over-valued and under-valued companies are

distributed evenly across company size, the implication from EW and VW portfolios might

not be the same. Due to characteristic differences between Q1 (over-valued stocks) and

Q5 (under-valued stocks), the resulting long/short portfolio can be still bearing certain risk

factors, and this can limit the profitability and diversification benefit of the convergence

trades.

Another caveat is the frequency of rebalancing. Our one-month rebalance frequency

follows Bartram and Grinblatt (2018), Hanauer et al. (2022), and Geertsema and Lu (2023),

but more frequent rebalancing might capture more convergence trade opportunities, while

it is a trade-off with high transaction costs. It should be noted that our monthly financial

ratio data from WRDS is lagged by two months to avoid a look-ahead bias, and there could

be some inefficiency between the timing that the data becomes publicly available and the

timing to conduct ML valuation and construct portfolios for some companies.

Table 5.1 and Table 5.2 report return excess of the risk-free rate (Ex Return), standard

deviation (Std Dev) and sharpe ratio (SR) for each quintile and spread return from long/short

portfolios (VW and EW). Table 5.3 and Table 5.4 show the result of the Fama-French 6

factors time-series regressions on the spread returns of the long/short portfolios (See Fama

and French (2018), and note in Table 5.3). Quintile Portfolio Returns until 2019 and Spread

Returns Time-series Regression until 2019 in Appendix report the result until 2019 to make

the calculation period comparable with Geertsema and Lu (2023) and remove the effect of

the COVID-19 shock.
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Excess return and sharpe ratio are the highest for Q5 (most under-valued quintile)

across valuation metrics from 0.63 to 0.72 for the VW portfolios, and 0.73 to 0.80 for the EW

portfolios. There are significant differences in sharpe ratio between VW and EW long/short

portfolios, suggesting the existence of heterogeneity in terms of size between Q1 and Q5. The

long/short portfolios based on P/S record a higher sharpe ratio compared with portfolios

based on P/B regardless of whether incorporating consensus forecasts or not. The VW

long/short portfolio based on P/B and consensus forecast reports the lowest sharpe ratio at

0.04

Abnormal returns (Intercept/alpha) from the long-short portfolios ranged from 0.07%

to 0.33% per month in the VW portfolios and 0.36% to 0.63% per month in the EW portfolios,

while not statistically significant at 1% level for the VW portfolios. The sign of coefficients

for the systematic risk (MKTRF/beta) is negative for the VW portfolios, especially 0.1%

level for the P/B portfolio, but not statistically significant for the EW portfolios. The sign

of regression coefficients for value factor (HML) are positive, and negative for momentum

factor (UMD) with significance level at 0.1% across all the portfolios, suggesting the ML-

based long/short portfolios have a tendency towards value and contrarian style. The EW

portfolios are more exposed to the factors except for the systematic risk (MKTRF/beta).
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Table 5.1: VW Portfolio Returns (Annualized, %)
Valuation Quintile Ex Return Std Dev SR

Price/Book
Q1 8.83 17.02 0.52
Q2 6.83 14.67 0.47
Q3 8.98 14.88 0.60
Q4 9.99 15.60 0.64
Q5 11.90 17.98 0.66
Spread (Q5-Q1) 1.78 10.06 0.18

Price/Book
(Forecast)

Q1 9.23 16.75 0.55
Q2 8.12 15.19 0.53
Q3 8.59 15.09 0.57
Q4 8.63 15.30 0.56
Q5 10.89 17.42 0.63
Spread (Q5-Q1) 0.37 9.48 0.04

Price/Sales
Q1 8.15 16.59 0.49
Q2 7.54 14.88 0.51
Q3 9.51 14.88 0.64
Q4 9.93 15.91 0.64
Q5 12.59 18.04 0.70
Spread (Q5-Q1) 3.15 9.90 0.32

Price/Sales
(Forecast)

Q1 7.31 16.62 0.44
Q2 8.63 15.04 0.57
Q3 8.97 14.81 0.61
Q4 10.28 15.71 0.65
Q5 12.77 17.73 0.72
Spread (Q5-Q1) 4.18 9.43 0.44

Q1 (Q5) is the most over-valued (under-valued) quintile measured by the difference
between ML suggested valuation metric and actual valuation.

During the calculation period (January 2001 - December 2021), comparable excess
return, standard deviation and sharpe ratio for S&P500 (VW) are 8.02%, 14.92%
and 0.53, respectively.
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Table 5.2: EW Portfolio Returns (Annualized, %)
Valuation Quintile Ex Return Std Dev SR

Price/Book
Q1 9.21 20.23 0.46
Q2 11.00 17.84 0.62
Q3 11.97 18.15 0.66
Q4 15.23 19.59 0.78
Q5 18.95 24.50 0.77
Spread (Q5-Q1) 8.44 10.14 0.83

Price/Book
(Forecast)

Q1 10.05 19.90 0.51
Q2 11.38 17.92 0.63
Q3 12.58 18.47 0.68
Q4 14.73 19.78 0.74
Q5 17.61 24.00 0.73
Spread (Q5-Q1) 6.27 9.31 0.67

Price/Sales
Q1 8.36 20.08 0.42
Q2 10.97 18.01 0.61
Q3 12.77 18.07 0.71
Q4 14.64 19.58 0.75
Q5 19.65 24.59 0.80
Spread (Q5-Q1) 9.99 10.55 0.95

Price/Sales
(Forecast)

Q1 9.09 19.86 0.46
Q2 10.99 17.91 0.61
Q3 12.77 1834 0.70
Q4 14.63 19.62 0.75
Q5 18.90 24.42 0.77
Spread (Q5-Q1) 8.52 10.02 0.85

Q1 (Q5) is the most over-valued (under-valued) quintile measured by the difference
between ML suggested valuation metric and actual valuation.

During the calculation period (January 2001 - December 2021), comparable excess
return, standard deviation and sharpe ratio for S&P500 (EW) are 10.50%, 17.54%
and 0.59, respectively.
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Table 5.3: Spread Returns Time-series Regression (VW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.22 0.07 0.29∗ 0.33∗

MKTRF -0.13∗∗∗ -0.09∗ -0.12∗∗ -0.06
SMB 0.04 0.02 0.10 0.05
HML 0.35∗∗∗ 0.27∗∗∗ 0.34∗∗∗ 0.27∗∗∗

RMW 0.08 0.08 0.10 0.12
CMA -0.01 0.01 0.07 0.08
UMD -0.29∗∗∗ -0.21∗∗∗ -0.31∗∗∗ -0.21∗∗∗

Adj. R2 0.36 0.24 0.45 0.26
# Obs. 252 252 252 252

Table 5.4: Spread Returns Time-series Regression (EW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.53∗∗∗ 0.36∗∗∗ 0.63∗∗∗ 0.51∗∗∗

MKTRF -0.02 0.00 -0.01 0.02
SMB 0.26∗∗∗ 0.23∗∗∗ 0.29∗∗∗ 0.26∗∗∗

HML 0.16∗∗∗ 0.14∗∗ 0.18∗∗∗ 0.18∗∗∗

RMW 0.29∗∗∗ 0.26∗∗∗ 0.33∗∗∗ 0.30∗∗∗

CMA 0.28∗∗∗ 0.23∗∗∗ 0.27∗∗∗ 0.19∗∗

UMD -0.42∗∗∗ -0.37∗∗∗ -0.44∗∗∗ -0.38∗∗∗

Adj. R2 0.69 0.65 0.71 0.65
# Obs. 252 252 252 252

Fama French 5 Factors plus momentum are obtained from WRDS. Factor definitions are as
follows: market return in excess of the risk-free rate (MKTRF), small minus big in capital-
ization (SMB), high minus low in book-to-price ratio (HML), robust minus weak in operating
profitability (RMW), conservative minus aggressive in investment (CMA), up minus down in
12 months return (UMD).

*, **, *** stand for p < 0.001, p < 0.01 and p < 0.05, respectively.
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Size × Machine Learning-Valuation Strategy

In this section, we analyze the efficacy of ML-valuation based convergence trade by

size. In the previous section, VW long/short portfolios show lower sharpe ratio, and EW

long/short portfolios show higher sharpe ratio while more exposed to risk factors, including

size. We construct long/short portfolios by grouping stocks into three groups by market

capitalization (size), and go long 1/3 of under-valued stocks and go short 1/3 of over-valued

stocks based on ML-valuation within each group (S1: small-size, S2: mid-size and S3: large-

size). As a result, 1/9 of total stocks go long and 1/9 of total stocks go short within each

group.

Table 5.5 and Table 5.6 report return excess of the risk-free rate, standard deviation

(Std Dev) and sharpe ratio of long/short portfolios for each group (VW and EW). Table 5.7

and Table 5.8 show the result of the Fama-French 6 factors time-series regressions on the

spread returns of the long/short portfolios and their portfolio characteristics, including av-

erage drawdown (Ave. DD), maximum drawdown (Max. DD) and turnover for S1 (See

Table 5.7 for details).

Excess return and sharpe ratio are the highest for S1 from 9.17% to 9.99% across

ML-valuation metrics for the V portfolios, and highest for P/S. Sharpe ratio decreases as

size grows from S1 to S3, and since heterogeneity of size decreases by market capitalization

based grouping, the result is similar between VW and EW portfolios with the latter having

a slightly higher sharpe ratio. P/S based long/short portfolios record sharpe ratio as high

as 1.09 and 1.13 for VW and EW portfolios, respectively. Adding consensus forecast to
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ML-valuation input (P/B and P/S with consensus forecast) results in lower sharpe ratio

compared with ML-valuation without consensus forecast.

Abnormal returns (Intercept/alpha) from the long-short portfolios ranges from 0.48%

to %0.69 per month in the VW portfolios and 0.53% to 0.75% per month in the EW portfolios,

and all of them are statistically significant at 0.1% level. The sign of coefficients for the

systematic risk (MKTRF/beta) is positive but small compared with other factors and the

result from the previous section. The coefficients for value factor (HML) become considerably

small relative to the previous section and they are not statistically significance at 0.5%

level, suggesting these portfolios are less value tilted. On the other hand, the coefficient

for momentum (UMD) remains negative and statistically significant at 0.1% level for both

VW and EW portfolios. At the same time, the P/S based long/short portfolios (with and

without consensus forecast) have a style tilt towards operating profitability (RMW) at 0.1%

level for VW portfolios and 1% level for EW portfolios.

Average drawdown is from -1.50% to -2.77% for VW portfolios and -1.28% to -2.21%

for EW portfolios. High portfolio turnover leads to high transaction costs, eroding the

profitability of the long/short portfolios. Monthly average turnover measured by number

of stocks is stable around 30% across all portfolios. The P/S based portfolios (without

consensus forecast) result in superior performance relative to all other portfolios in terms of

sharpe ratio and risk characteristics regardless of weighting method.

Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 show the hypothetical performance

and risk characteristics of two selected long/short portfolios based on P/B and P/S in S1

(without consensus forecast, VW).
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Table 5.5: Size × ML-Valuation VW Spread Returns
(Annualized, %)

Valuation Size Ex Return Std Dev SR

Price/Book
S1 9.17 8.96 1.02
S2 4.67 7.68 0.61
S3 0.38 7.88 0.05

Price/Book
(Forecast)

S1 7.16 8.84 0.81
S2 3.41 7.59 0.45
S3 -1.19 7.33 -0.16

Price/Sales
S1 9.99 9.16 1.09
S2 5.10 8.14 0.63
S3 1.00 7.26 0.14

Price/Sales
(Forecast)

S1 9.57 9.72 0.98
S2 3.76 8.21 0.46
S3 2.40 7.51 0.32

Table 5.6: Size × ML-Valuation EW Spread Returns
(Annualized, %)

Valuation Size Ex Return Std Dev SR

Price/Book
S1 9.49 9.08 1.04
S2 5.07 7.76 0.65
S3 2.47 7.19 0.34

Price/Book
(Forecast)

S1 7.80 9.01 0.87
S2 3.68 7.60 0.48
S3 0.59 6.56 0.09

Price/Sales
S1 10.76 9.21 1.13
S2 5.32 8.13 0.65
S3 2.86 7.65 0.37

Price/Sales
(Forecast)

S1 10.29 9.77 1.08
S2 4.24 8.27 0.51
S3 1.57 7.02 0.22

S1 (S3) is the group of smallest (largest) 1/3 of total stocks by market capitalization.
Within each group, 1/3 of under-valued (over-valued) stocks based on ML valuation
go long (short), and spread returns are calculated.
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Table 5.7: Small Cap × ML-Valuation Spread Returns Time-series Regression (VW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.63∗∗∗ 0.48∗∗ 0.69∗∗∗ 0.63∗∗∗

MKTRF 0.08∗ 0.08∗ 0.08∗ 0.09∗∗

SMB 0.12∗ 0.14∗∗ 0.12∗ 0.14∗∗

HML 0.02 0.02 0.03 0.04
RMW 0.15∗ 0.08 0.19∗∗∗ 0.24∗∗∗

CMA 0.17∗ 0.12 0.10 -0.00
UMD -0.35∗∗∗ -0.31∗∗∗ -0.37∗∗∗ -0.36∗∗∗

Adj. R2 0.55 0.49 0.45 0.50
# Obs. 252 252 252 252
Ave. DD -1.74% -2.77% -1.50% -2.03%
Max. DD -15.02% -17.17% -13.93% -15.36%
Turnover 30.95% 32.98% 29.22% 31.14%

Table 5.8: Small Cap × ML-Valuation Spread Returns Time-series Regression (EW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.64∗∗∗ 0.53∗∗∗ 0.75∗∗∗ 0.70∗∗∗

MKTRF 0.08∗∗ 0.08∗∗ 0.08∗∗ 0.09∗∗

SMB 0.15∗∗ 0.16∗∗∗ 0.14∗∗ 0.18∗∗

HML -0.02 -0.03 -0.00 0.00
RMW 0.14∗ 0.07 0.18∗∗ 0.19∗∗

CMA 0.15∗ 0.13 0.10 0.04
UMD -0.37∗∗∗ -0.34∗∗∗ -0.38∗∗∗ -0.39∗∗∗

Adj. R2 0.58 0.55 0.60 0.58
# Obs. 252 252 252 252
Ave. DD -1.63% -2.21% -1.28% -1.70%
Max. DD -14.14% -14.35% -11.53% -13.45%
Turnover 30.95% 32.98% 29.22% 31.14%

Fama French 5 Factors plus momentum are obtained from WRDS. Factor definitions are as
follows: market return in excess of the risk-free rate (MKTRF), small minus big in market
capitalization (SMB), high minus low in book-to-price ratio (HML), robust minus weak in
operating profitability (RMW), conservative minus aggressive in investment (CMA), up minus
down in 12 months return (UMD).

Draw Down (DD) is calculated as the percent difference between the highest cumulative return
and the current cumulative return.
Turnover is defined as the number of different stocks from the previous month relative to the
total number of stocks in the previous month (monthly average).

*, **, *** stand for p < 0.001, p < 0.01 and p < 0.05, respectively.
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Figure 5.1: Cumulative Returns for Selected Portfolios

See Size × Machine Learning-Valuation Strategy for details of the strategies.

Ptb stands for P/B and pts stands for P/S.

Figure 5.2: Rolling Sharpe Ratio for Selected Portfolios

Rolling sharpe ratio is calculated as 3 years (36 months) moving window sharpe ratio (annu-
alized).
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Figure 5.3: Rolling Beta for Selected Portfolios

Rolling beta is calculated as 3 years (36 months) moving window regression coefficient on
S&P500 (VW).

Figure 5.4: Draw-down for Selected Portfolios

For drow-down calculation, see Table 5.7.
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Discussion

Our ML-based convergence strategies result in comparable trading performance with

Geertsema and Lu (2023) when P/B ratio is used and all-sized firms are included, while

abnormal returns for VW portfolios are not statistically significant. Sharpe ratio for the

long/short portfolios drops for VW compared with EW portfolios, and as we include the

period after the COVID-19 shock in 2020, the performance deteriorates as well. It should

be noted that sharpe ratio based on P/B Geertsema and Lu (2023) report is higher than

our result, possibly reflecting the period they include between 1984 and 2000, as the efficacy

of strategies tends to decay over time, and advanced quantitative techniques represented by

ML have become popular and replicated by many invetors (Falck et al., 2022).

The long/short portfolios for small companies result in 0.48% to 0.69% abnormal

returns per month across valuation inputs on VW basis at 0.1% significant level after con-

trolling the effect of nano and micro-cap companies. ML could provide a more accurate

valuation for small companies that are not covered by analysts and scrutinized less often

by investors, similar with the findings of Avramov et al. (2021). However, our portfolios

are less exposed to well-known factors reported by Avramov et al. (2021), and portfolio

turnover, which can significantly erode the profitability of trading strategies by incurring

high transaction costs, is limited with smaller downside risk measured by drawdown. That

said, further analysis on factors, such as liquidity and transaction costs, would be needed to

confirm the practical applicability of our ML-based strategy, since our portfolios might still

include additional risks that are unique in stocks of small companies.
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The use of P/S, instead of P/B as valuation metrics leads to superior trading perfor-

mance overall. While P/B and P/S include similar information, Choi et al. (2021) report

that growing R&D and SG&A expenditures can add noise to book value, whereas P/S does

not suffer this problem. In addition to P/B, Geertsema and Lu (2023) use enterprise value-

to-assets and enterprise value-to-sales. There is a limitation in valuation metrics, such as

price-to-earnings and EV/EBITDA, since they are not meaningful when earnings are nega-

tive, but the efficacy of other valuation metrics in addition to P/B and P/S should be further

investigated.

On the other hand, including consensus forecast results in lower sharpe ratio compared

with input only based on reported numbers in most portfolios. It could be partly attributed

to model overfitting for large companies, since most consensus forecasts are only available for

large companies, and by incorporating consensus forecast information, our ML algorithms

might adjust parameters to fit better for large companies when making out-of-sample es-

timates. Another possible reason is that consensus forecasts help to reflect valuation on

over-extrapolation of the past growth and optimistic assumptions (Ilmanen, 2011, p. 504).

The overall performance of our strategy could suggest that ML-based valuation suc-

cessfully avoids distressed firms (value trap). At the same time, there could be a corre-

lation between beta and valuation errors (Figure 4.4 and Figure 4.5), and in that case,

our long/short portfolios might not be market neutral. Further sophistication in portfolio

construction might contribute to improving trading performance.
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Chapter 6

Conclusion

We analyze whether ML methods can contribute to improving the accuracy of valu-

ation on a relative basis following Geertsema and Lu (2023), and investigate the efficacy of

consensus forecast and its application to the convergence trade. We find that a tree-based

ML model, employing XGboost, produces an overall accurate valuation from fundamental

variables, and consensus forecasts contribute to improving the valuation accuracy. We also

show that predictive errors vary through time and follow the general volatility patterns in

the US stock market. Furthermore, predictive errors are not evenly distributed across funda-

mental variables, as high beta, low ROE, low market capitalization companies, as well those

with valuation multiples that are far away from the median, tend to have higher errors.

Hence, there is a pattern of a company that is expected to have a high ML prediction error,

suggesting that predictions can be correlated with market factors.

While we show that ML-based relative valuation is effective, using the tree-based

algorithms including XGboost, other ML algorithms, such as neural networks, might produce

a better result. Analysis of textual structure of news and market sentiment that are not fully

captured by our models might shed new light on the drivers of valuation.

It should be noted that while the ML models with consensus forecasts contribute

to lowering prediction error of valuation metrics (P/B and P/S), trading performance is

higher for basic models without consensus forecasts. This could be because models based

on consensus forecasts overfit the market pricing, while models with only historical data are

more general and thus capture the intrinsic value of the companies better. At the same
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time, it has been found that grouping companies by market capitalization is important

for the ML-based convergence trade. For large-cap companies, fundamental variables and

valuation metrics are more frequently scrutinized, leading to fewer opportunities to make an

economically significant profit. On the other hand, ML-based valuation offers more benefits

for small companies, leading to higher trading performance.

It is true that investing in small-caps is a trade-off between higher transaction costs,

lower liquidity and other idiosyncratic risks, but our small-cap × ML valuation portfolio

would offer considerable diversification benefits, low turnover with less exposure to the ex-

isting factors.
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Appendix A

List of Variables

Category Variable Name Source

Dependent Variables

Valuation
ptb Price/Book WRDS
pts Price/Sales

Independent Variables

Capitalization
capital ratio Capitalization Ratio WRDS
equity invcap Common Equity/Invested Capital
debt invcap Long-term Debt/Invested Capital
totdebt invcap Total Debt/Invested Capital

Efficiency
at turn Asset Turnover WRDS
inv turn Inventory Turnover
op l Operating Leverage
pay turn Payables Turnover
rect turn Receivables Turnover
sale equity Sales/Stockholders Equity
sale invcap Sales/Invested Capital
sale nwc Sales/Working Capital

Financial
Soundness

cash lt Cash Balance/Total Liabilities WRDS
cfm Cash Flow Margin
cash debt Cash Flow/Total Debt
curr debt Current Liabilities/Total Liabilities
fcf ocf Free Cash Flow/Operating Cash Flow
int debt Interest/Average Long-term Debt
int totdebt Interest/Average Total Debt
invt act Inventory/Current Assets
dltt be Long-term Debt/Book Equity
lt debt Long-term Debt/Total Liabilities
ocf lct Operating CF/Current Liabilities
profit lct Profit Before Depreciation/Current Liabilities
rect act Receivables/Current Assets
short debt Short-Term Debt/Total Debt
debt ebitda Total Debt/EBITDA
lt ppent Total Liabilities/Total Tangible Assets

Liquidity
cash conversion Cash Conversion Cycle (Days) WRDS
cash ratio Cash Ratio
curr ratio Current Ratio
quick ratio Quick Ratio (Acid Test)
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List of Variables - continued from previous page

Category Variable Name Source

Market beta Beta (60 Months) CRSP

Other Ratios
accrual Accruals/Average Assets
adv sales Advertising Expenses/Sales WRDS
staff sales Labor Expenses/Sales
rd sales Research and Development/Sales

Profitability
aftret eq After-tax Return on Average Common Equity WRDS
aftret invcapx After-tax Return on Invested Capital
aftret equity After-tax Return on Total Stockholders’ Equity
efftax Effective Tax Rate
gpm Gross Profit Margin
GProf Gross Profit/Total Assets
npm Net Profit Margin
opmad Operating Profit Margin After Depreciation
opmbd Operating Profit Margin Before Depreciation
ptpm Pre-tax Profit Margin
pretret noa Pre-tax Return on Net Operating Assets
pretret earnat Pre-tax Return on Total Earning Assets
roa Return on Assets
roce Return on Capital Employed
roe Return on Equity

Solvency
intcov ratio After-tax Interest Coverage WRDS
intcov Interest Coverage Ratio
debt capital Total Debt/Capital
de ratio Total Debt/Equity
debt assets Total Debt/Total Assets
debt at Total Liabilities/Total Assets

Growth
ceqq g Growth in Common Equity, last 12 months WRDS
ltmni g Net Income growth, last 12 months
ltmopprofit g EBIT growth, last 12 months
ltmopprofitbd gEBITDA growth, last 12 months
ltmsales g Sales growth, last 12 months

WRDS stands for Financial Ratios Firm Level by WRDS with CRSP, Compustat and IBES sub-
scriptions. All data are obtained through Wharton Research Data Services except for growth data
calculated from S&P Capital IQ data.

Also see Table 3.2 for other variable definitions.
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Appendix B

Quintile Portfolio Returns until 2019

Table A.1: VW Portfolio Returns until 2019 (Annualized, %)
Valuation Quintile Ex Return Std Dev SR

Price/Book
Q1 6.17 16.23 0.38
Q2 5.43 14.05 0.39
Q3 8.23 14.18 0.58
Q4 8.82 14.70 0.60
Q5 11.09 17.72 0.63
Spread (Q5-Q1) 3.52 9.47 0.37

Price/Book
(Forecast)

Q1 7.01 16.04 0.44
Q2 6.49 14.42 0.45
Q3 7.52 14.44 0.52
Q4 7.77 14.31 0.54
Q5 9.68 17.11 0.57
Spread (Q5-Q1) 1.27 8.92 0.14

Price/Sales
Q1 6.28 15.93 0.39
Q2 5.65 14.19 0.40
Q3 7.85 14.15 0.55
Q4 9.17 15.00 0.61
Q5 11.71 17.77 0.66
Spread (Q5-Q1) 4.02 9.59 0.42

Price/Sales
(Forecast)

Q1 5.09 15.88 0.32
Q2 6.95 14.40 0.48
Q3 7.29 14.02 0.52
Q4 9.46 15.07 0.63
Q5 11.78 17.47 0.67
Spread (Q5-Q1) 5.29 9.08 0.58

Q1 (Q5) is the most over-valued (under-valued) quintile measured by the difference
between ML suggested valuation metric and actual valuation.

During the calculation period (January 2001 - December 2019), comparable excess
return, standard deviation and sharpe ratio for S&P500 (value-weighted) are 6.43%,
14.33% and 0.45, respectively.
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Table A.2: EW Portfolio Returns until 2019 (Annualized, %)
Valuation Quintile Ex Return Std Dev SR

Price/Book
Q1 7.31 19.32 0.39
Q2 9.91 17.03 0.58
Q3 11.05 17.16 0.64
Q4 14.51 18.53 0.78
Q5 17.84 23.61 0.76
Spread (Q5-Q1) 8.83 10.00 0.88

Price/Book
(Forecast)

Q1 8.57 19.06 0.45
Q2 10.46 17.06 0.61
Q3 11.54 17.40 0.66
Q4 13.83 18.80 0.74
Q5 16.52 23.12 0.71
Spread (Q5-Q1) 6.55 9.09 0.72

Price/Sales
Q1 6.85 19.23 0.36
Q2 9.81 17.09 0.57
Q3 11.77 17.06 0.69
Q4 13.99 18.65 0.75
Q5 18.53 23.66 0.78
Spread (Q5-Q1) 10.29 10.45 0.98

Price/Sales
(Forecast)

Q1 7.36 18.83 0.39
Q2 9.98 17.12 0.58
Q3 12.17 17.46 0.70
Q4 13.63 18.55 0.74
Q5 17.81 23.52 0.76
Spread (Q5-Q1) 9.06 9.89 0.92

During the calculation period (January 2001 - December 2019), comparable excess
return, standard deviation and sharpe ratio for S&P500 (equal-weighted) are 9.35%,
16.79% and 0.56.

54



Appendix C

Spread Returns Time-series Regression until 2019

Table A.3: Spread Returns Time-series Regression until 2019 (VW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.25 0.06 0.28 0.34∗

MKTRF -0.06 -0.03 -0.06 -0.00
SMB 0.05 0.03 0.11 0.08
HML 0.26∗∗∗ 0.16∗ 0.30∗∗∗ 0.19∗

RMW 0.20∗ 0.16 0.17 0.20∗

CMA 0.05 0.08 0.09 0.12
UMD -0.29∗∗∗ -0.21∗∗∗ -0.31∗∗∗ -0.21∗∗∗

Adj. R2 0.32 0.18 0.41 0.22
# Obs. 228 228 228 228

Fama French 5 Factors plus momentum are obtained from WRDS. Factor definitions are as
follows: market return in excess of the risk-free rate (MKTRF), small minus big in capital-
ization (SMB), high minus low in book-to-price ratio (HML), robust minus weak in operating
profitability (RMW), conservative minus aggressive in investment (CMA), up minus down in
12 months return (UMD).

*, **, *** stand for p < 0.001, p < 0.01 and p < 0.05, respectively.

Table A.4: Spread Returns Time-series Regression until 2019 (EW)
P/B P/B(Forecast) P/S P/S(Forecast)

Intercept 0.54∗∗∗ 0.36∗∗ 0.63∗∗∗ 0.52∗∗∗

MKTRF -0.01 0.02 -0.01 0.06
SMB 0.29∗∗∗ 0.25∗∗∗ 0.31∗∗∗ 0.30∗∗∗

HML 0.19∗∗∗ 0.12∗ 0.21∗∗∗ 0.17∗∗

RMW 0.33∗∗∗ 0.29∗∗∗ 0.39∗∗∗ 0.38∗∗∗

CMA 0.21∗∗ 0.21∗∗ 0.22∗∗ 0.16∗

UMD -0.43∗∗∗ -0.38∗∗∗ -0.46∗∗∗ -0.40∗∗∗

Adj. R2 0.69 0.63 0.71 0.65
# Obs. 228 228 228 228
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