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1 Introduction

The COVID-19 pandemic has underscored the need for real-time and systematic
economic indicators for policymakers and market participants alike. Traditional
indicators, such as industrial production and gross domestic product (GDP),
may be insufficient during turbulent times due to their delayed availability.
Dividend futures, which enable investors to take positions on future dividends
of an index or company, offer valuable high-frequency forward-looking insights
into market expectations and sentiments across a term structure.

In this paper, I build upon the approach introduced by Gormsen and Koijen
(2020), who use dividend futures data to infer market forecasts of dividend and
GDP changes following the coronavirus outbreak. By adapting their method,
I demonstrate that the relationship between equity yields and GDP growth
expectations can provide a valuable tool for investors and policymakers when
assessing the state of the economy during GDP shocks across various countries,
a previously unexplored area. This approach allows for more timely informa-
tion, enabling policymakers to make informed decisions about appropriate policy
responses during economic contractions and turmoil.

One case in point is the examination of stock price fluctuations in response
to GDP shocks, such as the Russian invasion of Ukraine. For example, the Stoxx
Europe 600 and FTSE 100 fell by 3.3% and 2.9%, while the Russian Moex ex-
perienced significant fluctuations, ultimately dropping by as much as 45% until
trading ceased.1 However, data derived from price changes have limitations.
Market valuations fluctuate due to changes in either dividend expectations or
discount rates. As Shiller (1981) points out, most variation can be attributed
to the latter. Therefore, in the wake of a GDP shock, such as an invasion,
increased uncertainty may escalate risk aversion, leading to a rise in investors’
discount rates.

Furthermore, stock prices do not reveal the extent to which market declines
stem from short-term consequences (e.g., sudden restrictions on Russian ex-
ports and imports) as opposed to medium and long-term consequences (e.g.,
European nations changing their energy policies). Consequently, stock prices
are not optimal instruments for investigating market responses to crises. In
contrast, the dividend term structure allows for an analysis of a shock’s impact
on future expectations over time. Moreover, dividend futures are not affected
by the nonlinear relationship that affects interest rates at the zero-lower-bound
(ZLB) (see e.g., Swanson and Williams (2014)).2 Corporate bonds, which are
also differentiated by maturity, could be another means of inferring changing
expectations from agents in the economy. However, like government bonds, they
lack the variable payoff feature of dividend futures. The uncertain payoff en-
ables the breakdown of the n-year forward equity yield into risk premium and
most importantly, the expected dividend growth, as demonstrated in Section 4.

1Volatility which can be compared to the Great Financial Crisis.
2However, the yield curve can be and has been used as a forecasting. For instance, Møller

(2014) demonstrates that the curvature of the yield curve holds substantial predictive power
for macroeconomic variables such as GDP.
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By investigating the market’s response to events like the Russian invasion
of Ukraine, the onset of the COVID-19 pandemic, and other instances of finan-
cial and economic instability, this study seeks to improve our understanding of
the use of dividend futures across different markets as a tool to infer expecta-
tions, how markets cope with uncertainty and how warfare is valued in financial
markets.3

Dividend futures enable market participants to assume specific positions on
future dividends, hedge dividend exposure, or exploit relative value opportuni-
ties in assets over time. These contracts are based on an underlying dividend
index, which tracks the cumulative annual value of ordinary cash dividends de-
clared by the constituents of a stock market index.4 By taking a long position
in these futures, investors commit to paying a predetermined sum in exchange
for the cumulative dividends over a set year. Consequently, the fair value of
a dividend futures contract represents the risk-adjusted present value of the
cumulative dividends throughout this period. As mentioned, dividend futures
facilitate the decomposition of stock prices into their constituent parts and offer
insights into expected dividends by maturity. Since dividends can signify the
surplus generated in the economy, they are closely tied to GDP, allowing for the
estimation of the lower bound GDP growth expectations based on the market’s
outlook for dividend growth.

A plethora of research supports the connection between GDP and dividends.
For instance, Ragnvid (2006) contends that a strong link exists between eco-
nomic activity and dividend patterns over extended periods, suggesting that div-
idends exhibit mean-reverting behavior towards GDP. Similarly, Rozeff (1984)
argues that the evolution of dividends over time is intimately connected to
GDP growth. Moreover, Van Binsbergen et al. (2013) demonstrates correla-
tions between the cyclical components of consumption, gross national income,
and dividends are highly correlated over time, with correlations intensifying
during periods of turmoil and uncertainty.

My method is inspired by Gormsen and Koijen (2020), who use data from
dividend futures to quantify the market forecast of dividend and GDP changes
following the outbreak of the COVID-19 pandemic. My paper diverges in three
significant ways. Firstly, Gormsen and Koijen focus exclusively on the aftermath
of a global pandemic that affected the economy primarily through increased
mortality, implementation of non-pharmaceutical interventions, and behavioral
changes in individuals and businesses. In contrast, I broaden the scope of the
historical periods studied to encompass various types of shocks, such as the
onset of military conflict, where the economic impact mainly originates from
sanctions and their repercussions on the global supply of essential commodities
like oil and gas, as well as shifts in global demand patterns.

3In the macro-finance literature it is commonplace to infer the movements of for exam-
ple swaps onto macroeconomic variables. See for example Gertler and Karadi (2015) and
Jarociński and Karadi (2020) which both use interest rate swaps to infer monetary policy
shocks.

4Dividend futures for specific stocks also exist, but they are not used or analyzed in this
study.

6



Secondly, while Gormsen and Koijen’s study is limited in terms of geograph-
ical focus, only including the largest global markets, my research expands the
analysis to incorporate a more diverse range of countries and regions. This ex-
tension provides a more comprehensive understanding of how dividend futures
can be employed to predict growth expectations across various economies and
contexts. The markets included in my study are Euro Stoxx 50 (representing
Europe), Nikkei 225 (Japan), FTSE 100 (United Kingdom), FTSE MIB (Italy),
SMI 30 (Switzerland), and DAX (Germany).5

Lastly, my paper aims to critically examine Gormsen and Koijen’s methodol-
ogy by problematizing the theoretical boundaries and idiosyncrasies involved in
forecasting GDP and dividend growth through the use of dividend futures. This
effort aims to cultivate a more refined understanding of the interplay between
dividend futures market dynamics, economic growth, and market responses to
crises, ultimately providing valuable insights for policymakers, and financial
market participants alike.

2 Dividend Futures

Dividend swaps emerged in the late 1990s to facilitate dividend trading and
gained popularity with structured products.6 Dividend futures, introduced
around 2008, offer a listed alternative to dividend swaps. The popularity of
dividend futures has risen since the Great Financial Crisis, as trading increas-
ingly transitioned to centralized venues from the over-the-counter (OTC) mar-
ket. Mixon and Onur (2016) explores the market for dividend swaps, using
regulatory data, and discovered approximately 2 billion US dollars outstanding
between dealers and end users (market-facing) and about another 4.4 billion
between dealers (hedging). The Euro Stoxx 50 is the only market where listed
futures clearly dominate, with approximately 10 times the notional of swaps
outstanding in futures.7

I will explain the dynamics of dividend futures using a simple model, as
presented by Willems (2019). To begin, consider a financial market that can
be modeled with a filtered probability space (Ω,F ,Ft,Q), where Q represents
a risk-neutral pricing measure. Let Xt denote a polynomial jump-diffusion pro-
cess, which models uncertainty and takes values in a state space E ⊆ Rd, with
dynamics given by:

5The specific markets are chosen for simple data availability reasons. The US SP 500 index
is excluded from the sample for two reasons. The listed future was launched in 2015, providing
a very short history; secondly, several contracts were missing, making it impossible to create
a futures chain. A longer discussion on data employed in the paper is found in Section 9.6

6In this arrangement, the buyer agrees to pay a fixed dividend amount (fixed leg) at
expiry, in exchange for the total qualifying dividends throughout the swap period (floating
leg). Notably, the ex-date within the dividend swap period is irrelevant, as long as it falls
within the swap period.

7The majority of dealer-to-dealer swaps are in the SP 500 market for dividends, while the
Euro Stoxx 50 dealer hedging occurs almost exclusively on the listed futures, creating a much
more active market for the listed futures examined.
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dXt = κ(θ −Xt)dt+ dMt,

where κ ∈ Rd×d, θ ∈ Rd, and Mt is a d-dimensional martingale such that the
generator G ofXt maps polynomials to polynomials of the same degree or lower.8

Let n ∈ N, and denote by Poln(E) the space of polynomials on E with a
degree of n or less. The dimension of Poln(E) is denoted by Nn. Let h1, . . . , hNn

form a polynomial basis for Poln(E), and finally:

Hn(x) = (h1(x), . . . , hNn
(x))T .

Given that G leaves Poln(E) invariant, there exists a unique matrix Gn ∈
RNn×Nn representing the action of G on Poln(E) with respect to the basisHn(x).
Without loss of generality, assume that Hn(x) is the monomial basis.9 From
the invariance property of G, one can derive the moment formula:

Et[Hn(HT )] = expGn(T−t) Hn(Xt), (1)

which is valid for all T ≥ t. To define the price of the dividend forward, in this
space, consider an index or equity that pays a continuous dividend stream at
an instantaneous rate Dt, which varies stochastically. The cumulative dividend
process is modeled as Ct = C0 +

∫ t

0
Dsds, where:

Ct = eβtp⊤H1(Xt). (2)

Let Ct be a positive, non-decreasing, and absolutely continuous process with
some parameters β ∈ R and p ∈ Rd+1. This specification for Ct determines Dt,
which is the instantaneous dividend rate implied by equation (2), given by:

Dt = eβtp⊤(βId +G1)H1(Xt), (3)

where Id is the identity matrix.
Both the instantaneous dividend rate and the cumulative dividends load

linearly on the factor process. The exponential scaling of Ct with parameter
β ensures a non-negative instantaneous dividend rate. When all eigenvalues
of κ have positive real parts, the parameter β controls the asymptotic risk-
neutral expected growth rate of the dividends, which can be calculated using
the moment formula (1):

8See, for example, Filipović and Larsson (2019), where the polynomial jump-diffusion pro-
cess is a type of stochastic movement that incorporates both jumps and continuous diffusion
components, with the added feature that the jump component exhibits a polynomial struc-
ture. This process is beneficial for modeling financial assets, as it allows for the inclusion of
continuous and discontinuous price movements.

9A monomial basis is a set of monomials that can be combined linearly to form any poly-
nomial in the given space. For example, in a two-dimensional space, a monomial basis could
be 1, x, x2. This makes the problem easier to work with.
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lim
T→∞

1

T − t
log

(
Et[DT ]

Dt

)
= β.

The time-t price of a continuously marked-to-market forward contract refer-
encing the dividends to be paid over a future time interval [T1, T2], where
t ≤ T1 ≤ T2, is thus given by:

F
(T1,T2)
t = Et

[∫ T2

T1

Dsds

]
= Et [CT2 − CT1 ]

= p⊤
(
eβT2eG1(T2−t) − eβT1eG1(T1−t)

)
H1(Xt),

where I use the moment formula (1) in the last equality. Thus, the dividend for-

ward price F
(T1,T2)
t is an increasing function of β, and the risk-neutral expected

growth rate of the dividends is the key factor that determines the price of the
forward contract.10

2.1 Market Conventions

In the financial market, both dividend futures and dividend swaps are quoted
in terms of amounts per index point. The computation for an index dividend
future is akin to the index itself; however, the equity price is substituted with
the dividend amount.11 Consequently, the payout is the sum of all qualifying
dividends, multiplied by the free float as determined by the index provider, of
the stock disbursing that dividend, and divided by the divisor on the ex-date.

Index Dividend =
∑

All qualifying dividends

Number of shares of stock paying Di

Index divisor on ex-date of Di
Di.

Index dividend futures and swaps are available with maturities of up to ten
years, but the maturities available vary by market. It is important to note
that extraordinary dividends are excluded from the qualifying dividends, but
also that the proportion of special dividends as a fraction of total dividends has
decreased over time, and is assumed to be negligible for the sample period under
consideration, as discussed by DeAngelo et al. (2000).12 Contracts are settled

10Henceforth referred to as F
(n)
t , where t is the trading day, and n is the period between

T2 when the contract matures. This is done since the paper features futures exclusively, thus
t always equal T1.

11Consider a stock index that is yielding 5 percent with certainty. The stock index is trading
at 20 points, then the dividend future will be quoted at roughly 1 point.

12In summary, the payoff of a contract represents the total declared ordinary gross divi-
dends on index constituents that transition to an ex-dividend status within a specified year.
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in cash upon the expiration date, with no intermediate cashflows. For example,
the payoff of the 2015 dividend futures contract on the Euro Stoxx 50 index
consists of the declared ordinary gross dividends on index constituents that go
ex-dividend between the third Friday of December 2014 and the third Friday of
December 2015.

Utilizing dividend futures to interpolate the market’s fluctuating dividend
and GDP expectations is constrained by several factors at the shortest maturity
and a few factors, including liquidity issues, at longer maturities.13

2.2 Building a Term Structure of Dividends

Since the futures data collected from the market is unstructured and lacks a clear
term structure, it is necessary to construct one.14 Rather than utilizing the most
basic approach of working with nearby futures (nearbys), constant-maturity
futures prices can be created by combining futures price data into a continuous
time series.15 I present two distinct methods for constructing dividend term
structures, resulting in constant-maturity price series that represent a specific
time-to-expiration remaining constant over time, providing an interpolated price
for each time t. This technique is implemented using annual contracts with
maturities ranging from 1 to 10 years in the future, depending on the market.
Employing constant-maturity futures prices offers certain advantages, such as
reducing some cyclical distortions observed in nearbys, but also presents some
limitations.

First, it is essential to address challenges associated with this study, particu-
larly the availability of prices for interpolation, especially in less active markets
featuring irregularly shaped futures curves, which are prevalent in some of the
opaque markets analyzed. Constant-maturity prices serve as an effective proxy
for forward prices, assuming that an adequate number of futures maturities are
traded for reasonable interpolation and no significant convexity bias exists.16

The convexity bias, as explored in the interest rate literature (e.g., Gupta

An extraordinary dividend, often referred to as a special or extra dividend, is typically a sig-
nificantly larger amount that is announced with short notice, nonrecurring, and paid in cash.
For instance, this type of dividend may occur when a company sells some assets and decides
to return capital to shareholders.

13This is discussed thoroughly in Section 7.2. The US SP 500 index, for example, is excluded
from the sample for two reasons. The listed future was launched in 2015, providing a very
short history; secondly, several contracts were missing, making it impossible to create a futures
chain.

14There are a plethora of methods for creating term structures for financial contracts, rang-
ing from well-known techniques such as the Nelson-Siegel-Svensson exponential components
framework (Svensson (1994)), a yield curve model that facilitates the calculation of forward
rates and consists of three time-varying components, to more recent approaches that em-
ploy neural networks to determine term structures (see, for instance, Baruńık and Malinská
(2016)).

15It is believed that nearbys was employed by Gormsen and Koijen for their term structure.
16Some of the instruments studied are more popular in the OTC market (see e.g., Mixon

and Onur (2016)), as the data provided by Refinitiv Eikon only covers the listed on exchange
transactions that is a limitation to the study. A suggestion on how to improve the amount of
quotes to solve this is available in Section 9.3
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and Subrahmanyam (2000)), arises from discrepancies in the convexity of inter-
est rate futures and forward rate agreement (FRA) instruments.17 This bias can
be ascribed to differences in margining practices, cash flows, and interest rate
market volatility. Nonetheless, the convexity bias has diminished in recent years
due to the transition of OTC swaps and FRAs to central counterparty clearing
models and the influence of uncleared margin rules on OTC trading (see, for
instance, Pozdnyakov and Steele (2009)). It is worth noting that in 2015, Mixon
and Onur (2016) show, buy-side firms, which are typically the primary liquidity
demanders in the dividend market transactions, were paying a marginal pre-
mium for OTC swaps compared to futures screen prices. In constructing the
constant maturity futures pricing, this study assumes no convexity bias. While
this is a strong assumption, implying no positive or negative relationship be-
tween dividends and interest rates, it is common practice with exchange-traded
products.18

2.2.1 Nelson-Siegel Model

The first model I use to create the term structure is the Nelson-Siegel model
(NS-model). Nelson and Siegel (1987) originally developed the model for a term
structure of interest rates. It has been widely adopted for its simplicity, flex-
ibility, and ability to capture various yield curve shapes with few parameters.
The NS-model is a parsimonious model for fitting yield curves, typically repre-
sented by a continuous function of time to maturity. The model is given by the
following equation:

yt = β0 + β1
1− e−λtn

λtn
+ β2

(
1− e−λtn

λt
− e−λtn

)
, (4)

where y(t) represents the yield at time to maturity t, β0, β1, and β2 are the
level, slope, and curvature parameters, respectively, and λ is the decay factor.

In order to modify the NS-model to accommodate dividend futures prices,
it is crucial to be mindful of the distinctions between the two instruments.
While interest rates embody the cost of borrowing funds over time, dividend
futures represent contracts that enable investors to speculate on the dividends
disbursed by an index or a collection of stocks over a predetermined duration.
Consequently, the factors influencing the term structure of dividend futures
prices differ from those affecting interest rates. Specifically, dividend futures
prices rely on anticipations regarding future dividend disbursements, the growth
rate of dividends, and market risk factors.

To model dividend futures prices using the NS framework, I can replace the

yield y(t) in Equation (4) with the dividend futures price F
(n)
t :

17The magnitude of the bias and the required adjustment in the interest rate market can
be examined by calculating Convexity Adjustment = Futures ImpliedRate− FRARate.

18With a positive (negative) relationship between dividend and interest rates, the dividend
forward price would be smaller (larger) than the dividend futures price.
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F
(n)
t = β0 + β1

1− e−λtn

λtn
+ β2

(
1− e−λtn

λtn
− e−λtn

)
, (5)

where F
(n)
t represents the dividend futures price at time to maturity t. The

parameters β0, β1, and β2 can be interpreted in a similar manner as in the
original NS-model but now reflect the long-term level, slope, and curvature of
the dividend futures term structure, respectively.

While the NS-model can be adapted to model dividend futures prices, it is
important to recognize the potential implications of this approach: Firstly, the
parameters β0, β1, and β2 in the context of dividend futures may have different
economic interpretations than in the case of interest rates. For example, the
long-term level parameter, β0, can be interpreted as the long-term dividend
growth rate, while the slope and curvature parameters, β1 and β2, might capture
the market’s expectations of changes in dividend growth rates and risk factors
over time. These variables are also highly influenced by the market’s different
idiosyncrasies discussed thoroughly in Section 7.2.

Secondly, the NS-model assumes a three-factor structure, which might not
capture all the factors influencing dividend futures prices. More advanced mod-
els, such as multi-factor or dynamic models, may be better suited to capture the
complex relationships between dividend futures prices, dividend growth rates,
and market risk factors. As I am not focusing on researching the dividend term
structure models I have opted for this simpler approach.19 Furthermore, like
the original NS-model for interest rates, the adapted model for dividend futures
prices will not be arbitrage-free, as shown by Filipović (1999).20

2.2.2 Cubic Spline Model

The second type of term structure I create utilizes a cubic spline as described by
Green and Silverman (1993), adjusted for futures. The goal of the method is to
use a cubic spline to interpolate a set of futures prices with varying maturities.
The function is minimized by choosing the coefficients of the spline function to
minimize the sum of squared second derivatives of the function, subject to a
smoothing constraint.

Suppose a set of dividend futures prices F
(1)
t , F

(2)
t , . . . , F

(tn)
t for maturities

t1 < t2 < · · · < tn. I want to create a continuous function Ft that passes
through these futures prices and can be used to value futures contracts with
any maturity between t1 and tn.

19Given that the NS-model was not specifically designed for dividend futures prices, it
would be crucial to validate its performance using out-of-sample testing or cross-validation.
I do conduct comparisons in the estimates produced by the Spline-model and the NS-model
and find minor differences. For a comprehensive paper on dividend term structures see, for
example, Kragt et al. (2020).

20This limitation is particularly relevant for pricing complex financial derivatives or risk
management applications, where an arbitrage-free model is essential, but is less of a problem
in this context.
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To achieve this, I can use the cubic smoothing spline function, which has the
following form:

Ft =

n∑
i=1

ciSi,t,

where ci are the coefficients that determine the shape of the spline, and Si,t are
cubic B-spline basis functions.

The cubic B-spline basis functions are piecewise cubic polynomials that are
defined on subintervals of [t1, tn], and they have the following recursive defini-
tion:

Si,k(t) =
t− ti

ti+k−1 − ti
Si,k−1(t) +

ti+k − t

ti+k − ti+1
Si+1,k−1(t).

The k-th order B-spline basis functions are defined recursively in terms of the
(k−1)-th order B-spline basis functions, with the base case being the 0-th order
B-spline basis functions, which are defined as follows:

Si,0(t) =

{
1, if ti ≤ t < ti+1

0, otherwise.

The coefficients ci are chosen to minimize the sum of squared second derivatives
of the function Ft, subject to a smoothing constraint. Specifically, I minimize
the following function:

n−2∑
i=1

(
d2Fti

dt2

)2

+ λ

∫ tn

t1

(
d2Ft

dt2

)2

dt,

where λ is a smoothing parameter that determines the amount of smoothing
applied to the function.

Once the coefficients ci have been determined, the function Ft can be used to
value contracts with any maturity between t1 and tn, by simply evaluating Ft at
the desired maturity. In this way, the method allows us to create a continuous
dividend futures curve from a set of futures prices with varying maturities.

The correlation between the term structures of the Nikkei 225 and Euro
Stoxx 50 indices exhibit distinct differences across the various samples studied
as shown in Table 1. While some maturities show strong correlations, others
demonstrate a weaker relationship between the term structures. However, de-
spite these disparities, the overall estimates of the term structure correlations
are still broadly similar.21 This similarity suggests that, although the specific
market conditions in each region may affect the individual term structures,
the general trends and patterns observed in the term structures are consistent
across both models, furthermore they also produce roughly the same estimates
as shown later. Corresponding tables for other markets studied can be found in
Appendix 10.2.

21The discrepancy seems to be driven by differences in variance across the curve for different
samples, however more research is needed into the topic.
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Table 1: Correlation Between Term Structures

(a) Nikkei 225

CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 CS 10

NS 1 1.00 0.98 0.96 0.94 0.92 0.91 0.90 0.90 0.90 0.90
NS 2 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.93
NS 3 0.97 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.95 0.95
NS 4 0.96 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.96
NS 5 0.96 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96
NS 6 0.95 0.98 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
NS 7 0.94 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97
NS 8 0.94 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98
NS 9 0.94 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98
NS 10 0.93 0.97 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98

(b) Euro Stoxx 50

CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 CS 10

NS 1 0.99 0.63 0.50 0.35 0.29 0.29 0.30 0.22 0.21 0.20
NS 2 0.83 0.86 0.74 0.66 0.60 0.58 0.57 0.44 0.40 0.36
NS 3 0.68 0.88 0.78 0.76 0.71 0.69 0.67 0.58 0.53 0.48
NS 4 0.59 0.86 0.77 0.79 0.76 0.75 0.73 0.67 0.63 0.58
NS 5 0.52 0.83 0.75 0.79 0.78 0.78 0.77 0.73 0.70 0.66
NS 6 0.47 0.79 0.73 0.78 0.79 0.79 0.79 0.77 0.75 0.71
NS 7 0.44 0.74 0.69 0.74 0.77 0.79 0.80 0.80 0.78 0.76
NS 8 0.42 0.68 0.65 0.70 0.75 0.78 0.80 0.80 0.80 0.79
NS 9 0.40 0.63 0.61 0.66 0.72 0.76 0.79 0.80 0.81 0.80
NS 10 0.38 0.57 0.57 0.60 0.68 0.73 0.77 0.78 0.80 0.81

Note: This table displays the correlation coefficients for the term structures of the Nikkei 225 and Euro Stoxx 50
indices. The data is generated from historical market data, with each cell representing the correlation between the
respective term structures in the two indices. Higher values (closer to 1) indicate stronger positive correlations,
while lower values (closer to 0) indicate weaker correlations. The table provides a comparative overview of the term
structure relationships between the two major indices.

3 Changing dividend growth expectations

The lower bound on dividend growth expectations is derived from futures prices,
employing the method utilized in Gormsen and Koijen (2020). The relationship
between equity prices and dividend futures is first emphasized. The price of a
stock at time t can be represented as:

St =

∞∑
n=1

Et[Dt+n]

1 + µ
(n)
t

where Dt+n denotes the expected dividend paid out in n years’ time, and µ
(n)
t

signifies the cumulative discount rate associated with the cash flow. Although
the price of a stock does not allow for the observation of a specific dividend’s
present value, the no-arbitrage assumption implies that the instantaneous divi-

dend rate, or rather hypothetical spot price, P
(n)
t of an n-year dividend futures

contract would provide this information:

P
(n)
t =

Et[Dt+n]

1 + µ
(n)
t

. (6)

This hypothetical spot price is however unobservable, but the future, which is
a observable, can be expressed as:

F
(n)
t =

Et[Dt+n]

1 + θ
(n)
t

(7)

where θ
(n)
t represents the n-period expected excess return on the risk associated

with the n-period dividend. The hypothetical spot price and futures price are

connected through the no-arbitrage condition F
(n)
t = (1 + y

(n)
t )P

(n)
t , in which

y
(n)
t denotes the risk-free rate. Thus, for the no-arbitrage condition to be upheld,
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the sum of an infinite number of (hypothetical) dividend futures discounted by

the risk-free rate (y
(n)
t ) must equal the stock price:

St =

∞∑
n=1

F
(n)
t

1 + y
(n)
t

as (1 + θ
(n)
t )(1 + y

(n)
t ) = 1 + µ

(n)
t . The interrelation between dividend futures

prices and stock prices creates the opportunity to decompose the market’s ex-
pectation of dividend growth by maturity. With straightforward assumptions, a
lower bound growth expectation for dividends can be derived using dividend fu-
tures prices. The dividend futures price must be priced by the n-period stochas-
tic discount factor (SDF), mt+n, as:

22

F
(n)
t =

Et[mt+nDt+n]

Et[mt+n]
.

By dividing the equation by the dividend at time t and defining dividend growth

as G
(n)
t = Dt+n

Dt
, the following expression is obtained:

F
(n)
t

Dt
=

Et[mt+nG
(n)
t ]

Et[mt+n]
.

Utilizing the property E[X · Y ] = E[X] · E[Y ] + Cov[X,Y ], the expression can
be rewritten as:

F
(n)
t

Dt
= G

(n)
t +

Cov[mt+n, G
(n)
t ]

Et[mt+n]

=
G

(n)
t

Θ
(n)
t

where

Θ
(n)
t =

(
1 +

Cov[mt+n, G
(n)
t ]

Et[mt+n]G
(n)
t

)−1

represents the gross risk premium associated with dividend growth. By exam-
ining the change in expected dividend growth over a short time horizon from t
to t′, one can assume Dt ≈ Dt′ ,

∆F
(n)
t′ =

F
(n)
t′

F
(n)
t

=
G

(n)
t′

G
(n)
t

Θ
(n)
t

Θ
(n)
t′

=
Θ

(n)
t

Θ
(n)
t′

∆G
(n)
t′ .

22The SDF is thoroughly explained and derived in its simplest form in the Appendix 9.4.
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Assuming risk aversion does not decrease between time t and t′, implying

that Θ
(n)
t′ ≥ Θ

(n)
t .23 This assumption is reasonable when modeling investors’

response to a sudden GDP shock, such as the outbreak of a war, a global
pandemic, or a financial crisis.24 Consequently, a lower bound on dividend
growth expectations can be derived:

E[∆G
(n)
t′ ]− 1 ≥ ∆F

(n)
t′ − 1.

Figure 1: Comparing Percentage Change of the Lower Bound across Three
Major Events

(a) Euro Stoxx 50. (b) Nikkei 225.

(c) FTSE 100. (d) SMI 30.

Note: The figures presents the percentage change in lower bound dividend expectations, calculated from the begin-
ning of the year (January 1st) to the specified dates in the legend. However, for the Eurocrises, the GDP shock
is defined from June onwards due to data availability. The selected date corresponds to a critical period in the
Eurocrises, marked by events such as Portugal’s impending default, the approval of the second rescue package for
Greece, and the introduction of new European austerity measures.

Figure 1 investigates the lower-bound dividend growth expectations during
three critical events: the 2022 Russian invasion of Ukraine, the 2020 onset of
the global pandemic, and the 2011 Euro crisis.25 Distinct yet varying effects are
observed across different time periods for the markets. One intriguing change in
expectations is evident in Switzerland’s (SMI 30 10d) V-shaped curve, a recur-
ring pattern for this market.26 The Euro area’s (Euro Stoxx 50) post-pandemic

23A more formal expression of this assumption would be: if risk aversion increases as t < t′,

this implies Θ
(1)
t′ ≥ Θ

(1)
t .

24Despite the presence of notable tensions preceding the invasion of Ukraine, it is probable
that the majority of investors held a viewpoint akin to that of foreign policy scholars, which
deemed the likelihood of Russia’s invasion of Ukraine as low. A similar sentiment could be
applied to the occurrence of the pandemic and financial crises. Nonetheless, it can be inferred
from the market’s response that none of these events were anticipated, and consequently, had
unforeseen, detrimental effects on the economy.

25The remaining graphs can be found in Appendix 10.3.
26This may be due to the issuance of structured products as discussed in 7.2, but further

research is needed on this topic.
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and post-invasion decreases are similar in curvature but differ in magnitude,
with expectations declining by approximately 10 and 50 percent, respectively,
for medium-term dividends. In contrast, the impact on long-term dividends
is less pronounced, possibly reflecting investors’ perceptions of long-term sup-
ply chain and energy demand effects. A more detailed view of the changing
expectations can be found in Table 11.

The United Kingdom (FTSE 100) experienced a smaller decrease during
the Russian invasion than during the COVID-19 pandemic in medium-term
expectations, while long-term expectations remained relatively stable. Figure 1
underscores the relationships between the Euro crisis, the coronavirus pandemic,
and the invasion, revealing a stark contrast between lower-bound expectations of
dividend growth post-invasion compared to the impacts of the Euro crisis or the
coronavirus pandemic. The Russian invasion of Ukraine has led to downward
revisions in dividend expectations, particularly for the Euro area and the United
Kingdom, ranging from 5 to 10 percent.

Figure 2: Lower Bound Change in Expected Dividend Growth After Russian
Invasion of Ukraine.

(a) NS-Model. 2022-03-10. (b) Cubic Spline. 2022-03-10.

(c) NS-Model. 2022-03-20. (d) Cubic Spline. 2022-03-20.

Note: This figure depict the lower bound change in expected growth over the next n years, Et[∆G
(n)

t′
] − 1. The

start date of the comparison is the start of the Russian invasion of Ukraine. The effects are smaller than those
measured during for example the COVID-19 pandemic. The corresponding GDP estimates for European counteris
is found in Figure 14.

Figure 2 provides a detailed analysis of the lower bound’s effects during the
invasion using both term structure models. While minor discrepancies exist
between the two models, the most significant differences stem from the markets
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Table 2: Detailed Showcase of Changes In the NS-Models

2022-03-10 2022-03-20

Contract Nikkei 225 Euro Stoxx 50 FTSE 100 FTSE MIB SMI 30 Contract Nikkei 225 Euro Stoxx 50 FTSE 100 FTSE MIB SMI 30

C1 -0.012 -0.037 -0.037 -0.118 -0.014 C1 0.041 -0.032 -0.026 -0.086 -0.004
C2 -0.077 -0.072 -0.073 -0.119 -0.036 C2 -0.091 -0.037 -0.047 -0.074 -0.027
C3 -0.114 -0.104 -0.087 -0.120 -0.038 C3 -0.111 -0.056 -0.053 -0.071 -0.020
C4 -0.124 -0.125 -0.093 -0.122 -0.032 C4 -0.107 -0.072 -0.054 -0.071 -0.005
C5 -0.116 -0.136 -0.095 -0.026 C5 -0.100 -0.079 -0.053 0.011
C6 -0.102 -0.137 -0.096 C6 -0.099 -0.078 -0.052
C7 -0.100 -0.130 -0.096 C7 -0.104 -0.069 -0.050
C8 -0.112 -0.116 C8 -0.116 -0.054
C9 -0.122 -0.098 C9 -0.132 -0.033
C10 -0.128 -0.075 C10 -0.152 -0.008

Note: This table displays the percentage point change in lower-bound dividend growth expectations subsequent to
Russia’s invasion of Ukraine, expressed as decimals (e.g., 0.026 represents a 2.6% change). The dates presented at
the top of the table indicate a cutoff from the reference date of February 24th. The corresponding figure featuring

the Cubic Spline-model is found in Table 10.

studied. Approximately two weeks into the invasion, substantial divergences
between European nations are observed in both the short-end and long-end of
expectations. Post-invasion expectations exhibit a downward trend, potentially
due to limited transactions and a perceived lesser impact on the short end.27

The expectations of Italy (FTSE MIB) and the Euro area (Euro Stoxx 50) were
most adversely affected at the invasion’s onset (detailed figures in Table 2). In
contrast, the United Kingdom (FTSE 100) and especially Switzerland (SMI 30)
showed greater resilience.

Potential explanations for this disparity following Ukraine’s invasion may
be linked to factors such as Italian bank exposures, which represented over $25
billion at the end of September, according to Bank of International Settlements
data, and reliance on Russian oil imports, which could contribute to the observed
variation in market reactions.

4 Expected dividend growth

The method developed by Van Binsbergen et al. (2013) is applied to extrapolate
the expected dividend growth from dividend futures. The authors demonstrate
that dividend futures prices can be used to construct equity yields, which are
analogous to bond yields. To derive the equity yield, the derivation is briefly
covered before employing dividend futures to calculate the anticipated dividend
growth.

The expected annual growth rate of dividends Gt,n between time t and t+n
is defined as follows:

Gt,n = Et

[(
Dt+n

Dt

) 1
n

]
,

27As discussed in the section addressing the asynchronous nature of dividend futures and
the invasion’s timing, the short end could be more firmly anchored due to the near certainty
of well-known payouts by this date.
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where Dt denotes the dividend at time t. This expression can be rearranged to:

DtG
n
t,n = Et [Dt+n] .

Subsequently, the expected present value of the future dividend - i.e., the spot

price, or instantaneous forward, of the dividend future, Pt,n = Et[Dt+n]
Mn

t+n
, where

Mn
t+n is the discount rate — can be written as:

Pt,n = Dt

(
Gt,n

Mt,n

)n

.

This expression can be further simplified to:

Pt,n = Dt exp(n(gt,n − µt,n)),

where gt,n = ln(Gt,n) and µt,n = ln(Mt,n). In this case, the discount rate is
divided into two components: the nominal bond yield yt,n and the risk pre-
mium θt,n, which investors require as compensation for assuming dividend risk.
Consequently, I obtain:

Pt,n = Dt exp(n(gt,n − yt,n − θt,n)).

Finally, I define the equity yield as:

et,n =
1

n
ln

(
Dt

Pt,n

)
= yt,n + θt,n − gt,n.

Utilizing dividend futures and the method established by Van Binsbergen et al.
(2013), I can derive expected dividend growth and characterize the equity yield
as a function of the nominal bond yield and the equity risk premium.28

To estimate expected dividend growth, I utilize equity yields constructed

based on the dividend futures price F
(n)
t = Pt,n exp(nyt,n), where yt,n is the

nominal bond yield and θt,n is the risk premium demanded by investors for
assuming dividend risk. I approximate the equity yields as:

ê
(n)
t =

1

n
ln

(
Dt

F
(n)
t

)
,

where Dt is the underlying dividend index or the approximate index for cumu-
lative dividends, as described in the Appendix 9.1.

28In this context, the equity risk premium resembles a dividend risk premium, representing
the additional return over the nominal ”risk-free” bond yield, at that specific maturity, that
an investor demands to hold the dividend derivative.
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Van Binsbergen et al. (2013) demonstrate that equity yields possess valu-
able predictive characteristics for extrapolating expected dividend growth29. To
harness these characteristics, I use a technique similar to Gormsen and Koijen
(2020). I analyze the impact of different GDP shocks on expected dividend
growth, however, limitations in data availability prevent me from uniformly
matching the appropriate current cumulative dividend Dt with the dividend

futures price F
(n)
t across all markets. Therefore, I use the underlying dividend

index for some markets, with modifications to capture the sum of the last year’s
dividends, while an approximate index for cumulative dividends is created for
other markets, similar to that of Van Binsbergen et al. (2013).30

I present the setup of regression model, to derive βD
1,i as follows:

∆Di,t = βD
0,i + βD

1,iê
(n)
i,t + ϵi,t+1

Here, ∆Di,t = Dt+1

Dt
represents the dividend growth between times t and

t+1. The regression shows how changes in forward equity yields are connected
to dividend growth. In essence, forward equity yields are required to either
forecast dividend growth rates or the excess returns on dividend-paying assets,
or a combination of both. A high value of the forward equity yield indicates
that either risk premium is high or that the expected dividend growth rate is
low. As a result, forward equity yields serve as suitable predictors for dividend
growth across various maturities.31

Contrary to the quarterly data collection approach employed by Gormsen
and Koijen (2020), the observations in this analysis are gathered on a daily
basis, with i denoting the specific market studied. The primary objective is
to estimate the beta parameters that calibrate the forward-looking estimates
by conducting a regression analysis of the newly formulated variable onto the
actual dividend growth. At the beginning of the year, the anticipated dividend
growth is estimated through this regression. Table 3 presents the computed
values for βD

1 .32

The strength of these relationships is not uniform across countries; Japan ex-
hibits the most pronounced negative association, while Germany demonstrates
the weakest. Subsequently, the beta parameters are employed to adjust the
forward-looking estimates. Lastly, the expected dividend growth from the com-
mencement of the year is determined using regression analysis.33

29This is evident in the aforementioned formula, where equity yields must contain informa-
tion about either expected excess returns, expected dividend growth, or both

30A detailed description is found in the Appendix 9.1. Specifically, the underlying dividend
indexes were not readily accessible for all markets. Therefore, an approximate index for
cumulative dividends was created, utilizing the methods outlined in Van Binsbergen et al.
(2013). In contrast, the underlying dividend index was used for the remaining markets, with
modifications to capture the sum of the last year’s dividends.

31By excess returns in this context I mean returns above those of bonds.
32A pooled regression is also conducted to increase the sample size. However, the need to do

it drastically diminishes when using daily data instead of quarterly as in Gormsen and Koijen
(2020) it also seems to produce spurious results. The table can be found in the Appendix.

33Germany’s results are highly unreliable due to the low number of actual transactions
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Table 3: Summary of Regression Coefficients for each Country and Term Struc-
ture

Coefficient

Country and Model βD
1,1 βD

1,2 βD
1,3 βD

1,4 βD
1,5 βD

1,6 βD
1,7 βD

1,8 βD
1,9 βD

1,10

EuroZone -0.31 -0.31 -0.31 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30
EuroZone NS -0.31 -0.31 -0.31 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30
Japan -0.60 -0.58 -0.57 -0.56 -0.54 -0.53 -0.52 -0.51 -0.50 -0.50
Japan NS -0.60 -0.58 -0.57 -0.56 -0.54 -0.53 -0.52 -0.51 -0.50 -0.50
UnitedKingdom -0.45 -0.45 -0.45 -0.45 -0.45 -0.44 -0.44
UnitedKingdom NS -0.45 -0.45 -0.45 -0.45 -0.45 -0.44 -0.44
France -0.40 -0.40 -0.40 -0.40 -0.40
France NS -0.40 -0.40 -0.40 -0.40 -0.40
Switzerland -0.48 -0.48 -0.48 -0.48 -0.48
Switzerland NS -0.48 -0.48 -0.48 -0.48 -0.48
Germany -0.38 -0.38 -0.38 -0.38 -0.38
Germany NS -0.38 -0.38 -0.38 -0.38 -0.38

Note: The estimated coefficients (βD
1,i) for various countries and models, highlighting the relationship between the

dependent variable of spot dividends and the forward equity yeilds. The coefficients are presented for different mod-
els, the coefficients with a NS-model sample ar indicated by ” NS”). In general, the table demonstrates a consistent
negative relationship between the dependent and the independent variables across all countries and models.

Figure 3: Development of dividend growth expectations.

(a) Euro Stoxx 50 2020. (b) Euro Stoxx 50 2022.

(c) FTSE 100 2020. (d) FTSE 100 2022.

Note: The 3D surface plot presented represents the adjusted expectations of GDP for various contracts over time.
The expectations have been adjusted based on a series of error terms and coefficients, which are calculated for
each contract. The data is organized by contract names on the x-axis, dates on the y-axis, and expectations on the
z-axis, allowing for a comprehensive view of the relationship between these factors. The surface plot demonstrates
the dynamics of contract expectations and how they change over time, highlighting potential trends or patterns.
Additionally, the adjusted expectations are multiplied by country-specific coefficients, providing insights into the
unique characteristics of the specified country’s contract expectations. This visualization allows users to gain a
deeper understanding of the contract expectations’ behavior and their association with time and other contracts.

contained in the data sample from Refinitiv Eikon. Nevertheless, these unreliable results
point to a print in line with that of the Euro Stoxx 50.
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Figure 3 depicts the investors’ forward-looking dividend growth expectations
across the term structure.34 In light of the recent invasion news, these expecta-
tions have experienced a substantial decline. Panels 3b and 3d reveal that the
market anticipated an increase prior to the 2022 invasion, which subsequently
dropped below zero. Following the invasion, the most pronounced decline in
expectations occurred in the midterm, resulting in a hump-shaped pattern on
the surface. Both the short-term and long-term expectations exhibited the least
reaction, as evidenced in panels 3b and 3d. During 2020, the market response
was more pronounced in the short end, with expectations decreasing before
gradually recovering over time.

Detailed results for several time periods are provided in the Appendix. The
findings for the COVID-19 pandemic are consistent with those of Gormsen and
Koijen (2020), particularly for the markets we both examine. Point estimates
for the Euro Stoxx 50 and Nikkei, during the onset of the COVID-19 pandemic,
are comparable, with my estimates being somewhat lower.35 Interestingly, there
appears to be some convergence across the studied markets, with Italy, which
was hardest hit during the initial phases of the pandemic, also experiencing the
most significant downward revision of growth expectations.

For the Eurocrisis and the specific date chosen to symbolize its onset, I also
observe a sharp disparity between the different samples studied. Italy, which
was severely impacted by the ongoing turmoil and received a bailout during
the period, exhibited the most significant market reaction.36 In contrast, Japan
experienced a more muted response to the ongoing turbulence but faced market
jitters at an earlier stage. This variation in market reactions highlights the
importance of considering the specific contexts and economic conditions of each
market when analyzing the effects of global crises on growth expectations.

5 Estimating Lower Bound Implied GDP Growth

This section outlines the methodology employed to estimate the lower bound
of implied GDP growth expectations, drawing upon the approach proposed
by Gormsen and Koijen (2020). Given that dividends represent claims to the
surpluses generated by firms operating in the real economy, it is reasonable to
anticipate a relationship between the dividends of listed companies and GDP.
By extending the historical relationship between real dividends and real GDP,
I can leverage parameters obtained from regression analysis to estimate the

34In Figure 6, the expectation change ”across the curve” signifies that contingent upon the
number of available contracts, the expectations alter ”n” years into the future.

35In Table 13 denoted as EU and JAP.
36During the Eurocrisis, Italy encountered several significant events that contributed to the

observed disparity in growth expectations. In the summer, when point estimates were taken,
Italy grappled with the crisis’s effects, leading to the implementation of austerity measures.
In September 2011, the Italian Parliament approved a €54 billion austerity package, pledging
to balance the budget by 2013. This package aimed to address Italy’s growing debt burden
and restore investor confidence. Another critical event transpired during the summer when
Prime Minister Silvio Berlusconi faced mounting pressure, ultimately resigning in November
2011 amid doubts about Italy’s ability to manage its debt.
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lower bound of implied GDP growth expectations. It is vital to recognize that
these are implied expectations, derived from the relationship between dividends
and GDP, and not necessarily actual GDP growth expectations.37 It is crucial
to emphasize that GDP series encompass numerous components unrelated to
dividends; therefore, only a portion of this variation is captured.

5.1 The relationship between GDP and dividends

To extract the business cycle component for both the dividend and GDP series,
a Hamilton-filter is employed.

The Hamilton filter is favored over the more widely-known Hodrick-Prescott
filter (HP-filter), popularised by Hodrick and Prescott (1997), for several rea-
sons. First, Hamilton (2018) demonstrates that the series produced by the
HP-filter may exhibit spurious dynamic relations that are not supported by the
underlying data-generating process. In other words, the HP-filter might intro-
duce artificial patterns into the data that are not present in the original series.
Second, the filtered values at the end of the sample can significantly differ from
those in the middle, which means that the HP-filter may produce inconsistent
results throughout the series. These end-of-sample values are also subject to
spurious dynamics that may lead to misleading interpretations. Finally, when
conducting a statistical formalization of the problem, the resulting values for the
smoothing parameter in the HP-filter may deviate from common practice. For
example, the value for the parameter lambda may become smaller than what
is typically considered appropriate, leading to an over-smoothed series. The
Hamilton-filter tries to solve these issues.

Applying the Hamilton-filter in this context involves running a regression
where zt represents the logarithm of either real dividends or real GDP, given
by:

zt = d0 +

11∑
j=8

dizt−j + ct.

Here, I obtain the residual ct, which serves as the cyclical component for either
series.38

As previously pointed out, there is ample evidence supporting the correlation
between GDP and dividends. For instance, Ragnvid (2006) shows that economic
activity and dividend trends exhibit a close relationship over extended time
periods and that dividends display a mean-reverting tendency towards GDP.
Similarly, Rozeff (1984) asserts that the evolution of dividends over time is

37In other words, the question being addressed is: ”What will be the GDP growth assum-
ing investors’ expectations of dividends are accurate, and the historical relationship between
dividends and GDP remains valid?”

38The frequency of the GDP data is quarterly, as that is the most common publication time
window across various national databases.

23



highly correlated with GDP growth.39

As illustrated in Figure 4, the cyclical components of GDP and dividends
demonstrate a strong relationship graphically. This is further reinforced by
the two series exhibiting a substantial correlation across all samples used in
this study. Moreover, a Johansen-Procedure, introduced by Johansen (1991), is
employed to demonstrate that the cyclical components of GDP and dividends
are related through a cointegration test, indicating that the two series are closely
linked.

The Johansen test is a statistical procedure used to assess cointegration of
several time series, typically integrated of order one, denoted as I(1), with k
lags. Cointegration would imply a long-term equilibrium relationship between
dividends and GDP. This test is particularly useful in analyzing multiple time
series that share a common trend, even though their individual paths might
diverge in the short term.

In its general form, the Johansen test starts with a Vector Autoregression
model, which can be specified as:

Xt = Π1Xt− 1 + · · ·+ΠkXt−k + µ+ΦDt + ϵt,

where, Xt is the vector of the time series under analysis, and Πi are the coeffi-
cient matrices corresponding to the k lags. Φ is a matrix of coefficients for any
deterministic terms Dt, ϵt is the error term, and µ is a constant term.

The corresponding specification for the Vector Error Correction Model is
given by:

∆Xt = Γ1∆Xt− 1 + · · ·+ Γk−1∆Xt− k + 1 + ΠXt− k + µ+ΦDt + ϵt

In this representation, ∆Xt denotes the first differences of the time series, Γi

are the coefficients that capture the short-run, and Π is a matrix that reflects
the long-run relationship among the dividends and GDP. Specifically, Γi =
−(I −Π1 − · · · −Πi), for i = 1, . . . , k − 1, and Π = −(I −Π1 − · · · −Πk).

The Johansen test focuses on the rank of the Π matrix, which determines the
number of cointegrating relationships among the series. The presence of coin-
tegration implies that the variables share a common stochastic trend, allowing
for a long-run equilibrium relationship to be estimated.

The cointegration relationships between the cyclical components of GDP and
dividends for various countries are presented in Table (16). The results suggest
that France, the United Kingdom, Japan, United States, Italy and Switzerland
have cointegrated cyclical dividends and GDP series. Eigenvalues indicate the
proportion of the variance of the two series explained by each cointegration
vector, with higher eigenvalues signifying a stronger cointegration relationship.
The results reveal that France and Japan have the highest eigenvalues, at 0.44
and 0.31, respectively, suggesting a stronger relationship between the two series.

39Gormsen and Koijen (2020) find a time series correlation of 54%, but they also note that
the two series seem to have an asymmetric relation, with leverage effects to the downside.
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Test statistics provide insight into the strength of the cointegration relation-
ship and the significance of the test. A higher test statistic implies stronger
evidence of cointegration, with a value exceeding the 5% critical value indica-
tive of a statistically significant result. The findings demonstrate that France,
Japan, the United Kingdom, and the United States possess a robust and signif-
icant cointegration relationship between the two series, while Switzerland and
Italy exhibit a weaker and less significant relationship. The weights of the cycli-
cal components of the GDP and dividend series reveal the influence of each
series on the cointegration vector. The outcomes indicate that the cyclical com-
ponent of the GDP series has a more substantial impact on the cointegration
relationship in all countries, except for Japan, where the dividend series has a
higher weight.

Figure 4: The Cyclical Part of Dividends and GDP for a Sample of Countries.

(a) Euroarea GDP and Dividends. (b) United States GDP and Dividends.

(c) Italy GDP and Dividends. (d) United Kingdom GDP and Dividends.

Note: The present visual representation depicts two series that showcase the cyclical components of dividends and
GDP, respectively. The application of the Hamilton-filter has been employed to extract the aforementioned cyclical
parts from the original data. In this context, the normalization of the axis in the visual representation may lead
to a reduced degree of interpretive significance compared to traditional charts. One could argue that the axis is
redundant and could be omitted from the visualization without sacrificing the content. The fundamental objective
of the aforementioned visual representation is to illustrate the correlation between the cyclical component of
dividends and that of GDP in a graphical manner.

As illustrated in Figure 4, the two series closely resemble each other graphi-
cally.40 However, it is worth noting that dividends experience a more substantial
decrease during times of shocks, most notably during the pandemic in 2020.

40The rest of the countries can be seen in Figure (12).
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5.2 Approximating the lower bound of change in GDP

I compute the approximate lower bound of the change in GDP growth by scaling
the change in dividend prices by a coefficient bi for each stock market region i.
The expression:

Et[∆nYit]− 1 ≥
(
∆F

(n)
i,t′ − 1

)
· bi (8)

refers to the anticipated change in GDP for region i over an n-period horizon. In
this equation, ∆nYit denotes the forecasted change in GDP for the region, while
bi represents the coefficient that indicates the extent to which GDP changes in
response to fluctuations in dividends. To identify an appropriate parameter bi,
I perform the following regression:

∆1Di,t = a0,i + a1,i∆1Yi,t + ϵi,t+4.

Here, ∆1Dit signifies the change in dividends, ϵt+4 denotes the regression error
term, and a0,i and a1,i are coefficients to be estimated. Subsequently, I set
bi equal to the inverse of a1,i. I conduct the regression with dividends as the
dependent variable to ensure that bi represents a lower bound in Equation (8).
The rationale behind calculating bi =

1
a1,i

is that differences in timing between

GDP and dividend payments, as well as other uncorrelated fluctuations in GDP,
can result in a decrease in the estimated value of a1i and an increase in the
estimated value of bi. Consequently, this leads to a more conservative estimate
for the lower bound.

Table 4: Results and Coefficients for Different Countries

Countries

EuroZone France UnitedKingdom Japan

a1i 1.30 1.55 1.50 1.20
Std. Error (HAC) 0.87 1.17 0.46 0.91
t value 1.50 1.32 3.29 1.33
Pr(> |t|) 0.14 0.20 0.002 0.19
bi 0.77 0.64 0.66 0.83
N 54 35 54 53

UnitedStates Italy Switzerland Germany

a1i 2.70 3.30 3.51 2.50
Std. Error (HAC) 0.71 1.87 0.78 1.27
t value 3.80 1.77 4.48 1.97
Pr(> |t|) 0.0004 0.09 0.00004 0.06
bi 0.37 0.30 0.29 0.40
N 54 36 54 29

Aggregated

a1i 1.83
Std. Error (HAC) 0.32
t value 5.66
Pr(> |t|) 0.00000003
bi 0.55
N 369

Note: The aggregated sample refers to the regression performed using all data com-
bined. Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors are
employed in the analysis.
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The results, as shown in Table 4, display coefficients comparable to those
of Gormsen and Koijen (2020). However, it is important to note that the es-
timations may be less reliable due to a shorter time series, which excludes the
years 2000 and 2008 because of data unavailability.41 The coefficients indicate
that a 1% change in dividends corresponds to approximately 0.7% change in
GDP for the euro area and the United Kingdom, while Italy exhibits a coef-
ficient of around 0.3% per unit change. The United States and Germany also
demonstrate notable responsiveness, with coefficients of approximately 0.37%
and 0.40%, respectively. In contrast, Switzerland exhibits relatively lower sen-
sitivity, with coefficients of about 0.29% per unit change. A N weighted mean
estimate of bi corresponds to roughly 0.33%, which is lower than the aggregate
sample result of 0.55%. This variation in coefficients underscores the diverse
economic dynamics across the countries under analysis.

Figure 5: Lower Bound GDP Expectation Changes

(a) 2022 (b) 2020

(c) 2010 (d)

Note: This figure illustrates the variation in lower bound GDP expectations at the time of each event compared
to the stated date of the year in which the event took place. Panels (a), (b), and (c) depict the evolution of the
curves over the two specified dates for the Euro Stoxx 50, FTSE 100, FTSE MIB, and Nikkei 225 respectively.
Panel (d), on the other hand, presents the development of GDP expectations compared to the beginning of the
year throughout 2022 for FTSE 100.

In Figure 5 I scale the change in contract prices by the acquired coefficients
to obtain the implied change in lower bound GDP growth. The FTSE MIB
produces somewhat spurious estimates. However, the results from Euro Stoxx
50 and FTSE 100 appear to be more robust and realistic, implying a lower bound
of around 5% lower growth in the Eurozone and 3% in the United Kingdom 3-
4 years after the invasion. However, while the lower bound in the Eurozone
stays at -5%, the implication is that any lower growth prospects in the United

41The specified dates represent the best available data, and I acknowledge that some samples
may be even more limited.
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Kingdom disappear after 5 years.42

5.3 Inferring Expectations from Dividend Growth

To estimate GDP expectations accurately, one can follow the procedure out-
lined in Section (5.2), involving equity yields to show lower bound GDP growth
expectations through scaling. However, to obtain the most precise estimate, it
is necessary to consider two factors. First, the minor differences between GDP
and dividends, as illustrated in Figure 4. Second, the potentially stronger cor-
relation between the two series during periods of below-average growth, which
better reflects economic distress when short-term indicators are most useful.43

Regrettably, the dividend futures sample is too limited to effectively address
these concerns. As a result, I adopt the method proposed by Gormsen and
Koijen (2020), which follows a slightly different approach.

Initially, Gormsen and Koijen utilize ”the long US sample” to establish a
connection between dividend growth and GDP growth. This mapping is then
applied to transform the dividend growth expectations from Section 4 into GDP
growth expectations. I replicate this method using a comprehensive dataset pro-
vided by Shiller (2023) for the US between 1982-2020.44 These estimates can
subsequently be employed to infer GDP growth expectations for all underly-
ing markets, based on the assumption that the relationship between GDP and
dividends is roughly consistent across countries.45 Additionally, I generate esti-
mates that attempt to capture the ”downside” relationship between GDP and
dividends.

To map real GDP growth to real dividend growth, I employ the following
regression:

∆nYt,i = An +Bn∆nDt + et+4n. (9)

This regression only utilizes data when ∆nDt < ∆nDt and thus initially focuses
solely on observations where realized growth falls below average to estimate the
downside correlation between GDP and dividends, which is most relevant in
the context of GDP shocks. Additionally, by extending the time horizon, I

42More detailed tables showing the changing GDP expectations are found in Appendix 13.
43For a more thorough discussion of this topic, see, for example, Van Binsbergen et al.

(2013).
44Additional data is available, extending as far back as the early 1900s; however, incorpo-

rating such data may not be beneficial due to the presence of structural breaks and significant
changes in the economy over time. These transformations could render the analysis less
meaningful or reliable, as the historical context may not accurately represent current market
conditions or economic dynamics.

45This assumption can be criticized. For instance, the strong assumption that corporations
worldwide would maintain the same dividend policy regardless of their institutional environ-
ment. Booth and Zhou (2017) demonstrate that institutional structure—including a country’s
financial system, institutions, culture, and industrial organization—is crucial in determining
dividend policy. Furthermore, these factors and the subsequent relationship between dividend
policy and GDP may not remain constant over time. The series has with a large degree of
certainty suffered structural brakes, however, this is not something I test for.
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Table 5: Estimates From Long US Sample

2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Estimate 0.068 0.052 0.023 0.022 0.084 0.162 0.232 0.299 0.391
Std.Error 0.002 0.001 0.001 0.001 0.001 0.002 0.004 0.003 0.000
t-value 2.717 2.025 0.824 0.730 2.629 4.868 6.490 7.334 8.181
Pr(|t|) 0.007 0.045 0.412 0.467 0.010 0.000 0.000 0.000 0.000
R-sqr 0.052 0.030 0.005 0.004 0.054 0.170 0.273 0.332 0.392
N 138.000 134.000 130.000 126.000 122.000 118.000 114.000 110.000 106.000

2Y D 3Y D 4Y D 5Y D 6Y D 7Y D 8Y D 9Y D 10Y D

Estimate 0.310 0.282 0.191 0.090 0.055 0.255 0.349 0.305 0.267
Std.Error 0.002 0.003 0.003 0.003 0.004 0.002 0.000 0.000 0.001
t-value 8.703 7.378 3.865 1.669 1.009 4.836 5.929 4.817 4.403
Pr(|t|) 0.000 0.000 0.000 0.100 0.317 0.000 0.000 0.000 0.000
R-sqr 0.527 0.445 0.180 0.040 0.015 0.259 0.344 0.257 0.224
N 70.000 70.000 70.000 69.000 69.000 69.000 69.000 69.000 69.000

Note: The presented table illustrates the slope coefficient Bn resulting from a regression analysis of GDP growth onto dividend growth at
varying horizons (n), under different conditions. The coefficient is estimated using a 2-year growth period in the sample spanning from 1982 to
2019. The analysis on observations where realized dividend growth falls below the time-series average is in the lower part of the table. Real
dividend growth is used for the S&P 500, while real GDP growth in the United States is used for GDP growth. Observations are conducted on
a quarterly basis. The presented standard errors are based on the HAC.

can lessen the impact of minor asynchronicity and the lack of data in only one
unique sample.

Table 16 presents the slope coefficient Bn obtained from regression (9) of
GDP growth onto dividend growth at various horizons (n) under the two con-
ditions. Using the US sample from 1982 to 2019, I estimate Bn for periods up
to 10 years, which correspond to the longest maturity available. The baseline
estimation indicates that during downturns, dividends tend to move approxi-
mately three to four times more than GDP, as shown in Table 16. This finding
suggests that dividend payouts could serve as a leading indicator of economic
distress, providing information for investors and policymakers when assessing
the state of the economy and making informed decisions.46

The 1-year growth estimates are excluded from Table 16, as GDP and divi-
dends are not entirely synchronized over brief time horizons.47 Upon examining
the unconditional relationship between GDP and dividends, the slope coeffi-
cient for shorter horizons is more than half as large, implying a weaker positive
correlation between GDP and dividend growth. This observation suggests that
the hypothesis of a stronger downside relation between dividends and GDP has
some merit, but also that factors other than GDP growth, such as changes
in corporate policies or industry-specific trends, may exert a more substantial
influence on dividend payouts during relatively stable economic conditions.

After estimating the relationship between GDP and dividends, GDP growth
can then be forecasted as follows:

Et[∆1Yi,t] = Ai +B2β
D
1 e

(2)
i,t (10)

The approach utilizes the same estimate of Bn for all countries, which is de-
rived from the US data. It is important to note that the estimates produced are

46Interestingly, the two estimates below and above the mean GDP seem to converge when
using longer horizons. This observation implies that, over extended periods, the relationship
between GDP and dividends may stabilize, regardless of the prevailing economic conditions.
This information could be helpful for long-term investors when evaluating the potential returns
from dividend-paying stocks.

47As demonstrated in Figure 4. Additionally, the shortest horizon is less pertinent to our
analysis due to the ”pull-to-realized”-effect, which is extensively discussed in section 7.2.
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based on a forecasting model that utilizes historical data, and given the highly
volatile and dynamic world we live in, there is a possibility that historical rela-
tionships could change, leading to uncertainty in these estimates, as previously
discussed.48

A Brief Discussion on the Complexity of Inferring GDP Expectations

The methodology employed by Gormsen and Koijen (2020), as well as in this
study, which utilizes equity yields to infer GDP growth expectations, presents
certain limitations that necessitate caution. Two primary concerns associated
with this approach are identified:

Firstly, predicting GDP growth based on anticipated equity yields can be a
contentious endeavor. While there is some support in financial theory and em-
pirical evidence, as illustrated by Van Binsbergen et al. (2013) and in Section
4, the relationship between investor dividend forecasts and their ex-ante GDP
forecasts can be met with skepticism. This doubt stems from the discrepancy
between realized dividends and ex-post GDP, potentially resulting in a noisy
forecast of implied GDP growth expectations, or even pure noise at its worst.
As previously discussed, it is a strong assumption that market participants’ ac-
tions are indicative of their underlying future expectations; some transactions
may arise from systematic hedging processes or similar events. Furthermore, it
is worth questioning the extent to which the selected stock indices, comprising
the largest listed companies in a region, accurately represent the economy. For
instance, during the COVID-19 pandemic, the hardest-hit sectors were travel,
leisure, and restaurants, often dominated by small business owners, which would
not be reflected in an index encompassing the 50 largest and most traded com-
panies in Europe (Euro Stoxx 50).49

Secondly, this approach necessitates the extrapolation of future trends from
historical data, relying on the assumption that the underlying structural vari-
ables in the economy remain constant. It is plausible that significant global
events, such as the Ukrainian invasion, the COVID-19 pandemic, the Euro cri-
sis, or the Great Financial Crises, could fundamentally alter the underlying
data-generating process, rendering historical data inadequate for predicting fu-
ture outcomes.50 The magnitude of any error resulting from this method is
likely to be more significant when addressing higher-order economic variables,
such as GDP, as opposed to solely examining changing dividend expectations.
As a result, it is crucial to exercise caution when interpreting outcomes derived
from such techniques and to consider potential limitations and biases inherent

48A example of the difference between the two techniques discussed in Sections (5.3) and
(5.2) can be found in Figure 13

49However there are potential solutions to this problem. Utilizing the method discussed in
Appendix 9.3 one would be able to acquire an even more granular view of dividend growth
expectations. For example, comparing sectors through the lens of company-specific stock
options.

50Although this assumption is partially accounted for in my analysis through limiting my
sample and using daily observations instead of quarterly, like those of Gormsen and Koijen,
when estimating changing dividend growth expectations.
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in the approach.
In light of these concerns, it is essential to recognize that the findings pre-

sented in this study should be interpreted with care. While the methodology
provides valuable insights into the relationship between equity yields and GDP
growth expectations, the results ought to be considered as one element within
a broader analysis that accommodates additional factors and potential sources
of uncertainty.

6 Dividend Price Dynamics in Market Down-
turns and Recoveries: Implications for Asset
Pricing Theories

During the initial phase of a market downturn, as investigated by Gormsen
and Koijen (2020) — which occurred between February 19 and March 5 —
researchers observed a decline in long-term dividend prices, while the short-end
of the term structure exhibited smaller movements. This reduction, a significant
contributor to the overall market decline, primarily resulted from an increase in
discount rates rather than a decrease in expected dividends. As some growth is
anticipated, it is likely that the projected decline in the expected value of short-
term dividends would surpass the anticipated decline in the expected value
of long-term dividends, making discount rate changes the primary suspect of
the price decrease. 51 An increase in discount rates is commonly observed
during periods of financial stress, driven by fluctuations in the SDF, of which
the COVID-19 pandemic was one as evidenced by Baker et al. (2020).52

The SDF represents the relationship between an asset’s risk and return, cap-
turing the notion that investors demand higher returns during times of economic
uncertainty. In such periods, investors perceive investments as riskier, leading
to increased discount rates. It is important to note that the beta coefficient,
which represents the systematic risk of an asset, may remain constant over time.
In this case, changes in discount rates are driven exclusively by fluctuations in
the SDF, rather than changes in the beta coefficient itself. As an economic cri-
sis unfolds, growth expectations are significantly revised, often becoming more
pessimistic or uncertain. This change in outlook directly impacts investor sen-
timent and risk appetite. Consequently, the prices of both short- and long-term
dividends typically experience a substantial drop. This decline occurs because
investors become more cautious and risk-averse during a crisis, requiring higher
returns to compensate for the increased risk associated with holding these assets
in uncertain times. The SDF plays a crucial role in explaining the variation in
discount rates during periods of economic distress, highlighting the connection

51However, this has been contested. For example, Böni and Zimmermann (2021) finds,
using Gordon’s constant growth model, that during the COVID-19 pandemic, the impact of
changes in the discount rate on stock returns was less significant than changes in the long-run
implied growth rate.

52The SDF is thoroughly explained and derived in its simplest form in the Appendix 9.4.
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between increased risk perception and higher returns demanded by investors,
which in turn leads to lower prices for assets that provide long-term dividends.

Subsequently, as the stock market begins to recover, long-term dividend
values usually increase, while immediate dividend values continue to decrease.
Notably, using dividend futures I can visualize this through long-term dividend
values which revert to pre-crisis levels, signaling a normalization of the discount
rates applied to these dividends. Figure 6 illustrates that this pattern is common
across most markets during periods of financial turmoil.

Figure 6: Harmonizing Market Valuation with Dividend Price Dynamics

(a) Euro Stoxx 50. (b) Nikkei 225.

(c) SMI 30. (d) FTSE 100.

Note: The examples above stem from the Euro Crises. The Nelson-Siegel function is fitted to the term structure of
dividend prices under the restriction that the sum of all dividend prices matches the market price. For each row
of input price data, the market price is calculated as the sum of all dividend prices. The Nelson-Siegel parameters
are estimated by minimizing the Sum of Squared Residuals (SSR) while ensuring that the sum of the fitted curve
values is approximately equal to the market price (within a small tolerance value). The resulting parameters are
then used to generate the term structure of dividend prices for a given set of maturities.

These observations have implications for asset pricing theories, especially
in the context of identifying economic disruptions that cause volatility in asset
prices. Traditional asset pricing models, such as the Capital Asset Pricing
Model (CAPM) and the Dividend Discount Model (DDM), fail to account for the
complexity of market dynamics observed during crises. The observed patterns in
dividend prices during downturns and recoveries suggest that alternative models,
such as those incorporating for example, time-varying risk premia or behavioral
components, might be better suited for capturing the evolving risk perceptions
of investors during such periods.

Although pinpointing disruptions may be challenging, unique shocks—such
as the global pandemic or the Russian invasion of Ukraine—offer opportunities
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for identification due to the distinct nature and timing of the events.53 While
uncertainties surrounding the long-term effects of any crisis remain, it is gen-
erally reasonable to suggest that short-term economic growth consequences are
more severe than those occurring over an extended period.

Additionally, the initial drop in the overall market during the outbreak,
as demonstrated in Figure 3, combined with the modest response to short-
term dividend prices, indicates that even moderate disruptions to short-term
expectations can result in significant and lasting changes to expected excess
returns. This suggests that investors perceive shocks to near-future dividends
as risky, potentially accounting for the downward-sloping equity term structure
and the increased returns for firms generating near-future dividends.

Figure 6 displays the estimated dividend prices for various maturities, with
the term structure of dividend prices adapted to the functional form proposed
by Nelson and Siegel (1987), subject to the constraint that the cumulative price
of all dividends equals the market value.

Figure 7: Recovery of Expectations Over The Long Term Since 2020 For Euro
Stoxx 50

In conclusion, these findings provide insights into the factors driving the
stock market’s collapse and subsequent recovery and their implications for pric-

53Identifying the precise economic shocks responsible for inducing fluctuations in prices
often presents a challenge, as empirically exemplified by the work of Cutler et al..
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ing theories. The patterns observed in dividend prices during market downturns
and recoveries highlight the need for a more nuanced understanding of the under-
lying mechanisms driving asset prices and the potential benefits of incorporating
time-varying risk premia or behavioral components into asset pricing models.

7 The Dividend Futures Market, Liquidity, and
Idiosyncrasies

7.1 Liquidity and Trading Volumes

It is vital to reexamine the validity of inferring stock market expectations
through dividend futures prices, particularly concerning liquidity and trading
volume aspects.

Evaluating liquidity and dividends can be challenging, as it entails various
methodologies and is often difficult to quantify.54 Schestag et al. (2015) argue
that no single method or strategy for assessing liquidity has been consistently
employed in previous research; rather, a range of approaches has been utilized.
Lesmond (2005) explore different liquidity metrics, including ILR, LOT, and
Bid-Ask spread.55

With this in mind, the endeavor is further complicated by the fragmented
data on dividend futures, where obtaining information on the OTC market, the
primary market for such instruments, proves challenging. As Mixon and Onur
(2016) illustrate in their overview, utilizing regulatory reporting data from that
period, the only genuinely active listed futures market was the Euro Stoxx 50
market. Furthermore, they conclude that market activity is limited beyond the
initial few years of dividends, with infrequent customer-involved OTC trans-
actions.56 For simplicity and data availability, this discussion focuses on the
actual reported exchange transaction volume in the markets examined and the
bid-ask spread for markets with accessible data.

54The primary reason for this difficulty is the scarcity of data required to quantify the
liquidity of illiquid markets. For instance, in the dividend futures market, Van Binsbergen
et al. (2013) used proprietary data from banks and thus was able to study the large swath of
OTC trades being conducted.

55These distinct measures, most often discussed in the similar fixed income market, are
discussed in the Appendix.

56An example of this issue is, for instance, Van Binsbergen et al. (2013), which examined a
comprehensive set of indicative dividend swap prices but could not provide context regarding
the actual transactions occurring in these markets.
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Table 6: Summary of Trading Characteristics for Ten Futures Contracts

EU France Japan

Contract Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%)

C1 2443.00 159187.05 13.68 1859.95 30543.70 2.56 47.95 10073.00 0.88
C2 5081.88 178257.25 2.69 1798.02 22564.46 3.28 46.99 7552.80 1.03
C3 4406.17 140437.24 9.95 1473.28 18402.30 3.91 42.56 4242.87 1.20
C4 3007.16 90962.01 3.51 1118.18 9584.05 4.35 34.40 2304.03 3.35
C5 2155.41 73251.90 5.34 1071.19 9131.58 4.72 27.65 1523.87 6.82
C6 1238.25 48477.78 2.85 - - - 22.43 931.21 6.83
C7 621.61 26515.12 3.31 - - - 14.46 537.66 6.75
C8 370.67 15285.21 4.93 - - - 9.67 338.84 7.64
C9 216.77 9322.11 6.4 - - - 11.99 172.14 7.58
C10 171.34 7596.73 7.37 - - - 11.12 78.96 8.56

Italy Switzerland United Kingdom

Contract Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%)

C1 22318.12 43839.01 0.47 17.66 1067.81 1.45 558.79 84228.07 1.27
C2 2093.72 3252.19 0.98 28.81 815.53 2.89 728.22 77841.75 2.46
C3 6.39 30.07 1.22 17.28 428.37 3.64 585.49 47641.93 2.31
C4 0.42 3.02 2.96 7.99 174.55 4.60 470.85 28501.00 2.56
C5 - - - 5.73 84.86 4.50 90.30 11294.89 4.33
C6 - - - - - - 254.29 7731.08 3.74
C7 - - - - - - 92.45 2238.68 3.95
C8 - - - - - - - - -
C9 - - - - - - - - -
C10 - - - - - - - - -

Note: The table presents averages across the entire sample period. For instance, Open Interest signifies the average
daily amount of outstanding contracts. Volume refers to the daily average of traded contracts, while bid-ask spread
represents the average daily percentage discrepancy between buying and selling prices in the market. A table
showing the development from 2020 going forward is found in the Appendix 23.

Table (6) presented in this study provides an extensive overview of trading
activity across six major markets - the EU, France, Japan, Italy, Switzerland,
and the United Kingdom. Data regarding the German Dax Dividend contracts
is unavailable from Refinitiv Eikon, but has very small volumes according to
Mixon and Onur (2016).57 The table highlights the mean trading volume, open
interest, and bid-ask spreads for ten different contracts, serving as a valuable
resource for researchers and investors.

A notable observation is that trading volume and open interest generally de-
crease as contract maturity increases, suggesting that earlier contracts are more
liquid and actively traded. Additionally, the bid-ask spread tends to increase
with the contract number, possibly due to lower liquidity. However, it is impor-
tant to note that markets for contracts C5 through C10, maturing 5 to 10 years
into the future, are not available for all markets, limiting the generalizability of
these observations.

Another trend evident from the Table (6) is that the mean trading volume
and open interest are generally higher in the EU and France markets, indicating
increased market activity and liquidity in these regions. Japan also exhibits the
lowest bid-ask spreads, signifying high competition among market makers in
that market. However, it is crucial to recognize that bid-ask spreads can be
influenced by various factors, including market structure and regulation, and
cannot be solely attributed to liquidity differences across markets.

As shown in Table 6 and Figure 9, during periods of high volatility, such
as GDP shocks during the pandemic, the bid-ask spread tends to widen. This
also holds true for actual on-exchange transaction volume. This could pose a

57The US data had several contracts missing in the Refinitiv Eikon database, making me
unable to stitch together anything of use.
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Figure 8: Average On Exchange Trading Volumes per Market

(a) Euro Stoxx 50 (b) FTSE 100

(c) Nikkei 225 (d) CAC 40

Note: The bar chart represents the average volume (in thousands) of contracts C1 through C10 for each quarter
across the entire sample period. The volume for each contract is stacked, meaning the total height of each bar
represents the combined average volume for all contracts in that quarter. The colors differentiate each contract,
with C10 at the bottom and C1 at the top of each bar. Note that the data for each contract is averaged over the
sample period, providing a summary view of contract volumes over time. For a corresponding graph showing the
open interest, please refer to the figure in Appendix 16.

significant challenge for the method: if actual transactions and liquidity diminish
during moments when the method is relied upon to generate viable forecasts for
future dividend streams, it presents an inherent issue. However, this problem
appears to be less prevalent for longer maturities, as seen in Figure 9, where
contracts maturing in 6 and 8 years, corresponding to Figure (16c) and (16d),
exhibit smaller variance compared to shorter maturities and tighter bid-ask
spreads during crises. Moreover, examining the tables in the Appendix, such
as Table 17, there is no apparent decrease in the mean daily traded volumes
during years of significant financial distress.58 This is encouraging and aligns
with the findings of Table 6, which show healthy spreads across most markets
and contracts.

The observed widening of the bid-ask spread and reduction in transaction
volume during periods of high volatility raises concerns about the reliability
of using dividend futures as an indicator of future dividend and GDP growth
expectations. An increase in spreads, representing the cost of trading a contract,
can make entering or exiting positions more expensive for traders, potentially
discouraging trading and decreasing liquidity. This, in turn, may lead to less

58However it should be noted that Italy (FTSE MIB contracts) had a decrease in activity
during the period characterized by the Euro crisis.
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Figure 9: Spread and Volume across various maturities of Eurostoxx 50 Dividend
Futures

(a) Contract maturing in 2 years. (b) Contract maturing in 4 years.

(c) Contract maturing in 6 years. (d) Contract maturing in 8 years.

reliable information on market expectations for dividend growth.
Furthermore, reduced liquidity in times of high volatility can hinder in-

vestors’ ability to capitalize on arbitrage opportunities, which require sufficient
liquidity and accurate price information. As liquidity diminishes, executing
trades becomes more challenging, and bid-ask spreads may widen further, caus-
ing additional market distortions. However, this seems to be less of a problem
in most markets, with liquidity often increasing during turbulent years.

Despite these concerns, evidence suggests that longer-maturity dividend fu-
tures contracts may be less susceptible to market volatility. This resilience could
stem from their reduced sensitivity to short-term market fluctuations and their
ability to provide more stable estimates of expected future dividend growth.
Additionally, longer-maturity contracts may be less influenced by speculative
trading, which can exacerbate volatility and widen bid-ask spreads.

In conclusion, the challenges posed by bid-ask spread and liquidity issues
during periods of high volatility present potential obstacles to using dividend
futures as a tool to predict GDP growth. However, evidence suggests that these
problems are relatively minor in most well-established markets, while lesser-
known markets face more significant difficulties in this regard. Further research
is necessary on this subject, as studies such as those by Gormsen and Koijen
(2020) and Van Binsbergen et al. (2013) rely on proprietary data from banks,
which are assumed to include OTC transactions not available in the data pro-
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vided by Refinitiv Eikon.59

One potential approach for researchers and practitioners to reduce uncer-
tainty regarding quotes is to incorporate the method outlined in Appendix 9.3,
which enables the inclusion of more data points into the created term struc-
ture.60 Due to time constraints, I have not been able to pursue this avenue
myself.

7.2 Idiosyncrasies

The approach of utilizing dividend futures to interpret the market’s shifting div-
idend and GDP expectations is constrained in the shortest maturity by several
factors, and in longer maturities by a few, including liquidity concerns.61

Firstly, far-dated maturities are influenced not only by macro variables but
also by the issuance of structured products. The dividend overhang from these
products is primarily concentrated in the three to seven-year maturity range,
although it persists up to the maximum maturity of approximately 10 years, as
demonstrated by Bunsupha and Liao (Working Paper).62 However, the over-
hang also impacts the near end of the curve. Any deviation, such as overval-
uation of near-dated dividends, could encourage investors to initiate dividend
steepeners to profit from the low implied dividend growth rate, which may
counteract the effect.63 As the effect of structured products overhang is more
significant for longer maturities, it typically results in increased inexpensiveness
and demand of implied dividends with longer maturity, creating a downward
sloping curve, and may obscure the analysis of expected dividend levels for
far-dated maturities.64

59After investigation and inquiries to Refinitiv Eikon regarding data quality and potential
errors, Refinitiv Eikon support was unable to confirm any errors in the data, despite consid-
erable investigation time. Data from 2021 onwards appears to be more ”unstable,” with some
contracts experiencing large fluctuations. Differences in data quality can be observed when
comparing bid-ask spread discrepancies between Gormsen and Koijen (2020) paper and the
present study, such as for the Euro Stoxx 50. A more thorough discussion on this is found in
Appendix 9.6.

60Options face many of the same issues as dividend futures but are a more popular and
well-known instrument among investors.

61However, examining the change in prices during shocks, as in this paper, mitigates most
of these issues, since we can adhere to a ceteris paribus notion.

62The paper by Bunsupha and Liao (Working Paper) reevaluates the downward-sloping
term structure of equity risk premium and suggests a demand-based pricing model. They
claim localized market participation and equity derivative products partially explain the term
structure and time variation of implied equity dividends. The authors show that major equity
indices’ implied dividend term structures respond to flows from equity-structured product
issuance.

63A steepener in this context implies that the investor short sells near-dated dividends and
buys far-dated dividends.

64As spot declines, the long position in dividends of structured product sellers increases,
leading to an increase in the maturity of auto-callables (structured product with predescribed
call dates) and a need for capital-protected notes (most common is a package of bonds and
put-options) sellers to hedge by selling futures and increasing their dividend position (See e.g.,
Baeston (2011) for an introduction to these kinds of products). Investment banks that sell
structured products are structurally long implied dividend risk and may sell cheap implied
dividends to hedge funds to allow for further structured product sales.
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Secondly, regardless of the frequency of dividend payments, the shortest-
dated maturities of dividend futures effectively transform into a ’cash-basket’
within the second quarter of their expiration year. This metamorphosis essen-
tially shifts the nature of the dividend future, rendering it comparable to an
interest rate instrument, a phenomenon that can be referred to as a ”pull-to-
realized” effect.65 In situations where a company declares an interim dividend,
it’s commonplace for the interim and final dividends to be announced simulta-
neously, as seen in Japan, or for the final and larger dividend to be announced in
the first half of the year, as practiced in the United Kingdom. With respect to
quarterly dividend payments, approximately half of these dividends would have
been declared by mid-year, thereby providing substantial clarity into the out-
standing dividends and reducing the equity risk. This circumstance potentially
undermines the efficacy of the shortest-dated contracts as a means of interpret-
ing market expectations due to the introduction of substantial nonlinearities
into the relationship.66

The ”pull-to-realized”-effect is amplified by the convergence of implied divi-
dends in the third quarter of the year prior to expiration. By this point, half of
the calendar year’s results are known, enabling investors to place greater trust in
analysts and their own expectations. This is because dividends are paid from the
previous year’s earnings by the third quarter of the preceding year, with some
international differences. However, the ”pull-to-realized”-effect occurs later for
FTSE companies that pay interim dividends. The calendar year dividend pay-
out for a company with interim dividends consists of final and interim dividends
from different financial years, whereas, for a company with annual dividends, it
is based on just one financial year. Consequently, the ”pull-to-realized”-effect is
delayed as earnings from a later period must be considered. This effect becomes
less problematic when examining indexes since market estimates consistently
reflect the macroeconomic picture. Shocks to dividend payments, such as gov-
ernment restrictions in 2020 or 2008, can override the ”pull-to-realized” effect.67

Additional ”non-fundamental” factors influencing expected dividend levels
include survivorship bias and changes to the indexes underlying the derivatives.
Generally, these factors benefit index dividends as underperforming companies
that reduce dividends are more likely to be removed from an index than those
that increase dividends. Nonetheless, index membership changes pose risks. A
company’s size and dividend yield affect the index divisor, as shown in Section
2.1, and the impact of changing membership on an index’s dividend yield is
not always evident and may obscure underlying relationships over time.68 This

65This is particularly relevant in Europe, where most companies distribute annual dividends,
typically announced by the end of the first half of the year.

66To illustrate this point, shortest-dated maturities typically display minimal variance until
a sudden shift occurs. For example, during crises like the COVID-19 pandemic, these short-
term components maintain stability until either dividends are restricted, or investors start to
anticipate that companies might revoke their dividends.

67Notably, this effect does not preclude future value changes, as demonstrated by BP’s
dividend cancellation in 2010, which caused a rapid shift in FTSE dividends.

68For instance, the frequency of dividend payments can influence index payout, as evi-
denced by for example the September 2009 Euro Stoxx 50 re-balancing, when a company with
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is of importance when estimating historical relationships between GDP and
dividends, and may have obfuscated the results somewhat.

These ”non-fundamental factors” complicate interpreting futures prices and
hinder drawing clear inferences. It is essential to consider these factors when
analyzing dividend futures data and related empirical work, as neglecting them
could lead to inaccurate conclusions about market expectations and economic
conditions. The dividend future literature and my paper may not have ade-
quately addressed these factors, potentially affecting the validity of their results
and derived implications.

When examining the information contained in dividend futures prices, re-
searchers and market participants should carefully consider the impact of sur-
vivorship bias, index membership changes, and other non-fundamental factors
on the level of expected dividends. In the case of my paper, it may have had
an effect on the estimated historical relationships, but less so on the actual
price effects measured in the market. By acknowledging these effects it be-
comes possible to obtain a more accurate and nuanced understanding of market
expectations and the driving forces behind them.

Furthermore, it is essential to recognize that the factors mentioned above
can interact with and influence each other in complex ways, which may fur-
ther obscure the true relationships among dividends, market expectations, and
macroeconomic variables. By developing a comprehensive understanding of
these factors and their interplay, researchers can better navigate the challenges
associated with analyzing dividend futures data and contribute to a more re-
liable and insightful analysis of market expectations and their implications for
economic policy and decision-making.

7.3 Dividends during crises

Dividends exhibit unique properties during times of crisis that distinguish them
from other financial instruments, such as bonds. These characteristics stem
from the fact that dividends are ”sticky” to the downside, meaning that even
during a crisis, dividend payments tend to remain stable, and companies are
typically reluctant to cut them (See for example: Kim et al. (2017)). However,
in severe downturns, companies may reduce their dividends significantly.

The behavior of dividends during a financial crisis is further influenced by
a technical imbalance in the dividend market. Dividend payouts are typically
maintained at a level well below 100% of earnings, allowing companies to pre-
serve their dividend payments even in the face of declining earnings. How-
ever, during periods of extreme financial distress, such as the 2008 credit cri-
sis, government-imposed constraints on financial institutions resulted in implied
dividends underperforming the spot market. This technical imbalance may pre-
cipitate a collapse of near-dated implied dividends, leading to a diminished beta
(to spot dividends) of far-dated dividends. Consequently, as the spot market
declines, the implied dividend growth rate experiences an increase, and vice

quarterly dividends entering the index boosted dividend futures and swaps.
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versa. This phenomenon contrasts with the pre-Lehman bankruptcy period,
during which rising equity markets encouraged investors to anticipate increas-
ing dividend yields.69

In contrast, bonds, particularly government bonds, provide a different per-
spective on market expectations during times of crisis. Yield curves derived from
government bonds can indicate market expectations of future interest rates and
inflation, which are closely related to economic growth. However, at the ZLB,
the usefulness of bonds as a forecasting tool becomes more limited, as uncon-
ventional monetary policies can distort the yield curve, making it challenging to
draw clear inferences about market expectations (see e.g., Swanson andWilliams
(2014)). This is however not a problem when utilizing the dividend futures as
forward equity yields are not bounded above and thus will not be susceptible
to the same non-linear effects as the relationship between growth and interest
rates.

Despite these complexities, overall, while dividends generally do not un-
derperform spot during a crisis, their behavior can be influenced by technical
imbalances in the dividend market and government regulations.70 When ana-
lyzing market expectations and underlying economic conditions, it is essential
to consider the limitations of both dividends and bonds as forecasting tools,
especially at the lower bound.

8 Conclusion

In periods of financial and economic turbulence, acquiring timely, forward-
looking insights into the projected economic trajectory is essential for both
policymakers and market participants. This study establishes that dividend
futures can be used in achieving this objective. By examining dividend fu-
tures across a spectrum of countries, each with unique dynamics, this study
provides insights into the lower bounds of expected dividend and GDP growth.
It illustrates that even smaller, less actively traded markets can offer valuable
inferences about market expectations for these variables.

This research contributes to the literature by reinforcing the value of divi-
dend futures as tools for deriving forward-looking estimates during periods of
uncertainty and crisis. It is also, to the best of my knowledge, the first study
to explore the impact of war on dividends and GDP growth expectations using
dividend futures. These findings underscore the importance of liquid deriva-
tive contracts when applying methods that rely on the relationship between the
prices of these contracts and economic variables.

69Fodor et al. (2017) employs forward-looking implied dividend information from option
prices to predict dividend cuts and omissions amidst the 2008-2009 financial crisis. Incorpo-
rating the technical imbalance that contributes to the collapse of near-dated implied dividends,
they highlight the importance of the beta (to spot dividends) of far-dated dividends in this
scenario. Additionally, they reveal the contrasting dynamics of implied dividend growth rates
during the pre-Lehman bankruptcy period implied by the options.

70Technical imbalances such as hedging needs and effects from previously mentioned struc-
tured products in Section 7.2.
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For instance, compared to the SMI 30 or FTSE MIB, the Euro Stoxx 50
will generate more accurate and precise estimates due to its higher trading
volume and liquidity. However, these differences did not significantly impact my
results. As an empirical researcher, data availability is a constraint. If dividend
futures gain wider acceptance and become more liquid instruments globally,
future studies could provide more robust estimates and draw conclusions about
additional regions.

Looking ahead, research should focus on exploring the broader adoption of
dividend futures internationally, the use of options to infer market expectations,
and the time-varying factors which influence the price of dividends. This would
further enrich our understanding of the interrelationships between forward eq-
uity yields, economic growth, and market reactions to crises. In doing so, the
study will help guide policy decisions and financial strategies during periods of
economic turbulence.
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9 Appendix A

9.1 D∗
t The Approximate Index for Cumulative Dividends

In order to determine daily dividends for contracts lacking the underlying index
information from Refinitiv Eikon, I procure daily return data, encompassing
both gross return (inclusive of dividends) and price return (exclusive of divi-
dends). Subsequently, I calculate cash dividends as the disparity between the
returns with and without dividends, multiplied by the preceding index value.
Given that dividend futures prices revolve around a complete calendar year of
dividends, I employ the dividends from the previous year as the numerator in
the subsequent equation:

Dt = (Rt,GrossReturn −Rt,PriceReturn)× It−1.

Here, Dt denotes the daily dividend, Rt,GrossReturn represents the daily re-
turn comprising distributions, Rt,PriceReturn signifies the daily return devoid of
distributions, and It−1 stands for the lagged index value at time t− 1.

For example, when calculating equity yields on December 15th, 2019, I use
the sum of dividends disbursed between December 16th, 2018 and December
15th, 2019 as the numerator. This method mitigates concerns associated with
seasonality, as both the dividend futures price and the prevailing dividend level
correspond to an entire year of dividends.

9.2 Liquidity measures

Amihud (2002) devised a measure of illiquidity, ILR, which constitutes a ratio
of two variables: a security’s absolute daily return and its daily dollar volume.
This measure is computed as an average over the period in question. A key
advantage of this metric is its simplicity, as the required data can be readily
obtained from databases. However, the measure is influenced by the fact that
as the traded volume approaches zero, ILR converges toward infinity as pointed
out by Fredrik Bonthron and Mannent (2016), making it less useful for studying
dividend futures as some market’s volume often tends to zero.

Lesmond (2005) developed the LOT model, which is predicated on the num-
ber of zero returns observed by Lesmond et al. (1999). A drawback of this
measure, however, is that data for at least one month is necessary to perform
the calculation. Another limitation is that if zero returns transpire for over
80 percent of the period, the measure becomes inapplicable. This would have
been a useful tool in my paper. However, time constraints stopped me from
proceeding.

The Bid-Ask spread measure is employed by examining the evolution of
transaction costs, achieved by gauging the density of the difference between the
buy and sell price of a bond as pointed out by Fredrik Bonthron and Mannent
(2016). In calculating the measure, either the average of the best actionable
buy and sell prices can be utilized, or an absolute amount can be employed.
Nonetheless, a disadvantage of this measure is that it depends on actionable
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prices. In the context of less liquid markets, such as the Swedish bond market
discussed in the paper or the dividend futures prices of more obscure markets
such as Switzerland, prices are indicative rather than actionable, which could
engender an inaccurate measure. The Bid-Ask spread measure was implemented
in the paper.

9.3 Option implied Dividend Growth

In Bilson et al. (2015), the researchers establish the practicability of inferring
the options-implied dividend yield, denoted as ydt,n, on expected returns. The
same procedure may be possible but with dividend, and therefore GDP growth
expectations. Utilizing the put-call parity principle, the dividend yield can be
expressed as:

ct,n − pt,n = Ste
−nyd

t,n −Ke−nyt,n (11)

In this equation, ct,n and pt,n symbolize the prices at time t of a call and put
option, respectively, with a maturity n on the stock index St. Both option
contracts share the strike price, represented by K.

To determine ydt,n, the equation is restructured as follows:

ydt,n = (1/n) ∗ ln
(
ct,n − pt,n +K ∗ e−n∗yt,n

St

)
, (12)

The maturities n, corresponding to the inferred dividend yields ydt,n, coincide
with the available option maturities at time t. In agreement with Bilson et al.
(2015), a Nelson and Siegel (1987) interpolation can be applied to all observed
ydt,n to recover the entire maturity range of options-implied dividend yields. As

a result, instead of assuming a constant slope between two observed ydt,n, a
smooth Nelson and Siegel interpolation can be fitted for each time point t:

ydt,n = β0 + β1
1− e−λtn

λtn
+ β2

(
1− e−λtn

λtn
− e−λtn

)
, (13)

By employing the full maturity spectrum of ydt,n, the associated values for a
dividend-paying asset can be determined.

Using the entire maturity range of ydt,n, the corresponding values for gQt,n can
be computed. Following van Binsbergen et al. (2012), I designate Pt,n as the
price of a asset that distributes all future dividends up to t+ n:

Pt,n :=

n∑
i=1

St,i. (14)

The ”present value” representation of put-call parity is thus:

ct,n − pt,n = St − Pt,n −Ke−nyt,n . (15)
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By subtracting Equation (11) from Equation (15) and solving for Pt,n, I
derive:

Pt,n = St

(
1− e−nyd

t,n

)
. (16)

In conclusion, the term structure of DQ
t,n aligns as:

F
(n)
t = (Pt,n − Pt,n−1)e

nyt,n , (17)

Utilizing this approach to obtain a greater number of quotes for the dividend
term structure may prove to be advantageous in maintaining the short end of
the curve at a realistic level, particularly in less liquid markets. This method
addresses the challenges associated with market illiquidity, which may lead to
inconsistencies in the pricing of the options-implied dividend yields. As a result,
investors can gain a more accurate representation of the market’s expectations
regarding dividend yields and their associated term structures.

Moreover, by incorporating a larger set of quotes and interpolating the data
using the NS-model methodology, the technique would generate a smoother
term structure and more realistic, thereby reducing the impact of any effects
introduced by lacking price quotes. Consequently, the extrapolated curve offers
a more reliable and robust estimation of the options-implied expected dividend
growth rates.

In summary, employing this method to gather an increased number of quotes
for the dividend term structure enables a more precise estimation of the options-
implied dividend yields and their associated term structures. This approach, I
believe, is particularly beneficial in less liquid markets. It would ensure, es-
pecially in the short end, that the curve remains at a realistic level, ultimately
providing investors with a more accurate and reliable representation of the mar-
ket’s expectations.

9.4 Stochastic Discount Factor

The Stochastic Discount Factor (SDF) can be explained and derived, with the
help of Cochrane (2009), in the following manner: Presume an investor who
can purchase and sell a quantity of an asset at a price p with a payoff of xt+1.
The initial consumption level can be represented as e, while the quantity of
assets the investor chooses to purchase can be denoted as ξ. Consequently, the
problem can be formulated as:

max
ξ

u(ct) + Et[βu(ct+1)]

subject to: ct = et + ptξ and ct+1 = et+1 + xt+1ξ. By substituting the con-
straints, computing the first-order conditions with respect to the objective, and
rearranging, the following is obtained:

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
, (18)
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which constitutes the core asset pricing equation. Given the payoff xt1 and
the investor’s consumption choices ct and ct+1, the market price pt to antici-
pate is determined. The equation’s economic substance stems from the optimal
consumption and portfolio formation’s first-order condition. It serves as the
foundation for the majority of asset pricing theories.

Moreover, equation (18) can be decomposed using the SDF mt+1:

mt+1 = β
u′(ct+1)

u′(ct)
,

and subsequently express equation 18 as:

pt = Et [mt+1xt+1]

p = E(mx).

The term stochastic discount factor refers to the manner in which m expands
upon conventional discount factor concepts. Despite being a generalization, it
conveys implication: all risk adjustments can be incorporated by defining a
single stochastic discount factor and placing it within the expectation. The
uncertainty of mt+1 at time t renders it stochastic. The correlation between
the random components of the shared discount factor m and the asset-specific
payoff xi produces asset-specific risk adjustments. Most asset pricing models
are essentially alternative methods of relating the stochastic discount factor to
data.

Additionally, mt+1 is frequently referred to as the marginal rate of substi-
tution since it represents the rate at which the investor is willing to save and
exchange consumption between time periods. If the equation is expressed as an
integral, mt+1 is occasionally referred to as the pricing kernel (see, for example,
LeRoy et al. (2000)).

In conclusion, asset prices are influenced by expectations concerning future
consumption possibilities, which inherently encompass the experience of uncer-
tainty and risk over time, consequently leading to a valuation disparity between
specific payoffs and their riskier counterparts.

9.5 Spot price derivation of lower bound

A less condensed version of deriving the lower bound follows than the one found

in the text. The price of an n-year dividend future at time t, P
(n)
t , is the

discounted expected dividend n years away:

F
(n)
t =

Et[Dt+n]

1 + θ
(n)
t

(19)

where Dt+n is the expected dividend paid out in n years time and θ
(n)
t is the

n-period expected excess return for the on the risk associated with the n-period
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dividend. The law of one price implies that the price of the underlying stock is
interconnected with the price of the dividend future. The value of stock is:

St =

∞∑
n=1

Et[Dt+n]

1 + µ
(n)
t

where µn
t is the cumulative discount rate connected with the cash flow. For the

no-arbitrage condition to hold, it must follow that the sum of an infinite number

of (hypothetical) dividend futures discounted by the risk free rate (y
(n)
t ) equals

the stock price

St =

∞∑
n=1

F
(n)
t

1 + y
(n)
t

as (1 + θ
(n)
t )(1 + y

(n)
t ) = 1 + µ

(n)
t . The interconnectedness between the price

of dividend futures and stock prices is what give us the opportunity to break
down the market’s expectation of dividend growth by maturity. I will, with
very simple assumptions, derive a lower bound growth expectation for dividends
using dividend future prices.

I can rewrite (19) to

F
(n)
t = Dt

[Dt+n/Dt]

1 + θ
(n)
t

= Dt
G

(n)
t

1 + θ
(n)
t

where I define the expected dividend growth to be G
(n)
t = [Dt+n/Dt]. Looking

the change in expected dividend growth over a short time horizon from t to t′,
such that I can assume that Dt ≈ Dt′ I get

∆F
(n)
t′ =

∆G
(n)
t′

∆Θ
(n)
t′

.

where Θ
(n)
t = 1 + θ

(n)
t , ∆F

(n)
t′ = F

(n)
t′ /F

(n)
t , ∆G

(n)
t′ = G

(n)
t′ /G

(n)
t and ∆Θ

(n)
t′ =

Θ
(n)
t′ /Θ

(n)
t

By assuming that the expected excess return does not decrease between time

t and t′, that is ∆Θ
(n)
t′ ≥ 1, I can achieve a lower bound on dividend growth

expectations

∆G
(n)
t′ − 1 ≥ ∆F

(n)
t′ − 1.

Since the expected excess return is associated with investor’s risk aversion
and the perception of uncertainty surrounding the dividend, I believe the above
assumption is reasonable when modelling investors response to external shocks
such as the outbreak of a war or a pandemic.
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9.6 Data

Index Returns and Dividends: In this study, information on index returns,
encompassing both gross and price indices, as well as dividend futures prices for
all the markets under examination, was obtained from Refinitiv Eikon. How-
ever, it should be noted that the data pertaining to the SP 500 dividend futures
exhibited some discrepancies, as several contracts were missing. Despite as-
sistance from the Refinitiv Eikon support team, it proved difficult to create a
coherent chain of futures for this particular index.

Gross Domestic Product: To accurately represent the economic performance
of the markets examined in this study, GDP data was gathered from each mar-
ket’s respective national database, reflecting the seasonally adjusted real GDP.
In the context of the European Union, the analysis utilized the seasonally ad-
justed GDP for the 27 EU member countries, in addition to the United King-
dom. This approach allows for a comprehensive understanding of the economic
dynamics at play within the studied regions.

Prices: As the price of the derivatives I used the settlement price, which is the
volume-weighted average price during the day, as provided by Refinitv Eikon.

Lastly, I would like to provide some general comments about the data that may
be useful for readers. While working with the data, I have encountered numer-
ous discrepancies, primarily regarding available bids and asks (see, for example,
Figure 15), and even in settlement prices, which are used in the analyses. An-
other telling example of data peculiarities is Figure 16a. To my mind, there is no
apparent reason for the bid and ask quotes to start going haywire in 2021, one
year after being perfectly aligned under heavy turbulence. To my understand-
ing, some of the data appears to be incorrect. I have dedicated considerable
time to discussing this issue with Refinitiv Eikon’s support, providing them
with multiple materials for investigation. However, during the three months
of communication, they have been unable to confirm any inaccuracies in their
data. Considering their expertise and access to better analytical tools, I have
decided not to alter the original data and to present it as is.
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10 Appendix B: Tables and Figures

10.1 Introduction

Table 7: Listed dividend futures on indices

Index Bloomberg code Dividend future prefix Dividend index
Eurostoxx50 SX5E DED SX5ED

FTSE UKX UKD F1DV
Nikkei225 (SGX) NKY MND NKYDIV
Nikkei225 (TSE) NKY INT NKYDIV

TOPIX TPX TDI TPXDIV
TOPIX Core 30 TPXC30 TCD TPXC30D

SMI SMI SMD SMIDP
CAC CAC XFD CACDI
DAX DAXK DKR DXDIVPT

DivDax DIVDAX DVD DDXDIVPT
Select Dividend 30 SD3E DSD SD3ED

Note: All of the listed dividend futures have different characteristics,maturities and underlying qualities. There may also exist
other contractsas I perhaps did not capture all available listings. Please refer to the relevant exchange for the latest and most
comprehensive information on dividend futures trading.
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10.2 Dividend Futures

Table 8: Correlation Between ITA and GER Term Structures

(a) FTSE MIB.

C 1 C 2 C 3 C 4

NS 1 1.00 0.99 0.93 0.87
NS 2 1.00 0.99 0.90 0.81
NS 3 0.99 0.98 0.91 0.86
NS 4 0.94 0.93 0.89 0.91

(b) DAX

C 1 C 2 C 3 C 4 C 5

NS 1 0.97 0.91 0.87 0.86 0.86
NS 2 0.97 0.96 0.93 0.92 0.92
NS 3 0.96 0.97 0.95 0.95 0.95
NS 4 0.96 0.97 0.97 0.96 0.96
NS 5 0.96 0.98 0.97 0.97 0.97

Note: This table displays the correlation coefficients for the term structures of the ITA and GER indices. The
data is generated from historical market data, with each cell representing the correlation between the respective
term structures in the two indices. Higher values (closer to 1) indicate stronger positive correlations, while lower
values (closer to 0) indicate weaker correlations. The table provides a comparative overview of the term structure
relationships between the two major indices.

Table 9: Correlation Between UK and SWZ Term Structures

(a) FTSE 100.

C 1 C 2 C 3 C 4 C 5 C 6 C 7

NS 1 0.94 0.89 0.86 0.81 0.79 0.74 0.69
NS 2 0.95 0.95 0.95 0.91 0.87 0.74 0.66
NS 3 0.93 0.96 0.96 0.92 0.88 0.75 0.67
NS 4 0.91 0.95 0.94 0.90 0.87 0.75 0.69
NS 5 0.88 0.92 0.91 0.87 0.84 0.75 0.72
NS 6 0.85 0.88 0.86 0.82 0.81 0.75 0.74
NS 7 0.81 0.83 0.81 0.76 0.77 0.74 0.76

(b) SMI 100.

C 1 C 2 C 3 C 4 C 5

NS 1 0.98 0.95 0.92 0.92 0.92
NS 2 0.98 0.98 0.97 0.96 0.95
NS 3 0.97 0.98 0.98 0.97 0.96
NS 4 0.97 0.98 0.98 0.97 0.97
NS 5 0.97 0.99 0.98 0.98 0.98

Note: This table displays the correlation coefficients for the term structures of the ITA and GER indices. The
data is generated from historical market data, with each cell representing the correlation between the respective
term structures in the two indices. Higher values (closer to 1) indicate stronger positive correlations, while lower
values (closer to 0) indicate weaker correlations. The table provides a comparative overview of the term structure
relationships between the two major indices.
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10.3 Changing dividend growth expectations

Figure 10: Comparing Percentage Change of the Lower Bound across Three
Major Events

(a) DAX. (b) FTSE MIB.

(c) SMI 30. (d) Nikkei Osaka.

Note: The table presents the percentage change in lower bound dividend expectations, calculated from the beginning
of the year (January 1st) to the specified dates in the legend. However, for the Eurocrises, the GDP shock is
defined from June onwards. The selected date corresponds to a critical period in the Eurocrises, marked by events
such as Portugal’s impending default, the approval of the second rescue package for Greece, and the introduction
of new European austerity measures. Note that the dates for DAX have been changed to accommodate missing
transactions.
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Figure 11: Lower Bound Change in Expected Dividend Growth During the
COVID-19 Pandemic.

(a) Spread of COVID-19. March 5 (b) Outbreak of the Pandemic. March 20

(c) Stimulus. March 26 (d) Recovery. July 20

Note: This figure illustrates the lower bound development during the COVID-19 pandemic, following the style and
dates of Gormsen and Koijen (2020), while incorporating additional markets from this study. It reveals a similar
trend, with both the SMI 30 and CAC 40 experiencing minimal trades, reflecting their restricted movement during
this period despite existing market prices. For the C2 contract, the SMI exhibited an approximate 10% spread
on days when quotes were available. The figure also presents the relative price of dividend futures with varying
maturities, displaying the percentage change in prices since January 1st. Dividend futures represent claims on the
dividends paid on an index in a specified year.
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Table 10: Detailed Showcase of Changes In the Cubic Spline Model During
Russias Invasion of Ukraine

2022-03-10 2022-03-20

Contract Nikkei 225 Euro Stoxx 50 FTSE 100 FTSE MIB SMI 30 Contract Nikkei 225 Euro Stoxx 50 FTSE 100 FTSE MIB SMI 30

C1 -0.012 -0.012 -0.043 -0.118 -0.019 C1 -0.007 -0.002 -0.030 -0.085 -0.012
C2 -0.077 -0.066 -0.072 -0.120 -0.032 C2 -0.069 -0.036 -0.046 -0.076 -0.019
C3 -0.114 -0.117 -0.090 -0.122 -0.034 C3 -0.108 -0.067 -0.054 -0.073 -0.006
C4 -0.124 -0.143 -0.097 -0.124 -0.029 C4 -0.122 -0.081 -0.056 -0.071 0.009
C5 -0.116 -0.145 -0.098 -0.023 C5 -0.113 -0.079 -0.056 0.019
C6 -0.102 -0.137 -0.098 C6 -0.092 -0.072 -0.054
C7 -0.100 -0.127 -0.099 C7 -0.085 -0.064 -0.052
C8 -0.112 -0.118 C8 -0.094 -0.059
C9 -0.122 -0.112 C9 -0.105 -0.055
C10 -0.128 -0.107 C10 -0.111 -0.052

Note: This table displays the percentage point change in lower-bound dividend growth expectations subsequent to
Russia’s invasion of Ukraine, expressed as decimals (e.g., 0.026 represents a 2.6% change). The dates presented at

the top of the table indicate a cutoff from the reference date of February 24th.

10.4 Expected Dividend Growth

Table 11: 2022 Changing Lower Bound Dividend Expectation

Estimate

Market Date C1 C2 C3 C4 C5 C6 C7 C8 C9

EU
2022-04-06 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01
2022-05-03 -0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01

ITA
2022-04-06 -0.11 -0.10 -0.10 -0.09 NA NA NA NA NA
2022-05-03 -0.11 -0.09 -0.09 -0.09 NA NA NA NA NA

FRA
2022-04-06 2.60 0.02 0.13 -0.33 1.28 NA NA NA NA
2022-05-03 2.63 0.02 0.14 -0.33 1.30 NA NA NA NA

UK
2022-04-06 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 NA NA
2022-05-03 -0.00 0.01 0.01 0.01 0.01 0.00 0.00 NA NA

JAP
2022-04-06 0.08 -0.01 -0.03 -0.03 -0.02 -0.02 -0.06 -0.03 -0.03
2022-05-03 0.07 -0.02 -0.03 -0.03 -0.02 -0.02 -0.06 -0.03 -0.03

SMI
2022-04-06 -0.00 -0.00 0.00 0.01 0.01 NA NA NA NA
2022-05-03 -0.00 0.00 0.00 0.01 0.01 NA NA NA NA

DE
2022-04-06 0.00 0.00 0.00 0.00 0.00 NA NA NA NA
2022-05-03 0.00 0.00 0.00 0.00 0.00 NA NA NA NA
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Table 12: 2022 Changing Lower Bound GDP Expectations

Estimate

Country Date C1 GDP C2 GDP C3 GDP C4 GDP C5 GDP C6 GDP C7 GDP C8 GDP C9 GDP C10 GDP

EU
2022-04-06 -0.005 -0.008 -0.013 -0.017 -0.019 -0.018 -0.016 -0.012 -0.007 -0.001
2022-05-03 -0.004 -0.005 -0.009 -0.012 -0.014 -0.014 -0.012 -0.009 -0.005 0.001

ITA
2022-04-06 -0.035 -0.029 -0.029 -0.028 NA NA NA NA NA NA
2022-05-03 -0.034 -0.028 -0.028 -0.027 NA NA NA NA NA NA

FRA
2022-04-06 1.687 0.011 0.085 -0.216 0.830 NA NA NA NA NA
2022-05-03 1.705 0.013 0.088 -0.214 0.840 NA NA NA NA NA

UK
2022-04-06 -0.005 -0.003 -0.001 -0.001 -0.001 -0.002 -0.002 NA NA NA
2022-05-03 -0.000 0.003 0.005 0.004 0.003 0.002 0.001 NA NA NA

JAP
2022-04-06 0.057 -0.010 -0.020 -0.021 -0.016 -0.013 -0.045 -0.022 -0.022 -0.022
2022-05-03 0.056 -0.011 -0.021 -0.023 -0.015 -0.012 -0.044 -0.021 -0.021 -0.021

SMI
2022-04-06 -0.001 -0.001 0.000 0.002 0.002 NA NA NA NA NA
2022-05-03 -0.001 0.000 0.001 0.002 0.002 NA NA NA NA NA

DE
2022-04-06 0.000 0.000 0.000 0.000 0.000 NA NA NA NA NA
2022-05-03 0.000 0.000 0.000 0.000 0.000 NA NA NA NA NA

Table 13: 2020 Changing Lower Bound Dividend Expectation

Estimate

Market Date C1 C2 C3 C4 C5 C6 C7 C8 C9

EU
2020-04-06 -0.1689 -0.1533 -0.1348 -0.1189 -0.1069 -0.0992 -0.0951 -0.0939 -0.0948
2020-05-04 -0.1256 -0.1216 -0.1097 -0.0980 -0.0888 -0.0828 -0.0795 -0.0786 -0.0795
2020-06-04 -0.0966 -0.0900 -0.0761 -0.0635 -0.0547 -0.0501 -0.0490 -0.0507 -0.0545

ITA
2020-04-06 -0.3894 -0.3710 -0.3685 -0.3674 NA NA NA NA NA
2020-05-04 -0.3930 -0.3761 -0.3781 -0.3771 NA NA NA NA NA
2020-06-04 -0.2363 -0.2156 -0.2143 -0.2142 NA NA NA NA NA

FRA
2020-04-06 -0.2870 -0.2654 -0.2172 -0.3884 -0.3744 NA NA NA NA
2020-05-04 -0.2620 -0.2409 -0.1918 -0.3547 -0.2107 NA NA NA NA
2020-06-04 -0.2418 -0.2211 -0.1714 -0.3464 -0.1888 NA NA NA NA

UK
2020-04-06 -0.2324 -0.2205 -0.1963 -0.1735 -0.1356 -0.1551 -0.1405 NA NA
2020-05-04 -0.1898 -0.2078 -0.1668 -0.1478 -0.1241 -0.1385 -0.1295 NA NA
2020-06-04 -0.1589 -0.1783 -0.1328 -0.1150 -0.0899 -0.1074 -0.0942 NA NA

JAP
2020-04-06 -0.1405 -0.1456 -0.1444 -0.1434 -0.1439 -0.1462 -0.1500 -0.1549 -0.1605
2020-05-04 -0.0859 -0.0907 -0.0878 -0.0835 -0.0797 -0.0765 -0.0739 -0.0719 -0.0703
2020-06-04 -0.0518 -0.0596 -0.0587 -0.0561 -0.0536 -0.0517 -0.0502 -0.0491 -0.0483

SMI
2020-04-06 0.0000 -0.0798 -0.0541 -0.0487 -0.0340 NA NA NA NA
2020-05-04 0.0000 -0.0798 -0.0541 -0.0487 -0.0340 NA NA NA NA
2020-06-04 0.0000 -0.0736 -0.0541 -0.0487 -0.0340 NA NA NA NA

DE
2020-04-06 -0.1763 -0.1769 -0.1136 -0.1136 -0.1136 NA NA NA NA
2020-05-04 -0.1763 -0.1769 -0.1136 -0.1136 -0.1136 NA NA NA NA
2020-06-04 -0.1763 -0.1769 -0.1136 -0.1136 -0.1136 NA NA NA NA

57



Table 14: Pooled Regressions of Dividend Growth on Dividend Yields and Coun-
try Dummies

Model e1 Model e2
Parameter Estimate (HAC SE) Estimate (HAC SE)
Intercept 0.0023 (0.0001) 0.0026 (0.0002)
e1 0.4698 (0.0021)
e2 0.9921 (0.0012)
France 0.0033 (0.0008) 0.0005 (0.0002)
UnitedKingdom 0.0042 (0.0004) 0.0022 (0.0003)
Japan 0.0186 (0.0006) 0.0141 (0.0004)
Switzerland 0.0065 (0.0004) 0.0035 (0.0003)
Germany 0.0016 (0.0002) -0.0009 (0.0002)
Observations 18735 18735

Note: This table presents the pooled regression results for e1 and e2. While the estimates are statistically
significant, the coefficient for e2 appears to be unusually high compared to both country-specific and aggregated

results, as well as the findings reported by Gormsen and Koijen (2020). It is worth noting that Gormsen and
Koijen (2020) do not provide results for timeframes other than the second, limiting the scope for comparison

across longer time horizons. Additionally, the use of daily data in this analysis, as opposed to the quarterly data
employed by Gormsen and Koijen (2020), may introduce differences in the results and potentially obscure some

underlying patterns.

Table 15: 2011 Changing Lower Bound Dividend Expectation

Estimate

Market Date C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

EU
2011-06-06 0.00128 0.00160 0.00013 -0.00201 -0.00425 -0.00634 -0.00819 -0.00979 -0.01114 -0.01229
2011-07-20 0.00262 -0.00193 -0.00670 -0.01107 -0.01486 -0.01804 -0.02068 -0.02286 -0.02466 -0.02614

ITA
2011-06-06 -0.07159 -0.07143 -0.10360 -0.05249 NA NA NA NA NA NA
2011-07-20 -0.18081 -0.18528 -0.22020 -0.24547 NA NA NA NA NA NA

FRA
2011-06-06 -0.00260 0.00756 0.00648 0.00534 0.00270 NA NA NA NA NA
2011-07-20 -0.00104 -0.00076 -0.00233 -0.00507 -0.01052 NA NA NA NA NA

UK
2011-06-06 0.00241 -0.00019 0.00038 -0.00392 -0.00408 -0.00575 -0.00820 NA NA NA
2011-07-20 0.00301 -0.00426 -0.00567 -0.01082 -0.01113 -0.01436 -0.01793 NA NA NA

JAP
2011-06-06 0.02174 0.01916 0.01194 0.00608 0.00475 0.00223 0.00272 0.00025 -0.00296 -0.01519
2011-07-20 0.04025 0.04975 0.04203 0.03266 0.02922 0.02456 0.02175 0.01980 0.01456 0.00169

SMI
2011-06-06 -0.00016 0.00225 0.00194 0.00147 -0.00098 NA NA NA NA NA
2011-07-20 -0.00236 -0.00434 -0.00581 -0.00928 -0.01061 NA NA NA NA NA
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10.5 Estimating Lower Bound Implied GDP Growth

Figure 12: The Cyclical Part of Dividends and GDP for a Sample of Countries.

(a) France GDP and Dividends. (b) Japan GDP and Dividends.

(c) Switzerland GDP and Dividends. (d) United Kingdom GDP and Dividends.

Note: The present visual representation depicts two series that showcase the cyclical components of dividends and
GDP, respectively. The application of the Hamilton-filter has been employed to extract the aforementioned cyclical
parts from the original data. In this context, the normalization of the axis in the visual representation may lead
to a reduced degree of interpretive significance compared to traditional charts. One could argue that the axis is
redundant and could be omitted from the visualization without sacrificing the content. The fundamental objective
of the aforementioned visual representation is to illustrate the correlation between the cyclical component of
dividends and that of GDP in a graphical manner.

Figure 13: 2020 Euro Stoxx 50 GDP Expectations Comparison

(a) 5.2 Method. (b) 5.3 Method.

Note: The presented figures depict the temporal evolution of economic variables following the outbreak of the
COVID-19 crisis. The methods employed in the analysis include the two techniques discussed in Sections (5.3) and
(5.2). The figures demonstrate that there are subtle differences in the expected changes in surface levels between
the two methods. These differences may reflect variations in the underlying assumptions and modeling frameworks.
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Table 16: Relationship Between Cyclical GDP and Dividends

Eurozone France United Kingdom Japan
Correlation 0.0781 0.0781 0.3567 0.3567 0.6906 0.6906 0.5126 0.5126
Eigenvalues 0.2871 0.1247 0.4458 0.1103 0.3590 0.1413 0.3112 0.0693
Test Statistic 7.4573 18.9540 4.3248 21.8353 8.5323 24.9069 3.9503 20.5029
10pct Confidence 6.5000 12.9100 6.5000 12.9100 6.5000 12.9100 6.5000 12.9100
5pct Confidence 8.1800 14.9000 8.1800 14.9000 8.1800 14.9000 8.1800 14.9000
1pct Confidence 11.6500 19.1900 11.6500 19.1900 11.6500 19.1900 11.6500 19.1900
Eigenvectors Dividends L2 1.0000 -57.7274 1.0000 -565.2655 1.0000 -4.2775 1.0000 -17.4372
Eigenvectors GDP L2 1.0000 2198.0890 1.0000 230.9683 1.0000 -0.1816 1.0000 -2.8854
Weights Dividends -0.2465 -0.0007 -0.2786 0.0009 -0.2499 0.0017 -0.1236 0.0201
Weights GDP 0.0047 -0.0001 -0.0726 -0.0006 -0.1024 -0.1074 -0.1957 -0.0075

United States Italy Switzerland Germany
Correlation 0.6589 0.6589 0.1198 0.1198 0.2697 0.2697 -0.1804 -0.1804
Eigenvalues 0.3127 0.0833 0.3947 0.1649 0.2144 0.1640 0.3295 0.1935
Test Statistic 4.8715 21.0026 6.8455 19.0749 10.0344 13.5131 6.6674 12.3894
10pct Confidence 6.5000 12.9100 6.5000 12.9100 6.5000 12.9100 6.5000 12.9100
5pct Confidence 8.1800 14.9000 8.1800 14.9000 8.1800 14.9000 8.1800 14.9000
1pct Confidence 11.6500 19.1900 11.6500 19.1900 11.6500 19.1900 11.6500 19.1900
Eigenvectors Dividends L2 1.0000 -0.6523 1.0000 -3676.7198 1.0000 6.0336 1.0000 -1122.2776
Eigenvectors GDP L2 1.0000 0.6282 1.0000 1757.4841 1.0000 -4.1730 1.0000 165.7340
Weights Dividends -0.3764 0.1647 -0.3244 0.0000 -0.1879 -0.0399 -0.1426 0.0003
Weights GDP -0.0213 -0.1752 -0.0720 -0.0001 -0.2727 0.0363 -0.1244 -0.0010

Note: This table presents the relationship between cyclical GDP and dividends for eight countries/regions. The analysis was performed using a
cointegration analysis with the Johansen test, and the table reports the correlation coefficients, eigenvalues, test statistics, critical values at
10%, 5 %, and 1% significance levels, eigenvectors for dividends and GDP at lag 2, and the weights for dividends and GDP. The cointegration
analysis was conducted on the input data frames for each country/region, which contained two columns: the cyclical components of GDP and
dividends. The correlation coefficients indicate the strength and direction of the linear relationship between these two variables. The
eigenvalues, test statistics, and critical values at different significance levels are used to determine the presence of cointegrating relationships
between the variables. The eigenvectors at lag 2, which is also the number of lags the model is estimated with, and the weights for dividends
and GDP provide additional information about the nature of the cointegration relationships.

Figure 14: European GDP Expectations 2022

(a) 2022-02-24 - 2022-03-10 (b) 2022-02-24 - 2022-03-10

Note: The corresponding GDP expectations derived for the same dates as the figure 2.
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10.6 The dividend futures market, liquidity and idiosyn-
crasies

Table 17: Euro Stoxx 50 C1 Contract Summary Statistics

Year Open Interest Mean Volume Bid-Ask Spread

2008 4,554.15 87.26
2009 62,054.15 1,392.57
2010 115,991.55 886.66
2011 143,631.63 1,656.63 0.13
2012 155,364.57 2,517.48 0.12
2013 172,546.56 1,603.80 0.08
2014 158,293.69 2,607.43 0.09
2015 194,760.90 2,665.50 0.11
2016 226,936.42 3,867.25 0.07
2017 202,566.24 2,854.87 0.06
2018 236,904.39 3,042.88 0.06
2019 229,734.33 3,025.52 0.06
2020 221,319.29 5,385.75 0.19
2021 85,985.98 1,707.92 49.97
2022 102,161.54 1,765.83 11.19

Note: Open Interest and Volume corresponds to the daily average over the specified year.

Table 18: FTSE 100 C1 Contract Summary Statistics

Year Open Interest Volume Bid-Ask Spread

2009 17,261 37 –
2010 114,956 133 –
2011 95,111 186 0.88
2012 102,018 287 0.64
2013 107,162 510 –
2014 129,951 275 –
2015 83,653 216 –
2016 70,985 203 –
2017 66,757 246 0.92
2018 40,910 219 1.14
2019 62,175 625 1.37
2020 78,811 1,185 3.65
2021 102,144 1,994 1.07
2022 82,914 1,687 1.39

Note: Open Interest and Volume corresponds to the daily average over the specified year.

Table 19: CAC 40 C1 Contract Summary Statistics

Year Open Interest Volume Bid-Ask Spread

2009 85.86 50.50 3.96
2010 10,777.47 718.56 1.50
2011 17,157.50 100.00 2.38
2012 12,219.95 560.00 3.27
2013 6,282.13 1,000.00 2.66
2014 29,876.33 5,453.75 1.40
2015 28,044.39 764.17 2.20
2016 20,694.83 1,133.33 1.52
2017 52,731.35 3,307.81 0.74
2018 68,670.31 2,055.88 0.51
2019 50,995.23 1,367.00 0.44
2020 39,371.76 1,468.18
2021 26,108.74 237.50
2022 36,023.67 150.00

Note: Open Interest and Volume corresponds to the daily average over the specified year.
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Table 20: FTSE MIB C1 Contract Summary Statistics

Year Open Interest Volume Bid-Ask Spread

2004 7,041.80 4,208.11 135.69
2005 21,307.95 12,730.27 6.10
2006 23,690.62 14,479.02 6.71
2007 23,653.90 17,067.55 7.43
2008 33,509.38 17,707.79 12.32
2009 30,092.08 15,160.36 13.76
2010 39,585.04 19,224.27 37.82
2011 44,122.42 22,001.96 239.80
2012 34,977.34 21,506.07 240.56
2013 44,101.41 23,642.06 11.96
2014 48,837.77 30,976.24 11.70
2015 56,206.70 34,647.26 8.62
2016 50,740.20 38,299.71 10.66
2017 34,170.96 25,087.69 6.52
2018 66,014.87 29,588.48 4.03
2019 112,025.68 23,204.73 2.71
2020 137,361.45 37,672.03 16.37
2021
2022
2023

Note: Open Interest and Volume corresponds to the daily average over the specified year.

Table 21: Nikkei 225 C1 Contract Summary Statistics

Year Open Interest Volume Bid-Ask Spread

2010 327.44 13.52 1.09
2011 3,698.05 44.86
2012 8,426.92 81.52
2013 17,028.45 45.27 1.12
2014 17,466.84 74.88 0.55
2015 13,451.43 35.12 2.40
2016 13,847.40 52.02 1.26
2017 14,116.18 80.23 0.80
2018 9,523.93 29.46 1.05
2019 10,356.84 49.69 1.43
2020 8,704.65 53.96 3.39
2021 5,999.03 9.26 1.80
2022 3,529.65 17.61 3.99

Note: Open Interest and Volume corresponds to the daily average over the specified year.

Table 23: Summary of Trading Characteristics for Ten Futures Contracts During
2020 - 2022

EU France Japan

Contract Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%)

C1 3183.75 136490.64 54.37 768.75 33803.01 - 34.13 6077.82 1.37
C2 5913.43 152134.80 11.51 1430.19 40585.09 - 44.18 4717.35 1.19
C3 5963.80 141254.87 44.74 112- 36730.90 - 23.67 1769.39 1.13
C4 5126.64 97853.10 12.70 1860.50 24931.64 - 10.71 640.97 2.31
C5 4390.69 134441.61 0.78 1083.85 31260.46 - 4.82 38.09 3.37
C6 2466.00 89829.61 1.12 - - - 1.00 4.95 11.17
C7 1080.34 46585.82 2.09 - - - - 0.74 10.63
C8 719.79 32544.25 4.14 - - - - - 10.01
C9 277.55 17033.14 8.95 - - - - - -
C10 217.23 13051.17 13.58 - - - - - -

Italy Switzerland UK

Contract Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%) Volume Open Interest Bid Ask Spread (%)

C1 37672.03 137496.14 0.20 23074.97 22.06 410.86 1602.97 87931.61 1.86
C2 2350.30 7319.03 0.52 22845.49 41.17 322.37 1628.98 78663.47 3.91
C3 10.85 44.12 1.09 22630.55 32.91 272.68 1331.89 55746.30 2.74
C4 - - - 22455.08 38.28 117.40 1197.92 35853.70 2.69
C5 - - - - 21.73 28.19 96.97 331.14 4.43
C6 - - - - - - 834.89 15891.68 4.44
C7 - - - - - - 427.20 5848.34 3.90
C8 - - - - - - - - -
C9 - - - - - - - - -
C10 - - - - - - - - -

Note: The table presents averages across the entire sample period. For instance, Open Interest signifies the average
daily amount of outstanding contracts. Volume refers to the daily average of traded contracts, while bid-ask spread
represents the average daily percentage discrepancy between buying and selling prices in the market.
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Table 22: SMI 30 C1 Contract Summary Statistics

Year Open Interest Volume Bid-Ask Spread

2009 90.06 0.00 –
2010 1,631.48 11.28 –
2011 2,200.55 18.97 –
2012 2,192.44 65.15 –
2013 2,293.39 66.61 0.43
2014 1,570.92 14.14 0.65
2015 1,340.65 46.23 1.26
2016 730.84 28.33 2.17
2017 427.00 65.00 3.72
2018 328.62 29.50 2.07
2019 459.67 28.75 2.47
2020 343.03 18.33 4.88
2021 224.95 10.00 2.50
2022 665.58 23.85 3.18

Note: Open Interest and Volume corresponds to the daily average over the specified year.

Figure 15: Spread and Volume Across Various Contracts with Missing Data

(a) FTSE 100 C2. (b) FTSE 100 C4.

(c) CAC 40 C2. (d) CAC 40 C4.

Note: This image illustrates the inadequate data quality obtained from Refinitiv Eikon. It is evident that volume
data and the bid-ask spread are missing for various time periods. Despite extensive communication and a
considerable amount of time spent discussing the issue, over two months, with Refinitiv Eikon, they were unable
to provide a solution or confirm whether my assertion of missing data was accurate.
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Figure 16: Average On Exchange Open Interest per Market

(a) Euro Stoxx 50 (b) FTSE 100

(c) Nikkei 225 (d) CAC 40

Note: The bar chart represents the average open interest (in thousands) of contracts C1 through C10 for each
quarter across the entire sample period. The open interest for each contract is stacked, meaning the total height of
each bar represents the combined average open interest for all contracts in that quarter. The colors differentiate
each contract, with C10 at the bottom and C1 at the top of each bar. Note that the data for each contract is
averaged over the sample period, providing a summary view of contract volumes over time.
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