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1 Introduction

Climate change is one of the biggest threats modern humans have ever faced. The
accumulation of greenhouse gases in the atmosphere, primarily from the burning of
fossil fuels, is causing the Earth’s temperature to rise at an alarming rate, leading to
widespread environmental and social damages (IPCC, 2022). Investments in renewable
energy sources, such as wind energy, have emerged as a promising path forward by offering
a clean, import-independent, and renewable source of electricity. As such, wind power
deployment has become a critical tool in the transition toward a more sustainable and
resilient energy system. For instance, the International Energy Agency state that global
wind power generation should more than quadruple from 2021 to 2030 to align with the
Paris Agreement (IEA, 2022).

While benefits from wind energy investments – in the form of energy security and
climate change mitigation – accrue mostly on national and global levels, the local level
experience both positive and negative impacts, many of which are economic. On the
positive side, wind energy provides gross additions in local job opportunities, local tax
revenues, and income to landowners and investors. On the negative side, workers in
other sectors could be displaced, and negative externalities can arise – including visual
disamenities and sound pollution – which could reduce nearby property values (Dröes
and Koster, 2021). These local economic effects are imperative in influencing the local
attitudes toward new wind power projects (Slattery, Johnson, et al., 2012; Mulvaney,
Woodson, and Prokopy, 2013; Caporale and De Lucia, 2015) and, through this, local
policies, and regulatory permissions. Thus, local economic benefits can be a political
prerequisite and a moral condition1 for reaching energy security and climate abatement
targets. Consequently, the question arises to what extent the local communities are
positively or negatively affected by new wind power investments.

To this end, this thesis analyzes the local economic impacts of wind power deployment,
with the hope of better equipping policymakers and individuals to make informed decisions
about the just and sustainable energy transition. Specifically, it aims to quantify the net
labor market effects of wind power investments at the municipal level in Sweden. This
is accomplished using a difference-in-differences (DiD) model with considerations taken
to the growing literature on the validity of DiD models under heterogeneous treatment
effects. Additionally, a local projections (LP-DiD) model is used.

Focusing on the labor market to assess the economic potential of wind energy is bene-
ficial for three main reasons. First, local job opportunities are a highly politicized subject
with a significant impact on affected individuals. Second, the labor market is naturally
correlated with other indicators of economic development, such as private income, public
expenditure, and GDP. Lastly, empirical information on the labor market is rich, enabling
a detailed dynamic analysis of economic development and wind energy investments. Swe-
den is chosen because of its high penetration of wind capacity, with the largest capacity
per capita in the EU and top four in absolute terms (Eurostat, 2023a; Eurostat, 2023e).

Little research has been conducted in this area. Besides guidance from a few related
papers, decision-makers are left with estimates on the gross added jobs from exemplary

1Needless to say, the moral aspects of the green energy transition cover more groups than local commu-
nities, particularly related to the plethora of damages caused by climate change.

4



or specific projects. These gross estimates disregard the indirect effects of wind power
investments, such as multiplier effects in the labor market and job losses in other sectors.
With an ex-post empirical analysis, the total aggregate outcomes – the net effects – can
be estimated. Although such methods have previously been used on similar research
questions, this thesis fills a gap in the current literature. Notably, there is no previous
research on a northern European country in this context. Moreover, previous literature has
used various econometric models. Therefore, by applying two empirical methodologies
for Sweden, I can assess the external validity of the previous literature and examine the
extent to which the results are sensitive to the choice of empirical strategy.

The empirical analysis covers the period 2003-2022, the period when virtually all of
the uptake of wind power has taken place. The data on wind projects is collected from
the Swedish Energy Agency and County Administrative Boards of Sweden (2023). The
labor market effects are proxied by the changes in monthly unemployment at the municipal
level, both aggregate and stratified by a range of socioeconomic categories. The data on
unemployment comes from the Swedish Public Employment Service (2023).

The results show that wind energy investments in Sweden have decreased local un-
employment by an average of 0.74-2.66 persons per Megawatt (MW)2 for multiple years
after the installation date. For a median-sized wind power project in a municipality with a
median-sized unemployment level, this corresponds to a reduction in unemployment levels
by 3.7-13.3 persons, or 0.33%-1.2%. Contrary to previous literature, which finds that the
impact peaks during construction, this paper finds a growing effect during construction
that then plateaus after the installation date. The results also show that the effects are
dynamic over time. All models, sample restrictions, and other robustness tests tell similar
stories, although with slightly different magnitudes. Among the analyzed socioeconomic
categories (sex, education level, age groups, and country of origin), men and those with
lower levels of education gain comparatively more on average from local wind power
investments. Moreover, there is no indication of negative effects on the nearby munici-
palities. On the contrary, a spatial analysis shows that unemployment is slightly reduced
in municipalities that receive a wind turbine within ten kilometers outside its border. The
spillover effects do not appear for larger distances.

The paper is organized as follows. Following this introduction, section 2 provides a
background on the Swedish electricity market, and wind power development in Sweden.
Section 3 briefly describes the Swedish labor market and the channels through which wind
power development can affect the labor market. Then, section 4 outlines previous related
literature. The empirical strategy is explained in section 5, and the data is described in
section 6. Section 7 provides the empirical results. In section 8, the results are discussed,
and section 9 concludes.

2For reference, a utility-scale onshore wind turbine typically holds a capacity of 2-4 MW.
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2 Background

To enhance the understanding of the determinants of wind power deployment over space
and time, this section describes the historical and current situation for wind power in
Sweden with regard to policy development, the permission process, the structure of the
power market, and public attitudes.

2.1 A brief overview of the Swedish power market
The Swedish wholesale power market was deregulated in 1996 and has since been increas-
ingly integrated with the European energy market (Ei, 2023b). Electricity is predominantly
traded on the day-ahead auctions with marginal pricing (pay-as-bid) (EPEX SPOT, 2023).
Since renewable energy sources have minuscule marginal costs, wind power deployment
decreases wholesale electricity prices (Cevik and Ninomiya, 2022; Antweiler and Mues-
gens, 2021), although large-scale integration could increase system costs and hence tariffs
(Eicke, Eicke, and Hafner, 2022). In 2011, Sweden was split into four bidding zones in
order to provide better price signals and make flows more efficient (Ei, 2023a). In short, a
bidding zone is the geographical market area in which the market clearing price is deter-
mined.1 Prices normally increase from north to south since there is typically an oversupply
in the north and undersupply in the south (Ei, 2023b). The bidding zone reform created a
relative increase in wind power investments in the under-supplied southern bidding zones
(Lundin, 2022).

2.2 Wind power development in Sweden
Sweden has a long-standing tradition of utilizing renewable energy sources thanks to the
numerous rivers in its northern parts. This hydropower, together with the expansion of
nuclear reactors in the south, has enabled a low-carbon electricity mix with low exposure
to global fossil fuel price volatility since the 1980s. Wind turbines started to be deployed
in small numbers at the beginning of the 1990s. Since then, it has grown from 0.3%
of electricity production in the year 2000 to 2.4% in 2010 and 17.1% in 2020 (Eurostat,
2023c). This development has been driven by, inter alia, a global reduction in manu-
facturing cost due to economies of scale (IRENA, 2022) and a competitive advantage
in geographic conditions, including long coastal regions and land availability. Due to
technological improvements, there has been a trend towards more turbines per wind park
and bigger turbines overall (Swedish Energy Agency and County Administrative Boards
of Sweden, 2023). Relative to other EU member states, as of 2021, Sweden has the largest
onshore wind generation capacity per capita, the fourth largest in absolute terms (following
Germany, Spain, and France), and the fourth largest relative to GDP (following Greece,
Portugal, and Spain) (Eurostat, 2023a; Eurostat, 2023b; Eurostat, 2023e).

Despite a common energy policy framework, wind power development has not been
uniform across Sweden, both within regions and across regions. Figure 2.1 illustrates

1The bidding zone delineations are shown in figure B.1
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Figure 2.1: Wind power capacity per bidding zone

the number of turbines and cumulative capacity for the bidding zones.2 Initially, mostly
solitary wind turbines were deployed and were concentrated in southern Sweden (gray
lines; SE3 and SE4). The two northern bidding zones (colored; SE1 and SE2) started
to catch up in the 2010s and exceeded the capacity of the southern bidding zones in
2019 (Swedish Energy Agency and County Administrative Boards of Sweden, 2023).
This is mostly due to a few large projects in northern Sweden exceeding hundreds of
megawatts in total capacity. Notably, the Markbygden wind park in Piteå currently has an
installed capacity of 1.2 GW (Swedish Energy Agency and County Administrative Boards
of Sweden, 2023) and could reach up to 4 GW in 2024 – making it the largest onshore
wind power park in Europe (Svevind, 2021). The inter-regional differences could be due
to several factors, including wind resources, land availability, land ownership structure,
and electricity prices (Lundin, 2022).

Intra-regional differences are also present, with some municipalities having no wind
turbines in counties with otherwise high wind power development.3 Figure 2.2 illustrates
how wind turbines are scattered unevenly across municipalities. The municipal-level
differences could be due to geography, demography, and economy, even relative to neigh-
boring municipalities. Two research papers have analyzed the determinants of the location
of wind power investment across municipalities in Sweden. Uncontested significant deter-
minants include population density, wind speed, land area, previously installed capacity
("experience"), and if the municipality contains a national interest area or protected area
(Ek et al., 2013; Lauf et al., 2020). Attitudes – proxied by whether the Swedish green
party is part of the local government (Lauf et al., 2020) and an environmental index
(Ek et al., 2013) – is not found to affect wind power investment location.4 The binary
population trend is also insignificant (Ek et al., 2013). Most importantly, unemployment
is not found to determine wind power investments in Swedish municipalities (Ek et al.,
2013; Lauf et al., 2020). Using a simple regression on added wind capacity with lagged

21 Gigawatt (GW) = 1000 Megawatt (MW) = 1 000 000 kilowatt (kW). Note that numbers expressed
in watts always refer to the capacity of a generator, as opposed to energy (measured in, e.g., watt-hours,
abbreviated Wh.)

3Sweden has 290 municipalities and 21 counties.
4More accurate proxies for attitudes, such as opinion polls, are not available on the month-municipality

level.
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(a) 2010 (b) 2022

Figure 2.2: Map over Swedish wind turbines
The symbols represent all wind turbines up until 2010 and 2022, respectively. The size of the

circles represents the capacity of each turbine. Borders represent municipalities. Map created by
the author with data from the Swedish Energy Agency and County Administrative Boards of

Sweden (2023).

unemployment per capita, table 2.1 show that the same conclusions can be drawn from
this paper’s data set.

Wind turbines typically have lifespans of around 20-30 years (IRENA, 2012; Swedish
Energy Agency, 2022c). Thus, because of the late development of wind power in Sweden –
compared to, e.g., Denmark – few turbines have been decommissioned. Of the 13 200 MW
installed onshore wind capacity ever installed, only 70 MW have been decommissioned
(Swedish Energy Agency, 2022b). Moreover, this paper disregards offshore wind power
since Sweden only has five active offshore wind parks with a total capacity of 220 MW –
despite access to lakes, the Baltic Sea, Skagerrak, and Kattegat (Swedish Energy Agency
and County Administrative Boards of Sweden, 2023). The last project, Vänern, was
finished in 2013. In contrast, since 2013, the offshore wind industry has expanded vastly
elsewhere in the EU; with a 650% increase in offshore wind capacity, compared to a
75% increase in onshore capacity (Eurostat, 2023a). Considering the different labor
requirements of offshore wind, the dominant position of onshore technologies facilitates
identification for Sweden with less heterogeneous treatment effects.

2.2.1 Permission process
Wind power developments are restricted in several ways besides geographical precondi-
tions, which could further explain differences in wind power deployment across municipal-
ities. The following physical, regulatory, and political requirements apply to utility-scale
onshore wind turbine projects.

First, the developer must be able to purchase or lease necessary land, including ac-
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Table 2.1: Added wind power capacity from past unemployment per capita

Added capacity per capita𝑖,𝑡
h = 36 48 60

𝑢𝑛𝑒𝑚𝑝𝑖,𝑡−ℎ (×103) -0.109 0.046 -0.037
(0.577) (0.838) (0.902)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−ℎ−36 (×10−6) -0.022 -0.028 -0.026
(0.082) (0.051) (0.148)

Observations 58717 55261 51805
𝑅2 0.005 0.005 0.005
Municipalities 288 288 288
p-values in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

The effect from past unemployment per capita (3, 4, and 5 years) on added capacity. Absolute
unemployment and added capacity are normalized by population in December 2002. Time- and
municipality-fixed effects included. Wind capacity data retrieved from Swedish Energy Agency and
County Administrative Boards of Sweden (2023).

cess to (new) roads (Swedish Energy Agency, 2022a). Access to the electricity grid is
also necessary and is subject to a permit process, administrative fees, and construction
charges. The processing time and charges depend on various factors, notably the voltage
requirements and distance to the nearest suitable grid access point (Svenska Kraftnät,
2021). For smaller projects, the distribution system operators (DSOs)5 could have slightly
different lead times and fees associated with grid connection, thus creating some regional
differences.

Second, national regulation requires compliance with, inter alia, environmental pro-
tection, cultural heritage protection, biodiversity protection, military interests, aviation
security, and human health (Swedish Energy Agency, 2020a). The requirements differ de-
pending on the size of the project. Except for areas specifically protected by, for example,
military interest, the regulation is largely the same across Sweden. In the early planning
stage, wind developers can prospect the likelihood of obtaining necessary permits with
guidance from municipal layout plans (Boverket, 2022) and the list of areas of national
interest for wind energy (NIWAs) defined by the Swedish Energy Agency (2022a), both
of which indicate areas with particular suitability for wind power development.

Lastly, local political support is beneficial for small and medium-sized projects, and
de facto necessary for large projects. Local governments can facilitate or hinder new wind
power projects in their municipality. For instance, although not legally binding, the layout
plan can be crafted to send positive or negative signals to investors (Boverket, 2016).
Moreover, large projects (and certain smaller projects) must also obtain an endorsement
from the municipality (Swedish Energy Agency, 2020b). This is sometimes referred to as
the "municipal veto". The municipal executive board is allowed to decide freely and does

5The approximately 170 Swedish DSOs operate the electricity distribution under monopoly within their
geographical area, typically encompassing one or two municipalities. They have some leeway in, e.g., tariff
decisions, but operate under the limits deemed reasonable by the national regulatory authority, Ei.
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not have to explicitly motivate the decision (Swedish Energy Agency, 2022d). Moreover,
an initial endorsement can be retracted in later stages.

If permits are successfully obtained, the construction phase then lasts for one to three
years, depending on the size of the project (Swedish Energy Agency, 2022c). The lead
time from early planning until the permission process is concluded takes several years and
varies across projects.

To understand how political support affects wind power development in a given mu-
nicipality, one should also analyze the public perception toward wind power. The overall
support for wind power in Sweden is large, with slightly higher approval rates among
women, urban residents, highly educated people, and people who identify as left-wing or
vote for the Left Party, the Green Party, the Swedish Social Democratic Party, and the
Center Party (Jönsson, 2022). Over time, rural inhabitants have grown less supportive of
wind power expansion, while the opposite is true for urban inhabitants (Jönsson, 2022).
The negative trend dominates on the aggregate. These general attitudes are likely to in-
fluence energy policies on the national level. For the municipal level, on the other hand,
attitudes toward nearby wind power expansion are likely to be more important. Here, vot-
ers are less inclined to favor wind power expansion close to their homes, with a long-term
negative trend (with the same socioeconomic, ideological, and urban/rural differences)
(Jönsson, 2022). Thus, wind power sentiments are characterized by NIMBYism ("Not In
My Backyard"). The local resistance has occasionally mobilized and put pressure on local
politicians. On four occasions, municipalities have held guiding referendums on wind
power projects, all of which ended up unfavorable of the projects (Skurup Municipality,
2022; Malung-Sälen Municipality, 2022; Söderhamn Municipality, 2022).

Altogether, regulatory restrictions and the municipal veto add to the geographical
restrictions on suitable locations for wind power investments, with noticeable differences
in wind power development across regions and municipalities. Failing to obtain the
municipal endorsement is the main reason for the rejection of a wind power project
(Swedish Energy Agency, 2022d) – reflecting the NIMBYism mentioned above. It is
somewhat more difficult in the southern bidding zones (SE3 and SE4), and there is a slight
overall trend towards fewer endorsements over time, similar to the trend in public attitudes
(Swedish Energy Agency, 2022d).
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3 Theoretical framework

Sweden has a relatively high unemployment rate compared to other EU member states. In
December 2022 (December 2003), the national unemployment rate was 7.23% (6.5%), and
the labor force was 69.3% (65.25%) of ages 15-75 (Statistics Sweden, 2023a). Numerous
factors have influenced these unemployment figures at the aggregate level, including
business cycles, inflation rates, matching, public policies, and capital investments such as
wind power deployment.

As an economy receives such capital expansion, the labor market can be affected in
many ways. To enhance the interpretation of the empirical results, this section briefly
discusses how wind power investments could impact the local labor market.

3.1 Direct effects
The direct effects of wind power investments on the local labor market are determined by
two factors: the total labor requirement and the share of locally employed workers. Both
factors are dynamic within and between the short-run (construction and installation) and
the long-run (operation and maintenance; O&M).1

Wind turbines are more labor-intensive than traditional energy facilities (Luciani,
2022). However, as with many renewable energy sources, while the manufacturing and
installation of wind turbines are labor intensive, generating electricity from wind turbines
is more capital-intensive (Luciani, 2022). For instance, the construction of wind turbines
includes land scraping, road construction, transportation, and other highly labor-intensive
activities. After the wind turbines are connected to the grid, they only need to be operated
and receive occasional maintenance (and, at some point, be decommissioned).

For a typical Swedish wind power park, the Swedish Energy Agency (2022c) estimates
that 331 person-years are required during construction and 372 person-years during oper-
ation. Since the O&M period is around ten times longer, the number of annual gross job
additions is lower during O&M. The shifting labor requirements indicate that the most
prominent direct labor market effects arise during the construction period. However, the
Swedish Energy Agency (2022c) also estimates that only 45% of the construction jobs
are sourced locally, compared to 92% for O&M. In other words, construction is more
labor-intensive than O&M, but the share of local workers is higher during O&M.

3.2 Indirect effects
To adequately estimate a wind power project’s local economic development potential, one
should also account for the indirect effects. Wind energy investments can have negative
effects on other activities, crowding out sectors such as agriculture and tourism (Broekel
and Alfken, 2015). Likewise, when the clean energy transition is driven by environmental

1In addition, jobs are created during the technological development (engineers, investors) and permission
process (law, marketing). This work is assumed to be marginal and conducted by firms in other municipalities
or countries.
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policies, the policies can have simultaneous adverse effects on fossil-fuel industries (Curtis,
2018; Walker, 2012; Greenstone, 2002; Hafstead and Williams, 2018; Dorrell and Lee,
2020). Additionally, wind energy is associated with negative externalities, such as visual
disamenities and sound pollution, with some studies finding adverse effects on property
values (Dröes and Koster, 2021; Westlund and Wilhelmsson, 2022). This can affect the
desire of people to live, visit or work in the community, which in turn affects consumer
spending and tax revenues (Brown et al., 2012).2

On the other hand, wind investments can have positive indirect effects on local eco-
nomic development. In particular, it can cause a higher local aggregated demand from
additional revenues to the local government, contractors, land owners, and the owners
(when the owner is located in the same municipality as the power plant). Moreover,
positive externalities, such as the perception of a municipality’s degree of sustainability,
could attract residents, commuters, and further investments to the municipality (Brown
et al., 2012).

2To the extent that wind energy can be compared to traditional natural resources, the resource curse
hypothesis suggests that the net effects could even be negative. For an overview, see Aragón and Chuhan-Pole
(2015), Cust and Poelhekke (2014), and Van Der Ploeg and Poelhekke (2017)
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4 Previous literature

Several assessments of the economic impacts of wind power deployment have been con-
ducted over the last two decades. The geographical unit of analysis range from direct
adjacency effects to local, regional, and national-level effects. Outcome variables of inter-
est include GDP, public finances, private income, migration flows, other sectors’ revenues,
and house prices. The results are at times inconclusive – reflecting the identification chal-
lenges associated with these research questions – but tend to indicate minor positive effects
from wind power on economic development. Only a few papers share the same research
objective as this one, namely estimating the labor market effects from wind energy invest-
ments. Two different methodological categories dominate, namely Input-Output Models
and ex-post econometrics analyses. The latter is used in the paper.

4.1 Input-Output Models
Input-Output (I-O) models are frequently used for forecasts and estimations of the eco-
nomic effects of new investments and facilities. Although one can incorporate and disen-
tangle the indirect and induced effects to a certain extent, the entire net effects cannot be
captured (Brown et al., 2012). Moreover, the results often hinge upon assumptions on pa-
rameters that are associated with within-model heterogeneity and uncertainties (Lambert
and Silva, 2012). Nevertheless, a brief overview is merited.1

Papers using Input-Output models find net job additions in the range of around 1-2
jobs per megawatt (MW) during construction and 0.06-0.6 jobs per MW during operation
and maintenance (Slattery, Lantz, and Johnson, 2011; Williams et al., 2008; Reategui
and Hendrickson, 2011; Zwaan, Cameron, and Kober, 2013; Ejdemo and Söderholm,
2015). Ejdemo and Söderholm (2015) provide the only labor market estimate for the same
geographical region of analysis as this paper, as they conduct a county-level Input-Output
analysis over the large wind power project of Markbygden in northern Sweden. They find
employment effects in the lower range compared to I-O studies on other regions (predom-
inantly the U.S.), with an increase of 0.8 jobs per MW during the construction phase and
0.0175 jobs per MW during the operation phase. They point towards the relatively high
levels of inter-county commuting in northern Sweden as a potential explanation for the
low effects.

4.2 Ex-post econometric estimates
The remaining part of this literature review focuses on papers sharing the overarching
methodology and aim as this one, namely ex-post econometric analyses of local labor
market effects. These papers cover the US (Brown et al., 2012; De Silva, McComb, and
Schiller, 2016; Brunner and Schwegman, 2022; Shoeib, Renski, and Hamin Infield, 2022)

1For an extensive overview of the literature using Input-Output models for the assessment of economic
development from wind power projects, see Brown et al. (2012), Ejdemo and Söderholm (2015), Slattery,
Lantz, and Johnson (2011), and Aldieri et al. (2019).
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and the Iberian peninsula (Spain (Fabra et al., 2023; Duarte et al., 2022) and Portugal
(Costa and Veiga, 2021)) with mixed results for both regions. Over time, the literature has
departed from a strict focus on the long-term impacts to focusing (at times exclusively) on
the short-term impacts. Temporal heterogeneity, spatial spillovers, and the distribution of
impacts over age, sex, skill level, sector, and urbanization are also considered.

The results are difficult to compare across papers since they use different metrics.
Explanatory variables include added capacity and accumulated capacity, in absolute terms
or per capita normalizations of various forms. Outcome variables include unemployment
rates, net job additions, and added person-years. Throughout this section, the effects
on the absolute number of jobs will be expressed in MW (per capita). In contrast, the
percentage point change in (un)employment rates will be expressed in kW (per capita) to
avoid unnecessary decimals. I present the results as they are presented by the authors, as
the units are not easily transformed without access to input data.

In possibly the first econometric assessment, Brown et al. (2012) study counties in
a wind-rich region in the US between 2000 and 2008. They find that each MW per
capita in operation was associated with 0.5 additional jobs per capita or a 0.4% increase
in employment for the median county with wind power over this period (Brown et al.,
2012). For Texas over 2001-2011, De Silva, McComb, and Schiller (2016) find no overall
employment effect. These two papers use a first-difference two-period model, comparing
the first and last year of their sample period. Thus, they only capture the permanent impact
of wind turbines on employment, associating the cumulative capacity to the labor market
indicator while controlling for several variables. The main advantage of this methodology
is that the absence of a temporal dimension allows the researchers to instrument the wind
power deployment with arguably the only relevant and exogenous instrument; namely
"wind energy potential", reflecting wind conditions and topology. Since this variable is
time-invariant, it cannot be used in regular panel data models with fixed effects. However,
the two-period first-difference model requires assumptions of constant treatment effects
as it is a weighted average of newer installations, older installations, and unobserved
turbines under construction. Moreover, it does not utilize the temporal variation in the
data, yielding low statistical power with the number of observations equal to the number
of counties or municipalities.

As described in section 3, the labor-intensiveness for wind turbines is typically much
higher during construction than during operation and maintenance (O&M). For Portugal,
this is confirmed by Costa and Veiga (2021), with annual data over 1997-2017. The
authors use a staggered difference-in-difference model while controlling for demographic
changes, GDP growth, and municipal spending. Three independent variables capture the
post-opening effect (cumulative capacity) and the two last years of construction (two lags
of the added capacity), respectively. During the construction phase (two years prior to
installation), unemployment is reduced by 0.6-0.8 percentage points per KW per capita,
or around 0.39-0.55 jobs per MW per capita (Costa and Veiga, 2021). Unemployed men
and those with a low education level gain even more. In the long run, they find no
overall effect but show that workers with a university degree experience a slight decrease
in unemployment – reflecting that some part of the high-skill O&M requirements is met
locally in Portugal (Costa and Veiga, 2021).

For the U.S., Brunner and Schwegman (2022) adopt an event-study design as well as a
staggered difference-in-difference model with the cumulative capacity and lagged cumu-
lative capacity as independent variables. They also distinguish between the construction
and O&M phases but find no significant effects on total employment in either phase. Brun-
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ner and Schwegman (2022) also find that the long-term composition of the labor market
is changed; the share of employment consisting of farming decreases (−0.2%) while it
increases for the manufacturing sector (+1.3%) and the construction sector (+0.7%). This
inter-industry effect is greater for rural counties than for urban countries (Brunner and
Schwegman, 2022). Shoeib, Renski, and Hamin Infield (2022) also explore the impact
heterogeneity between rural and urban U.S. counties using a similar method. While they
find a small positive long-term employment impact from wind power investments overall,
this effect disappears when only including rural counties.

In a study on Spain, Fabra et al. (2023) not only separate between construction and
maintenance (O&M), but also between employment and unemployment effects. In their
framework, employment captures the number of jobs created by local firms (which are
not necessarily filled by local workers), while unemployment reflects the changes in
local employment level and the size of the local workforce. Thus, any difference indicates
changes in migration or commuting, i.e., spillovers to other municipalities. A rich dynamic
analysis is enabled with the use of monthly data and a local projection model (all the above-
mentioned papers use annual data). With a local projections model, the O&M effects are
limited by the length of the future horizon, which Fabra et al. (2023) set to one year. They
find no employment effects and only small unemployment effects; −0.19 percentage points
(p.p.) during construction and −0.35 p.p. during O&M per KW per capita (Fabra et al.,
2023). The largest gains during construction accrue to unemployed men, especially those
aged 25-45. During the maintenance phase, the unemployment results are more evenly
distributed across gender and age, although the effects are small for all groups (Fabra
et al., 2023). The most affected sectors are services, industry, and construction (Fabra
et al., 2023). Fabra et al. (2023) note that the overall unemployment impacts are largely
insignificant when accounting for potential biases arising from staggered DiD designs.
Duarte et al. (2022) find similar results using a synthetic control method over Aragon,
Spain.

Furthermore, Costa and Veiga (2021) assess the labor market impacts from wind power
investments in neighboring municipalities, defined by a weighted distance decay matrix
calculated from the municipalities’ center, with cut-offs at 30km, 50km, and 100km,
respectively. Indeed, they find large and positive unemployment impacts (−0.17 p.p.
per KW per capita) from construction in close-by neighboring counties (<30km). The
insignificant effects from the larger cut-offs are explained by the existence of a commuting
channel but the lack of a migration channel (Costa and Veiga, 2021). On the other hand,
Brown et al. (2012) find no spillover effects from contiguous counties, contrasting their
baseline local results. Likewise, Fabra et al. (2023) confirm their largely insignificant
baseline results when accounting for the spatial spillovers of turbine deployment within a
30km distance from the municipality border.

4.3 Other economic impacts of wind power investment
This paper is also related to the broader literature on the local economic development
impacts of wind energy. This literature shows mixed results. Positive findings on economic
development include increases in economic activity (Brown et al., 2012; Brunner and
Schwegman, 2022; Xia and Song, 2017), municipal tax revenues (Brunner, Hoen, and
Hyman, 2022; De Silva, McComb, and Schiller, 2016), wages (Mauritzen, 2020), and
private income (Brunner and Schwegman, 2022; Shoeib, Renski, and Hamin Infield,
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2022; De Silva, McComb, and Schiller, 2016). On the other hand, some papers find
negative effects on municipal revenues (Xia and Song, 2017), and population (Brunner
and Schwegman, 2022). Concerns have also been raised on damage to infrastructure
during the transportation of large construction components (Jacquet and Stedman, 2013;
Greene and Geisken, 2013), although this is not well studied. Additionally, some do not
find several insignificant results – reflecting either the absence of economic development
impacts of wind power or the difficulty of assessing these impacts empirically.

Furthermore, wind turbines’ impact on property and housing values has been studied
quite extensively, with mixed results. Most of them use hedonic methods to assess the
monetary value of living in the near proximity of wind turbines (within a 2-10km radius).
Some find no effect (Hoen, Brown, et al., 2015; Hoen and Atkinson-Palombo, 2016; Lang,
Opaluch, and Sfinarolakis, 2014). Others find quite large negative impacts with property
value reductions in the range of −2% and −13% (Dröes and Koster, 2021; Westlund
and Wilhelmsson, 2022; Jensen et al., 2018; Sunak and Madlener, 2016). Brunner and
Schwegman (2022) contrast these findings on the municipal level as they identify an
average increase in property values of 4% per MW per capita. The linkages between
property values and the labor market are less obvious than, e.g., GDP. However, it could
affect migration flows and the purchasing power of local residents.
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5 Empirical strategy

The objective of the empirical analysis is to identify potential causal relationships between
wind turbine deployment and the local labor market. Considering previous literature and
the theory laid out in section 3, the central hypothesis is that wind power investments
decrease local unemployment. Moreover, it is likely that the effects are dynamic over
time, with the most significant impacts appearing during the construction phase (0-3 years
before the installation date). Long-term effects are also likely, referred to as the effects
during the operation & maintenance (O&M) phase or the post-installation period.

Identifying these causal effects is a challenging task for several reasons. In particular,
the treatment (wind power investments) is heterogeneous in size, over time, and over
space. Indeed, municipalities can be inflicted with multiple treatments of different sizes
(capacity), possibly endogenously determined, with variation in treatment timing and
potential dynamic treatment effects. To this end, a difference-in-difference (DiD) model
with two-way fixed effects (TWFE) is developed, with several adjustments to address
the research setting at hand. The adjustments are guided by the information provided in
section 2 and from the growing literature on causal inference in staggered DiD. A local
projections model is also specified as a complement to the DiD model.

5.1 Difference-in-differences
To analyze the short- and long-term impacts of wind power investment on the local labor
market, a difference-in-difference (DiD) model is constructed. The DiD model is widely
used in social sciences for causal inference in quasi-experimental settings and is thoroughly
explained by Angrist and Pischke (2009), Cunningham (2021), and Roth, Sant’Anna, et al.
(2023), among others. In short, the DiD estimator utilizes variation in treatment over time
and space to construct counterfactual outcomes for treated units after the treatment has
been inflicted. A crucial assumption is that of parallel trends, or that temporal changes
would be identical across units in the absence of treatment.

𝑦𝑖,𝑡 = 𝛿1𝑤𝑖,𝑡+36 + _𝑝𝑖,𝑡−36 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.1)

The simplest DiD model in this paper is represented by equation 5.1. 𝑦𝑖,𝑡 is the
labor market outcome variable for municipality i in month t. 𝑤𝑖,𝑡+36 is the accumulated
capacity per capita three years ahead. The lead is used to capture projects that are
currently under construction. 𝛿1 is thus the treatment effect from the construction start
and onwards from one MW of wind capacity. If 𝑌0,𝑖,𝑡 is the potential outcome for unit
i at time t without treatment, and 𝑌1,𝑖,𝑡 is the potential outcome with treatment, then
𝛿1𝑤𝑖,𝑡+36 = 𝐸 [𝑌1,𝑖,𝑡−𝑌0,𝑖,𝑡]. 𝑝𝑖,𝑡−36 is population density, which is lagged by three years due
to potential contemporaneous effects from the labor market and wind power investments. [𝑖
is municipality-fixed effects, capturing municipality-specific (un)observables. `𝑡 is month
fixed effects, capturing time-varying variables on the national level, such as business
cycles and the average electricity price. Y𝑖,𝑡 is an error term clustered at the municipal
level in all regressions in order to account for heteroskedasticity and serial correlation
within municipalities.
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The labor market variable 𝑦𝑖,𝑡 and wind power capacity 𝑤𝑖,𝑡 are normalized by the
population in the month preceding the observation window for 𝑦𝑖,𝑡 (December 2002).
Obtaining estimates in per capita-per capita form improves comparability to previous
literature. Using a constant population denominator prevents endogeneity issues that
unavoidably arise when transforming independent and dependent variables with the same
time-variant and unit-specific variable. The pre-sample lag is motivated by the potential
impacts of wind power investments on migratory patterns (Brunner and Schwegman,
2022).

Note that by using a non-binary treatment variable 𝑤, the DiD coefficient 𝛿1 is the
treatment effect from a given wind project in relation to its size. Expressed differently,
equation 5.1 explicitly models the intensity of each treatment. Here, the intensity is defined
as the nameplate capacity in megawatts to align with previous literature and due to data
availability. Alternative metrics for the size include the number of turbines, expected
annual generation, and a project’s monetary value. These are not considered in this paper.

5.1.1 Identifying assumptions
Constant treatment effects over time

As opposed to the classic 2 × 2 DiD research design (e.g., Card and Krueger (1994)), this
paper uses a two-way fixed effect (TWFE) estimator. Specifically, it uses a multi-period
model with multiple non-binary treatments1 inflicted with differential timing. Therefore,
unbiased estimates of the TWFE DiD estimator require constant treatment effects. This
is necessary even if the dynamic treatment effects are identical across units. Expressed
differently, the treatment effect must not vary with the number of periods h in relation to
the installation date, 𝛿1𝑤𝑖,𝑡+36+ℎ = 𝐸 [𝑌1,𝑖,𝑡+ℎ −𝑌0,𝑖,𝑡+ℎ] = 𝐸 [𝑌1,𝑖,𝑡+ℎ+1 −𝑌0,𝑖,𝑡+ℎ+1] for some
h. If there are dynamic treatment effects, Goodman-Bacon (2021) shows that the DiD
estimate for the average treatment effect on the treated (ATT) is biased. In essence, the
bias arises because early-treated municipalities act as a control group for future-treated
municipalities, but where current potential outcomes are affected by past treatments.

Recent literature has proposed alternative estimators that are unbiased under dynamic
treatment effects and differential treatment timing. These estimators work under binary and
staggered treatments2, binary and non-staggered treatments, and continuous and staggered
treatments (Chaisemartin and D’Haultfoeuille, 2022).3 Unfortunately, to the best of my
knowledge, there is currently no available estimator that allows for continuous and non-
staggered treatments that is feasible for this research setting.4 Consequently, a standard
TWFE DiD estimator is used in the main results. This calls for a thorough theoretical
discussion on the validity of the assumption of constant treatment effects over time. In

1As an alternative specification, binary treatment could be used. This standard approach in classic DiD
models and typically represents the enactment of a binary policy. However, the theoretical labor market
impacts are not due to simply having wind turbines in the municipality. Instead, it is a consequence of the
broader economic effects related to the size of the wind power plant.

2Chaisemartin and D’Haultfoeuille (2022) define "staggered treatments" as treatments that can only
increase over time and that can change at most once.

3For an overview, see Chaisemartin and D’Haultfoeuille (2022) and Roth, Sant’Anna, et al. (2023).
4The closest estimator is provided in section 4.3 in De Chaisemartin and d’Haultfoeuille (2020).

However, they show that interpreting the treatment effects is difficult. Moreover, this paper’s large dimension
(288× 240) would require substantial computing power to conduct an analysis such as the csdid command
in STATA.
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addition, alternative specifications and empirical sensitivity analyses are also provided in
this and the following section.

The most obvious potential temporal difference in treatment effect is between the
construction and O&M periods. Equation 5.2 controls for this by splitting the treatment
period into two; a construction phase and an O&M phase. 𝑤𝑖,𝑡 is the accumulated installed
capacity per capita (now without lead), and Δ𝑤𝑖,𝑡 = 𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1 is the added capacity
per capita at month t.

∑36
ℎ=1 Δ𝑤𝑖,𝑡+ℎ is the capacity that will be added in the next three

years, i.e., the capacity under construction. Now, 𝛼 captures the treatment effect during the
construction period, and 𝛿2 captures the treatment effect during operation and maintenance
(all periods post-installation). Still, constant treatment effects within each treatment period
are necessary for unbiased estimates.

𝑦𝑖,𝑡 = 𝛼

36∑︁
ℎ=1

Δ𝑤𝑖,𝑡+ℎ + 𝛿2𝑤𝑖,𝑡 + _𝑝𝑖,𝑡−36 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.2)

Under the O&M phase, the treatment effects are assumed to be constant over time since
the labor requirements, revenue streams, tax streams, and other effects are not determined
by the turbines’ age h.5 A potential violation of a constant 𝛿2 arises if there are multiplier
effects in the local economy. For instance, an increase in direct employment could
increase aggregate demand and thus incrementally increase local labor demand. However,
multiplier effects are unlikely to be significant if the total employment effects are small
in absolute value. If so, only large wind power plants could divert a municipality’s long-
term trend from the national business cycle. In Sweden, such large projects have been
constructed only recently, and most are yet to be connected to the grid. The absence of
"mega projects" during most of the sample period increases the theoretical validity of the
assumption of constant treatment effects post-installation.

Restricting the number of allowed treatments per municipality could mitigate potential
post-installation dynamic impacts. Since previously installed capacity increases the likeli-
hood of future installed capacity (Ek et al., 2013; Lauf et al., 2020), and given labor market
impacts from the previously installed capacity, the first project could spark a cycle of labor
market impact through a series of wind power investments. This violates the assumption
of constant treatment effects during the O&M phase. Therefore, in some regressions,
municipalities with more than one treatment period are excluded when the construction of
the second project begins. I refer to this as the single-treatment subsample.

The single-treatment subsample differs from the main sample in three main ways. First,
it only includes municipalities’ first projects. This affects regression estimates only if the
treatment effect differs between the first and subsequent wind projects (or between early
and late projects since early projects are often the first project). Second, the observations
per municipality are reduced unevenly, which trims the long-term impacts of the post-
installation treatment effect 𝛿2 for municipalities with several projects. If dynamic effects
are indeed present, the point estimate will converge toward the short-term post-installation
impacts. Third, the reduction in the number of observations yields lower statistical power,
which increases the likelihood of committing a Type II error.

For the construction phase, constant treatment effects are less likely. For example,
the local labor demand could shift as the tasks changes from land scraping and road

5It is conceivable that the maintenance requirements increase with a turbine’s age. However, this change
is assumed to be negligible for the total employment effects. Decommissioning would also require more
labor at the end of a turbine’s lifetime. As described in section 2, decommissioning effects are unlikely to
be a problem since only 0.5% of all turbines have been decommissioned to date.
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construction to turbine transportation and installation. Since the number of construction
periods is limited, I can model the dynamic effects. Equation 5.3 splits the construction
period into the first year of construction 𝛽1, the second year of construction 𝛽2, and the
last year of construction 𝛽3. Equation 5.4 expands it further by adding monthly leads for
newly installed capacity.

𝑦𝑖,𝑡 = 𝛽1

36∑︁
ℎ=25

Δ𝑤𝑖,𝑡+ℎ+𝛽2
24∑︁

ℎ=13

Δ𝑤𝑖,𝑡+ℎ+𝛽3
12∑︁
ℎ=1

Δ𝑤𝑖,𝑡+ℎ+𝛿2𝑤𝑖,𝑡+_𝑝𝑖,𝑡−36+[𝑖+`𝑡+Y𝑖,𝑡 (5.3)

𝑦𝑖,𝑡 =

36∑︁
ℎ=1

𝛾−ℎΔ𝑤𝑖,𝑡+ℎ + 𝛿2𝑤𝑖,𝑡 + _𝑝𝑖,𝑡−36 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.4)

Another peculiar and unintuitive feature of TWFE DiD models is that the estimated
treatment effect might not be a convex combination of treatment effects under hetero-
geneous treatment effects (Chaisemartin and D’Haultfoeuille, 2022; Goodman-Bacon,
2021). Weights can even be negative, which could yield results with reversed signs.
Consequently, the estimated coefficient from a TWFE estimator could be biased (Roth,
Sant’Anna, et al., 2023). De Chaisemartin and d’Haultfoeuille (2020) provide a technique
to compute the weights of the ATT in Stata. An analysis of equation 5.1 show that ATT
estimand is a weighted average of 34 434 ATTs where almost half of the weights are
negative; 17 560 ATTs receive a positive weight, and 16 874 receive a negative weight.
However, the negative weights only sum to −0.0413, whereas the sum of the positive
weights is 1.0413. Consequently, the bias from negatively weighted ATTs in the simplest
specification is small and should only affect the aggregated ATT marginally.

Parallel trends

In order for the DiD model to provide unbiased estimates, it is crucial that municipal-
ities follow the same labor market trends over time in the absence of treatment. Al-
gebraically, the expected value for the outcome variable under treatment 𝑌1,𝑖,𝑡 and in
the absence of treatment 𝑌0,𝑖,𝑡 (with no construction in place) must satisfy: 𝐸 [𝑌1,𝑖,𝑡 −
𝑌0,𝑖,𝑡 |𝑋𝑖,𝑡 , 𝑡, 𝑖,

∑36
ℎ=1 Δ𝑤𝑖,𝑡+ℎ = 0] = 𝛿𝑤𝑖,𝑡 . Therefore, the post-installation treatment effect

(𝑌1,𝑖,𝑡 −𝑌0,𝑖,𝑡) is linearly determined by the accumulated installed capacity per capita only.
This is referred to as the parallel trends assumption (PTA). The PTA is violated if unob-
served labor market shocks or secular trends systematically differ between treatment and
control units.

Treatment selection bias is one risk factor for non-parallel trends. Indeed, wind power
investment is not a random process.6 For instance, it is possible that wind developers
prefer to invest in municipalities with increasing unemployment, as it could simplify the
employment of local workers. However, this is not supported empirically (see section 2.2

6Brunner and Schwegman (2022) and Brown et al. (2012) provide a concrete solution to the endogeneity
of wind power investment by instrumenting wind power investment with wind resources, or average wind
speeds. Wind speeds are a clear driver for wind turbine deployment and are arguably exogenous to other
economic outcomes, including the labor market. Thus, it is a valid instrument. However, average wind
speeds are, by definition, constant and can, therefore, not capture the timing of the treatment. Hence, it is
only possible to use this instrument in a two-period model, such as a 2 × 2 DiD. To my knowledge, there is
no valid instrument for wind installations over time. Nevertheless, as discussed in this section, using an IV
strategy is arguably unnecessary.
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and table 2.1). The determinants of wind power investments as found in the literature
– previously installed capacity, population density, wind resources, land area, national
interest areas, and protected areas – are controlled for in the regressions through the fixed
effects or, for population density, as a covariate.

Another risk of a PTA violation is exogenous shocks with asymmetrical impacts
between treatment and control groups. For example, it is conceivable that national-
level shocks (e.g., the great recession) had different impacts on rural municipalities (high
wind power investment probability) and urban municipalities (low wind power investment
probability). If the recessions hit rural municipalities more, the treatment effect estimate
would be biased upwards. Thus, I introduce a second sample criterion – the "no pure
control" subsample – where I relax the PTA to hold for treated municipalities only. In this
subsample, early-treated municipalities are only compared with later-treated municipalities
and vice versa. The assumption of random assignment into treatment and pure control
is thus bypassed, but the timing and size of the treatments could still be endogenous and
violate the PTA. Additionally, a consequence of excluding the pure control groups is that
the number of units and observations, hence the power, falls.

Conducting an event study is a common empirical strategy to assess the validity of the
parallel trends assumption (PTA). Event studies test for pre-treatment differences in trends
("pre-trends") by comparing outcomes between control groups and treatment groups prior
to the treatment. If parallel pre-trends are not rejected, this increases the credibility of the
PTA. Note that it is an indicative test, not a proof (the counterfactual trends are inherently
unobservable). Additionally, event studies could suffer from low power and reverse the
roles of the null and alternative hypotheses (Roth, Sant’Anna, et al., 2023), which increases
the likelihood of erroneously accepting the PTA. Moreover, event studies using TWFE are
also subject to bias in the presence of dynamic treatment effects (Callaway and Sant’Anna,
2022). Therefore, results from the event studies should be interpreted with care.

The event study specification is shown in equation 5.5, which is equivalent (Schmid-
heiny and Siegloch, 2021) to a distributed-lag model; an adapted version of equation 5.1,
where the variables for installed capacity and capacity under construction are swapped
with leads and lags of added capacity. The second and third terms are endpoints, which
are included due to the limited event window (Schmidheiny and Siegloch, 2021) of eight
years. 𝛾24 is the treatment effect for all projects older than two years. 𝛾−60 is the treatment
effect for all projects that will be installed six years from time t, as observed in the data
(i.e., up until December 2022). Every lead (ℎ > 0 ⇐⇒ −ℎ ≤ 0) of added capacity
Δ𝑤𝑖,𝑡+ℎ trims the observation window for 𝑦𝑖,𝑡 from above. The pre-construction length ℎ̄

is aimed at minimizing the deviation of the effect window in the event study to the main
regressions while also attaining credible pre-trend estimations. Here, six years of leads (ℎ̄
= 60) trims the observation window for the labor market variable to 2003-2017.7

𝑦𝑖,𝑡 =

59∑︁
ℎ=−23

𝛾−ℎΔ𝑤𝑖,𝑡+ℎ + 𝛾24𝑤𝑖,𝑡−24 + 𝛾−60
(
𝑤𝑖,𝑡=2022𝑚12 − 𝑤𝑖,𝑡+59

)
+ _𝑝𝑖,𝑡−36 + [𝑖 + `𝑡 + Y𝑖,𝑡

(5.5)

Figure 5.1 displays the 𝛾−ℎ coefficients for two samples; the unrestricted sample (mul-
tiple treatments and pure control groups included) and the fully-restricted sample (single
treatment and excluding pure control groups.)8 Although the pre-trends are insignificant

7Figure A.1 uses a pre-treatment period of six years.
8Event studies with semi-restricted samples are presented in figure A.2.
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for the unrestricted sample, parallel pre-trends cannot be confidently confirmed since 𝛾−60
deviates from zero with a large confidence interval (note, however, that it is insignificant).
For the fully-restricted sample in panel (b), the pre-trends are closer to zero and drop three
years prior to the installation date.

Lastly, to what extent does the PTA hinge upon the functional form of the DiD
specification? Roth and Sant’Anna (2022) argues that an indisputable PTA should hold
under any monotonic transformation but show that the PTA is sensitive to the functional
form in virtually all practical quasi-experimental settings. Alternative event studies are
presented in the Appendix A.4 (no per capita normalization and with a dynamic per capita
normalization). Again, there are no indications of a violation of the parallel pre-trends.
This increases the credibility of the PTA.

The construction period lasts for three years (No anticipation effect).

That the construction period lasts for three years is an important but disputable assumption.
The data on wind power turbines include the installation date, but the start of construction
is unknown. Although the construction phase typically lasts a maximum of three years
(Swedish Energy Agency, 2022c), it varies over time, project size, site-specific conditions,
and more. Therefore, it is not obvious how to specify the length of the construction period.
Previous papers considering the pre-installation effects use two years (Costa and Veiga,
2021; Fabra et al., 2023), but provide little to no justification for this choice.

I chose three years in order to minimize the probability of wrongly assigning a mu-
nicipality to the control group. A premature assignment of control groups is equivalent
to violating the canonical assumption of no anticipation effects, which causes bias (Roth,
Sant’Anna, et al., 2023). On the other hand, a longer construction time span will assign
municipalities as treated when, in fact, the treatment effect is small or nil. If many munici-
palities enter treatment prematurely, the estimated ATT for the first months of construction
will be lower than if the construction period always lasted for three years. However, if the
construction treatment group is defined as municipalities that will receive a wind turbine
within the next three years (

∑36
ℎ=1 Δ𝑤𝑖,𝑡+ℎ > 0), the ATT estimand should include all indi-

vidual treatment effects, including small ones. This causes additional dynamic treatment
effects during the construction period. Thus, the dynamic specification of equations 5.3
and 5.4 isolates the features from premature treatment assignments.9

The event study in figure 5.1 shows that the pre-trend is broken approximately three
years before construction starts. This provides empirical support for a three-year construc-
tion period.

No spatial spillovers (SUTVA)

The last identifying assumption is that wind power plants only affect the municipalities
in which they are located, also known as the Stable Unit Treatment Value Assumption
(SUTVA). This is possibly violated by commuting workers and trade with nearby munic-
ipalities.

Nearby geographical spillovers can be accounted for by including them in the regres-
sion. Equation 5.6 show the simple DiD model with an additional variable, namely the
cumulative capacity 𝑤𝑑

𝑖,𝑡+30 in area d, which is located within a sufficient distance from the
border of municipality i. Four distance bins are used: 10 km, 30 km, 50 km, and 100 km.

9Appendix A.1 also provides estimates for one, two, and four construction years.
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(a) Unrestricted sample

(b) Restricted sample

Figure 5.1: Event study
The figures map coefficients and confidence intervals of the lead and lags of added installed

capacity per capita on unemployment per capita. Panel (a) uses the main sample described in
section 6. Panel (b) excludes municipalities without wind power capacity in the final period and
observations three years prior to the installation date of the second project. The leads restrict the
observation window for unemployment to 2003-2017. The estimated coefficients 𝛾−ℎ represent

the change in unemployment per capita at −ℎ periods from the installation of one MW per capita.
The first (leftmost) and last (rightmost) value of 𝛾 captures all future and past added capacity,

respectively (binned values). The per capita terms are normalized for the population in the year
prior to the main sample (December 2002). Note the different scales on the y-axes.
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𝑦𝑖,𝑡 = 𝛿1𝑤𝑖,𝑡+36 + 𝛿𝑑1𝑤
𝑑
𝑖,𝑡+36 + _𝑝𝑖,𝑡 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.6)

The spillover model increases the geographical coverage of the treatments. Hence,
more municipalities are treated, more treatment periods are introduced, and the pure
control group is reduced.

Another potential violation of the SUTVA arises if certain municipalities are affected
more than others by wind power projects far away. Considering revenues to non-local
owners and labor requirements for high-skill work (e.g., judicial tasks during the permit
process, research and development, and certain maintenance tasks), municipalities in and
around Sweden’s three biggest cities (Stockholm, Göteborg, and Malmö) are plausibly
more affected than others. These municipalities are excluded in a robustness check. To
this end, I use the classification of municipalities from SKR (2022), and remove the 46
municipalities that are classified as either "big city" or "commuting municipality near big
city"10.

5.2 Local projections model (LP-DiD)
The TWFE DiD model is the main model in this paper. However, due to uncertainties
regarding the identifying assumptions, notably that of constant treatment effects, a local
projections difference-in-difference (LP-DiD) model is included as a complement.

The LP-DiD model is similar to an event-study design and can estimate short-run
treatment effects. However, whereas the event-study design runs a single regression with
a series of leads and lags of the independent variable, the LP-DiD model runs a series of
regression over ℎ ∈ [ℎ̄, ℎ] horizons in relation to the start of the treatment, starting from ℎ̄

months prior to the installation month to ℎ months after the installation month. Crucially,
the LP-DiD estimator can be adapted to be unbiased under dynamic treatment effects and
differential treatment timing (Dube et al., 2022).

This paper uses the LP-DiD model to obtain unbiased estimates in the presence of
dynamic treatment effects. Moreover, it can also be used to assess the validity of the main
result’s assumption of constant treatment effects. The horizon is set to ℎ ∈ [60,−47],
such that two pre-construction years are included to assess the pre-trends and four post-
installation years to assess the assumption of constant treatment effects during O&M.

Equation 5.7 specifies the ℎ number of regressions used for the LP-DiD model. 𝛾−ℎ
are the main variables of interest, capturing the treatment effect ℎ periods in relation to the
installation date. Equation 5.8 also include the lagged value of the independent variable at
t-61, thereby explicitly controlling for pre-treatment values of unemployment (Dube et al.,
2022). The specification with the lagged outcome dynamics is the model used in previous
related literature (Fabra et al., 2023).

𝑦𝑖,𝑡+ℎ = 𝛾−ℎΔ𝑤𝑖,𝑡 + _𝑝𝑖,𝑡+ℎ−36 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.7)

𝑦𝑖,𝑡+ℎ = 𝑦𝑖,𝑡−61 + 𝛾−ℎΔ𝑤𝑖,𝑡 + _𝑝𝑖,𝑡+ℎ−36 + [𝑖 + `𝑡 + Y𝑖,𝑡 (5.8)

10These are: Ale, Alingsås, Bollebygd, Botkyrka, Burlöv, Danderyd, Ekerö, Göteborg, Haninge, Hud-
dinge, Härryda, Håbo, Järfälla, Kungsbacka, Kungälv, Kävlinge, Lerum, Lidingö, Lilla Edet, Lomma,
Malmö, Mölndal, Nacka, Nynäshamn, Partille, Salem, Sigtuna, Skurup, Sollentuna, Solna, Staffanstorp,
Stenungsund, Stockholm, Sundbyberg, Svedala, Trelleborg, Tyresö, Täby, Upplands Väsby, Upplands-Bro,
Vallentuna, Vaxholm, Vellinge, Värmdö, Öckerö, Österåker.

24



The local projections model is a variant of the TWFE DiD. Notably, the above-
mentioned potential bias stemming from dynamic treatment effects is present. Dube et al.
(2022) provides a solution to this bias applicable to the LP-DiD model, referred to as
the "clean control condition." The clean control condition avoids comparing early-treated
municipalities with late-treated municipalities. To this end, the control group at time
t consists of municipalities that have never been treated at time t and will not receive
treatment in t+h+36 (the length of the horizon plus construction time). Moreover, the
observations in the treatment group consist only of newly treated units that have never
received treatment before and will not receive additional wind power installations between
time t and time t+h+36 (for ℎ ≥ −36). Equation 5.9 formally describes the clean control
sample. Note that the clean control sample is similar to the single treatment sample used
in some of the main regressions.

Treatment group

{
Δ𝑤𝑖,𝑡 > 0; 𝑤𝑖,𝑡−1 = 0 if ℎ < −36
Δ𝑤𝑖,𝑡 > 0; 𝑤𝑖,𝑡−1 = 0; 𝑤𝑖,𝑡 = 𝑤𝑖,𝑡+ℎ+36 if ℎ ≥ −36

Clean control group

{
𝑤𝑖,𝑡 = 0 if ℎ < −36
𝑤𝑖,𝑡 = 𝑤𝑖,𝑡+ℎ+36 = 0 if ℎ ≥ −36

(5.9)

Similar to the regular DiD estimator, the assumptions of parallel trends and no anticipation
effects are necessary for the LP-DiD estimator to be unbiased (Dube et al., 2022). The
above discussion on these identifying assumptions applies here, too, with the exception of
constant treatment effects, which are modeled explicitly in the LP-DiD model.
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6 Data

6.1 Wind power data
The data on wind power investment is collected from the wind power database Vindbruk-
skollen published by the Swedish Energy Agency and County Administrative Boards of
Sweden (2023). This data set lists all individual wind turbines from 1980 to 2022 in
Sweden. It provides information on the turbine’s current status (e.g., operational, awaiting
permit decision, withdrawn permit, rejected permit, and decommissioned), coordinates,
application date, installation date, developer, project ID, height, capacity, expected annual
production, and manufacturer.

Vindbrukskollen is updated directly by the wind power developers on a voluntary
basis. The publishers do not verify that the inputs are correct. Hence, there could be
measurement errors in the independent variable, including missing and erroneous data.
58 observations with obvious errors (installation date before 1970) or missing information
(capacity) are removed from the data set. Nevertheless, the aggregate installed capacity
closely match estimation from statistical agencies. For instance, Vindbrukskollen reports
an aggregated national capacity of 11 947 MW in 2021 compared to 11 923 MW in 2021
reported by Eurostat (2023a). Consequently, the reliability of the wind turbine data is
considered high. 74 non-utility scale wind turbines (less than 100 kilowatts, as defined by
U.S. Department of Energy (2023)) are removed. This leaves 4915 wind turbines, with
the first installed in February 1990 and the last in December 2022.

The data is aggregated to the accumulated added capacity per municipality and month.
A wind power project can span several consecutive months of installed capacity and cover
more than one municipality. Likewise, more than one wind power plant could be installed
in a municipality in a given month. However, for simplicity, a "project" is henceforth
referred to as an observation (municipality-month) of positive added capacity in order to
align with the definition of the treatment. With this definition, a total of 921 projects are
installed during the time frame and are scattered over 175 municipalities.

The capacity per capita of all projects is shown in figure 6.1. A few projects are much
larger relative to the population than others. Notably, there are two outliers in the top-right
corner, located in the municipalities of Åsele and Ockelbo. Since the two municipalities
also have outliers in the middle of the sample, they will receive very large weights in the
average estimated treatment effect. Therefore, Åsele and Ockelbo are removed from the
data set.1

6.2 Labor market data
From the local policymaker’s perspective, one of the most desirable labor market outcomes
is (roughly) to increase the total number of jobs in the local economy. Unfortunately, there
is no available monthly data on total employment at the municipal level in Sweden. A
related variable is the number of new vacancies as reported to Swedish Public Employment

1Appendix A.2 provide results for all 290 municipalities
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Figure 6.1: Outlier wind projects

Service (2023). However, this is only a fraction of all new vacancies and has very high
volatility even within short time spans.

Instead, I use unemployment per capita as the labor market proxy, collected from the
Swedish Public Employment Service (2023).2 This dataset presents the absolute num-
ber of unemployed individuals within each municipality for each month in 1996-2022,
broken down over age groups, gender, country of origin, and education level. Various
unemployment definitions are available. I use the broadest metric – total unemployment
– which includes all individuals registered at the Swedish Public Employment Service.
Total unemployment makes no distinction between, inter alia, individuals who can im-
mediately enter the labor market ("open unemployment"), individuals that participate in
a labor market policy program (such as vocational training, work experience placement,
and traineeships), part-time unemployed, temporarily employed, and employed with pub-
lic support. The relative sizes of these groups bear political and personal importance.
However, analyzing the flows between the groups would be a too complex task for this
thesis.

Moreover, note that one additional job does not necessarily imply a one-unit reduction
in absolute unemployment and vice versa. Thus, expectations concerning employment
effects drawn from previous literature and the theoretical framework should be used
carefully.

Monthly data on the workforce and unemployment ratio (unemployment as a share
of the workforce) is available from 2008 (Swedish Public Employment Service, 2023).
Theoretically, this would allow one to calculate the absolute employment levels (workforce
- unemployed ≈ employed). However, upon closer inspection, the workforce figures are
calculated by the Swedish Public Employment Service (2023) as the monthly unemploy-
ment levels plus the yearly employment levels. Hence, regressions based on the monthly
workforce data would mainly reflect changes in monthly unemployment. Analyses on
"monthly" employment levels or unemployment ratios are, therefore, not suitable.

2Statistics Sweden (2023b) reports more detailed labor market data (size of the labor force, hours
worked, occupational status, et cetera) using random sampling. However, the smallest unit of analysis is
counties.
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Figure 6.2: Observation windows
The temporal span for observations used in the main DiD regressions. The observation window

for accumulated wind capacity is 1990-2022 and is excluded from the figure.

6.3 Observation windows and descriptive statistics
Information on population and land area is collected from Statistics Sweden (2023b).
Monthly population data, and thereby population density data, is available from 2000 on
the municipal level.

Although the unemployment data is available for 1996-2022, all is not included since
most regressions use three years of lags for population density and three years of leads for
installed wind turbines. Therefore, the observation window in the main sample is 2003-
2019 for unemployment3, 2000-2016 for population density, 1990-2022 for accumulated
wind capacity, and 2003-2022 for added wind capacity. This is visualized in figure 6.2.
Although the observation window for unemployment is determined by data availability and
the regression specifications, it naturally limits any confounding effects from the Covid-19
pandemic on the labor market. Furthermore, note that 61 municipalities have (low levels
of) installed wind capacity before January 2000 and thus enter the regression sample as
treated.

Table 6.1 describes the average values and standard errors across variables, in total,
and separated into the pure control group (no wind power projects) and treatment groups
(at least one project). Additionally, the minimum and maximum values are presented
in the last column. When excluding the two outlier municipalities, 113 municipalities
have no wind generation capacity, and 175 municipalities have some wind generation
capacity. On average, municipalities with wind energy capacity are larger geographically,
have a smaller population, and have had lower population growth since 2003, compared to
municipalities without wind power capacity. The mean GDP and GDP growth are similar
across the groups. The unemployment per capita is slightly lower among municipalities
with wind power capacity.

Moreover, the unemployment ratio (the metric typically used in the public debate) is
slightly higher than unemployment per capita and has a similar relative size across the pure
control and treatment groups. The average size of wind power capacity for municipalities
with at least one wind power project is 71 MW or 27 turbines, spread over six projects.
The municipality with the biggest capacity of 1202 MW is Piteå, and consists almost
entirely of the Markbygden project. Lastly, the minimum and maximum values show that
some municipalities have experienced negative population and GDP growth.

3In the event studies presented above, the six years of pre-installation leads limits the observation
window for unemployment to 2003-2017. The same holds for the local projections models.
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Table 6.1: Descriptive statistics

Total Wind power projects Min / [Max]
0 ≥1

Geographic
Land area (km2) 1396.0 793.1 1785.3 8.67

(2440.1) (959.5) (2973.1) [19 140]

Demographic
Population 36 503 42 229 32 806 2372

(75 999) (100 045) (55 221) [984 748]

Population growth (2003-2022) 0.798 0.107 0.622 -0.256
(0.155) (0.175) (0.138) [0.599]

Population density 164 324.0 59.9 0.212
(599) (923) (124) [6236]

Economic
GDP per capita (2020; MM SEK) 0.359 0.360 0.358 0.137

(0.170) (0.216) (0.132) [2.08]

GDP growth (2012-2022) 0.255 0.241 0.264 -0.358
(0.155) (0.169) (0.146) [0.994]

Unemployment per capita 0.0512 0.0547 0.0490 0.0220
(0.0156) (0.0181) (0.0134) [0.114]

Unemployment ratio 0.0610 0.0659 0.0579 0.0258
(0.0209) (0.0232) (0.0186) [0.132]

Wind power
Capacity (MW) 43.10 0 70.93 0

(111.6) (0) (136.2) [1202]

Capacity per capita (MW) 0.00288 0 0.00473 0
(0.00693) (0) (0.00839) [0.0535]

Total turbines 16.20 0 26.67 0
(34.26) (0) (40.68) [358]

Wind power projects 3.764 0 6.194 0
(6.395) (0) (7.232) 47

Municipalities 288 113 175 288
Mean coefficients; Standard-errors in parentheses. Last column: Min and max values.

Variables refer to the values in December 2022 unless otherwise specified. Per capita variables are
normalized by the population in December 2002. Ockelbo and Åsele municipalities are excluded.
Population, land area, and GDP data are collected from Statistics Sweden (2023b). Unemployment
data from Swedish Public Employment Service (2023). Wind power data from the Swedish Energy
Agency and County Administrative Boards of Sweden (2023).
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7 Results

This section describes the empirical results of this thesis. It begins with the DiD specifica-
tion using the unrestricted sample with increasingly dynamic specifications, followed by
one of the dynamic specifications with increasingly stringent sample restrictions. Then,
the LP-DiD estimates are presented. Lastly, heterogeneity analyses and robustness checks
are conducted. All estimates reflect the causal effects of wind power investments on
unemployment, provided all identifying assumptions hold. Section 8 discusses the main
results more carefully by further elaborating on the validity of the results.1

7.1 Main results
Table 7.1 present the regression results for the unrestricted sample, using equations 5.1,
5.2, 5.3, and 5.4. All specifications with the unrestricted sample show that wind power
investment significantly reduces unemployment in both the short term during construction
and the long term during operation and maintenance. For the specification with a single
treatment variable (Column (1)), the average marginal effect from one MW of installed
wind capacity is a net reduction in unemployment by 0.785 units.

Columns (2)-(4) introduce separate treatment variables in order to analyze the dynam-
ics between the pre- and post-installation periods. Column (3) also analyzes the treatment
effects with three yearly treatment variables during construction. Column (4) includes 36
monthly leads for the construction phase. The 36 coefficients are not presented. Instead,
a joint F-test shows that the coefficients are jointly different from zero.

In contrast to previous research, the treatment effect seems to increase in magnitude
during the construction phase and reach its highest value during O&M. The average effect
during the full construction phase is −0.538, increasing from −0.388 during the first year to
−0.534 during the second year and −0.793 during the last year of construction. The post-
installation treatment effect is estimated at approximately −0.995 in all dynamic models.
The similarity in the O&M treatment effect between Columns (3) and (4) indicates that any
bias stemming from insufficient modeling of the construction phase is low or non-existent.
Therefore, equation 5.3 (three yearly treatment variables during construction) is used as
the preferred specification in all remaining regressions. This enables a more concise
presentation of the results and an explicit analysis of the dynamics during the construction
phase.

As discussed in section 5.1.1, there are reasons to believe that regressions on the
unrestricted sample would be biased. Therefore, table 7.2 presents the regression result for
restricted samples using equation 5.3 (differentiated treatment effects with three separate
construction years). The unrestricted sample is shown in column (1) for comparison.
Column (2) includes only the first treatment in a municipality, thus excluding observations
three years prior to the installation of a municipality’s second project. Column (3) excludes
never-treated municipalities. Column (4) impose both of these sample restrictions. All
regressions find significant negative effects, with increasingly larger effects from the
first year of construction to the O&M period. However, the sample restrictions alter

1All regressions are run in Stata/SE 17.0 for Mac. Data and Stata code are available upon request.
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Table 7.1: Regression results, unrestricted sample

Unemployment per capita𝑖,𝑡
(1) (2) (3) (4)

𝑤𝑖,𝑡+36 -0.785∗∗∗
(0.000)

𝑤𝑖,𝑡 -0.996∗∗ -0.995∗∗ -0.994∗∗
(0.002) (0.002) (0.002)∑36

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -0.538∗∗∗
(0.000)∑36

ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.388∗∗
(0.002)∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -0.534∗∗∗
(0.000)∑12

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -0.793∗∗∗
(0.000)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗
(0.000) (0.000) (0.000) (0.000)

Joint F-test 𝛾ℎ = 0∀ℎ 8.247∗∗∗
(0.000)

𝑅2 0.342 0.346 0.346 0.346
Municipalities 288 288 288 288
Observations 58717 58717 58717 58717
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Standard errors clustered by municipality.
Regression results for the unrestricted sample with increasingly dynamic specifications. Lead
variables for installed capacity in column (4) are omitted due to conciseness. All regressions
include month- and municipality-fixed effects. The dependent variable (unemployment) and w

(installed capacity) are normalized by the population as of December 2002.
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Table 7.2: Regression results, restricted samples

Unemployment per capita𝑖,𝑡
(1) (2) (3) (4)

𝑤𝑖,𝑡 -0.995∗∗ -2.656∗∗∗ -0.743∗ -1.914∗∗
(0.002) (0.000) (0.012) (0.003)∑36

ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.388∗∗ -1.156∗∗∗ -0.272∗ -0.833∗
(0.002) (0.001) (0.025) (0.023)∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -0.534∗∗∗ -1.542∗∗∗ -0.403∗∗ -1.142∗∗
(0.000) (0.000) (0.003) (0.006)∑12

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -0.793∗∗∗ -1.804∗∗∗ -0.655∗∗ -1.365∗∗
(0.000) (0.000) (0.001) (0.005)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.037∗∗∗ 0.033∗∗∗ 0.169∗ 0.097∗
(0.000) (0.000) (0.045) (0.047)

𝑅2 0.346 0.335 0.414 0.462
Pure control included Yes Yes No No
Multiple treatments allowed Yes No Yes No
Municipalities 288 235 175 122
Observations 58717 37917 35700 14900
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Standard errors clustered by municipality.
Regression results using equation 5.3 for the unrestricted baseline (1), semi-restricted samples

(2-3), and the fully-restricted sample (4). "Pure control included" indicates whether never-treated
municipalities are included. "Multiple treatments allowed" indicates whether projects other than

the first are included. All regressions include month- and municipality-fixed effects. The
dependent variable (unemployment) and w (installed capacity) are normalized by the population

as of December 2002.

32



the magnitude of the estimated effects. Since both subsamples restrictions give rise to
different estimates than the unrestricted sample, the fully-restricted subsample (Column
(4)) is preferred. The results from the fully-restricted subsample show that the first project
in a municipality reduces unemployment by 0.833, 1.142, and 1.365 persons per MW for
the first, second, and last construction year, respectively. The post-installation effects are
higher, at −1.914.

7.2 Local projections model
The local projections model without a lagged outcome variable in figure 7.1 (a) tells a
similar story to the main results; the labor market effect from wind power investments grows
during the construction period. Afterward, during the post-installation period, it stabilizes
at around a 2.2 unit decrease in unemployment per MW installed. The treatment effect
seems to plateau partially during the O&M period – indicating that the post-installation
treatment effect is constant, at least for the first four years. Still, the 𝛾−ℎ’s show a slight
reduction as h increases also for −ℎ > 0, and the large confidence interval does not allow
one to confidently rule out dynamic effects during O&M. Moreover, the pre-trends are
worrying. As can be seen, the pre-treatment coefficients (−ℎ < −36) are all significantly
different from zero, invalidating this local projection model’s results.

When explicitly controlling for past unemployment values, the pre-treatment values
are not significantly different from zero. This is shown in panel (b) of figure 7.1. Once
again, the estimated treatment effects are similar to the results in the preferred DiD model.
Moreover, the post-installation treatment trend seems to plateau and remain constant from
around 16 months after installation and onwards, although the standard deviation increases
with −h.

The similarity in results from the unbiased LP-DiD estimator to the potentially biased
DiD estimator increases the latter’s validity. However, panel (a)’s negative pre-treatment
trend and the standard deviations during O&M still call for cautious interpretations.

7.3 Heterogeneity analysis
The main results are a consequence of changes within different socioeconomic groups and
regions. From a political economy perspective, assessing if some groups benefit more
from wind power investments is important. The unemployment data is broken down into
four group categories: sex (binary), age groups (16-17, 18-24, 25-54, and 55+), education
(pre-gymnasium, gymnasium, post-gymnasium2, and unknown), and country of origin
(Sweden, European country, non-European country). The age group 16-17 and unknown
education level are too small and irregular, respectively, to be analyzed.

Except for sex, the relative size of the groups within each category differ. The
treatment effect is expected to be larger for groups that constitute a larger share of the
total unemployment, such as the age group 25-54 and Swedish-born. Hence, it is not
only interesting to assess which groups are impacted and how, but also if they are over-
or underrepresented in the aggregate effect.3 Since the groups are exhaustive for each
category, the sum of each variable’s coefficients approximately equals the coefficient

2Gymnasium is the upper secondary education in Sweden. Post-gymnasium education could be, for
instance, university studies.

3Since unemployment is a discrete variable, the statistical power is also greater for larger groups.
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(a) Eq 5.7 (No lagged outcome variable)

(b) Eq 5.8 (Lagged outcome variable)

Figure 7.1: Local Projections (LP-DiD)
The figures map coefficients and confidence intervals for the 𝛾−ℎ’s as specified in equations 5.7

(panel a) and 5.8 (panel b), using the clean control condition defined by equation 5.9. The
estimated coefficients 𝛾−ℎ represent the change in unemployment per capita at ℎ periods from the

installation date from one MW per capita. The per capita terms are normalized for the
population as of December 2002. Note the different scales on the y-axes.
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for the aggregate treatment effect (Column (1) in each table). Therefore, each group’s
contribution to the aggregate estimated effect can be calculated. The shares are presented in
square brackets. For reference, the group’s average share of total unemployment is shown
in the bottom row of the tables. The significance of the over- and underrepresentations is
not tested statistically.

Table 7.4 presents the results over sex and age groups. Men are shown to be more
affected by wind installations than women, with significantly negative effects for each
treatment period. Women are less affected, with significant impacts during the O&M
period only. Young unemployed (18-24) are slightly underrepresented during the con-
struction period, with significant effects only during the last year of construction. Other
than that, there is no sign of over- or underrepresentation across age groups. The largest
group – unemployed aged 25-54 – is the only group with statistically significant effects
for each treatment period. One cannot reject the null hypothesis for the treatment effect
on unemployed aged 55 or older on the 5% significance level. However, for all treatment
periods other than the first year of construction, there are significant negative effects on
the 10%-significance level for the oldest age group.

Table 7.3 shows regression results over three education levels and three country groups
of origin. Unemployed without post-gymnasium education experience a significant de-
crease in unemployment from local wind power investments, both during construction
and during O&M. Workers with a gymnasium education are seemingly overrepresented
in the aggregate investment impacts on unemployment, and workers in the lowest edu-
cational group are possibly underrepresented, although to a small degree. Workers with
higher education are not found to be impacted by local wind power deployment. Likewise,
significant treatment effects are only found for unemployed individuals born in Sweden,
possibly with some overrepresentation. No effect is found for persons born elsewhere.

As for the geographical impact heterogeneity, table 7.5 split the sample into Sweden’s
three NUTS1 regions.4 The regression output show inconclusive results for all treatment
periods and NUTS1 regions. Therefore, no conclusions can be drawn about the relative
treatment effects between the regions. The insignificant results could be explained by the
fewer observations and available control groups.

For the temporal impact heterogeneity, table 7.6 split the sample in pre- and post-
subsamples in relation to 2007, 2012, and 2021, respectively. Most treatment variable
coefficients are significant. For the coefficients without asterisks, most have negative
coefficients with p-values of less than 10% or 15%. The exceptions are the first year of
construction for the pre- and post-2012 subsamples. Moreover, the temporal splits suggest
that the effects were considerably larger during the early period (especially prior to and
including 2007). For the last column, post-2017, the treatment effects have reversed signs
at high significance levels. Contrary to the main results, this indicates that unemployment
in 2018-2019 increased by wind power installations. Note that the post-2017 subsample
includes only 20 municipalities, of which eight5 are treated during this period. A semi-
restricted sample that excludes the pure control group but includes multiple treatments
within a municipality is used in figure A.3. Here, the number of observations increases for
the post-2017 subsample, and the estimated post-installation treatment effects then share
the same significant sign as the main results (negative). Nevertheless, the treatment effects
during the construction period are insignificant in the semi-restricted subsample for the
post-2017 period.

4The NUTS1 regions are shown in figure B.1.
5Alvesta, Habo, Lomma, Norberg, Pajala, Sunne, Tranemo, Ånge.
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Table 7.3: Regression results, education and country of origin

Unemployment per capita𝑖,𝑡
Education Country of origin

All Gym Pre-gym Post-gym SE EU non-EU

𝑤𝑖,𝑡 -1.914∗∗ -1.167∗∗ -0.518∗ -0.187 -1.491∗∗ -0.047 -0.275
(0.003) (0.006) (0.013) (0.709) (0.005) (0.695) (0.134)

[61.0%] [27.1%] [9.8%] [77.9%] [2.5%] [14.4%]∑36
ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.833∗ -0.500∗ -0.257∗ -0.042 -0.682∗ -0.095 0.014

(0.023) (0.048) (0.027) (0.929) (0.020) (0.173) (0.903)
[60.0%] [30.9%] [5.0%] [81.9%] [11.4%] [-1.7%]∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -1.142∗∗ -0.750∗∗ -0.293∗ 0.291 -0.978∗∗ -0.104 0.018
(0.006) (0.008) (0.049) (0.538) (0.002) (0.326) (0.889)

[65.7%] [25.7%] [-25.5%] [86.4%] [9.1%] [-1.6%]∑12
ℎ=1 Δ𝑤𝑖,𝑡+ℎ -1.365∗∗ -0.888∗∗ -0.332∗ 0.001 -1.119∗∗ -0.117 -0.053

(0.005) (0.009) (0.021) (0.998) (0.005) (0.264) (0.664)
[65.1%] [24.3%] [-0.1%] [82.0%] [8.6%] [3.9%]

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.097∗ 0.100∗∗ 0.006 -0.167 0.134∗ 0.020 -0.058
(0.047) (0.008) (0.769) (0.285) (0.045) (0.251) (0.213)

𝑅2 0.462 0.577 0.219 0.448 0.756 0.132 0.692
Municipalities 122 122 122 122 120 120 120
Share of total 49.8% 31.2% 18.2% 73.1% 8.9% 17.9%
Observations 14900 14900 14900 14900 13690 13690 13690
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001; Standard errors clustered by municipality.
Value in square brackets indicates the group’s share of the total effect for the corresponding treatment variable.

Regression results using equation 5.3 for the baseline, education level, and country of origin. All regressions use the fully-restricted sample (no pure control,
maximum one treatment per municipality) and include month- and municipality-fixed effects. The dependent variable (unemployment) and w (installed capacity)

are normalized by the population as of December 2002.
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Table 7.4: Regression results, sex and age groups

Unemployment per capita𝑖,𝑡
Sex Age groups

All Male Female 18-24 25-54 55-

𝑤𝑖,𝑡 -1.914∗∗ -1.359∗∗∗ -0.555∗ -0.316∗ -1.266∗∗ -0.326
(0.003) (0.001) (0.042) (0.013) (0.003) (0.063)

[71.0%] [29.0%] [16.5%] [66.1%] [17.0%]∑36
ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.833∗ -0.651∗∗ -0.182 -0.078 -0.611∗∗ -0.143

(0.023) (0.006) (0.206) (0.356) (0.003) (0.231)
[78.2%] [21.8%] [9.3%] [73.3%] [17.2%]∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -1.142∗∗ -0.870∗∗ -0.272 -0.141 -0.763∗∗ -0.241
(0.006) (0.001) (0.109) (0.053) (0.004) (0.054)

[76.2%] [23.8%] [12.3%] [66.8%] [21.1%]∑12
ℎ=1 Δ𝑤𝑖,𝑡+ℎ -1.365∗∗ -1.028∗∗∗ -0.337 -0.164∗ -0.877∗∗ -0.323

(0.005) (0.000) (0.126) (0.029) (0.003) (0.064)
[75.3%] [24.7%] [12.0%] [64.2%] [23.6%]

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.097∗ 0.029 0.068∗∗ 0.007 0.064 0.027∗∗
(0.047) (0.260) (0.006) (0.609) (0.088) (0.005)

𝑅2 0.462 0.396 0.544 0.573 0.394 0.400
Municipalities 122 122 122 122 122 122
Observations 14900 14900 14900 14900 14900 14900

Share of total 50% 50% 16.7 % 63.7% 19.5%
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001; Standard errors clustered by municipality.
Value in square brackets indicates the group’s share of the total effect for the corresponding treatment variable.

Regression results using equation 5.3 for the baseline, sex, and ages. All regressions use the fully-restricted sample (no pure control, maximum one treatment per
municipality) and include month- and municipality-fixed effects. The dependent variable (unemployment) and w (installed capacity) are normalized by the

population as of December 2002.
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Table 7.5: Regression results, NUTS1 regions

Unemployment per capita𝑖,𝑡
East (SE1) South (SE2) North (SE3)

𝑤𝑖,𝑡 1.176 0.062 -0.687
(0.774) (0.975) (0.302)∑36

ℎ=25 Δ𝑤𝑖𝑡+ℎ 0.132 0.113 -0.391
(0.920) (0.854) (0.334)∑24

ℎ=13 Δ𝑤𝑖𝑡+ℎ 3.792 0.391 -0.552
(0.133) (0.632) (0.246)∑12

ℎ=1 Δ𝑤𝑖𝑡+ℎ 4.387 0.935 -0.660
(0.340) (0.435) (0.239)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.652∗ -0.012 -0.258
(0.042) (0.764) (0.564)

𝑅2 0.602 0.456 0.652
Municipalities 17 56 49
Observations 2244 6466 6190
p-values in parentheses
Standard errors clustered by municipality.
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Regression results using equation 5.3 for the three NUTS1 regions and the fully-restricted sample.
All regressions use the fully-restricted sample (no pure control, maximum one treatment per

municipality) and include month- and municipality-fixed effects. The dependent variable
(unemployment) and w (installed capacity) are normalized by the population as of December

2002.
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Table 7.6: Regression results, yearly subsamples

Unemployment per capita𝑖,𝑡
2007 2012 2017

All ≤ > ≤ > ≤ >

𝑤𝑖,𝑡 -1.914∗∗ -10.341∗∗ -1.596∗∗ -2.195∗∗∗ -0.725∗ -1.898∗∗ 0.950∗
(0.003) (0.004) (0.005) (0.000) (0.022) (0.004) (0.026)∑36

ℎ=25 Δ𝑤𝑖𝑡+ℎ -0.833∗ -1.424∗∗∗ -0.525 -0.512 -0.037 -0.876∗ 0.807∗∗∗
(0.023) (0.000) (0.067) (0.310) (0.863) (0.014) (0.000)∑24

ℎ=13 Δ𝑤𝑖𝑡+ℎ -1.142∗∗ -1.554∗∗∗ -0.827∗ -1.059 -0.268 -1.182∗∗ 1.438∗∗∗
(0.006) (0.000) (0.013) (0.059) (0.074) (0.004) (0.000)∑12

ℎ=1 Δ𝑤𝑖𝑡+ℎ -1.365∗∗ -8.302 -1.093∗∗ -1.598∗∗ -0.463∗ -1.078 1.316∗∗
(0.005) (0.123) (0.009) (0.002) (0.048) (0.054) (0.001)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.097∗ 0.202∗ 0.064 0.168∗ 0.027 0.105∗ 0.261
(0.047) (0.045) (0.211) (0.032) (0.704) (0.035) (0.145)

𝑅2 0.462 0.554 0.538 0.506 0.533 0.433 0.415
Municipalities 122 122 87 122 57 122 47
Observations 14900 6532 8368 10721 4179 13882 1018
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001; Standard errors clustered by municipality.

Regression results using equation 5.3 for different periods. All regressions use the fully-restricted sample (no pure control, maximum one treatment per
municipality), and include month- and municipality-fixed effects. Under each year, the column to the left (≤) is the sample prior to and including that year, and
the column to the right (>) is the sample for all months after that year. The dependent variable (unemployment) and w (installed capacity) are normalized by the

population as of December 2002.
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7.4 Robustness checks
Table 7.7 presents regression results for the geographical spillover analysis. The local
effects prevail when controlling for potential spillovers, although the point estimates are
lower in magnitude when including the lower-distance bins. For the spillover effects,
significant impact is only found for wind turbines located within 10 km from a munici-
pality’s border and only during the post-installation period. This O&M spillover within
10 km is also smaller than the local O&M effect, with an unemployment reduction of 0.3
persons per MW. Hence, a municipality that receives new wind projects seems to benefit
more than the nearby municipalities. However, when turbines are located just outside a
municipality’s border, some beneficial spillover effects are identified after the installation
date.

The prevalence of spillover effects invalidates the SUTVA. However, the lack of impact
on large geographical areas (≥ 30 km), in combination with similar estimates for the local
treatment effects when controlling for spillovers, gives further confidence for the negative
impact on local unemployment.

For spillovers for municipalities far away, Column (2) in table 7.8 shows the regression
results for the specification with three construction years and excluding 46 municipalities
in or nearby a big city. Since many of these municipalities do not have any wind power
capacity, they are excluded as part of the pure control group. Hence, only 11 municipalities
are removed compared to the baseline. The results are similar to the main results, with
slightly lower coefficient estimates of around 0.15 units. Moreover, the significance level
is lower.

Column 3 in table 7.8 excludes population density from the regression. This variable
has been shown to affect both unemployment and wind power capacity (Lauf et al., 2020;
Ek et al., 2013). When removing it, the estimates are similar to the baseline but larger
in magnitude. The higher absolute values indicate that population density indeed affects
both the dependent and the independent variable in the same direction.

The last two columns in table 7.8 display regression outputs with alternative per
capita transformation of wind power capacity and unemployment levels. First, a dynamic
specification – where the variables are divided by population at time t-36 – yields smaller
treatment effects with lower significance levels for all treatment periods. When regressing
the absolute wind power capacity on the absolute unemployment levels, the point estimates
are similar to the baseline, but the estimates are insignificant.
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Table 7.7: Regression results, spatial spillovers

Unemployment per capita𝑖,𝑡
𝑑 0km 10km 30km 50km 100km

𝑤𝑖,𝑡 -1.914∗∗ -1.628∗∗ -1.806∗∗ -1.819∗∗ -1.946∗∗
(0.003) (0.009) (0.003) (0.003) (0.002)∑36

ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.833∗ -0.668∗ -0.829∗ -0.819∗ -0.843∗
(0.023) (0.042) (0.014) (0.028) (0.021)∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -1.142∗∗ -0.931∗ -1.109∗∗ -1.123∗∗ -1.165∗∗
(0.006) (0.013) (0.004) (0.006) (0.004)∑12

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -1.365∗∗ -1.133∗ -1.291∗∗ -1.318∗∗ -1.368∗∗
(0.005) (0.015) (0.006) (0.008) (0.004)

𝑤𝑑
𝑖,𝑡

-0.300∗∗∗ -0.110 -0.040 0.014
(0.000) (0.372) (0.678) (0.674)∑36

ℎ=25 Δ𝑤
𝑑
𝑖,𝑡+ℎ -0.083 0.125 0.060 0.011

(0.464) (0.246) (0.298) (0.767)∑24
ℎ=13 Δ𝑤

𝑑
𝑖,𝑡+ℎ -0.087 0.047 -0.041 -0.025

(0.498) (0.559) (0.595) (0.415)∑12
ℎ=1 Δ𝑤

𝑑
𝑖,𝑡+ℎ -0.144 -0.018 0.001 -0.024

(0.290) (0.874) (0.988) (0.676)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.097∗ 0.091 0.092 0.093 0.101
(0.047) (0.064) (0.079) (0.088) (0.065)

𝑅2 0.462 0.471 0.466 0.463 0.463
Time fixed effects No No No No No
Municipality fixed effects No No No No No
Municipalities 122 122 122 122 122
Observations 14900 14900 14900 14900 14900
p-values in parentheses
Standard errors clustered by municipality.
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Regression results using equation 5.6 for the fully-restricted baseline (column 1) and four
distance bins. The dependent variable (unemployment) and w (installed capacity) are normalized

by the population as of December 2002. Municipality- and month-fixed effects included.
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Table 7.8: Additional robustness checks

Unemployment per capita𝑖,𝑡
Per capita transformations

All Excl big cities Excl covariates Dynamic None

𝑤𝑖,𝑡 -1.914∗∗ -1.807∗∗ -2.395∗∗ -1.279∗ -1.718
(0.003) (0.007) (0.001) (0.017) (0.294)∑36

ℎ=25 Δ𝑤𝑖𝑡+ℎ -0.833∗ -0.804∗ -1.196∗∗ -0.582 -1.310
(0.023) (0.032) (0.002) (0.067) (0.173)∑24

ℎ=13 Δ𝑤𝑖𝑡+ℎ -1.142∗∗ -1.099∗ -1.514∗∗∗ -0.833∗ -1.088
(0.006) (0.010) (0.001) (0.023) (0.190)∑12

ℎ=1 Δ𝑤𝑖𝑡+ℎ -1.365∗∗ -1.305∗∗ -1.712∗∗ -0.999∗ -1.291
(0.005) (0.009) (0.001) (0.025) (0.134)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡−36 (×10−3) 0.097∗ 0.766 -0.006 -3781
(0.047) (0.269) (0.883) (0.116)

𝑅2 0.462 0.466 0.481 0.460 0.137
Pure control included No No No No No
Multiple treatments allowed No No No No No
Municipalities 122 111 131 122 122
Observations 14900 13148 19449 14900 14900
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001; Standard errors clustered by municipality.

Regression results using equation 5.6 for the fully-restricted sample. Excl big cities exclude municipalities around Stockholm, Göteborg, and Malmö. Excl
covariates exclude population density from the regression. The last two columns use dynamic (t-36) and no per capita transformations of wind power capacity

and unemployment rather than the static per capita transformation used in all other regressions. Municipality- and month-fixed effects included.
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8 Discussion

The empirical analysis suggests that wind power installations in Sweden have, on average,
caused a significant and permanent reduction in unemployment within the municipalities
where the turbines are located.

For the preferred specification with four treatment variables (three separate construc-
tion years and a post-installation period) and the fully-restricted subsample (no never-
treated municipalities and only including municipalities’ first wind power projects), the
estimated treatment effects are the following. For the 122 municipalities with wind projects
installed during the sample period, their first megawatt of installed wind capacity decreased
unemployment by an average of 1.9 persons after the installation date. The median-sized
first project (5 MW) thus corresponds to 9.57 individuals leaving unemployment, or a
reduction of 0.85% in a municipality with wind power capacity and a median-sized unem-
ployment level (1115 persons). For the construction phase, the median-sized first project
reduced unemployment by roughly 4.2 persons in the first year of construction, 5.7 persons
in the second year of construction, and 6.8 persons in the last year of construction (−0.37%,
−0.51%, and −0.61%, respectively).

All model specifications and sample restrictions tell the same story, although the
estimated magnitudes differ. As for the sample restrictions, the unrestricted sample
provides estimates that are roughly half the magnitude of the fully-restricted sample.
When only estimating the treatment effect from the first project within a municipality,
the estimated treatment effect is around a third higher than the results from the fully-
restricted sample. This could be due to a decreasing marginal effect from every additional
wind project in a municipality. Alternatively, it could be due to heterogeneous effects over
installation dates, where early projects had larger impacts per MW than recent projects due
to, e.g., lower production costs. Moreover, by only excluding never-treated municipalities,
the estimated impacts are more than a third bigger compared to the fully-restricted sample.
This indicates a possible trend difference between treated and never-treated municipalities.

The regressions on the semi-restricted subsamples thus provide lower and upper bounds
for the results: 0.74-2.66 marginal reduction in unemployment from one MW of wind
energy capacity during O&M, 0.27-1.16 during the first year of construction, 0.40-1.54
during the first year of construction, and 0.66-1.80 during the last year of construction.
For a median-sized project in a municipality with wind power capacity and a median-sized
unemployment level, this corresponds to a reduction in unemployment of 3.7-13.3 persons
(0.33%-1.2%) during O&M and 1.3-5.8 persons (0.12%-0.52%) during the first year of
construction, 2.0-7.7 persons (0.18%-0.69%) during the second year of construction, and
3.3-9.0 persons (0.29%-0.81%) during the last year of construction. Assuming a project
lifetime of 25 years, the median-sized project thus creates a net reduction of 99-355
person-years in unemployment in the municipality where the wind project is located.

The most notable difference to previous literature is that the impact of wind power
investments increases in absolute value in relation to the installation date, and stabilizes
after installation. In contrast, related papers that analyze dynamic effects have generally
found a temporary impact during the construction phase which then decreases or vanishes
during the post-installation period (e.g., Fabra et al. (2023) and Costa and Veiga (2021)).
The different results could be due to country-specific effects through both the direct and
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indirect channels. For instance, the share of local workers among the directly employed
is higher during O&M than during the construction period in Sweden (Swedish Energy
Agency, 2022c). Although there is, to the best of my knowledge, no such data on
the previously analyzed countries, there are reasons to believe that the share of local
workers during O&M is greater in Sweden than, e.g., Spain, Portugal, and the USA. Since
Sweden is more sparsely populated, commuting from other municipalities is relatively
more expensive. Having workers travel from other municipalities for maintenance tasks
might be prohibitively expensive in sparsely populated areas. However, travel costs might
be less critical for construction since this is a labor-intensive phase where the developers
can hire non-local workers by offering temporary accommodation close to the construction
site. An alternative explanation is that the indirect effects (unemployment effects in other
sectors) differ across the countries. There are several reasons why this could be the case,
all rooted in the different labor market characteristics. However, given the available data,
it is impossible to provide a satisfying answer to how different sectors are affected in
Sweden on a monthly level. Therefore, future research could complement the monthly
analysis with an annual analysis where sectoral data are available.

Previous literature has also found treatment effects with lower magnitudes (including
some insignificant results). As the first study on a Northern European country, the
different magnitudes from this paper and previous literature could be due to a larger
impact in Sweden compared to other countries. However, most previous papers have used
other metrics to measure the labor market effect, notably the employment effects. Hence,
comparisons in levels are only valid if each reduction in unemployment causes an equal
increase in employment, such that the workforce size is unaffected. This is not necessarily
the case. One explanation for the seemingly different magnitudes is that the unemployment
effects comprise changes in the workforce and employment levels. The latter arguably
has a stronger theoretical basis. Nevertheless, the workforce size could also be affected if,
for example, new wind energy projects cause emigration. Once again, answers could be
revealed in future research by increasing the temporal unit of analysis (years), where data
on other labor market metrics are available.

The heterogeneity analysis shows that no group is adversely affected by local wind
power development. In other words, there is no local conflict of interest between socioeco-
nomic groups in relation to the labor market when developing local wind power projects.
However, some groups are not found to be affected at all, and some groups gain relatively
more than others. The most notable difference across groups is between men and women.
While men experience larger treatment effects in absolute value with significant results in
all periods, women are only affected during the post-installation period. Similarly, unem-
ployed with high education are not found to benefit from local wind energy investments.
However, significant beneficial effects are found for those with lower education levels,
especially among those with a gymnasium degree.

The relatively larger gains among men and those without higher education – which
is also found in Portugal (Costa and Veiga, 2021) and Spain (Fabra et al., 2023) – bear
high value for policy-makers who want to increase renewable energy. As men and lower
educated persons are typically less favorable to new wind power projects in Sweden
(Jönsson, 2022), wind energy proponents plausibly want to focus on swinging opinions
among these groups. The results found in this paper could, therefore, facilitate renewable
energy targets, given the strong influence of economic impacts in shaping sentiments
towards new wind power projects (Slattery, Johnson, et al., 2012; Mulvaney, Woodson,
and Prokopy, 2013; Caporale and De Lucia, 2015).

44



In addition, nearby municipalities are also not adversely affected. Hence, there is
no regional conflict of interest either. On the contrary, municipalities that receive a wind
project within ten kilometers of its border experience a reduction in unemployment of −0.3
units per MW after the installation. The lack of larger spillovers could be explained by a
reluctance of regional migration and long-distance commuting. Moreover, the insignificant
spillover effects for larger distances contrast the findings by Costa and Veiga (2021), who
find effects on the 30 km distance in Portugal, but cohere with (Brown et al., 2012; Fabra
et al., 2023), who do not find any spatial spillovers in the U.S. and Spain, respectively. Note
that the smallest analyzed spillover distance bin in previous literature is 30 km. Therefore,
it is possible that effects within smaller distances could be present in the previously studied
regions.

The results’ internal validity is most questionable regarding the potentially heteroge-
neous treatment effects. If the treatment effects either revert or grow as the wind project
grows older, this is policy-relevant in itself as it affects the total lifetime labor market
impact of a wind power project. However, it would invalidate the regression results from
the DiD models. Several measures are made to limit and investigate this potential bias in
the regressions, especially for the construction period. Moreover, the unbiased LP-DiD
estimator finds significant treatment effects and suggests that the treatment effect plateaus
after the installation date. However, the large confidence interval in the LP-DiD results,
which increases with the age of a project, does not allow one to rule out dynamic effects
during O&M. Therefore, future research should further analyze and investigate if there are
more suitable econometric techniques for this type of research setting. Considering the
increasing number of papers that addresses dynamic treatment effects in DiD models, it
is plausible that new and improved statistical techniques will be developed in the months
and years to come and that the validity of future related literature could be enhanced.

As for the external validity, the net labor market impacts analyzed in this paper concern
Swedish municipalities for wind power installed during 2003-2022. As discussed above,
there are reasons to believe that the effects differ in other countries. For regions with
similar labor market characteristics, geographical conditions, and energy systems – such
as the Nordic countries – it is plausible that the results are similar. However, as this is the
first study of its kind on a northern European country, it is currently not possible to assess
this claim. As the local economic impacts of renewable energy deployment are analyzed
in additional regions, it would be possible to assess if there are systematic differences
across countries and what these potential differences could stem from.

Furthermore, it is not possible to know if past projects’ impacts can be extrapolated
to future projects. Notably, wind energy has experienced a substantial cost reduction over
the last decades, which is likely to continue into the future (IEA, 2023). Additionally, the
labor market impacts from wind power might be associated with diminishing returns. In
turn, this implies that the direct impact (employment, revenue streams) per MW could be
reduced in the future. Moreover, turbines are set to become more complex, which might
require workers with special education for both construction and O&M, who might live
in other municipalities to a larger extent. Indeed, the robustness checks with temporal
splits show that the treatment effect increases substantially in absolute value when only
including the first years of the sample. The estimated treatment effects even shift signs
for the post-2017 sample.1 Therefore, the main results should not be extrapolated into

1Note, however, that the single treatment sample restriction limits the post-2017 sample to only 47
municipalities. With the unrestricted sample (table A.3), the estimated treatment effects are still decreasing
in absolute value over time. However, the post-2017 sample now has significant and negative impacts in the
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the future. On the other hand, projects and turbines are becoming bigger. And in a
few years’ time, the first large-scale decommissioning of wind turbines will also occur
(Swedish Energy Agency, 2022d). Consequently, even though the marginal impact per
MW is decreasing, wind energy as a source of local employment could persist for years.

Lastly, another venture for future research is to examine how the ownership structure
affects a wind power project’s economic impact in the municipality where the park and
the owner(s) are located. Notably, the owners are often located in different municipalities
or countries as the projects. This might especially be the case for large projects. In such
cases, private revenues and tax revenues are collected in other regions or countries, thereby
reducing the local economic effect. By separately analyzing locally-owned projects, a
better understanding of the economic development potential can be developed.

O&M phase.
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9 Conclusion

This thesis is the first to analyze the labor market impacts of wind energy investments on
the municipal level in Sweden. The empirical analysis suggests that local communities
are, on average, beneficially impacted by wind energy and that these effects persist beyond
the construction phase. This finding is important for decision-makers, investors, and
individuals who want to make informed choices regarding the green energy transition.

Looking ahead, the (Swedish Energy Agency, 2023) expects a doubling of the elec-
tricity demand in Sweden until 2035. To satisfy this demand, they identify onshore wind
power as having the greatest economic and technological capability. However, securing
public acceptance is a crucial prerequisite for this Swedish Energy Agency (2023). No-
tably, the economic impacts are a major factor in shaping personal sentiment towards
new wind turbines, and public acceptance is a de facto prerequisite for new wind energy
in many countries. Therefore, this type of finding could prove important for achieving
renewable energy targets.

However, the local labor market impacts are not the sole driver of sentiments toward
energy sources. Likewise, the strictly local impacts are not the only impacts of interest. In
the transition toward a fossil-free energy system, it is important that a broad spectrum of
issues is considered, including further economic variables, climate change, biodiversity,
energy security, environmental justice, human rights, health, and much more. Future
research can improve the understanding of how energy transitions affect different com-
munities – in both positive and negative ways – through new research and by improving
statistical techniques suitable for these analyses. After this, the trade-offs are ultimately
a question for policymakers, businesses, and voters, with far-reaching consequences for
decades to come.
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A Further results and sensitivity analyses

A.1 Four construction years
In the main results, three construction years are used. Table A.1 presents the regression
output for annual construction indicators for one, two, three, and four construction years.
In all regressions, the last three construction years are significant. However, as shown in
the last column, the effects are only significant for three years prior to the installation date.
Therefore, three construction years are deemed suitable for the main regression. Note that
these regressions are similar to a placebo-in-time test, where "anticipation" is found for
three years prior to the installation date, but not more.

Table A.1: Regression results, different number of construction years

Unemployment per capita𝑖,𝑡
Construction years 1 2 3 4

𝑤𝑖,𝑡 -1.644∗∗ -1.789∗∗ -1.914∗∗ -1.924∗∗
(0.003) (0.003) (0.003) (0.006)∑48

ℎ=37 Δ𝑤𝑖,𝑡+ℎ -0.191
(0.464)∑36

ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.833∗ -0.869∗
(0.023) (0.023)∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -1.046∗∗ -1.142∗∗ -1.214∗∗
(0.006) (0.006) (0.005)∑12

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -1.159∗∗ -1.268∗∗ -1.365∗∗ -1.396∗∗
(0.007) (0.006) (0.005) (0.006)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.105∗ 0.100∗ 0.097∗ 0.096∗
(0.036) (0.042) (0.047) (0.048)

𝑅2 0.451 0.457 0.462 0.444
Municipalities 122 122 122 122
Observations 14900 14900 14900 14409
p-values in parentheses
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Regression results using equation 5.3 for the fully-restricted sample and disparate number of
construction years. The dependent variable (absolute unemployment) and w (installed capacity)
are normalized by the population as of December 2002. Municipality- and month-fixed effects
included.
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A.2 Including outlier municipalities

In the main results, Åsele and Ockelbo are omitted due to outlier treatment observations.
Table A.2 shows the regression results when including all 290 municipalities for different
sample restrictions. The regression output show that the treatment effects become slightly
lower and have lower significance levels when including Åsele and Ockelbo. Still, the
main result of beneficial labor market impacts is robust to the inclusion of the outlier
municipalities. One explanation for the changes in results is that the outlier treatment
observations are inflicted late in the sample. Since this outlier observation has very large
weights in calculating the ATT, the overall weights of the corresponding months also
increase. Indeed, as shown in tables 7.6 and 7.2, the treatment effect has been reduced
over time (in the baseline sample, excluding outliers).

Table A.2: Regression results, including outliers

Unemployment per capita𝑖𝑡
(1) (2) (3) (4)

𝑤𝑖𝑡 -0.716∗∗ -2.315∗∗∗ -0.538∗ -1.750∗∗
(0.010) (0.000) (0.041) (0.002)∑36

ℎ=25 Δ𝑤𝑖𝑡+ℎ -0.121 -0.798∗ -0.077 -0.574
(0.177) (0.036) (0.312) (0.120)∑24

ℎ=13 Δ𝑤𝑖𝑡+ℎ -0.225 -1.025∗ -0.146 -0.755
(0.183) (0.016) (0.359) (0.065)∑12

ℎ=1 Δ𝑤𝑖𝑡+ℎ -0.373 -1.233∗ -0.279 -0.952∗
(0.184) (0.011) (0.293) (0.041)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡−36 (10−3) 0.038∗∗∗ 0.033∗∗∗ 0.150∗∗∗ 0.130∗
(0.000) (0.000) (0.000) (0.024)

𝑅2 0.333 0.341 0.429 0.516
Pure control included Yes Yse No No
Multiple treatments allowed Yes No Yes No

Municipalities 290 285 151 146
Observations 59125 46337 30804 18016
p-values in parentheses
Standard errors clustered by municipality.
∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Regression results using equation 5.3 for the fully-restricted sample. The dependent variable (ab-
solute unemployment) and w (installed capacity) are normalized by the population as of December
2002. Municipality- and month-fixed effects included.
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A.3 Yearly splits with the semi-restricted subsample
When including only the first wind power project in each municipality, the regressions on
subsamples of recent years include few (eight) newly treated municipalities, since most
municipalities have already been treated more than once at this point. Therefore, it is useful
to relax the no multiple treatment sample restriction. This is done in table A.3. Similar
to the results in table 7.2, the significance level and magnitude of the treatment effect are
reduced in most periods, compared to the fully restricted sample. For the last column,
post-2017, the treatment effects now have the same sign as the main results (negative) for
the O&M treatment effects. No effect is found for the construction period in the post-2017
sample, and only for the last year(s) in the post-2007 and post-2012 samples.
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Table A.3: Regression results, yearly splits with semi-restricted subsample

Unemployment per capita𝑖,𝑡
2007 2012 2017

All ≤ > ≤ > ≤ >

𝑤𝑖,𝑡 -0.743∗ -4.160 -0.677∗∗ -0.766 -0.675∗∗∗ -0.619∗ -0.453∗∗
(0.012) (0.138) (0.004) (0.058) (0.000) (0.043) (0.009)∑36

ℎ=25 Δ𝑤𝑖,𝑡+ℎ -0.272∗ -1.125∗∗∗ -0.199 -0.500∗ -0.006 -0.567∗∗∗ -0.028
(0.025) (0.000) (0.086) (0.028) (0.925) (0.001) (0.444)∑24

ℎ=13 Δ𝑤𝑖,𝑡+ℎ -0.403∗∗ -1.223∗∗ -0.320∗ -0.236 -0.084 -0.615∗∗ 0.004
(0.003) (0.007) (0.019) (0.127) (0.469) (0.003) (0.980)∑12

ℎ=1 Δ𝑤𝑖,𝑡+ℎ -0.655∗∗ -2.645∗∗ -0.528∗∗ -0.013 -0.345∗ -0.508∗ -0.204
(0.001) (0.005) (0.004) (0.944) (0.011) (0.020) (0.143)

𝑝𝑜𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡−36 (×10−3) 0.169∗ 0.228∗ 0.123 0.289∗ 0.072 0.186∗ 0.374
(0.045) (0.044) (0.118) (0.013) (0.425) (0.037) (0.063)

𝑅2 0.414 0.558 0.495 0.488 0.534 0.368 0.507
Municipalities 175 175 175 175 175 175 175
Observations 35700 10500 25200 21000 14700 31500 4200
p-values in parentheses; ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001

Standard errors clustered by municipality.
Regression results using equation 5.3 for different periods. All regressions use the semi-restricted subsample (no pure control, but including multiple treatments
per municipality), and include month- and municipality-fixed effects. Under each year, the column to the left (≤) is the sample prior to and including that year,

and the column to the right (>) is the sample for all months after that year. The dependent variable (unemployment) and w (installed capacity) are normalized by
the population as of December 2002.
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A.4 Alternative event studies
Figures A.1 and A.2 show event studies for the semi-restricted samples and for a longer
pre-construction period, respectively. The pre-trends are stable at around zero in all
figures. This provides further credibility to the parallel trends assumption.

Figure A.1: Event study with a longer pre-treatment period (fully-restricted sample)
The figure map coefficients and confidence intervals of the lead and lags of added installed
capacity per capita. Never-treated municipalities and observations three years prior to the

installation date of the second project are excluded. The leads restrict the observation window for
unemployment to 2003-2014. The estimated coefficients 𝛾−ℎ represent the change in

unemployment per capita at −ℎ periods from the installation of one MW per capita. The
rightmost estimate (0+) represents the average effect from all already installed capacities.

Likewise, the leftmost estimate (-96+) represents the average effect from all capacity installed
between t+96 to December 2022. The per capita terms are normalized for the population in the

year prior to the main sample (December 2002).
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(a) No multiple treatments (0-1 treatments)

(b) No pure control (>0 treatments)

Figure A.2: Event study with semi-restricted samples
The figures map coefficients and confidence intervals of the lead and lags of added installed

capacity per capita. Panel (a) excludes observations three years prior to the installation date of
the second project. Panel (b) excludes municipalities without wind power capacity in the final

period. The leads restrict the observation window for unemployment to 2003-2017. The
estimated coefficients 𝛾−ℎ represent the change in unemployment per capita at −ℎ periods from

the installation of one MW per capita. The per capita terms are normalized for the population as
of December 2002. Note the different scales on the y-axes.
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B Additional maps

(a) Bidding zones (b) NUTS1

Figure B.1: Electricity market areas and administrative regions in Sweden
Panel (a) displays the four bidding zones in Sweden. The bidding zone delineations are

approximations and drawn by the author using maps from Swedish Energy Agency and County
Administrative Boards of Sweden (2023). Panel (b) displays the NUTS1 regions (colored and in
text) and NUTS2 regions (borders) as defined by Eurostat (2023d). Maps created by the author.
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