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1 Introduction

Over the past few decades, demand forecasting has become an essential tool for busi-
nesses to optimize their supply chain and production processes. Accurate forecasting
enables businesses to make informed decisions regarding inventory management, mar-
keting strategies, and resource allocation. In recent years, the application of machine
learning algorithms in demand forecasting has gained significant attention due to their
ability to handle complex and non-linear relationships between variables. Demand fore-
casting differs from traditional demand estimation research in economics which puts
emphasis on identifying a demand equation that quantifies the links between the level of
demand for a product and the variables that determine it. Demand forecasting provides
less insight into the causes of observed demand, and focuses more on predictions based
on past records. Nevertheless, Business and Economics literature continues to adopt
machine learning in diverse research areas.

In general, businesses model consumer demand as a sequential data of consumer
demand over time. Unlike demand estimation where economists use panel data, busi-
nesses have to predict sales on daily bases. Popular statistical time series methods such
as ARIMA assume that the time series assumes linearity in components. However, many
real world data consists of non linear patterns. Computational intelligence techniques
such as artificial neural networks (ANN), support vector machine (SVM), K-nearest
neighbors (KNN) have been used for modeling non-linearity in time series prediction re-
cently. Other machine learning methods such as gradient-boosted trees offer an efficient
non-parametric solution to regression problems.

In this thesis, I aim to compare two prominent machine learning methods, namely
LSTM and XGBoost, with the standard time series econometric model, Autoregressive
moving average (ARIMA), in forecasting demand for Walmart’s hierarchical time series
data on sales.

We start by providing a brief overview of the literature on demand forecasting and
the applications of machine learning algorithms in this field. We then describe the data
used in our analysis, including the hierarchical structure of Walmart’s sales data and
the preprocessing steps taken to prepare the data for modeling. Next, we present our
methodology for training and evaluating the three models. We explain the hyperparam-
eters chosen for each model and the performance metrics used to evaluate the forecasting
accuracy. We also discuss the limitations and assumptions of each model.

Finally, we present our findings and conclusions. Our results show that LSTM and
XGBoost perform similarly in terms of forecasting accuracy, with LSTM performing
slightly better in terms of efficiency. We discuss the implications of our findings and
provide recommendations for future research in this area.

Overall, this thesis contributes to the growing body of literature on demand fore-
casting using machine learning algorithms and provides practical insights for economists
seeking to improve their forecasting accuracy and efficiency.
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2 Background

In this section, we present a comprehensive literature review from several literature areas.
First, we discuss a selection of business theory, namely Supply chain management. Then,
we review literature from economics that focuses on demand estimation and industrial
organization. Lastly, we go over literature from time series forecasting.

2.1 Supply Chain Managment

Supply chain management is a critical function in any business that deals with the
production and distribution of goods and services. It involves the coordination of various
activities, including procurement, production, logistics, and distribution. One of the
emerging trends in supply chain management is the use of machine learning, which has
the potential to improve efficiency, reduce costs, and enhance the overall performance
of the supply chain. This literature review aims to explore the use of machine learning
in supply chain management from a business theory perspective.

Supply chain management involves the coordination of various activities, including
sourcing, production, inventory management, transportation, and warehousing, to en-
sure the smooth flow of goods and services from suppliers to customers. (Christopher,
2016) Effective supply chain management requires a deep understanding of the supply
chain network, including suppliers, distributors, and customers.

Figure 2.1: Supply Chain Planning Matrix (Fleischmann et al., 2002)

From a business theory perspective, supply chain management can be viewed as a
value chain, which involves the identification and creation of value for customers via
upstream or downstream links in different processes and activities. The value chain
consists of primary activities such as inbound logistics, operations, outbound logistics,
marketing, and service, as well as support activities such as procurement, technology
development, and human resource management. (Porter, 1985) The goal of the value
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chain is to create a competitive advantage by optimizing each activity and maximizing
the overall value created for customers.

Machine learning is used to improve procurement by analyzing supplier data and
predicting supplier performance. (Feigin et al., 2021) It can also be used to optimize
production by predicting machine failures and scheduling maintenance proactively. In
logistics and transportation, machine learning can be used to optimize route planning
and delivery schedules by analyzing real-time data on traffic and weather conditions.
Machine learning has the potential to transform supply chain management by improving
demand forecasting, and optimizing inventory management which is the area of interest
in this study. (Wenzel et al., 2019)

Demand planning in SCM is essential and in many cases uses econometric methods
for quantitative analysis. Univariate time series models such as AR or ARIMA are com-
monly used to model retail product demands. These traditional time series forecasting
methods are applied on the assumption that past demand serves as a statistical indica-
tor of future demand. Typically, these methods perform well in markets with relatively
stable demand. Recently, machine learning, a classification technique, has been newly
applied in supply chain management to capture exogenous elements, unstable trends,
and nonlinearity.

2.2 Demand estimation and forecasting

The following section provides a synopsis of demand estimation and forecasting described
in academic and economic literature. Demand estimation and forecasting have roots in
the economics literature. Much of demand estimation follows traditional models from
IO research. Demand estimation in IO strives to find demand systems using more causal
methods such as natural experiments. Bresnahan (1987) uses characteristics of other
products as IV to find a relationship between price and quantity in the 1950s Auto
Market. The empirical IO research focuses on solving the endogeneity problem from
supply and demand using market-level panel data and supply-side instruments. (Berry
et al., 1995) A popular empirical IO model is the BLP method of random-coefficients
logit model in the differentiated products market. Some economists have started using
techniques from machine learning literature in demand estimation problems. Bajari
et al. (2015) tests machine learning models such as Random Forest, Support Vector
Machines (SVM), and Bagging into a canonical demand estimation problem and finds
that it produces superior predictive accuracy compared to the logit model.

SCM literature focuses much on time series demand forecasting and uses various
empirical methods. In a retail context, demand is closely related to actual sales, and
many studies employ models based on historical sales data to forecast future demand.
Auto-regressive integrated moving average (ARIMA) time series model developed by
Box et al. (1967), is frequently used in both SCM and econometric applications. Re-
cently, nonparametric models from machine learning have gained attention. Islek and
Ögüdücü (2017) investigated the challenges of demand forecasting as warehouses and
product quantities increase using MLP, Bayesian Network, Linear Regression, and SVM,
to improve forecasting accuracy. Weng et al. (2019) compared the performance of the
AutoRegressive Integrated Moving Average (ARIMA) model, backpropagation (BP)
network method, and recurrent neural network (RNN) method in forecasting agricul-
tural product prices. Mittal et al. (2019) proposed a method that combined Support
Vector Regression (SVR) with Particle Swarm Optimization (PSO) to forecast retail
sales using United States Census Bureau data.
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Energy economics has seen a rising interest in time series modeling and forecasting.
Forecasting in energy economics generally focuses on predicting energy prices, model-
ing energy consumption or demand, and policy analysis. Econometric methods such
as Vector Auto Regression (VAR) or ARIMA have been used to model and forecast
oil, and electricity prices. Oil market VAR models have become the standard tool for
understanding the real price of oil and its impact on the macro economy. (Kilian and
Zhou, 2020) Energy commodity price series often exhibit complex and challenging fea-
tures including non-linearity, lag-dependence, non-stationarity, and volatility clustering.
(Cheng et al., 2019) ML methods provide new opportunities for innovative research in
the field of energy. Recent publications suggest that Artificial Neural Networks (ANN),
and Support Vector Machines (SVM) are frequently utilized in energy price modeling
with Deep Learning (DL) being less common in this area. There are opportunities in
applying DL to energy economics. Moshiri and Foroutan (2006) forecast the daily series
of futures oil prices using a nonlinear ANN model. Mirakyan et al. (2017) used ensemble
methods for modeling the electricity market.

2.3 Time series

Demand forecasting is the process of estimating the future demand for a product or
service. It involves analyzing historical data, market trends, customer behavior, and
other relevant factors to make predictions about the quantity of goods or services that
customers will likely purchase in the future. The primary goal of demand forecasting
is to support effective planning and decision-making within businesses, enabling them
to optimize inventory levels, production schedules, pricing strategies, and resource al-
location. Consumer demand is a sequential data of customer demands over time and
therefore demand forecasting can be developed as a time series forecasting problem.
(Villegas and Pedregal, 2018)

Time series forecasting methods are categorized into two main types statistical and
computational intelligence methods. (Khashei and Bijari, 2011) ARIMA, a well-accepted
method in various fields, including economics, and finance, provides a flexible framework
to capture both short-term and long-term patterns in predicting time series data. Some
critical assumptions of ARIMA include stationarity, linearity, independence, normality,
as well as the absence of outliers. These assumptions have some limitations in some
data. Differencing time series can cause a loss of information. Nonlinear statistical
models such as general autoregressive conditional heteroscedastic (GARCH) have been
developed to bypass the linearity assumption.

Machine learning models including artificial neural networks (ANN), support vector
machine (SVM), and K-nearest neighbors (KNN) have been recently used for time series
prediction problems. Artificial neural networks, (ANN) computational models inspired
by the structure and functioning of the human brain, are designed to learn and recognize
patterns in data. It has several advantageous characteristics such as the ability to
capture nonlinear patterns, and not assume a specific probability distribution for the
input data. A specific type of ANNs is recurrent neural networks (RNNs). RNNs are
specifically designed to process sequential data. RNNs have a recurrent connection
that allows them to retain information from previous time steps and use it to influence
the processing of subsequent inputs. This makes it a suitable technique for processing
sequence data (Parmezan et al., 2019) Variations of RNN, such as LSTM (Long Short-
Term Memory) and GRU (Gated Recurrent Unit) networks were developed to overcome
an issue called ”vanishing gradient” that traditional RNNs suffer from. (Bengio et al.,
1994; Parmezan et al., 2019) Vanishing gradients restrict RNNs’ ability to capture long-
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term dependencies. To overcome this issue, variations of RNNs have been developed,
such as the LSTM (Long Short-Term Memory) (Hochreiter and Schmidhuber, 1997) and
GRU (Gated Recurrent Unit) networks, which integrate gating mechanisms to better
manage and retain information over longer sequences. (Wu et al., 2018; Xin et al., 2018)
Some related empirical work includes the following. Babu and Reddy (2014) proposed
a novel hybrid model of ARIMA and ANN that yields more accurate forecasting from
sunspot data, electricity price data, and stock market data. Sagheer and Kotb (2019)
utilized deep LSTM recurrent networks in petroleum production data.

Some models in Machine learning offer another relaxation of statistical assumption,
and does not rely on strong assumptions about the underlying data. Non-parametric
supervised learning algorithm such as decision tree are often used for classification and
regression problems. Ensemble method combines these multiple individual models and
make more accurate predictions than any single model, boosting overall performance.
A popular iterative ensemble method is Extreme Gradient Boosting (XGBoost) where
it creates a predictive model by combining multiple weak or base learners, typically de-
cision trees, where models are trained sequentially. Many practitioners and scholars use
ensemble methods for predictive modeling in diverse types of fields. Pesantez-Narvaez
et al. (2019) used logistic regression and XGBoost to predict the occurrence of accident
claims in motor insurance. Wang and Guo (2020) proposed a hybrid model with greater
predictive performance than of a single ARIMA model or a single XGBoost model in
predicting stock price in financial markets.
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3 Theoretical Background

This section is about methodology and discusses different methods in econometrics and
machine learning in forecasting retail demand.

3.1 ARIMA

ARIMA (Autoregressive Integrated Moving Average) is a popular time series economet-
ric method used for forecasting future values based on historical data. It is a combination
of three components: autoregression (AR), differencing (I), and moving average (MA).

Autoregression (AR): The autoregressive component of ARIMA focuses on the re-
lationship between an observation and a certain number of lagged observations. The
variable of interest is forecasted using a linear combination of past values of the vari-
able. (Hyndman and Athanasopoulos, 2018)

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt

Where εt is the error term, white noise. The order of autoregression, denoted as p,
represents the number of lagged observations used in the model.

Differencing (I): The differencing component of ARIMA is used to make the time
series stationary. (Kwiatkowski et al., 1992) Many time series models such as ARIMA
assume stationarity, and constant statistical properties over time, in data. Differencing
involves taking the difference between consecutive observations to remove trends and
seasonality which allows for constant mean, variance, and autocovariance.

y′t = yt − yt−1

The order of differencing, denoted as d, represents the number of times differenced
to obtain stationarity. Similar to the above equation, second-order differencing would
yield y′′t .

Moving Average (MA): The moving average component of ARIMA focuses on the
relationship between an observation and past forecast errors. It considers the effect of
previous error terms on the current value of the time series.

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

Where εt is the error term, white noise. The order of the moving average, denoted
as q, represents the number of lagged errors used in the model.

ARIMA model combines these three components (AR, I, MA) to capture patterns
and relationships in time series data.
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y′t = c+ ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt

The above equation outlines the ARIMA(p,d,q) model where p represents the order
of the autoregressive part, d the degree of differencing, and q the order of the moving
average part. The parameters (p, d, q) of the ARIMA model are estimated using
statistical techniques, and the model is then used to forecast future values based on the
observed past data.

Popular statistical techniques for ARIMA parameter determination are Maximum
likelihood estimation (MLE) and Information Criteria such as AIC and BIC. MLE finds
the values of the parameters that maximize the probability of obtaining the data that
we have observed minimizing the mean squared error term.

AIC = −2 log(L) + 2(p+ q + k + 1)

Where L is the likelihood of the data, and k = 1 if c ̸= 0 and k ̸= 0 if c = 0.
c represents the constant term in the ARIMA model. Akaike’s Information Criterion
(AIC) is helpful in determining the orders of ARIMA models. (Hurvich and Tsai, 1989)

AICc = AIC +
2(p+ q + k + 1)(p+ q + k + 2)

T − p− q − k − 2

Corrected AIC accounts for the number of parameters and sample size in the ARIMA
model.

BIC = AIC + [log(T )− 2](p+ q + k + 1)

Bayesian Information Criterion (BIC) is also a criterion for model selection amongst a
set of competing models. BIC evaluates the trade-off between model fit and complexity,
placing a stronger penalty on complex models which helps to prevent overfitting and
encourages the selection of a simpler model with less number of parameters. (Aho et al.,
2014)

3.2 LSTM

To understand LSTM, one needs to understand Recurrent Neural Network. (RNN)
RNN is a type of Artificial neural network with loops making information persist. It
imitates the structure of neural networks in the human brain and how it functions in
the following way. Human brains have persistent thoughts which affect understanding
of the next reasoning.

A, a neural network, takes in input xt and outputs a value ht with a loop allowing
information to persist and flow from one step to the next. An RNN can be viewed as
multiple copies of the same network, each passing a message to a network of the next
time step. This allows RNN to be well-suited for tasks that involve processing and
understanding sequential data allowing it to be used for a variety of tasks, including
sequence classification, language modeling, and speech recognition.

RNN however suffers from the problem of long-term dependencies. It works when
we only have to look at recent information to perform the present task. Sometimes,
however, information from further back as well as recent information are required to
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Figure 3.1: Recurrent Neural Networks

perform or predict the next task. When the relevant information is too many time steps
back from the point where it is needed to become very large, RNNs become unable to
learn to connect the information. (Bengio et al., 1994)

Long Short Term Memory networks were introduced to solve this problem of long-
term dependencies. (Hochreiter and Schmidhuber, 1997) They are designed to store and
remember information for long periods of time.

Figure 3.2: Structure of modules in an LSTM

LSTM has the structure of repeating modules of a neural network with four neural
network layers consisting of σ and tanh. (Olah, 2015) The horizontal line that goes
through the upper side of modules is called the cell state. Cell state allows information
to flow from each neural network module with information being added or removed
from structures called gates. Gates are composed of a sigmoid neural net layer that lets
additional information into cell state.

The first process in LSTM is a sigmoid layer called the ”forget gate” which decides
what information to disregard from the cell state.

ft = σ (Wf · [ht−1, xt] + bf )

The forget gate ft calculates the information to be preserved in Ct−1 using inputs
xt and ht−1 where xt and ht are input and output values

Next, LSTM updates new information to store it in the cell state. A sigmoid layer
called the “input gate layer” decides which value to update. A tanh layer then creates
a list of candidate values, C̃t possibly for the addition to the cell state.

it = σ (Wi · [ht−1, xt] + bi)
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C̃t = tanh (WC · [ht−1, xt] + bC)

These forget and input gates work together to update the old cell state into the new
cell state.

Ct = ft ∗ Ct−1 + it ∗ C̃t

The final step of the LSTM module is the output stage through the ”output gate”
consisting of both a sigmoid and a tanh layer. A sigmoid layer decides the parts of the
cell state to output. Then, the cell state goes through tanh outputting only the parts
that are designed to.

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

LSTM learns from the forward learning, steps that happen in LSTM modules and
produces outputs. It computes the error between the resulting data and the input data
of each layer. The computed error is then transmitted back to the input gate, cell, and
forget gate. Finally, the Optimization algorithm updates the weight of each gate based
on the error term.

3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a supervised learning algorithm frequently
used for regressions and classification problems. XGBoost is a gradient-boosted trees
algorithm which combines hundreds of decision tree models. It iteratively trains deci-
sion trees, where each subsequent tree improves on the mistakes made by the previous
trees. Time Series Forecasting can be modeled as a Supervised Learning Problem using
machine learning.

Before explaining ensemble methods and boosted tree algorithms, one should de-
scribe decision trees. A decision tree is a non-parametric supervised machine learning
algorithm for classification and regression problems. It is a tree-like model where each
internal node represents a test on an attribute, each branch represents the outcome of
the test, and each leaf node represents a class label or a numerical value. The decision
tree algorithm builds the tree by dividing the data based on the attribute that provides
the best split. This process continues until a stopping criterion is met.

Figure 3.3: Decision Tree Model
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Recursive partitioning, dividing data into smaller subsets based on conditions, is
the core concept behind the decision trees theory. The decision tree algorithm aims to
maximize the information gain or minimize the resulting subsets’ impurity. (Quinlan,
1986) There are three commonly used measures of impurity including entropy, Gini
index, and classification error.

At each internal node, the algorithm evaluates based on features different splitting
criteria calculating the impurity of the resulting subsets. The following measures of
impurity quantify the quality of the split.

Entropy measures uncertainty or randomness in a set of data. It quantifies the
average amount of information required to describe the sample.

H(S) = −
∑n

i=1 pi ∗ log (pi)

where p(i) represents the ratio of class i in set S

The Gini index is a measure of inequality in a sample with 1 being the highest
inequality and 0 being a perfectly equal sample.

Gini(S) = 1−
∑n

i=1 p
2
i

The classification error is also a simple measure of impurity. It calculates the error
rate in the subset.

Error(S) = 1−max pi

The decision tree algorithm uses measures of impurity to find the best split at each
node that leads to the greatest information gain or smallest impurity. This process is
repeated recursively for each resulting subset until a stopping criterion is met.

Popular decision tree algorithms include Classification and Regression Tree (CART),
ID3, CHAID, and C4.5. Each algorithm has its way of building decision trees based on
different strategies and criteria. CART minimizes Gini impurity to measure of impurity
a node in the tree based on the distribution of classes of the node. ID3 uses entropy,
the average amount of information or randomness in a set of class labels, for feature
classification. (Choi, 2017) CHAID utilizes chi-square tests to see if there is a statistical
significance between categorical features and the target variable, selecting the most
significant feature for splitting. (Rokach and Maimon, 2005) Lastly, C4.5 works similarly
to ID3 but then uses instead the Information Gain Ratio normalizing the information
gain by taking into account the intrinsic information of each feature. This reduces
bias. C4.5 also incorporates pruning techniques, removing certain branches or nodes, to
prevent the overfitting of trees and increase the accuracy of predictions on test data.

Figure 3.4: Example of regression tree with four terminal nodes

Combining multiple trees and creating a stronger and more accurate predictive model
is called ensemble methods. A popular ensemble method is XGBoost (eXtreme Gradient
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Boosting), an implementation of gradient boosting. Gradient boosting is a method that
combines weak learners sequentially, where each new learner is trained to reduce the
errors from previous trees. XGBoost introduced enhancements to better performance
and scalability.

The objective function, loss function and regularization, of XGBoost is the following.
(Chen and Guestrin, 2016)

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+Ω(ft)

where xi and yi are training sets, l the function of CART learners and consecutive
additive trees.

F0(x) = argmin
γ

n∑
i=1

L (yi, γ)

The objective function originates from the initial model. A tree is fitted to pseudo
residuals computed in the following way.

rim = −
[
∂L (yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n

Pseudo-residuals represent errors or discrepancies between the actual target values
and the predictions made by the current ensemble. This residual is fitted to a base
learner, hm(x).

ft(xi) = γhm(xi)

The function, ft, from the loss function can be expressed as the above equation where
γ is a constant multiplier. Individual model in the ensemble is trained to correct the
mistakes or errors made by the previous models. The new multiplier γm is calculated
by minimizing the loss function.

Fm(x) = Fm−1(x) + γmhm(x)

The model follows an iterative method where each new tree is fitted to the negative
gradient of the loss function. This then is multiplied by a constant and added to the value
from the previous iteration. XGBoost aims to minimize a specific loss function through
this iterative method. In a regression setting, mean squared error (MSE) typically serves
as a loss function.
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4 Data

This section provides an overview of the dataset utilized in the study. Then it delves into
the discussion of data handling as well as splitting of the datasets into train, validation,
and test sets for forecasting purposes.

4.1 Data sources

Walmart released a large set of actual sales data publicly for the M5 forecasting compe-
tition. The Makridakis Open Forecasting Center (MOFC) at the University of Nicosia
conducts cutting-edge forecasting research and is known for its Makridakis Competi-
tions. Its 5th occurrence provides hierarchical sales data from Walmart which covers
stores in three US States, California, Texas, and Wisconsin. The data includes item
level, department, product categories, and store details from one of the world’s largest
retail corporations. The dataset consists of 30490 household and food products from
7 departments in 10 different stores with daily sales ranging from 2011 to 2016. The
length of the data is 1913 daily observations. The large number of observations allows
for a fine time series model as the model has more observation than parameters in the
time series, as well as is long enough to capture the phenomena of interest accounting
for annual seasonality.

The dataset also consists of explanatory variables such as price, promotions, day of
the week, and special events. These additional master data are useful for retail sales
forecasting and can be used for features: a synonym for the independent variable in
machine learning. The dataset is organized in a Hierarchical structure where the data is
organized into nested levels: item, department, product category, as well as store levels.
This hierarchical structure enables the representation of complicated relationships and
dependencies within the data.

4.2 Data Selection

The output variable, also known as the dependent variable in statistics, is the total sales
for an item. Many series were examined to see if they serve as a good fit for demand
forecasting. The top 10 selling products were chosen for the series to be forecasted as
products in high demand are typically the ones that need effective demand planning.
Estimating future demand ensures that the right quantity of products is available at
the right time to meet customer demand. With the forecasts, businesses optimize their
inventory levels, production schedules, and supply chain operations to meet customer
needs and minimize any potential supply disruptions. Other series such as bottom 10
selling products, and random products, were analyzed as well, however, seemed to be
inadequate for time series analysis as many data points included zero sales.

The dataset is subsetted into training and test sets. The training set is used to
train or build predictive models. It contains a labeled dataset where the input variables
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(features) are paired with the corresponding output variable (target). The model learns
the patterns and relationships within the training data to make predictions. The data
was divided into one month for testing and the rest of the data to train our model. The
test set, the latest one-month period in the dataset, is used to evaluate the performance
of the trained model. The model makes predictions on the test set based on the patterns
it learned during training. The predicted outputs are compared with the actual values
from the test set to assess the model’s accuracy and performance. A popular method for
splitting the dataset into test and train sets is randomly splitting the dataset. However,
as the problem at hand is future retail sales forecasting, the last 100 days were selected
as the test set.

In addition to training and test sets, a validation set is typically used for model
development purposes to fine-tune parameters, select the best model architecture, or
make decisions about feature selection. 100 days prior to the test set were allocated
for the validation set. The validation set is independent of the test set to provide an
unbiased estimate of the model performance on new data. This ensures a more reliable
evaluation of the model’s performance on the test set and helps in selecting the optimal
model for deployment.
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5 Methodology

This section provides an overview of the overall methodology employed for time series
demand forecasting. Firstly, the methodology for the baseline model, ARIMA, is ex-
plained. Then, the methodology pertaining to machine learning models is described.
Ultimately, the overall methodology employed to compare the predictive performance of
the selected models is discussed.

5.1 Model Development

ARIMA model first uses ACF and PACF in identifying the parameters for modeling.
Then, Augmented-Dickey-Fuller (ADF) is used to determine if the time series is sta-
tionary or not. Series is differenced in the case that the series is not stationary. Akaike
information criteria (AIC) provides a more robust check on model criteria. It provides
accurate model identification in selecting the autoregressive (AR) order (p), the differ-
encing (I) order (d), and the moving average (MA) order (q).

For machine learning methods, data is divided into training, validation, and test
sets with features obtained from the feature importance method. LSTM design requires
defining the number of LSTM layers, the number of memory cells or units in each layer,
and the activation functions. LSTM model training involves forward and backward
propagation. The propagations adjust the model’s parameters using optimization algo-
rithms, Adam. XGBoost requires that the number of trees and other hyperparameters
is defined for its model design. The hyperparameters include tree depth and learning
rate.

5.2 Model Comparison

Forecasting predictions are compared to the actual sales data in the test set using various
accuracy measures: Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), and symmetric Mean Absolute Percentage Error (sMAPE).

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2

RMSE calculates the average magnitude of the differences between predicted and
actual values. RMSE provides an overall measure of forecasting error but is sensitive
to outliers and large errors. These appropriate metrics provide performance measures.
(Hita-Contreras et al., 2018)

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣
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MAPE measures the average percentage difference between predicted and actual
values. MAPE is commonly used in business forecasting and is useful for understanding
the relative magnitude of the forecasting error. MAPE has a limitation of becoming
infinite when the actual value is zero or close to zero.

SMAPE =
1

n

n∑
t=1

|ŷt − yt|
|ŷt|+|yt|

2

sMAPE is an alternative to MAPE which addresses the asymmetry in percentage
errors issue. sMAPE offers a symmetric measure of percentage error, making it suitable
for comparing forecasts of different scales.
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6 Results

This section presents the results of the study. It provides overview of the models de-
veloped. The prediction accuracy of each model is compared, and analysis of results is
presented.

6.1 ARIMA

The first stage of ARIMA model involes investigating if the time series is stationary,
or difference stationary. Of the ten sales series to be investigated, five were stationary.
Other time series were considered unsuitable for ARIMA modelling as either they ex-
hibited complex patterns including non-linear relationships between lagged dependent
variable, or non stationary time series. Some of these non stationary product sales expe-
rience demand shocks or periods of time with no sales. Model identification was executed
through analyzing the autocorrelation function (ACF) plots, and partial autocorrelation
function (PACF) plots to decide the order of autoregressive (AR) and moving average
(MA) components of the model.

Figure 6.1: ACF from ARIMA

Figure 6.2: PACF from ARIMA

For example, for a product series FOODS 3 252, ARIMA model of (0, 1, 1) was se-
lected based on ACF and PACF. The selection of 1 moving average parameters indicate
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that the time series depend on previous error term but 0 auto-regressive lag implies that
the demand for the product is not dependent on the previous daily demands. Following
this procedure, Akaike Information Criterion (AIC) is used to assess the model’s per-
formance. Finally, the model is used to generate forecasts for the last 100 days time
period.

Figure 6.3: Predicted forecasts on test data for ARIMA

6.2 LSTM

The first stage of LSTM analysis was the selection of features. Firstly, the model in-
corporates time components as features allowing it to capture the cyclic and seasonal
patterns that may exist in the data. Year, quarter, month, day of week were selected
as time component features. Following this, special events: Thanksgiving, Christmas,
independence day, NHL finals, as well as the three state categories were selected as
features. Finally, price of product in analysis were selected as a feature. Beginning of
a year generally saw more sales and the features allow the model to account for the
temporal aspect and improve the accuracy of predictions.

Last three months, 100 days, were split to be assigned to the test set. THe rest of the
data points were assigned to trasing set. LSTM looked at 28 time steps to look back in
the past for prediction. As the goal of the prediction is retail sales prediction in a month
period of time, the number of time steps is appropriate. LSTM uses this length of the
input sequence and the model processes the data in sequences of 28 consecutive data
points to determine the current time step. The LSTM network is defined with 1 LSTM
layer of 4 units (4 LSTM cells in the layer), with 1 dense output layer with one unit. 8
gives overview of the theory behind the LSTM model setting. The LSTM neural network
is then trained over multiple epochs, 10 with a batch size of 1. These hyperparameter in
neural network training affect the model performance and the training process. Epoch
determines the number of times the network iterate over the whole training dataset. The
batch size, on the other hand, refers to the number of smaller subsets that the model
can divide into for training of samples. Larger batch size improves training efficiency
while smaller batch sizes provides better generalization and prevents the model from
memorizing the training examples.

The results suggest that machine learning methods suggest more accurate prediction
capabilities than the more traditional econometric ARIMA approach. The machine
learning models provided similar accuracy results in comparison to each other with
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Figure 6.4: Predictions from LSTM and XGBoost

ARIMA LSTM XGBoost

item id RMSE MAPE SMAPE RMSE MAPE SMAPE RMSE MAPE SMAPE

FOODS 3 694 30.89 2448.52 11.64 21.47 1731.47 8.31 24.86 1861.96 8.84
HOBBIES 1 354 18.19 1403.73 21.58 12.26 990.71 17.70 10.23 833.40 15.63
FOODS 3 444 0.71 70.51 200.00 0.16 833.40 200
FOODS 3 555 35.74 2741.97 14.81 26.81 2153.17 9.32 34.97 2666.27 11.46
FOODS 3 252 60.98 3970.46 18.23 42.35 3321.58 11.63 45.65 3540.68 12.86
FOODS 3 587 38.32 3034.70 11.81 37.59 3069.07 12.73
FOODS 3 202 30.92 2171.78 11.54 84.03 6274.30 44.51
FOODS 3 090 99.53 7059.44 12.77 163.17 13551.83 27.44
FOODS 3 120 85.90 6181.77 63.81 123.04 10756.21 79.17
FOODS 3 586 73.59 5034.80 14.84 49.62 3775.59 9.13 44.51 3493.33 8.45

Table 6.1: Prediction Accuracy of Top Demand Products - Baseline

LSTM performing better in more product series than XGBoost. LSTM perform better
than XGBoost in six out of ten product series with RMSE as a metric. The comparison
improves, LSTM being more accurate in seven series, with SMAPE as the alternative
indicator of accuracy. Overall, the results are consistent with the anticipated outcomes
derived from theory and previous findings.

Our results also suggest that for retail forecasting where sales observe fluctuations,
including zero sales, machine learning methods are more useful for use of forecasting.
Even of the top demand products, only five series were stationary. ARIMA could not
be utilized in other series where they did not meet the assumption of stationary even
after differencing. LSTM can be used on unstationary data and is specifically designed
to handle sequences and time-dependent patterns, providing leniency in modeling and
predicting diverse time series data.

However, interpretation is a downside of machine learning methods compared to
ARIMA. While machine learning models are more accurate and effective in making pre-
dictions, econometric model ARIMA provides more interpretable results with explicit
relationships between variables based on statistical principles and assumptions. Inter-
pretability is important in academic research and business contexts where understanding
the causal relationships is important.
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LSTM

item id RMSE MAPE SMAPE

FOODS 3 694 21.78 1783.71 8.49
HOBBIES 1 354 11.07 909.55 16.53
FOODS 3 444 1.60 160.05 200.00
FOODS 3 555 27.08 2191.46 9.58
FOODS 3 252 42.67 3290.98 11.63
FOODS 3 587 40.73 3064.56 11.97
FOODS 3 202 30.73 2178.15 11.53
FOODS 3 090 126.09 10116.78 18.12
FOODS 3 120 86.96 6068.87 64.58
FOODS 3 586 49.06 3726.80 9.02

Table 6.2: LSTM model with 5 days ahead predictions

LSTM

item id RMSE MAPE SMAPE

FOODS 3 694 21.99 1861.99 8.93
HOBBIES 1 354 10.72 894.56 15.66
FOODS 3 444 2.25 225.11 200.00
FOODS 3 555 33.32 2742.20 12.08
FOODS 3 252 47.79 3464.27 12.24
FOODS 3 587 42.44 3536.49 13.39
FOODS 3 202 31.17 2205.67 11.78
FOODS 3 090 117.53 8315.68 15.22
FOODS 3 120 99.23 6848.86 87.82
FOODS 3 586 53.54 4203.36 10.06

Table 6.3: LSTM model with 25 days ahead predictions

Further exploration is done with LSTM model to compare prediction accuracies.
Different number of days ahead for predictions are attempt. LSTM uses a window size
to predict the next day retail sales. However, it is quite likely that businesses seek to
predict in advance. Different number of days ahead, 5 days, and 25 days are used for
analysis. This resulted in loss of accuracy in general and is intuitively clear. As the
forecasting horizon extends further into the future, more potential factors influence the
outcome, making it harder to accurately capture all the variables and their interactions.
Long-term predictions depend on complexity of the underlying patterns in the historical
data. The inherent uncertainty associated with long-term predictions makes them more
challenging and less precise.

6.3 XGBoost

Feature selection was identical to that of the LSTM model for the XGBoost model. The
eXtreme Gradient Boosting uses 200 decision trees during the training process with the
maximum depth of each decision tree being 6 nodes. Optimal hyperparameter values
vary on the dataset and problem at hand. The parameter tuning process helps improve
the performance of the models. The forecasting results are given in Table 6.1.
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7 Discussion

A notable constraint in many time series studies is that the models are only tested on
one series. This is a common scenario in time series studies, particularly when analyzing
macroeconomic variables that lack the same level of detail as individual products. In this
particular study, multiple products were examined within a specific time period, allowing
further exploration and validation of the findings through replication and extension.

Furthermore, the study’s modeling process prioritized a ”fair assessment” of the mod-
els by adhering to a general methodology, potentially leading to the selection of models
with suboptimal specifications. The general methodology employed grid-search algo-
rithms to choose hyperparameters from pre-set ”rule of thumb” values. These choices
made by the researchers encompassed both the selection of possible hyperparameter val-
ues and the hyperparameters themselves. However, it is worth noting that these ”rule of
thumb” choices may not have included the optimal values, which could have influenced
the final results rather than solely relying on the models’ inherent capabilities.

In practice, a researcher utilizing a single model could iterate and refine the model
by revisiting the parameter choices after validation rounds to further optimize its per-
formance. However, since the study aimed to compare multiple models, this agile ap-
proach was deliberately avoided to maintain a ”fair” assessment for each model. This
highlights a drawback of machine learning methods, as their flexibility allows for the
creation of well-constructed models but also poses challenges in determining the opti-
mal specifications for a given study. This is where the widely recommended technique
of cross-validation can offer significant value.

Another drawback of machine learning methods is their inability to provide sta-
tistically stable confidence intervals for predictions. (Shrestha and Solomatine, 2006)
Confidence intervals hold significant value in business applications, particularly in sup-
ply chain forecasting for physical goods. (Dalrymple, 1987) Businesses dealing with
physical goods typically prefer to make inventory decisions based on the confidence in-
tervals of demand forecasts to ensure sufficient inventory levels. While this study focuses
on a product without concerns to inventory, it is crucial to consider this limitation when
applying these methods to analyze the demand for physical goods.

The findings of the study suggest that machine learning methods have the potential
to add value to demand forecasting efforts. Additionally, the findings imply that the
demand for these products follows a discernible pattern, potentially resembling a product
life cycle. This insight could serve as a starting point for validating product life cycles
across products within the retail industry.

The lack of consensus extends beyond modeling approaches to the broader use of
machine learning for prediction purposes. As highlighted in the study, there are no
strict recommendations on which models consistently outperform others in general. As
machine learning gains prominence in economics literature, it becomes crucial for re-
search to continue exploring the strengths and limitations of these models. The results
of this study contribute additional evidence to the ongoing research into this question.
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Future studies should continue applying different models to diverse time series to shed
light on the limitations of different methods in various use cases. The study examined a
demand series related to a physical good. Further research can be done on series related
to non-physical good such as services.
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8 Conclusion

In this study, we provide additional evidence to the demand forecasting literature by
comparing econometric methods to machine learning approaches. The neural network
model LSTM and tree-based model XGBoost are compared with the baseline model
ARIMA. These models were employed in multiple product-level time series to forecast
its daily sales. The study evaluates the performance of these methods and compares
their effectiveness in capturing and predicting demand patterns.

Overall, compared to the benchmark ARMIMA model, the machine learning mod-
els showed higher forecasting accuracy. With retail product level data being highly
fluctuating and inconsistent, nonlinearity assumptions in machine learning approaches
were beneficial. Both of the machine learning models achieved a similar magnitude
of accuracy. LSTM achieved slightly higher performance in more product series than
XGBoost.

In this study multiple time series were analyzed allowing for higher scope. Many
time series studies involve examination of single time series puts a several constraint
the research. By exploring many product level time series, the study lift those typical
constraints: limited variability, lack of generalizability, incomplete understanding of data
characteristics, lack of bench marking, and limited insights into broader trends.

The results of the study demonstrated that each method has its strengths and weak-
nesses in retail demand forecasting. ARIMA, a traditional time series model, struggled
with data with non-linear and non-stationary patterns. LSTM, a deep learning model
designed for sequential data, showed superior performance in understanding complex
temporal dependencies and non-linear patterns. XGBoost, a gradient boosting algo-
rithm, demonstrated robustness in handling diverse features and capturing both linear
and non-linear relationships.

Overall, this research contributes to the understanding of the strengths and limi-
tations of ARIMA, LSTM, and XGBoost in economic forecasting. It provides insights
into forecasting tools and methods that econometricians and practitioners can apply
in the field of demand planning and other. Future research should continue to utilize
modern tools in applied economic problems and attempt to shed light on improving
interpretability of machine learning methods.
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A Appendix

Figure A.1: Example autocorrelation for product series

Figure A.2: Example First differenced autocorrelation for product series
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Figure A.3: Feature importance for ML models

Figure A.4: Feature importance for ML models
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Figure A.5: Example ARIMA output
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