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Abstract
The recent surge in inflation has reignited discussions on hedging inflation risks,

forming the focal point of this study. In our paper we consider conventional asset classes
from 1968 to 2023 as well as alternative assets from 2020 to 2023 and find that no asset class
provides a statistically significant hedge against core inflation shocks, while commodities
and currencies can hedge headline and energy inflation risk. Consequently, our analysis
highlights a consistent negative risk premium associated with core inflation risk across
all time periods considered, which remains robust for both in-sample and out-of-sample
shocks. Notably, the isolation of active trading strategies reveals an insignificant positive
core inflation risk premium, opening a potential avenue to mitigate the price of inflation
risk within portfolios. Moreover, we find that the negative beta of bonds and stocks on
core inflation shocks can help to explain the changing sign of the bond-stock correlation.
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1. Introduction

Believed to be dead not so long ago, inflation has resurged in recent years and managed to

consistently surprise to the upside, posing major challenges for policy makers, companies,

individual households, and ultimately financial investors. In this thesis, our goal is to

enrich the limited asset pricing literature concerning inflation risk hedging, unveiling

characteristics that can offer valuable guidance for investor portfolio decisions.

The consequences of the resurgence of inflation for investors are far reaching, ranging

from the potential devaluation of assets due to expected higher interest rates, which elevate

cost of capital and may ultimately slow down the economy, to alterations in their liabilities.

This is particularly relevant for asset managers with real liabilities, such as pension funds,

as their nominal costs increase with inflation, while their assets lose value. Hedging against

inflation is therefore key to survival for many financial institutions. Given the volatile

nature of inflation and the uncertainty associated with unexpected inflation for investors,

however, our research focuses particularly on hedging against inflation innovations, defined

as the difference between expected and realized inflation. Also, we intend to shed light on

how different components of headline inflation have varying effects on asset classes. For

this purpose, we examine inflation shocks based on the US energy inflation index, which

tends to be more volatile and transitory, as well as on the US core inflation index, which is

the most persistent component of headline inflation as it excludes energy and food inflation,

and is often perceived as more harmful for economic activity.

In order to account for structural shifts in the US economy and highlight how hedging

properties manifested during the latest inflation spike, we segmented our study into three

subperiods, while also considering the entire span from 1968 to June 2023. Similar to Fang

et al. (2022), we examine one interval pre-dating the year 2000 and another commencing

with the new millennium until 2019. The most recent segment begins in 2020 and

concludes in mid-2023. This latest subperiod is characterized by a series of heterogeneous

events, starting with an unprecedented demand shock caused by the outbreak of the Covid

pandemic and followed by quantitative easing to stimulate the economy (Milstein and

Wessel, 2021). In between, the US economy saw significant fiscal stimulus, with the level
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of US government debt increasing by more than 20 percent between 2019 and 2023, as

reported by the United States Treasury (2023), and supply-chain disruptions due to sustained

lock-downs in different parts of the world (Hernandez, 2023). Shortly after, the war in

Ukraine started, causing disruptions in the energy market (Adolfsen et al., 2022), before

central banks all over the world started hiking interest rates (Kozlowski and Jordan-Wood,

2023). In this environment, it is therefore even more relevant to understand inflation shocks

as a driver of asset returns and explore strategies to hedge against unexpected inflation.

Motivated by the economic environment and significance of the subject at hand for the

asset pricing literature, in this thesis we aim to answer the following key research questions.

What are the hedging properties of different asset classes against headline inflation and its

components, are they time-varying, and can any asset hedge against core inflation shocks?

Is there a consistent risk premium or price of inflation risk? Does the price of inflation

risk remain constant when we consider observable forecasting errors rather than in-sample

VAR residuals as inflation shocks and is it impacted by the accuracy of the forecasting

model? Can stock and bond return reactions to inflation risk explain the time-varying

relationship of the two asset classes?

To approach the questions, we choose a structure which builds upon existing literature,

but progressively extends and challenges current views. Each section offers an outline of

our key findings as well as a discussion where we attempt to contextualise and explain

the results. We begin by exploring the inflation hedging properties and price of risk

of conventional asset classes, backing the latter analysis by constructing inflation risk

factor mimicking portfolios, extending the analysis in Fang et al. (2022) to incorporate the

2020-2023 inflation surge. We then revisit the first two research questions by extending the

asset pool to other asset classes, including various alternative assets and trading strategies,

an area unexplored by Fang et al. (2022), to understand how these bear against inflation

risk and whether the price of risk remains robust in their presence. To further strain the

results, we then go beyond the methodology employed in existing literature and build a

VAR inflation forecasting model, where we ultimately optimize the forecasting window, to

test the hedging properties of asset classes and the price of inflation risk on out-of-sample

forecast errors observable to investors. Equipped with all the preceding analysis, similarly
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to Fang et al. (2022), we then consider the final research question and explore the dynamics

of the bond-stock correlation, offering a range of possible explanations of the relationship

stemming from our research and existing literature. We conclude our analysis by dissecting

stock returns into cash flow and discount rate news as a way to understand the key driver of

the core inflation betas of stocks. Subsequently, we conduct a range of tests to strengthen

the robustness of our results.



2. Literature Review

In the following section, we review the literature related to the topics discussed in our work.

While the core of this thesis is based on a paper published by Fang et al. (2022) titled

"Getting to the Core: Inflation Risks Within and Across Asset Classes", we extend the

timeframe under consideration, as well as venture into topics not covered by the authors.

This section aims to provide a solid academic background to support our methodology and

enrich the discussion.

2.1 Inflation Modeling

The Vector Autoregressive Model (VAR) was first introduced by Sims (1980) and has

been a cornerstone model for empirical macroeconomic analysis ever since, providing

a simple framework to comprehensively capture dynamics between multiple time series

(Stock and Watson, 2001). The VAR method served as a foundation for many influential

papers studying causal relations between stock returns and macroeconomic variables such

as interest rates, inflation and other, with multiple publications acting as examples of such

(Lee, 1992; James et al., 1985; Cologni and Manera, 2008). Although many complex

models originating from the VAR have been developed over time, as Stock and Watson

(2001) point out in their publication dedicated to vector autoregressions, simple VAR

models are still used as benchmarks for complex forecasting and modeling tools. The

choice of state variables employed in the VAR differs across studies, which, as argued

by Chen and Zhao (2009), can have a significant impact on the outcomes from the VAR

models. In this paper, we follow the VAR system used by Fang et al. (2022) which

supplements the New Keynsian VAR applied, for instance, by Bekaert et al. (2005), with

the price-dividend ratio. Moving window VAR models, resembling the method we employ

for inflation forecasting, have also been used in research concerning macroeconomic issues,

exemplified, for instance, by Swanson (1998) in his paper on the relationship between

money stock and real output.
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2.2 Inflation Hedging Properties of Asset Classes

As per the Fisher theorem, expected nominal rates should co-move with expected inflation,

and hence by extension one could infer that stocks should provide a hedge against rising

price levels (Fisher, 1930). However, already early empirical work disproves this theoretical

view, showing that stock returns are in fact negatively correlated with both expected and

unexpected components of inflation (Bodie, 1976; Miller et al., 1976; Fama and Schwert,

1977). The robustness of these findings has been further reinforced in the following years

with similar results obtained from studies using international stock market data (Solnik,

1983; Bekaert and Wang, 2010). While Bodie (1976) and Miller et al. (1976) focused on

common stocks, Fama and Schwert (1977) also considered US government bonds and bills,

which they find to be a hedge against both expected and unexpected inflation. Subsequently,

Fama (1981) revisited this topic to find plausible explanations for the negative inflation beta

of stocks, arguing it is driven by the negative relations between inflation and real activity.

Katz et al. (2016) offer a different explanation, suggesting that nominal discount rates used

by local stock investors are sticky and slow to adjust to increases in local consumption

baskets, hence stock returns tend to lag changes in inflation levels.

Although the bulk of research focused on common stocks and bonds, some studies

also covered inflation hedging properties of other asset classes. Ready et al. (2013) in their

exploration of carry trades find a negative correlation of inflation to forward discounts

and US-dollar denominated FX returns. Commodity futures, on the other hand, are found

to be positively correlated with both expected and unexpected components of inflation,

which Gorton and Rouwenhorst (2004) argue is due to futures including information about

foreseeable trends in commodity prices. Later research confirms this thesis, however adds

that the hedging abilities of commodity futures tend to vary over time (Spierdĳk and Umar,

2015). With regards to real estate, often perceived as a good inflation hedge, early studies

analysing returns of tangible real estate portfolios show promising results, suggesting real

estate can shield from both expected and unexpected inflation components (Hartzell et al.,

1987; Rubens et al., 1989). However, as suggested by Case and Wachter (2011), numerous

factors make it challenging to determine the efficacy of real estate as an inflation hedge. In

fact, a more recent study in this area conducted by Hardin et al. (2012) focused on REIT
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returns shows contrary results, with REITs displaying a negative relationship with inflation,

particularly in the short-term.

The hedging properties of alternative asset classes such as digital assets, private equity

or hedge fund strategies still remain an under-researched area. Existing studies suggest

Bitcoin exhibits some inflation hedging properties, which were noticeable particularly

during the recent pandemic (Choi and Shin, 2022), however the robustness of the results

and the extent of the relationship remain uncertain. Neville et al. (2021) find that some

active trading strategies, after factoring in the trading costs, can provide a hedge against

unexpected inflation. These include, for instance, trend-following strategies within a range

of asset classes or value strategies.

While the majority of research on inflation hedging properties of asset classes

considers the relationship of asset returns with CPI headline inflation levels, Fang et al.

(2022) decompose inflation into its components: headline, core and energy. The authors

demonstrate that core and energy inflation exhibit different statistical properties and argue

that hedging of core inflation shocks, which represent the persistent component of price

level rises, is investors’ main concern. As opposed to some prior research on headline CPI,

Fang et al. (2022) find that, in general, real assets do not offer a statistically significant

hedge against core inflation shocks within the 1963 to 2019 time frame. The paper, however,

does not capture the recent inflationary period, which we consider in this thesis, along with

other asset classes and perspectives unexplored by the authors.

2.3 Price of Inflation Risk

As a further step, to enhance the understanding of inflation within the realm of finance and

asset pricing literature, many researchers explore the price of inflation risk or in other words

the inflation risk premium, both within and across asset classes. Chen et al. (1986) found

weak evidence of a time-varying inflation premium, prominent particularly in periods of

high inflation variance. These findings sparked further research in the area, which over time

provided more robust evidence supporting the significance of the inflation risk premium, as

well as reinforced the idea of its time-varying properties (Evans, 1998; Buraschi and Jiltsov,

2005; Bekaert and Wang, 2010). Grishchenko and Huang (2013) expand the discussion

showing that the inflation risk premium not only varies over time, but in fact changes its
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sign depending on the time period considered. Boons et al. (2020) argue that the inflation

risk premium exists because inflation is a predictor of real consumption growth. In their

recent study, Fang et al. (2022) show that the sign, significance and magnitude of the

inflation risk premium depends on whether we consider headline, core or energy inflation.

The researchers provide robust results supporting a statistically significant negative core

risk premium over time, suggesting investors are willing to pay to hedge against core

inflation risk. In line with prior research, they show time-variance in the magnitude of the

risk premia. Interestingly, the results appear more robust for core inflation as opposed to

headline risk premium, which was the main focus of preceding research.

Although most research focused on proving and trying to understand the existence

of the inflation risk premium in the wider economy, some studies centred on the price of

risk derived from particular assets. Hollifield and Yaron (2001), for instance, show that

there is a very weak evidence of an inflation risk premium in currency markets. On the

contrary, Andrews et al. (2020) show, in a recent paper, that inflation is a key factor in

explaining the returns of currency carry trades and the time-variation in such. When it

comes to commodities, Hou et al. (2023) show that a model-based commodity inflation

risk premium has a statistically significant explanatory power for the cross-section of

commodity returns. Fang et al. (2022) take this analysis a step further by examining the

price of risk across multiple assets while breaking it down into headline, core and energy

inflation as well as constructing inflation factor mimicking portfolios bearing the same

pricing power. Interestingly, the core inflation risk appears consistently priced across asset

classes bearing a negative risk premium, while the pricing of headline and energy inflation

fluctuates across asset classes.

2.4 Bond-Stock Correlation

Numerous papers explore the nature of the bond-stock correlation, the two key financial

instruments in many investors’ portfolios, some attempting to explain the underlying drivers

of the relationship. Early studies show a positive correlation of stock and bond prices, or

rather a negative correlation of stock prices and changes in yields (Shiller and Beltratti,

1992). Although this was true for the period examined by the authors, Ilmanen (2003)

later shows early proof of the correlation sign varying over time. Campbell et al. (2009)
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add the changing covariance to a standard term structure model suggesting it is a key

macroeconomic indicator that should be considered. More recent papers, such as the one

written by Brixton et al. (2023), show that the bond-stock correlation changed its sign in

early 2000’s and remained negative throughout the 21st century. However recently, as

shown by the authors, the sign of the correlation has moved closer to zero and changed to

positive for equity returns in some sectors. Academic literature further found evidence of

the properties of the bond-stock correlations differing across regions. Yang et al. (2009)

suggests that in the US the correlations are weaker during recessions while the opposite is

true in the UK.

Besides modeling the dynamics of the bond-stock correlation, past research has

further attempted to explain that phenomenon, presenting a range of theories. Boyd et al.

(2005), for instance, suggest the bond-stock correlation is higher with expansive monetary

policies. Yang et al. (2009) suggest two key macroeconomic indicators that can predict

the correlation: short rate and inflation rate. With those variables in mind, Brixton et al.

(2023) offer a more complex explanation of the relationship, significant for this thesis.

Armed with prior research on equity and bond sensitivity to inflation, they point out both

asset classes are negatively correlated to inflation news, while the sign of their correlation

to growth news differs. Hence, they consider demand shocks as key drivers of a negative

stock-bond correlation in the 21st century. Their rationale is that demand side shocks drive

inflation and growth in the same direction, with the correlation responding more strongly to

growth shocks. As an alternative explanation, they argue that for most of the 21st century,

inflation has been anchored and with low levels of uncertainty, hence growth shocks were

a key driver of the negative bond-sock correlation. By extension, an environment where

supply shocks drive inflation while hindering growth is one where the correlation is likely

to turn positive again.



3. Methodology and Data

The following section will outline the methodology employed in our analysis. In order to

ensure this paper can be replicated, this section will further detail the sources of data used

for the purpose of this thesis.

3.1 Methodology

3.1.1 Inflation Shocks

Following the methodology of Fang et al. (2022), inflation shocks in our model are defined

as the residuals from the following vector autoregression (VAR):

πh,t = πc,t−1 + πe,t−1 + πf,t−1 + rft−1 + pdt−1 + gdppott−1 + εt

πc,t = πc,t−1 + πe,t−1 + πf,t−1 + rft−1 + pdt−1 + gdppott−1 + εt

πf,t = πc,t−1 + πe,t−1 + πf,t−1 + rft−1 + pdt−1 + gdppott−1 + εt

πe,t = πc,t−1 + πe,t−1 + πf,t−1 + rft−1 + pdt−1 + gdppott−1 + εt ,

(3.1)

where πt is the observed headline, core, food as well as energy inflation for period t, πct−1
the core inflation, πet−1 the energy inflation, πf t−1 the food inflation, rft−1 the monthly

risk-free rate, pdt−1 the price-dividend ratio and gdppott−1 the output gap. All the right

hand side variables are lagged by 1 period. We conduct regressions with headline, core,

and energy inflation as dependent variables from the beginning of 1968 to mid-2023 on a

quarterly basis, deriving quarterly shocks, εt , based on an in-sample estimation approach.

Notably, as our research focus excludes food inflation due to its relatively minor contribution

to headline inflation shocks as Table 16 in the Appendix shows, it was solely utilized as an

independent variable in the VAR model.

Furthermore, given our analysis also delves into the most recent inflation episode from

2020 to mid-2023, we modify the methodology used by Fang et al. (2022) by conducting

VARs on a monthly basis to augment the number of data points for this period. To increase

comparability with the quarterly VAR, the regression is run using the whole sample period

spanning from 1968 to June 2023. However, to account for the fact that markets can only

react to inflation shocks as soon as inflation numbers are published, which occurs after
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the month ends, we lag core inflation shocks by one month prior to running regressions

to determine hedging properties. For headline and energy inflation, we choose not to lag

them, considering that headline inflation is primarily driven by energy and food inflation

shocks, as depicted in Table 16 in the Appendix, and we assume that both energy and food

inflation shocks predominantly result from fluctuations in prices of tradeable commodities,

which can be incorporated by markets immediately1.

Given that the inflation shocks, as outlined above, are derived from the residuals of

an in-sample VAR, they do not correspond to shocks that financial markets can in fact

experience. To address this, we adopt an out-of-sample methodology using an expanding

VAR window, thereby extending the inflation shock modelling approach of Fang et al.

(2022). For this purpose, we consistently employ the most recent coefficients and data

points to forecast inflation for the subsequent quarter. Consequently, the inflation shocks

represent the difference between the forecasted and actual inflation during the respective

quarter.

Finally, we aim to identify the optimal window length that minimizes out-of-sample

forecasting errors, thereby reducing inflation shocks. This involves running VAR models

with any possible window length and calculating the mean forecasting error for each length.

However, to avoid errors in the VAR, the minimum window length was set to 7. Ultimately,

we select the window length with the lowest mean forecasting error for headline, core

and energy inflation shocks. These optimal window lengths are consequently utilized to

minimize inflation shocks, which we then employ in subsequent analyses as detailed below.
3.1.2 Inflation Hedging

Consistent with Fang et al. (2022), the exposure of each asset to inflation shocks is

determined through the following regression analysis:

rei,t = αi + βiπεt + ui,t . (3.2)

In this specification, rei,t represents the realized return of asset i in excess of the risk-free

rate. βiπ denotes the exposure of asset i to the inflation shocks and εt refers to the inflation

1Tables 17 and 18 in the Appendix demonstrate that, across the entire sample period, lagging solely core inflation
shocks yields the most consistent exposures to inflation shocks and prices of risk when comparing it to the
quarterly results (see Table 3).
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shock as defined in the VAR equation (3.1). To derive the exposure to headline inflation

shocks, we perform a single regression, while we run a joint regression to obtain the

exposures to core and energy inflation shocks. The t-statistics we report are adjusted in

accordance with the Newey and West (1987) methodology to account for heteroskedasticity

and autocorrelation inference in the time series.

Building on the betas derived from the first step regression (3.2), similarly to Fang

et al. (2022), we perform Fama and MacBeth (1973) cross-sectional regressions to estimate

the price of risk associated with each type of inflation. This estimation involves regressing

average returns onto asset betas:

E(ri,t) = αi + λβi + ui,t , (3.3)

where E(ri,t) represents the average annual return of asset i, βi the exposure of asset i to

the inflation shocks and λ the risk premium. As in the first step regression, we run a single

regression to derive the price of headline inflation risk, while we employ a joint regression

to calculate the price of core and energy inflation risk. We then report White adjusted

t-statistics to account for heteroskedasticity.

To assess how the exposure of each asset class to inflation evolves over time, we

employ monthly first step regressions in a rolling five-year window. As next step, we

assess how fluctuations in volatility and overall inflation levels influence the exposures to

inflation risk. This is achieved by calculating the monthly differences in betas for each

type of inflation. Subsequently, we conduct a regression analysis on these time series with

the monthly differences in the level and volatility of inflation as joint explanatory variables

and the changes in betas for each inflation type as dependent variables. This allows us to

further explore the relationship between betas and the average level and standard deviation

of inflation. We choose a five-year rolling window and monthly inflation data to strike

a balance between responsiveness to short-term fluctuations and the ability to capture

longer-term trends. This differs from the section in Fang et al. (2022) on time-varying

exposures, as we do not use a local least square estimator and we also aim to identify the

relationship between inflation risk exposures in relation to both the level and volatility of

inflation.
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To determine whether markets consistently price in inflation risk across assets, we

construct inflation factor mimicking portfolios using the standard Fama-MacBeth procedure,

replicating the methodology outlined by Pukthuanthong et al. (2019). Given that we

conduct this exercise both within specific asset classes and for all assets combined, we

always adjust the data to ensure the beginning and end dates are consistent across assets.

We use the following equation to determine the asset weights in the mimicking portfolios:

w∗ = V −1β [β′V −1β]−1, (3.4)

where V −1 is the covariance matrix of returns and β is the inflation shock beta of asset

returns. When w∗ derived from the above equation are applied to corresponding assets to

create a portfolio, the portfolio will have a unit exposure to the given inflation risk (β = 1).

We perform the above procedure at every time period in our sample separately for headline

shocks in a univariate manner as well as core and energy shocks jointly. As a result, we

obtain three portfolios with varying weights in each period, maintaining a beta exposure of

1 to headline, core and energy inflation shocks respectively.

Finally, following Fang et al. (2022), we aim to investigate how one of the most

fundamental hedging properties in financial markets, namely the correlation between stocks

and bonds, behaves in the context of inflation shocks. For this purpose, we calculate how

much of the covariance between stocks and bonds is attributable to the covariance driven

by inflation shocks:

Covexpl.S,B = CovfittedS,B /Covsample
S,B . (3.5)

In this specification, Covexpl.S,B represents the proportion of covariance attributed to inflation

shocks, CovfittedS,B signifies the covariance between the fitted values for stocks and bonds

derived from the first step regression (3.2), where core and energy inflation shocks serve as

the explanatory variables, and CovS,B denotes the covariance between the excess returns of

stocks and bonds in the respective sample.

3.1.3 Discount Rate News vs Cash Flow News

We follow the standard Campbell (1991) approach to decompose stock returns into discount

rate and cash flow news. The following steps are performed on a range of stock market,
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industry and value-growth portfolios which we outline further in the data section. As a

first step, we run a VAR with the following specification:

ri,t = ri,t−1 + pdt−1 + rft−1 + πh,t−1 + εt

pdt = ri,t−1 + pdt−1 + rft−1 + πh,t−1 + εt

rft = ri,t−1 + pdt−1 + rft−1 + πh,t−1 + εt

πh,t = ri,t−1 + pdt−1 + rft−1 + πh,t−1 + εt ,

(3.6)

where ri,t represents the returns of asset i, pdt represents the price-dividend ratio, rft is the

risk free rate and πh,t is level headline inflation. Conscious that the choice of state variables

for the VAR may have a significant impact on the outcome (Chen and Zhao, 2009), we

choose to follow the choice made by Fang et al. (2022). As per the standard VAR approach,

the right-hand-side is composed of lagged variables, in this case by one quarter. We then

use the VAR results to derive the discount rate news, applying the following formula from

Campbell (1991):

NDR,t = e1
′
λut , (3.7)

where λ is defined as ρΓ(Γ − ρΓ)−1. In this configuration, ut is a matrix of residuals from

the VAR, e1′ is a vector whose first element is equal to 1 and other elements are 0, Γ is

the matrix of VAR coefficients and ρ is the discount coefficient. In this paper, we set ρ to

0.967, which is the optimal discount coefficient derived by Vuolteenaho (2002). We then

proceed to derive the cash flow news using the indirect method which, as per Campbell

and Vuolteenaho (2003), is advantageous given it does not require to understand short-run

dynamics of dividends. We use the following equation to back out cash flow news:

NCF,t = (e1′ + e1
′
λ)ut . (3.8)

We then regress the cash flow and discount rate news on core and energy inflation shocks

jointly.

3.1.4 Robustness Checks

To strengthen the validity of our analyses, we consider three distinct robustness checks

employed by Fang et al. (2022). First, we assess whether the price of inflation risk is still
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present when we introduce other exogenous macroeconomic variables. These variables are

included as independent variables when running regressions to determine the exposure of

each asset to inflation shocks. In the second step regression, we then estimate both the

price of inflation risk and the price of the risk associated with the specific macroeconomic

variable under consideration.

Secondly, we aim to examine whether it is the exposure to inflation shocks or the

exposure to expectations for future inflation that explains excess returns. For this purpose,

we conduct a two-step regression analysis. In the first step, we run a regression of excess

returns on the current level of inflation:

rei,t = αi + βilevelπt + ui,t . (3.9)

In this specification, βilevel denotes the exposure to the level of inflation. In the second step,

we decompose the level of inflation into its unexpected and expected components. Similar

to our initial specification of inflation shocks, we use the residuals from the quarterly VAR

to capture unexpected inflation. For the expected inflation component, we obtain the fitted

values from the VAR, which represent the expectations at t − 1 for the level of inflation at t.

Subsequently, we conduct a joint regression of excess returns, incorporating both the fitted

values and residuals:

rei,t = αi + βie (Et−1πt) + βiuεπ,t + ui,t , (3.10)

where βie represents the exposure to expected inflation, (Et−1πt) the inflation expectations

for period t in t − 1, βu the exposure to unexpected inflation, and επ,t the unexpected

inflation in t.

As a last robustness check, we consider a different approach to determining inflation

shocks. Rather than employing the VAR to back out inflation shocks, we use the inflation

expectations from the Survey of Professional Forecasters and determine the shocks through

the following equation:

ui,t = πt,level − πt,survey, (3.11)
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where πt,level represents level inflation, πt,survey is the expected headline inflation from the

survey and their difference ui,t is the inflation shock. Given expected core inflation data

from the Survey of Professional Forecasters is only available from 2007, we follow the

approach suggested by Fang et al. (2022) and use headline expectation as the expected

inflation for both headline and core inflation. As energy inflation is largely unpredictable

and very volatile, we use level energy inflation as the shock itself. We then run Equation

3.11 separately for core and energy inflation in all quarters from Q3 1981 to Q2 2023

in order to determine inflation shocks. Once shocks are determined, we then follow the

previously outlined procedure to determine inflation hedging properties (3.2) and the price

of risk (3.3) and compare it to the regression results obtained when the shocks were backed

out from the VAR.

3.2 Data

3.2.1 Vector Autoregressive Model

Inflation data for the vector autoregression (VAR) analysis was sourced from the Federal

Reserve Economic Data (FRED) database. Specifically, we used the Consumer Price Index

for All Urban Consumers in the US, distinguishing between All items, All items Less

Food and Energy, Food and Beverages and Energy, consequently referred to as headline,

core, food and energy inflation, respectively. This data is seasonally adjusted and was

retrieved both on a monthly and quarterly basis, with inflation representing the change in the

Consumer Price Index on a month-on-month or quarter-on-quarter basis. Additionally, the

dataset for the US output gap was sourced from FRED, representing the relative difference

between the real gross domestic product and real potential gross domestic product. For the

risk-free rate, we use the monthly risk-free rate from Kenneth R. French’s research website,

while the price-dividend ratio for the US stock market was retrieved from Robert Shiller’s

research website. The time span covered by the data for the VAR analysis extends from the

beginning of 1968 to mid-2023.
3.2.2 Test Assets

In our analysis, we use various portfolios within asset classes as well as their respective

market portfolios. For assets where we faced constraints in accessing market level data, we

construct market portfolios manually, using the methodology outlined below. All our time
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series of returns, obtained from various sources, assume reinvestment of dividends. For

REIT data, where the total return time series was not available, we constructed it based on

available spot prices and the dividend yield.

We obtain our data from various sources: the stock market and international stock

returns are obtained from MSCI indices. This includes returns of the US stock market,

as well as Europe and Far East. Industry portfolio returns are downloaded from Kenneth

R. French’s website and encompass consumer, manufacturing, high tech and healthcare.

Treasury data is pulled from CRSP, we get the agency and corporate bond returns from

ICE Bofa Agency and Corporate indices. We gather returns of the fixed income assets for

a range of maturities depending on particular availability. Commodity returns are obtained

from GSCI indices and include livestock, agriculture, industrial metal, precious metal and

energy. We use the S&P US REIT index as the proxy for the REIT market in our analysis.

We further obtain currency data for multiple carry portfolios from the MIT Sloan School

of Management database, which time frame we then extend as outlined in a subsequent

paragraph. Additionally, in our discount rate vs cash flow news analysis, we use a range

of portfolios sorted from value to growth, which we download from Kenneth R. French’s

website. Returns of different asset classes have different start dates. Our longest time series

are for treasuries as well as industry and value portfolios from Kenneth R. French’s website

for which we have data from the beginning of 1968. However, treasury data only spans

until the end of 2022. The stock market returns for the US and other regions are available

from the beginning of 1970, so are the returns of the commodity market portfolio, livestock

and agriculture. Other commodity returns have shorter available time series, with precious

metal originating in 1973, industrial metal starting in 1977 and energy in 1983. Currency

return data spans from the beginning of 1984. The REIT return data is available from Q3

in 1989. Our shortest time series are the returns of agency bonds and corporate bonds

which are accessible from 1997.

Given constraints in accessing the data, we manually construct the market portfolios

for treasury and currency returns. We do so by taking the equal weighted average of the

returns of respective assets within each asset specification, hence implicitly assuming the

market portfolio is composed of the embedded assets in equal proportions. For currencies,
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we only use the carry 1-6 portfolios in the market portfolio construction.

To extend the availability of currency excess returns for carry portfolios 1-6, as

originally constructed by Lustig et al. (2011), and dollar carry excess returns, as formed

in a subsequent paper (Lustig et al., 2014), we compile these portfolios for the missing

time frames up to 2023. Following the methodology established by Lustig et al. (2011),

we source data for 26 currency pairs from Eikon. This dataset includes monthly spot and

1-month forward prices quoted in terms of USD, spanning from 2007 to 2023. For carry

portfolios 1-6, we calculate the 1-month forward discount for each currency pair at the end

of period t. We then sort these currency pairs into six portfolios, with those exhibiting the

highest forward discount relative to the USD assigned to portfolio 6, and those with the

lowest discount allocated to portfolio 1. Next, we compute the average excess return of all

currency pairs present in each respective portfolio in the subsequent month.

For the dollar carry excess return, we determine the average of all forward discounts

for the 26 currency pairs. Similar to Lustig et al. (2014), we take a long position if an

average discount is observed across all portfolios in period t and a short position if an

overall premium is present on average. Subsequently, the excess return in the following

month (t+1) is computed as the average excess return, with a positive sign when we were

long and a negative sign when we were short in the previous month.

For all portfolios, we then conduct regressions of our currency excess returns on

the available excess returns. These regressions yield correlations ranging from 0.89 to

0.95 for the six carry portfolios and 0.93 for the dollar carry portfolio, suggesting that

our methodology in place is close to the one employed by Lustig et al. (2011) as well as

Lustig et al. (2014) and the currency returns are thus comparable over time. Finally, we

project the excess returns for the remaining time frame based on our currency returns and

the regression coefficients.

In addition to traditional asset classes, we expand our analysis to include alternative

assets and trading strategies. As alternative assets, we examine Bitcoin and include

Treasury Inflation-Protected Securities (TIPS), for which we use the PIMCO 1-5 Year U.S.

TIPS index ETF and the PIMCO 15+ Year U.S. TIPS index ETF to differentiate between

short-term and long-term inflation-protected bonds. Our selection of active strategies
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encompasses merger arbitrage, represented by the IQ Merger Arbitrage ETF; event-driven

strategies, captured by the BlackRock Event Driven Equity Fund; market-neutral strategies,

for which we use the IQ Hedge Market Neutral Beta index, and trend following strategies,

reflected by the Eurekahedge CTA/Managed Futures Hedge Fund index. Moreover, we

consider different equity hedge fund strategies, including the Bloomberg Equity Long/Short

Hedge Fund index, the Bloomberg Equity Hedge Fund index, Bloomberg Equity Multi-

Strategy Hedge Fund index, the Bloomberg Equity Long Biased Hedge Fund index, as well

as the Bloomberg Equity Long Only Hedge Fund index. Additionally, we use the S&P

Listed Private Equity index as a proxy for private equity investments. Finally, we consider

the most commonly known risk factors from Kenneth R. French’s website, including Small

Minus Big (SMB), High Minus Low (HML), Winners Minus Losers (WML), Conservative

Minus Aggressive (CMA) and Robust Minus Weak (RMW) for the North American market.

Due to varying data availability for alternative assets and trading strategies, we restrict our

dataset to the period from 2020 to mid-2023, ensuring consistency in our analysis.

3.2.3 Data for Robustness Checks

To enhance the robustness of our results, we include five exogenous macroeconomic

control variables in our analysis: change in personal consumption expenditures, change in

personal consumption expenditures for durable goods, industrial production, total nonfarm

employees and the employment rate. This data is seasonally adjusted and was retrieved from

the FRED database for the US economy. As a further robustness check, we use data from

the Survey of Professional Forecasters run by the Federal Reserve Bank of Philadelphia

as the expected inflation, rather than using VAR to distinguish between expected and

unexpected components of inflation. The survey results represent expectations for one year

ahead inflation levels. It is conducted on a quarterly basis and its headline component runs

from mid-1981 to mid-2023. Given data for core inflation is only available from 2007,

we use headline as a proxy for both core and energy expectations, following the approach

presented in the paper published by Fang et al. (2022).



4. Empirical Findings and Discussion

The purpose of this chapter is to present the key findings of our thesis. We further

supplement it with a discussion of the interpretation and significance of our results.

4.1 Inflation Properties

4.1.1 Descriptive Statistics

As depicted in Panel A of Table 1, the average level of headline, food and core inflation

has been vastly similar over the whole sample period. However, differences in standard

deviations and autocorrelations between the three are relatively more pronounced. Overall,

the standard deviation of core inflation has proven to be the lowest, while showing the

highest degree of autocorrelation, suggesting that core inflation has been the most consistent

and predicable inflation component over the whole sample period. In contrast, energy

inflation exhibits a higher average level, with limited predictability due to a considerably

higher standard deviation and low autocorrelation of 0.08.

When examining monthly inflation data since the start of 2020, we observe not only a

higher level of inflation for all inflation components, but also a divergence of averages, with

average food and energy inflation being higher by roughly two percentage points, while

core inflation was higher only by 0.3 percentage points. With respect to autocorrelations, a

reversal of the pattern for energy inflation is observable. In the most recent inflation episode,

it has amounted to 0.37, indicating increased persistence. Core inflation, on the other hand,

has become relatively less predictable, as indicated by its reduced autocorrelation.

Panel B provides a breakdown of the components comprising headline inflation over

the entire sample period. Core inflation constituted the majority at 72 percent, followed by

food inflation at 20 percent, and energy inflation at 8 percent. In the most recent 3.5 years,

the composition has remained relatively stable, with food inflation contributing marginally

more, while core inflation constituted proportionally less.

As Panel C shows, the correlation between headline inflation and its components

is highest with core inflation throughout the entire sample period, which has remained

high, albeit decreasing slightly, in the latest inflation period. Conversely, energy inflation

has seen an increase in correlation with headline inflation most recently. Notably in this
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context, despite core inflation showing a relatively lower correlation with headline inflation,

the correlation between core and energy inflation has increased in the recent period. For

food inflation, a significant drop in correlation with headline inflation has been recorded,

declining from 0.59 to 0.18.

Table 1. Inflation Summary Statistics

Full Sample 2020-2023
A. Summary Statistics

Mean SD Autocorr Mean SD Autocorr
Headline 4.04 1.69 0.60 4.66 1.26 0.57
Core 3.99 1.38 0.75 4.26 0.87 0.66
Food 4.06 1.95 0.50 5.99 1.24 0.65
Energy 5.05 10.26 0.08 6.82 11.57 0.37

B. Headline Composition

β s.e. β s.e.
Core 0.72 0.01 0.67 0.01
Food 0.20 0.01 0.23 0.01
Energy 0.09 0.00 0.09 0.00

C. Correlation Matrix

Headline Core Food Energy Headline Core Food Energy
Headline 1.00 1.00
Core 0.81 1.00 0.77 1.00
Food 0.59 0.47 1.00 0.18 0.09 1.00
Energy 0.69 0.21 0.15 1.00 0.84 0.33 -0.04 1.00

Note: This table provides summary statistics for headline, core, food and energy inflation components. Panel
A presents summary statistics for each inflation component, including their mean, standard deviation and auto-
correlation. All values are annualized. Panel B reports the regression results of headline inflation on core, food
and energy inflation. Panel C reports the correlation matrix.

4.1.2 Inflation Shocks

Figure 1 plots core, headline and energy inflation shocks from our vector auto regression

model. As can be inferred from the graph, the time series of shocks exhibit different

properties depending on the inflation metric.

The core inflation shock time series is the least volatile, with shocks fluctuating

mostly within a +/− 1 percent bound and never differing from zero by more than 2 percent.

This result is intuitive, given core inflation exhibits the highest autocorrelation and lowest

variance among the three inflation measures we analyse. Interestingly, periods of high core

shocks tend to be clustered and last a relatively short time.
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Energy inflation is substantially the most volatile. Shocks frequently breach a +/− 10

percent bound, suggesting this component of headline inflation is extremely difficult to

forecast. The shocks appear less clustered, however are characterized by significant and

sudden spikes.

Headline inflation shocks are more volatile as compared to core shocks, however

still significantly less volatile than energy shocks, predominantly staying within a +/− 2

percent bound. Notably, when comparing headline to energy shocks it is noticeable that

energy shocks drive the volatility of headline inflation, particularly in periods where energy

inflation experiences major spikes. The headline shock time series thus seems comparable

to the energy shocks plot, however its volatility appears significantly dimmed by the core

inflation component. The observation of energy inflation shocks being the main driver of

headline inflation shocks is also supported by Table 16 in the Appendix, which shows that

energy inflation shocks can explain 64 percent of the variation in headline inflation shocks

over the full sample period.

Figure 1. Time Series of Inflation Shocks

Note: This figure illustrates the time series of core, energy, and headline inflation shocks, being the error terms,
εt , from the VAR specified in (3.1).

4.2 Inflation Hedging

4.2.1 Inflation Hedging Properties of Assets Classes

As shown in Panel A of Table 2, we find positive beta coefficients in response to headline

inflation shocks for currencies, commodities and REITs over the entire sample period,

with REITs not showing any statistical significance. Currencies exhibit almost perfect
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inflation hedging properties in response to unexpected headline inflation, indicating that

an unexpected 1 percent inflation shock is associated with a 0.91 percent increase in the

value of the currency portfolio. Commodity portfolios exhibit even more robust inflation

hedging properties, implying an expected return of 8.19 percent in response to the same

shock. Stocks and bonds were negatively correlated with inflation shocks throughout the

entire sample period, with only treasury and agency bonds being statistically significantly

exposed to headline inflation shocks.

As Panel A further illustrates, a clearer picture emerges for the exposure to core

inflation shocks. All assets examined had negative core inflation betas, ranging from −4.47

for international stocks to −0.14 for agency bonds. However, only the coefficients for

treasuries and domestic as well as international stocks are statistically significant. For

energy inflation shocks, most asset classes exhibit beta coefficients close to zero, except for

commodities, which display a beta of 1.15. Despite showing relatively low values for betas,

the coefficients for treasury and agency bonds, as well as currencies and commodities, are

statistically significant.

Accordingly, the hedging properties of real assets, such as stocks, commodities, REITs,

and currencies, are confirmed only for currencies and commodities in response to headline

and energy inflation shocks. The almost perfect hedging properties of the currency market

portfolio in relation to headline inflation indicate that the market mechanism of currency

devaluation in response to a headline inflation innovation works well. This implies the

USD depreciates when US headline inflation unexpectedly rises, causing foreign currencies

to appreciate, resulting in a strong performance of the currency portfolio, which consists of

a basket with forward contracts to buy foreign currencies. However, this mechanism does

not appear to function when core inflation is unexpectedly high. Combining the argument

presented by Fang et al. (2022) of higher core inflation subsequently leading to lower

real activity as well as consumption, with the argument of Lustig et al. (2011) of foreign

currencies with high interest rates depreciating against the USD when US consumption

growth is low, while currencies with low interest rates do not, we suggest that markets

interpret core inflation shocks as increased US consumption risk and, in their search for

safety, buy securities denominated in USD, acting as a counterweight to the currency

devaluation mechanism described above.
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Table 2. Asset Return Exposure to Inflation Shocks

Mean S.D. Headline β t-stat Core β t-stat Energy β t-stat

A. Full Sample Period

Stock 7.27 16.92 -0.96 -0.57 -4.09 -2.46 0.17 0.97
Treasury 2.11 7.28 -2.40 -7.12 -1.92 -2.12 -0.21 -4.00
Agency 1.93 3.45 -0.90 -3.72 -0.14 -0.39 -0.10 -3.11
Corporate 3.19 5.93 -0.31 -1.15 -0.62 -0.48 -0.02 -0.48
Currency 1.53 6.88 0.91 2.41 -0.56 -0.68 0.13 2.56
Commodity 5.01 22.85 8.19 4.87 -0.41 -0.21 1.15 6.10
REIT 6.62 19.74 3.19 1.40 -1.59 -0.43 0.37 1.21
Int Stock 6.31 18.89 -0.55 -0.31 -4.47 -3.61 0.21 1.11

B. 1968-1999

Stock 7.82 16.77 -5.61 -4.08 -4.72 -2.55 -0.35 -1.37
Treasury 1.70 7.51 -2.93 -6.30 -2.56 -3.04 -0.20 -2.17
Agency 0.83 3.48 -0.63 -0.97 3.62 3.66 -0.25 -2.60
Corporate 0.71 3.82 -1.07 -1.22 2.89 2.08 -0.26 -2.03
Currency 2.18 7.99 0.12 0.09 0.18 0.08 0.07 0.30
Commodity 6.64 19.83 3.98 1.74 -0.02 -0.01 0.66 1.62
REIT -0.54 15.30 -8.03 -1.79 -5.08 -0.89 -0.67 -0.97
Intl Stock 7.90 18.91 -5.39 -3.50 -4.61 -2.68 -0.58 -1.93

C. 2000-2019

Stock 5.52 16.13 2.68 1.79 -5.98 -1.12 0.33 1.61
Treasury 3.63 6.48 -2.23 -5.44 -1.23 -0.74 -0.22 -4.16
Agency 2.76 3.23 -1.04 -4.98 -0.52 -0.65 -0.10 -3.92
Corporate 4.53 5.26 -0.18 -0.73 -0.66 -0.29 -0.01 -0.21
Currency 1.40 6.15 1.22 4.14 -1.71 -0.85 0.15 2.52
Commodity 1.46 24.87 11.91 8.64 -1.05 -0.25 1.26 5.73
REIT 11.05 20.84 3.96 1.42 -7.16 -1.19 0.45 1.09
Intl Stock 3.96 18.29 3.55 2.97 -6.14 -0.91 0.45 2.14

D. 2020-2023

Stock 12.91 20.31 1.21 0.33 -5.25 -1.73 0.27 1.00
Treasury -3.72 7.29 -1.99 -2.50 0.78 0.67 -0.20 -2.73
Agency -1.88 3.45 -0.87 -4.36 -0.06 -0.13 -0.08 -4.32
Corporate -2.16 9.01 -0.11 -0.09 -2.20 -2.51 0.01 0.18
Currency -0.73 4.04 1.20 2.24 -0.41 -0.49 0.09 1.61
Commodity 12.70 28.58 13.52 1.95 -8.04 -1.61 1.30 2.17
REIT 4.19 23.00 3.77 0.71 -3.92 -1.40 0.53 1.22
Int Stock 6.26 19.49 2.44 0.72 -6.18 -2.12 0.40 1.50

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t are
excess asset returns and εi,t is the error term from the VAR (see Equation 3.1). We run a univariate regression
for headline shocks, while for core and energy inflation shocks we run the regression jointly. The t-statistics we
report are adjusted in accordance with the Newey-West methodology. All mean returns and standard deviations
reported are annualized. We report the results for separate time periods and the full sample period.
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The correlation between core inflation and subsequent real growth could also serve

as explanation of why commodities can only hedge against headline and energy inflation.

As Baffes and Kabundi (2023) show, commodity prices are increasingly driven by the

global business cycle, suggesting a slow-down in the US economy would lead to a decline

in demand for commodities. Nevertheless, the coefficient of above 1 for energy inflation

shocks gives evidence for the hedging capabilities commodities have against unexpected

inflation, indicating that some components in the commodity portfolio react even stronger

to energy shocks than energy prices as measured in the consumer price index.

Unlike currencies and commodities, stocks and REITs exhibit no hedging properties

at all since they are either negatively exposed to inflation shocks or fail to show statistical

significance. In the context of performance of real estate investments Case and Wachter

(2011) point out that, while they theoretically should have perfect hedging properties, a

number of different factors make it difficult to assess the effectiveness of real estate as

an inflation hedge, including differing degrees of long-term and short-term leverage, the

ability to pass on prices to tenants and differing effects of supply and demand shocks on the

real estate market. Thus, our analysis supports the assumption that REITs do not behave in

a particular stipulated manner in response to inflation shocks.

For stocks, we aim to explore in Section 4.2.7 whether the lack of ability to hedge

against any type of inflation shocks is predominantly driven by cash flow news or discount

rate news. However, there seems to be a consistent pattern linking the hedging properties

of domestic and international stocks to the exposure of the currency portfolio. As Table

2 demonstrates, if currencies have a positive exposure to inflation shocks, international

stocks yield a better performance in response to inflation shocks than domestic stocks, and

vice versa, indicating that the hedging properties of international stocks also correlate with

the hedging properties of the currency portfolio.

Although bonds in general exhibit negative correlations with all types of inflation

shocks, we observe that agency and corporate bonds consistently have lower exposure

to unexpected inflation compared to treasury bonds. In this context, Kang and Pflueger

(2015) argue that higher than expected inflation leads to a real devaluation of nominal debt

claims, meaning corporations and agencies have relatively less debt compared to their
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earnings, which are expected to increase with inflation. This in turn leads to corporations

and agencies having relatively less credit risk, offsetting some of the negative effects of

prospective interest rate rises. As treasury bonds are considered risk-free, we do not

observe a corresponding positive effect on creditworthiness.

Remarkably in this context, the exposure of all bonds to energy inflation shocks is

sensitive to changes in the volatility of energy inflation shocks as Table 19 in the Appendix

shows. This means that an increase in the annualized inflation volatility of 1 percent leads

to a decrease in the beta of 0.03, 0.01 and 0.01 for treasury, agency and corporate bonds,

respectively, indicating the loss in bond values is particularly pronounced in response to an

upward inflation shock if uncertainty associated with energy inflation is high with similar

implications for headline inflation shocks.

Table 2 further dissects the hedging properties of the eight asset classes into three

periods, namely a period from 1968-1999, one from 2000-2019 and one from 2020-2023.

A paradigm shift appears to have occurred from the first to the second period in terms

of how markets perceive core inflation. While five out of eight assets exhibit statistically

significant coefficients during the first period, none of the core inflation coefficients were

significant in the latter period. Also, corporate and agency bonds as well as currencies

switched their sign from positive to negative, with now all core shock betas being negative

in the second subsample, indicating that there were no assets that could effectively hedge

against core inflation innovations. Energy inflation shocks, on the other hand, appear

to have become more important for asset returns, with headline inflation shock betas

moving in the same direction as energy inflation shocks. In this context, Fang et al. (2022)

argue that core inflation has been more volatile in the early sample, while energy inflation

has become more volatile starting in the late 1990s, causing energy inflation shocks to

contribute relatively more to headline shocks.

Fang et al. (2022) further suggest that energy inflation shocks were mainly driven by

supply shocks in the first subsample period, with demand shocks becoming the main driving

force of energy inflation shocks after 2000 until 2019. Following the argument outlined

by Ready (2017), who finds supply shocks to be strongly negatively correlated with stock

returns as well as future economic output, and demand shocks to have a strong positive
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relation, this can explain why the sign of stock’s headline and energy betas switched from

negative to positive in the second subsample. A similar interpretation could apply to REITs,

whose exposure to headline and energy inflation shocks has also changed between the first

and second subsample.

The differences between the core exposures of treasuries compared to agency and

corporate bonds in the first subsample period, on the other hand, might be a product of the

shorter availability of agency and corporate bonds, with both time series starting in 1997,

and thus we can not effectively compare them between each other. Additionally Fang et al.

(2022) find negative and statistically significant betas for corporate and agency bonds for

their 1963-1999 subsample using a longer time series of data, therefore we do not consider

the coefficients as enough evidence to conclude that those fixed income instruments had

hedging properties against inflation shocks in this particular subsample period.

In the latest subsample, no major changes in the exposure to headline and energy

inflation shocks can be observed. Only stocks have lower but still positive betas in the most

recent subsample, which, in light of Ready’s (2017) findings, indicates that there might

have been counterweighting forces at play, with the negative shock to demand during the

first phase of the Covid-19 outbreak suppressing demand for oil and the war in Ukraine

and the subsequent ban of Russian oil representing a shock to the supply side.

Core inflation shocks, on the contrary, have become significant for international

stocks and corporate bonds, with stocks and commodities approaching the five percent

significance level. This suggests that core inflation overall has become again more relevant

for financial markets most recently, especially given the fact that we have roughly half of

the data points compared to the period before, which makes it relatively more difficult to

find statistically significant relationships. While the signs or the magnitude of most beta

coefficients changed over time, the exposure of stocks to core inflation shocks is relatively

consistent between all three subsample periods, indicating there is something inherently

detrimental in unexpected core inflation for stocks.

Notably, corporate and agency bonds have been consistently less exposed to headline

and core inflation shocks in all subsample periods with only one exception in the most

recent subsample. Here, corporate bonds exhibit a statistically significant negative beta in
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response to core inflation, while treasury and agency bonds display insignificant positive

betas or betas close to zero. In this context, the behaviour of corporate bonds during

recessions could serve as a possible explanation for the negative exposure. As Bordo and

Duca (2021) argue, in times of recessions the spread between corporate bond yields and

treasury yields typically widens, meaning investors anticipate a higher default risk and

want to be compensated for that. In fact, the Sahm Rule Recession indicator (Sahm, 2023)

was more than three times higher, on average, in the latest subsample period compared to

the first subsample period and almost four times higher compared to the second subsample

period. The behaviour of bonds in recessions will be further evaluated in Section 4.2.4

where we include the full set of assets.

When examining the evolution of the hedging properties of commodities over time,

we observe contrasting trends for headline inflation and core inflation. While the magnitude

of commodities’ positive exposure to headline inflation shocks has increased over the

three subsample periods, the opposite trend is observed for commodities in response to

core inflation shocks. Here, the coefficients have become increasingly more negative and

significant, indicating that commodities have become less capable of hedging against core

inflation. This is consistent with the view that core inflation risk approximates consumption

growth risk and the findings of Baffes and Kabundi (2023) regarding commodities becoming

progressively more aligned to the global business cycles.

Finally, it appears that currencies have started to act as hedges against headline

inflation only since 2000. The reasons for this change, however, are beyond the scope of

this thesis.

4.2.2 Price of Inflation Risk

In this section, we define the price of risk an investor is willing to pay to hedge against

inflation based on the betas and the average returns for all available conventional assets. A

more detailed explanation of the test assets used in this analysis will be provided in Section

4.2.4. As Table 3 illustrates, we find an insignificant positive coefficient for headline and a

significant positive coefficient for energy inflation for the whole sample period, indicating

it is free or even rewarded to hedge against unexpected headline and energy inflation. The

price of hedging against core inflation shocks, on the other hand, is significantly negative
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amounting to −1.10. This means investors require a compensation of 1.10 percent of

excess return if the negative exposure to core inflation shocks rises by 1 percent. Vice versa,

investors are willing to pay 1.10 percent of excess return in order to get a positive exposure

of 1 to core inflation shocks, meaning if core inflation rises by 1 percent unexpectedly, their

portfolio value would rise proportionally.

Table 3 further provides details of how the price of inflation risk evolves over time.

For headline inflation shocks, we observe only a minor intertemporal variation. For core

inflation, the changes are relatively modest as well, although the price of core inflation

risk increases by roughly 1 percent in the latest subsample period, indicating investors

were willing to pay more to hedge against core inflation shocks in the most recent inflation

episode. Although we use monthly rather than quarterly data for the subsample spanning

from 2020 to 2023, when comparing the core lagged results from Table 18 in the Appendix

run on monthly data with the full sample λ from Table 3 run on quarterly data, the risk

premia are very similar. Hence, this suggests the stark increase of the price of core inflation

risk in the most recent subsample period is unlikely to be driven predominantly by the

modified methodology, but rather uncovers some interesting insights on investors’ aversion

to core inflation shocks after 2019.

The price of energy inflation risk, on the other hand, varies drastically between the

subsamples. While the premium is not statistically significant in the first and last subsample,

it is significant and positive in the period spanning from 2000 to 2019. As previously

shown, the volatility of energy inflation shocks was the highest between 2000-2019 and

driven predominantly by demand shocks (Fang et al., 2022). This suggests that, when

energy inflation is driven by demand side shocks, investors expect a risk premium to be

compensated for their exposure to energy inflation risk, which in the 2000-2019 subsample

period amounted to a significant 5.86 percent. Additionally, given that energy inflation

shocks explained 91 percent of headline shocks in the 2000-2019 period as Table 16 in

the Appendix shows, we argue the shift in how markets perceive energy inflation risk

contributes to explain the statistically significant headline shock risk premium in that

period.

Finally, Table 3 provides evidence of the importance of decomposing headline inflation
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into core and energy inflation as the explanatory power consistently increases in the model

where core and energy inflation shock betas are used to explain returns compared to the

model where only headline inflation is employed. Interestingly, the explanatory power of

the Fama-MacBeth regressions increases over time, indicating that inflation risk has gained

importance as a risk factor in the markets since the start of the millennium.

Table 3. Fama-MacBeth Regression Results

A. Full Sample B. 1968-1999

Headline λ 0.09 0.00
t-stat 0.24 0.00
Core λ -1.10 -0.63
t-stat -7.31 -2.65
Energy λ 2.43 1.57
t-stat 4.25 0.48
R2 0.01 0.72 0.00 0.38

C. 2000-2019 D. 2020-2023

Headline λ 0.68 0.96
t-stat 4.28 0.99
Core λ -0.61 -1.60
t-stat -5.47 -2.51
Energy λ 5.86 -0.41
t-stat 3.71 -0.05
R2 0.39 0.67 0.34 0.59

Note: This table presents the price of risk estimated from 35 asset portfolios, using the standard Fama-MacBeth
approach with the following specification; E (ri,t ) = αi+λβi+ui,t , where E (ri,t ) represents the average annualized
return of an asset, βi is the asset’s inflation shock beta and λ is the price of risk. The regression is run separately
for headline and jointly for core and energy inflation shocks. We present the results for subsamples and the full
sample period. The t-statistics in the table are adjusted in accordance with White’s approach.

4.2.3 Inflation Factor Mimicking Portfolios

In this section, we construct factor mimicking portfolios to assess whether inflation risk

is consistently priced across asset classes. This technique is frequently employed in

asset pricing research to model risk factors which are not directly tradable, given the

Fama-MacBeth replicated portfolios have unit exposure to to the chosen factor, and hence

bear the same risk-reward characteristics (Huberman and Kandel, 1987; Breeden, 1979).

We hereby utilize this methodology on an asset level as it allows to reduce the noise from

running a two-step Fama-MacBeth procedure (Kleibergen and Zhan, 2014) to estimate the

price of inflation risk within asset classes, while providing the same intuition.
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Table 4 shows the mean returns and standard deviations of portfolios mimicking core,

energy and headline inflation as risk factors. The mean returns of the factor mimicking

portfolios replicating core inflation risk are in line with the previously discussed findings

for the price of core inflation risk. With the exception of commodities, the core inflation

risk is consistently negatively priced across assets, which provides robustness to our prior

findings.

This image is not as clear for energy and headline inflation. The mean returns of

portfolios replicating the risk of the former vary significantly, which is reflective of the high

volatility of energy inflation shocks (see Section 4.1.2). This volatility can be seen directly

through the increased standard deviation of energy shock factor mimicking portfolios as

compared to core or headline. Similarly, headline inflation mimicking portfolio returns,

while less volatile, are not consistently priced across asset classes. This result could

be anticipated given, as previously shown, headline inflation risk often does not bear a

statistically significant risk premium. Additionally, its sign exhibits time-varying patterns

differing across assets (see Section 4.2.1), which translates to inconsistent returns of

portfolios mimicking headline inflation risk.

Table 4. Mean Returns and Standard Deviations of Inflation Factor Mimicking Portfolios

Stock Treas Agency Corp Curr Comm REIT Intl All

A. Core

Mean -0.97 -0.17 -0.61 -0.37 -0.55 0.27 -1.28 -1.26 -0.28
SD 2.75 2.16 4.89 3.23 1.04 1.70 10.50 3.30 0.82

B. Energy

Mean 1.21 -5.80 -8.98 -7.15 10.22 1.45 -7.73 14.14 0.19
SD 32.88 24.98 31.61 46.96 23.17 19.43 81.06 60.37 16.93

C. Headline

Mean -0.44 -0.64 -0.02 2.39 -0.01 0.32 0.39 -2.47 -0.22
SD 2.89 2.61 3.72 14.42 2.00 2.17 5.70 8.27 1.71

Note: This table displays the percentage annualized mean returns and standard deviations of the factor mim-
icking portfolios constructed from assets within separate asset classes as well as all the assets combined. The
factor mimicking portfolios are constructed following the standard Fama-MacBeth factor mimicking portfolio
weight allocation procedure, where w∗ = V −1β [β′V −1β]−1, (see Equation 3.4).
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4.2.4 The Full Set of Asset Classes

To explore whether expanding the asset universe yields statistically significant inflation

hedges in the last 3.5 years, this section includes the full set of test portfolios consisting of

35 conventional assets as well as 18 additional alternative assets and trading strategies. We

further explore the changes to the price of inflation risk when alternative assets and trading

strategies are considered.

With regards to the exposure of assets to inflation innovations, we find conventional

assets to have somewhat similar hedging properties within asset classes with a few

exceptions and patterns observable as Table 20 in the Appendix indicates. Most notably,

while all treasury and agency bonds are more negatively exposed to energy inflation shocks

the longer their maturity, the opposite is true in response to core inflation shocks, with

their exposure becoming more positive as their maturity gets longer. For corporate bonds,

however, we observe no difference between maturities in response to energy inflation

shocks, whereas their exposure increases with maturity in response to core inflation shocks.

In this context, Bauer (2011) argues that core CPI inflation surprises tend to affect the

shorter end of the yield curve more than the longer end, with long term forward yields

increasing approximately half as much as short-term forward rates in response to a higher

than expected core CPI. However, given that longer-maturity bonds have higher duration

and are thus more sensitive to interest rate changes, we would expect bonds in general to

fall more in response to unexpected inflation the longer their maturity. This assumption is

also consistent with the findings of Fang et al. (2022), which show all bonds to be relatively

more exposed to any type of inflation shock when their maturity is longer.

As alternative explanation, we propose that there has been a difference between how

markets have interpreted energy and core inflation shocks in the last 3.5 years. While

markets have deemed energy inflation shocks to only imply increased interest rates in the

future with no increased recession risk, core inflation shocks might have been interpreted

as an indicator for a higher recession risk either due to interest rate hikes that go above the

neutral level thereby causing a recession or due to the correlation between core inflation

shocks and lower future real growth as suggested by Fang et al. (2022), which eventually

forces the Federal Reserve Bank to lower interest rates. This could explain why longer-
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term treasuries were not only unaffected by higher than expected core inflation but also

benefited from it when looking at the consistently positive albeit insignificant coefficients

for treasuries with maturities longer than three years in response to core inflation shocks.

Another supporting argument for this hypothesis is the fact that unexpected core

inflation has led to a price decrease of 3-year treasuries amounting to roughly 0.27 percent

for each percent of unexpected inflation, while 10-year treasuries appreciated by 1.19

percent in response to an unexpected inflation shock, which effectively means that the yield

curve either approaches inversion or further inverts. As an inversion of the yield curve is

commonly known to be a robust recession predictor (Cooper et al., 2020), the sign of the

coefficients therefore strengthens our hypothesis when neglecting the lack of statistical

significance the two coefficients exhibit. The increased recession risk due to unexpected

core inflation is also consistent with the negative exposure corporate bonds exhibit since

increased recession risk tends to coincide with a widening of credit spreads as argued by

Hollander and Liu (2016).

Consistent with the assumption that core inflation risk is associated with US con-

sumption growth risk and the fact that manufacturing is a highly cyclical industry (Klier,

2000), we find the manufacturing sector to exhibit the highest exposure to unexpected

core inflation. A similar explanation could also apply to the industrial metal portfolio,

which exhibits a highly negative and statistically significant coefficient in response to core

inflation. Remarkably, the healthcare sector had a very low but statistically significant

positive coefficient for unexpected core inflation, indicating that healthcare stocks proved

resistant against core inflation shocks over the last 3.5 years, albeit the magnitude of the

coefficient suggests that it can not serve as an effective hedge in practice. Furthermore,

the energy portfolio displays a coefficient of 2.18 in response to energy inflation shocks,

suggesting unexpected price increases on traded energy commodities are not immediately

passed to consumers where it would be captured by the US consumer price index.

For alternative assets and trading strategies, we find most portfolios to have a

positive albeit insignificant coefficient in response to energy inflation shocks and negative,

predominantly significant, coefficients for core inflation shocks. Given the lack of statistical

significance for the hedging properties in response to energy and headline inflation shocks,
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this analysis thus neither contradicts nor supports the findings that some active trading

strategies exhibit hedging properties against inflation shocks as presented by Neville et al.

(2021). Contrastingly, for core inflation shocks, these findings are directly contradicted,

with the underlying reasons for this inability to hedge remaining vastly underexplored in

academia.

For the performance of hedge funds in response to headline inflation, however, a

report by Stack et al. (2023) from Goldman Sachs Asset Management helps to explain

as to why hedge funds have, although lacking significance, positive exposure to headline

inflation, offering several explanations for this behaviour. These include high levels of cash

in hedge funds, increased benefits from interest earned on the proceeds of shorting stocks,

and the added value of security selection. Additionally, trend following and directional

macro portfolios have benefited from the coordinated rise in interest rates in 2022 (Stack

et al., 2023).

With regards to alternative assets, the hedging properties of TIPS are particularly

intriguing as their purpose is to hedge against inflation (D’Amico et al., 2018). Since TIPS

were only introduced in 1997, the inflation episode starting in 2021 represents the first

time where the effectiveness of TIPS in times of high inflation could be assessed. However,

as Table 21 in the Appendix shows TIPS fail to hedge against any type of inflation, with

the longer-term TIPS index exhibiting a particularly high negative exposure, providing

evidence that TIPS indexes can not fulfill their purpose.

In our analysis, we consider Fama-French risk factors among active trading strategies,

given they imply dynamic portfolio sorting and their replication, by traders, requires

active rebalancing. Remarkably, the Fama-French risk factor RMW, representing the

performance difference between the companies with the highest and lowest operating

profitability, behaves in the opposite direction to most of the other portfolios. While it

exhibits a negative exposure to energy inflation, it was positively correlated to unexpected

core inflation, with the coefficients approaching the five percent significance level. Similar

to the widening of credit spreads in times of recessions, this finding could imply, in light

of the core inflation risk debate, that investors prefer profitable and thus relatively safe

companies in times of economic uncertainty associated with consumption growth risk.
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When we use the expanded asset universe to define the effect on the price of risk, we

observe a sizeable impact for all inflation types as Table 5 shows. Given that alternative

assets and trading strategies carry a negative inflation risk premium for all inflation

measures, including them leads to a substantially higher price of risk for all inflation shock

types. In fact, the price increases to 0.35 percent for headline shocks, while the price of

hedging against core and energy inflation goes up to 2.14 and 4.26 percent, respectively.

This suggests that investors would be worse off in terms of inflation hedging costs when all

assets under consideration are included in a portfolio.

However, Table 22 in the Appendix further dissects alternative assets and trading

strategies into alternative assets, active funds and Fama-French risk factors, showing the

substantial differences within alternative assets and trading strategies. When isolating

active funds from alternative investments and Fama-French risk factors, we find active

funds to yield a positive price of risk for all types of inflation shocks, with the price for

headline inflation risk being highly significant. This means investors are rewarded to load

on headline inflation risk in a scenario where we only consider actively managed funds.

While we can not find a significant coefficient for the price of core inflation risk, the positive

sign suggests that including actively managed funds could reduce the overall price of

risk. However, rather than this being caused by active funds exhibiting hedging properties

against unexpected core inflation, it appears that the positive, albeit insignificant, coefficient

may be due to the fact that some active funds exhibit a negative exposure to core inflation

shocks and simultaneously yield a negative return, which ultimately implies that shorting

these specific funds leads to a positive core inflation risk premium. Also interestingly, the

explanatory power of headline shock exposures is almost as high as when dissecting it

into core and inflation shock exposures, indicating that the performance of active funds

is relatively better explained by headline inflation innovations than conventional assets

are. Similar to active funds, Fama-French risk factors exhibit an insignificant positive

core inflation coefficient, however carrying a significant negative coefficient for headline

inflation risk.

Overall, we conclude that expanding the asset universe beyond the eight assets we

used initially does not significantly improve the hedging opportunities in the last 3.5 years.
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However, evidence suggests that the price of risk to hedge against core inflation can be

reduced if distorting assets such as Bitcoin are excluded and active trading strategies, in

our case active funds and Fama-French risk factors, are included, and investors in fact

demand a risk premium for headline inflation risk when only active funds are considered.

Table 5. Fama-MacBeth Regression Results with the Expanded Asset Universe

Conventional Assets Alternatives Combined Asset Universe

Headline λ 0.96 -4.05 0.35
t-stat 0.99 -0.66 0.36
Core λ -1.60 -2.32 -2.14
t-stat -2.51 -0.89 -1.51
Energy λ -0.41 -8.61 -4.26
t-stat -0.05 -0.31 -0.42
R2 0.34 0.59 0.19 0.88 0.01 0.82

Note: This table presents the price of risk estimated from 35 conventional assets, alternatives and both conven-
tional assets as well as alternatives combined, using the standard Fama-MacBeth approach with the following
specification; E (ri,t ) = αi + λβi + ui,t , where E (ri,t ) represents the average annualized excess return of an asset,
βi is the asset’s inflation shock beta and λ is the price of risk. The regression is run separately for headline and
jointly for core and energy inflation shocks. The t-statistics in the table are adjusted in accordance with White’s
approach.

4.2.5 Price of Risk Using an Out-of-Sample Forecast

The preceding analysis and standard approach for empirical research of hedging properties

with a VAR involves in-sample errors εt . Although the literature provides support for

in-sample test significance in VAR analysis (Stock and Watson, 2001), we consider an

alternative methodology, using out-of-sample forecasting errors as inflation shocks. This

provides a more realistic approach given investors only experience a true inflation surprise

when the inflation forecast for a given future time period differs from the value reported by

respective authorities. Furthermore, we find it economically interesting to consider the

implied price of inflation risk from out-of-sample optimized window inflation forecasts

and compare it to the results from expanding window and in-sample analysis.

We first optimize the VAR window for each inflation indicator (see Section 3.1.3

for methodology) to minimize the forecasting error. Notably, the optimal window is the

shortest for energy inflation, for which the errors are minimized when the VAR captures

data from the past 7 quarters. This figure is vastly different for core with an optimal window

of 69 quarters and headline with 73. These results are rather intuitive if we consider that,
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as shown in Section 4.1.1, energy inflation is characterized by a much lower persistence,

which means past results carry little information useful for forecasting.

Table 6 presents the mean percentage forecasting errors for each inflation indicator

with expanding and optimized windows. It can be seen that optimizing, as expected, always

leads to more accurate forecasts. This effect is seen, in particular, for core inflation where

the forecast is, on average, wrong by only 7.08 percent of the inflation value in a given

period, while the errors from expanding window estimates are much higher. However,

optimizing does not seem to make an equally significant difference for headline and energy

inflation. This supports our previous suggestion that headline inflation is more difficult to

forecast than its persistent core component, while energy inflation is extremely challenging

to predict and may require much more sophisticated predictive models. Although the

forecasting approach employed in this section is rather simplistic, it provides interesting

economic intuition with regards to the role that the accuracy of a forecast plays in the

perceived price of risk by an investor, which we explore in the subsequent paragraph.

Table 6. Percentage Forecasting Errors for Optimized and Expanding Window VAR Forecasts

Core Energy Headline

Optimized Window 7.08 86.59 14.02
Expanding Window 11.79 86.62 15.89

Note: This table presents mean percentage forecasting errors obtained from the following equation ε
π , where

ε is the mean forecasting error and π is the mean core, energy or headline inflation accordingly. To permit the
optimal forecasting window, the data used to construct this table spans from Q3 in 1986 to Q2 in 2023, which
applies to all inflation components.

For this purpose, we then run the first and second step regressions using forecasting

errors rather than VAR in-sample errors to calculate asset hedging properties as well as the

price of inflation risk and compare it to the standard approach. To enhance comparability,

we adjust the in-sample Fama-MacBeth to span from 1986 to 2023 specifically for this

section. Notably, our results confirm the findings of Fang et al. (2022), showing that no

asset class has statistically significant hedging properties against core inflation shocks

(see Table 23 in the Appendix) and that the core inflation risk premium is negative, with

both of these findings holding for optimized and expanding window forecasting errors.

Interestingly, the price of core inflation risk falls when we use forecasting errors from the
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optimized window as opposed to the expanding one (see Table 7). This result provides

interesting economic intuition. It appears that investors who are better informed, given the

more accurate inflation forecasts, are willing to pay less to hedge themselves against core

inflation risk. Interestingly, when we use optimized forecasting errors for energy inflation

as opposed to expanding window ones, the coefficient of the price of energy inflation risk

becomes much higher. The headline coefficients remain vastly the same and close to zero

regardless of the method employed, yet notably exhibit statistical significance within this

specific timeframe.

Table 7. Fama-MacBeth Regression Results with Optimized and Expanding Window Forecasting Errors

Optimized Window Expanding Window In-Sample

Headline λ 0.34 0.33 0.36
t-stat 3.70 3.27 3.72
Core λ -1.02 -1.24 -1.21
t-stat -3.19 -1.89 -3.48
Energy λ 3.79 1.08 1.45
t-stat 1.18 0.61 2.22
R2 0.09 0.55 0.09 0.38 0.11 0.49

Note: This table presents the price of risk estimated from 35 asset portfolios using optimized window, expanding
window and in-sample inflation shocks in the first step. The second step regression follows a standard Fama-
MacBeth approach with the following specification; E (ri,t ) = αi +λβi +ui,t , where E (ri,t ) represents the average
annualized excess return of an asset, βi is the asset’s inflation shock beta and λ is the price of risk. The regression
is run separately for headline and jointly for core and energy inflation shocks. The t-statistics in the table are
adjusted in accordance with White’s approach.

4.2.6 Time-varying Bond-Stock Correlation

As hinted in the literature review, the hedging properties of bonds and stocks against

components of inflation can serve to explain, in part, the correlation of the two asset classes.

The below graph depicts the correlation between market proxies for treasuries and the stock

market estimated using a rolling 8 quarter window, allowing to observe key properties of

that relationship.

Firstly, our analysis confirms prior findings regarding the time variation of the bond-

stock correlation (Ilmanen, 2003). Although the short-term variation in the relationship

is very sensitive to the window chosen to determine correlation, clear long-term trends

are observable in the data. It appears that the bond-stock correlation has, predominantly,

been positive between 1970 and 2000, then switched sign to negative in early 2000s and
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has recently become positive again. Secondly, our analysis shows that the relationship can

change drastically within a short space of time. Such changes could be observed in the late

1980s, late 1990s and around 2022. Lastly, although the correlation varies with time, it

also tends to exhibit long-term trends which can last for decades.

Figure 2. Bond-Stock Correlation Over Time

Note: This figure plots a simple bond-stock correlation over time using a 8 quarter window. Treasury market
returns are used as bond returns, while the MSCI US is a proxy for the stock market.

In order to draw a link between the bond-stock correlation and inflation shocks, we

calculate the percentage of the covariance explained by core and energy inflation as well as

the mean absolute core inflation shocks and mean inflation level in the periods considered.

The results suggest that in the time periods when bond-stock correlation is predominantly

positive, namely 1970-2000 and the recent period after 2020, core and energy shocks

explain a more significant part of the variation in the relationship, amounting to 37.81

and 59.34 percent respectively. On the contrary, when the bond-stock correlation sign

is negative, core and energy shocks explain less of the correlation, amounting to a more

modest 19.72 percent. Furthermore, the periods of positive correlation are also periods

when core inflation is less predictable, as shown by the mean absolute core inflation shocks,

and more volatile (see Tables 1 and 15). We allude to those key findings below when

discussing how inflation can serve to explain the bond-stock correlation.

From Table 8, we observe a pattern that leads us to conclusions similar to those

presented by Fang et al. (2022). Given bonds and stocks have the same sign of their core

inflation shock betas, when core inflation is a key driver of the bond-stock correlation, its

sign tends to be positive, as the prices of the two asset classes move together in response

to core inflation shocks. Those periods appear to be characterised by high and relatively
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unpredictable core inflation. On the contrary, during phases of stable core inflation, other

factors are at play, causing the sign of the relationship to become negative. Although, in

such instances, core and energy inflation shocks might only explain a relatively modest

percentage of the bond-stock correlation (corresponding to approximately 19.72 percent

between 2000-2019), we contend that understanding inflation hedging properties remains

valuable. In fact, during such periods energy inflation shocks appear to gain importance

relative to core shocks as headline volatility drivers (see Table 16 in the Appendix) and

bonds and stocks exhibit contrary signs to energy shocks. Therefore, we argue that in times

characterised by low and stable core inflation, energy shock exposure contributes to a shift

towards a negative correlation.

Table 8. Percentage of Bond-Stock Correlation Explained by Core and Energy Shocks

1970-1999 2000-2019 2020-2022

% Explained 37.81 19.72 59.34
Mean Absolute Core Shocks 0.33 0.15 0.53
Mean Inflation 5.14 2.16 4.97

Note: This table shows the percentage of the bond-stock covariance explained by core and energy shocks from
the following equation Covexpl.S,B = CovfittedS,B /Covsample

S,B (see Section 3.1.2), the mean absolute core inflation shocks
from the VAR specified in Equation 3.1 (see Section 3.1.1) and the mean level inflation.

However, to counter this argument, one may rightfully point out that, as opposed to

the 1970-1999 and 2020-2022 periods where core and energy inflation explain almost

40 percent and 60 percent of the bond-stock correlation respectively, this proportion is

much lower between 2000 and 2019. This suggests that in such periods there may be other

factors at play, besides energy inflation, that significantly explain the bond-stock correlation.

Recently published papers argue one of those factors may be growth uncertainty (Wu et al.,

2021; Brixton et al., 2023), towards which bond and stock returns have opposing signs.

Although this may have be true, we do not test this empirically in our thesis, and hence

suggest for further research to explore this hypothesis.
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Figure 3. Expected vs Unexpected Core Inflation Over Time

Note: This figure plots expected and unexpected inflation. Expected inflation is defined as the fitted values from
the VAR in Equation 3.1, whereas unexpected inflation represents core inflation shocks from the same equation.

4.2.7 Discount Rate vs Cash Flow News

In Section 4.2.1, we show that stocks, both US domestic and international, have a

consistently negative exposure to core inflation shocks. In this section, we conduct the

standard Campbell (1991) decomposition of stock returns into the cash flow and discount

rate components and regress them on core and energy inflation shocks with the objective to

shed further light on what drives the negative correlation. This section further contributes

to the discussion of the impact of inflation shocks on expected cash flows and discount

rates.

Table 9 presents the results of our regressions, showing that cash flow news of different

assets exhibits consistently negative and statistically significant exposures to core inflation

shocks across the analysed portfolios. The betas tend to have the highest magnitude, being

the most negative, for portfolios with more cash flows expected into the future, such as

high tech or growth stocks. On the other hand, coefficients closer to zero are seen for value

stocks. Energy shock betas are predominantly positive but very close to zero.

In contrast, regressions using discount rate news present much less conclusive results.

Core shock betas vary significantly across stock portfolios with changing signs. We observe

high positive betas for value stocks and high negative ones for growth and high tech, while

there does not seem to be much variation across geographies where we see marginally

negative values. Consistent with cash flow news, energy shock betas are predominantly

close to zero.
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Our results regarding cash flow news are in line with the research in this area,

conducted for instance by Fang et al. (2022) or Ammer (1994), indicating that positive

unexpected inflation shocks are detrimental to future dividends and corporate profits. The

impact appears more prominent on stocks with cash flows further into the future, such as

growth or high tech portfolios. Being a rather intuitive conclusion, it is also a very well

researched and documented concept, with notable papers exploring different avenues in

which unexpected and expected inflation may impact businesses and the society (Fischer

and Modigliani, 1978). The results from regressions using discount rate news are less

straightforward to interpret. Intuitively, one would expect an upward inflation shock to

cause an increase in future expected stock returns, and hence a strictly and consistently

positive correlation, which are precisely the results reported by Fang et al. (2022). In the

contrary, an earlier study of the subject conducted by Ammer (1994) also yields negative

coefficients, which the author explained with various tax-related hypotheses. Although

puzzling, this discussion is beyond the scope of this thesis and could be explored in further

academic publications.

Table 9. Regression Results of Cash Flow and Discount Rate News on Core and Energy Inflation Shocks

Cash Flow News """""Discount Rate News
Asset Core β t-stat Energy β t-stat """" Core β t-stat Energy β t-stat
Stock Market -3.95 -2.29 0.17 0.94 -0.19 -2.29 0.01 0.94
World -4.27 -3.46 0.21 1.10 -0.09 -3.46 0.00 1.10
North America -3.84 -2.30 0.20 1.12 -0.18 -2.30 0.01 1.12
Europe -4.51 -3.05 0.18 0.86 -0.26 -3.05 0.01 0.86
Far East -4.52 -3.35 0.17 0.99 -0.35 -3.35 0.01 0.99
Consumer -3.70 -3.12 -0.17 -2.05 0.90 1.22 -0.20 -1.71
Manufacturing -3.76 -3.26 0.26 2.80 -0.47 -1.02 -0.10 -1.52
High Tech -6.96 -4.03 -0.17 -2.14 -2.62 -2.39 -0.36 -2.34
Healthcare -3.95 -2.29 0.17 0.94 -0.19 -2.29 0.01 0.94
Other -4.16 -3.27 0.15 1.13 1.26 1.63 -0.03 -0.27
BM1 Growth -6.15 -3.95 -0.13 -1.55 -1.45 -1.89 -0.27 -2.25
BM2 -3.57 -3.15 0.01 0.17 0.18 0.29 -0.13 -1.28
BM3 -3.37 -3.27 0.10 1.11 -0.21 -0.37 -0.14 -1.47
BM4 -1.77 -1.72 0.33 1.95 2.03 3.71 0.05 0.68
BM5 Value -2.52 -2.44 0.34 2.86 2.27 3.03 0.01 0.09

Note: This table reports the regression results of the following specification; CF/DRe
i,t = αi + βiπεt + ui,t , where

CF/DRe
i,t are cash flow or discount rate news backed out of stock returns and εi,t is the error term from the VAR

(see equation 3.1). We run the regressions for core and energy inflation jointly. The t-statistics we report are
adjusted in accordance with the Newey-West methodology.
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Considering the results of our regressions, we conclude that it is predominantly cash

flow news driving the negative core inflation shock betas of stocks. Although the cash

flow effect seems to prevail for some portfolios, it is slightly contained by the negative

coefficients on discount rate news.

4.3 Robustness Checks

4.3.1 Macroeconomic Control Variables

As outlined in the literature review, some research, particularly early work on the subject

such as Fama’s (1981) paper, draw a link between inflation hedging properties of assets

and macroeconomic factors. Hence, in order to test the robustness of the negative core risk

premium we have previously identified, we replicate our prior Fama-MacBeth methodology

including macroeconomic variables in the regressions. We follow the choice of variables

made by Fang et al. (2022), which represent macroeconomic variables commonly used

in the asset pricing literature due to their high explanatory power. Namely, we consider:

PCEDG - personal consumption expenditures, PCE - percentage change in personal

consumption expenditures, INDPRO - industrial production total index, PAYEMS - total

number of employees excluding farm workers and some other employee classifications,

and finally UNRATE - the unemployment rate.

Table 10 presents the results of the Fama-MacBeth regressions. As can be observed,

the negative core inflation shock risk premium remains robust in the presence of common

macroeconomic factors. The energy inflation risk premium proves unstable and insignificant,

which adds to the discussion regarding the unpredictable nature of this inflation component.

For completeness, we further compute the price of risk of the macroeconomic variables we

consider. However, given it is not directly linked to our thesis, we do not explore it further

in this analysis.
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Table 10. Fama-MacBeth Regression Results Including Macroeconomic Control Variables

PCEDG PCE INDPRO PAYEMS UNRATE
Core λ -1.25 -1.12 -1.33 -1.27 -1.32
t-stat -5.45 -4.57 -4.56 -7.41 -7.55
Energy λ -2.11 -3.01 -0.03 0.17 0.37
t-stat -0.81 -0.70 -0.01 0.07 0.16
Macro λ 3.79 0.14 -0.96 -1.08 9.92
t-stat 1.73 0.24 -0.41 -1.38 0.62
R2 0.62 0.58 0.57 0.60 0.60

Note: This table presents the price of risk estimated from 35 asset portfolios with added macroeconomic vari-
ables, using the standard Fama-MacBeth approach with the following specification; E (ri,t ) = αi + λβi + ui,t ,
where E (ri,t ) represents the average annualized excess returns of an asset, βi is the asset’s exposure to the corre-
sponding risk factor and λ is the price of risk. The regression is run jointly for core and energy inflation shocks
as well as each respective macroeconomic factor. The t-statistics in the table are adjusted in accordance with
White’s approach.

4.3.2 Expected vs Unexpected Inflation Hedging

Much of the early research on inflation hedging properties of asset classes was done using

expected inflation (Miller et al., 1976; Solnik, 1983). Although future expected inflation

should already be priced into liquid assets in efficient markets (Bekaert and Wang, 2010),

one could argue that investors are only concerned with hedging their portfolios against

the actual reported level inflation which is easily observable, rather than worrying about

its unexpected component. Therefore, in order to test the robustness of our results, we

consider the hedging properties of asset classes against level inflation as well as its expected

and unexpected components. The results of this analysis are displayed in Tables 11 and 12,

which we discuss below.

Firstly, we see that when we decompose inflation into expected and unexpected

components and run the regressions jointly, the coefficients we obtain for inflation surprises

are similar to the previously presented results and bear the same conclusion, namely that

no conventional asset class can hedge investors against core inflation shocks. This suggests

the hedging properties we previously discussed in the thesis are robust whether or not we

consider expected inflation.

Secondly, we see that, in general, betas on the expected components of core and

headline inflation are negative, with some of the coefficients being statistically significant.

This proves interesting in light of an argument presented by Fang et al. (2022), according

to which a beta of zero on expected inflation indicates that an asset hedges against expected
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inflation as well as a risk-free rate. This would imply that most asset classes provide a

worse hedge against expected inflation levels than the risk free rate, in theory, should.

Lastly, the findings affirm the varying betas for level, expected, and unexpected

inflation, giving proof that hedging inflation shocks poses peculiar challenges to investors,

hence substantiating our approach of isolating inflation shocks. Nevertheless, regardless

of whether we consider level, expected or unexpected core inflation, the key conclusion

remains the same, namely that no asset can hedge investors against this persistent inflation

component.

Table 11. Hedging Properties of Asset Classes Against Level, Expected and Unexpected Headline Inflation

Asset Headline t-stat Headline Exp. t-stat Headline Shock t-stat
Stock -1.34 -1.23 -1.82 -1.67 -0.96 -0.58
Treasury -1.55 -6.02 -0.50 -1.80 -2.40 -6.85
Agency -1.12 -6.95 -1.80 -3.24 -1.06 -4.90
Corporate -1.02 -2.11 -4.46 -7.20 -0.69 -2.69
Currency 0.69 1.68 -1.72 -1.86 0.82 2.64
Commodity 4.74 2.63 0.42 0.35 8.19 4.98
REIT 1.71 0.56 -5.06 -1.52 2.67 1.00
Int. Stock -0.94 -0.86 -1.44 -1.25 -0.54 -0.32

Note: This table reports the regression results for level, expected and unexpected headline inflation (see Equa-
tions 3.9 and 3.10 for methodology). The t-statistics we report are adjusted in accordance with the Newey-West
methodology.

Table 12. Hedging Properties of Asset Classes Against Level, Expected and Unexpected Core and Energy
Inflation

Asset Core t-stat Energy t-stat Core Exp. t-stat Core Shock t-stat Energy Shock t-stat
Stock -2.43 -2.54 0.12 0.70 -1.37 -1.29 -4.10 -2.56 0.17 0.99
Treasury -0.73 -2.53 -0.22 -4.20 -0.36 -1.09 -1.92 -2.36 -0.21 -3.98
Agency -0.88 -1.37 -0.10 -3.89 -2.40 -2.70 -0.48 -1.20 -0.11 -4.31
Corporate -2.40 -1.54 -0.04 -0.95 -1.83 -0.49 -0.90 -1.20 -0.75 -0.70
Currency -0.37 -0.43 0.11 2.25 -1.65 -1.34 -0.63 -0.71 0.12 2.42
Commodity -1.03 -0.98 1.14 6.25 0.12 0.10 -0.41 -0.21 1.15 6.11
REIT -4.05 -1.38 0.35 1.19 -4.95 -1.34 -2.68 -0.69 0.35 1.07
Int. Stock -2.38 -2.55 0.15 0.80 -1.04 -0.90 -4.48 -3.68 0.21 1.12

Note: This table reports the regression results for level, expected and unexpected core and energy inflation run
jointly (see Equations 3.9 and 3.10 for methodology). We do not include expected energy inflation given the
high volatility of that component, making it extremely difficult to determine its expected levels. The t-statistics
we report are adjusted in accordance with the Newey-West methodology.

4.3.3 Survey of Professional Forecasters

In order to further test the robustness of our results, we replicate our prior regressions using

an alternative measure of inflation, the Survey of Professional Forecasters (SPF), a measure
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compiled by the Philadelphia FED with the intention to provide reliable macroeconomic

forecasts. Although the time period covered by this data differs from our main analysis, as

the time period spans from 1981 to 2023, it nevertheless leads to the same key conclusions.

Firstly, considering the hedging properties of different asset classes against core

inflation shocks, none of the market portfolios considered can provide a hedge against core

innovations, as they either yield negative coefficients or exhibit positive ones, which lack

statistical significance.

Table 13. Hedging Properties of Asset Classes Using Inflation Forecasts from the Survey of Professional
Forecasters

Asset Class Mean S.D. Headline β t-stat Core β t-stat Energy β t-stat
Stock 9.07 16.48 0.86 0.90 -0.00 -0.00 0.15 0.83
Treasury 3.27 7.18 -1.66 -5.67 -0.89 -1.80 -0.21 -4.43
Agency 1.93 3.45 -0.60 -2.82 0.05 0.18 -0.11 -4.03
Corporate 3.19 5.93 0.06 0.29 0.80 1.57 -0.07 -1.62
Currency 1.53 6.88 0.83 3.64 0.51 1.32 0.11 2.16
Commodity 3.13 23.38 6.75 6.66 0.58 0.55 1.28 7.47
REIT 6.62 19.74 1.62 1.15 -0.84 -0.56 0.34 1.03
Int Stock 6.39 18.87 0.94 0.82 0.11 0.10 0.18 0.87

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t
are excess asset returns and εi,t is the error term from the SPF (see Section 3.1.4 for methodology). We run
a univariate regression for headline shocks, while for core and energy inflation shocks we run the regression
jointly. The t-statistics we report are adjusted in accordance with the Newey-West methodology. All mean
returns and standard deviations reported are annualized.

Additionally, we run a Fama-MacBeth regression using the data from the survey to

determine whether the price of core inflation risk remains negative. As seen in Table 14,

the negative core inflation risk premium remains robust when we use shocks derived from

survey data. Moreover, both the price of headline and energy inflation risk remain positive,

with energy showing a λ of a higher magnitude. Furthermore, the R2 of the regression

is substantially lower than when we consider VAR errors, indicating that deriving the

price of inflation risk via the SPF provides a relatively worse fit. Nevertheless, the results

confirm the main findings of our thesis regarding both the hedging properties of asset

classes against core inflation shocks and the price of core inflation risk.
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Table 14. Fama-MacBeth Results Using Inflation Forecasts from the Survery of Professional Forecasters

35 Asset Portfolios
Headline 0.24
t-stat 0.85
Core -2.11
t-stat -3.26
Energy 3.34
t-stat 1.59
R2 0.02 0.27

Note: This table presents the price of risk estimated from 35 asset portfolios, using the standard Fama-MacBeth
approach with the following specification; E (ri,t ) = αi+λβi+ui,t , where E (ri,t ) represents the average annualized
return of an asset, βi is the asset’s survey inflation shock beta and λ is the price of risk. The regression is run
separately for headline and jointly for core and energy inflation shocks. The t-statistics in the table are adjusted
in accordance with White’s’s approach.

4.4 Limitations

Although our intention in this analysis is to make it as consistent and inclusive as possible,

there are some compromises we make with regards to data availability and methodology

we use. First of all, to measure the true price of inflation risks it would be necessary to

include all relevant and non-traded assets and value-weight them according to their market

value. Our selection of securities includes a broad range of assets and trading strategies,

however excludes some assets due to the lack of availability, and we do not value-weight

them. Additionally, some indexes we use might not capture the underlying assets or trading

strategies to the full extent and may also involve fees, potentially distorting the inflation

exposures and prices of risk to some degree. Secondly, the availability of the assets under

consideration varies, which might, particularly in the first subsample period, lead to some

biases in the inflation betas since asset’s exposures to inflation shocks are not constant over

time as shown in our analysis.

Thirdly, for the latest subsample period we use a relatively short window and therefore

employ a VAR on a monthly basis to derive inflation innovations and lag core inflation

shocks by one month as previously outlined. Hence, the methodology differs to some

degree when comparing it to the methodology we use for the whole sample period and

the first two subsample periods. Although we show the consistency of the results when

comparing quarterly with monthly VAR for price of inflation risk over the full sample

period, this might nevertheless lead to small discrepancies in the results for the 2020-2023

period.
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Furthermore, while using a commonly recognized approach to forecast inflation,

this approach may not reflect the true, unobservable, inflation expectations of the market,

possibly causing a bias to the inflation shocks in our analysis. Also, even though we show

that core inflation risk is still prevalent when optimizing an out-of-sample forecasting

model, there are more sophisticated inflation forecasting models, which could further

reduce the price of inflation risk.

Finally, the most recent subsample presents a very particular inflation environment,

with an energy demand shock and quantitative easing in the beginning, supply-chain

disruptions as well as fiscal stimulus in the middle, and an energy supply shock and

quantitative tightening in the end. This means we can not conclude decisively whether this

has marked a structural shift as it was at the turn of the millenium, and the findings for the

latest subsample may not be directly transferable to future periods with high inflation.

While all our limitations offer room for further research in the respective area, we

see potential for such particularly with regards to active trading strategies as there is little

evidence to explain why some of them can outperform others in inflationary environments.

Overall, there is also limited research on the causality between inflation shocks and asset

returns as well as about the economic drivers of different inflation hedging properties.



5. Conclusion

This thesis adds to the discussion on hedging properties of different asset classes against

inflation shocks and provides novel insights from the recent inflation surge. We show that

no asset class can provide a statistically significant hedge against core inflation shocks

throughout any sample period examined individually or the entire timeframe. Furthermore,

core inflation risk carries a negative risk premium, consistent across time periods, referred

to in this thesis as the price of inflation risk. Intuitively, these findings suggest investors

are willing to pay to hedge themselves against inflation risk derived from its persistent

core component. With regards to energy and headline inflation, we find that they follow a

similar pattern carrying insignificant risk premia, with some assets, namely currencies and

commodities, displaying hedging properties against inflation innovations.

When examining alternative assets, we come to a similar conclusion, namely that

no alternative asset can provide a statistically significant hedge against core inflation

innovations in the time period spanning from 2020 to 2023. However, although alternative

assets as a whole, consistent with conventional assets, show a negative core risk premium,

when we isolate active funds and Fama-French risk factors we find that the price of risk

turns positive. This leads us to the conclusion that the inclusion of some active trading

strategies into portfolios of conventional assets may lead to the reduction of the price of

core inflation risk.

In a subsequent analysis, we find that the price of core inflation risk remains consistent

even when we consider an alternative approach to compiling the risk premium, using

observable forecast errors as shocks rather than VAR residuals. This analysis also shows

an interesting dynamic indicating that better informed investors, equipped with a more

accurate forecast, would be willing to pay less to hedge themselves from core inflation risk.

Lastly, our analysis of the bond-stock correlation confirms its time-varying charac-

teristics and shows that the relationship has recently become positive again. When we

then consider this vital relationship through the lens of inflation, we find that core and

energy inflation shocks can explain a significant portion of the correlation, particularly in

the recent inflationary period.



References
Adolfsen, J. F., Kuik, F., Schuler, T., and Lis, E. (2022). The impact of the war in ukraine
on euro area energy markets. Economic Bulletin Boxes, 4.

Ammer, J. (1994). Inflation, inflation risk, and stock returns.

Andrews, S., Colacito, R., Croce, M. M. M., and Gavazzoni, F. (2020). Concealed carry.
Available at SSRN 3743205.

Baffes, J. and Kabundi, A. (2023). Commodity price shocks: Order within chaos?
Resources Policy, 83:103640.

Bauer, M. (2011). What moves the interest rate term structure? FRBSF Economic Letter,
2011:34.

Bekaert, G., Cho, S., and Moreno, A. (2005). New-keynesian macroeconomics and the
term structure. Working Paper 11340, National Bureau of Economic Research.

Bekaert, G. and Wang, X. (2010). Inflation risk and the inflation risk premium. Economic
policy, 25(64):755–806.

Bodie, Z. (1976). Common stocks as a hedge against inflation. The Journal of Finance,
31(2):459–470.

Boons, M., Duarte, F., de Roon, F., and Szymanowska, M. (2020). Time-varying inflation
risk and stock returns. Journal of Financial Economics, 136(2):444–470.

Bordo, M. D. and Duca, J. V. (2021). An overview of the fed’s new credit policy tools and
their cushioning effect on the covid-19 recession. Journal of Government and Economics,
3:100013.

Boyd, J. H., Hu, J., and Jagannathan, R. (2005). The stock market’s reaction to un-
employment news: Why bad news is usually good for stocks. The Journal of Finance,
60(2):649–672.

Breeden, D. T. (1979). An intertemporal asset pricing model with stochastic consumption
and investment opportunities. Journal of Financial Economics, 7(3):265–296.

Brixton, A., Brooks, J., Hecht, P., Ilmanen, A., Maloney, T., and McQuinn, N. (2023).
A changing stock–bond correlation: Drivers and implications. Journal of portfolio
management, 49(4):64–80.

Buraschi, A. and Jiltsov, A. (2005). Inflation risk premia and the expectations hypothesis.
Journal of Financial Economics, 75(2):429–490.

Campbell, J. Y. (1991). A variance decomposition for stock returns. The Economic Journal,
101(405):157–179.



REFERENCES 50

Campbell, J. Y., Sunderam, A., and Viceira, L. M. (2009). Inflation bets or deflation
hedges? the changing risks of nominal bonds. Working Paper 14701, National Bureau of
Economic Research.

Campbell, J. Y. and Vuolteenaho, T. (2003). Bad Beta, Good Beta. NBER working paper
series no. w9509. National Bureau of Economic Research, Cambridge, Mass.

Case, B. and Wachter, S. M. (2011). Inflation and real estate investments. U of Penn, Inst
for Law & Econ Research Paper, (11-33).

Chen, L. and Zhao, X. (2009). Return decomposition. The Review of Financial Studies,
22(12):5213–5249.

Chen, N.-F., Roll, R., and Ross, S. A. (1986). Economic forces and the stock market. The
Journal of business (Chicago, Ill.), 59(3):383–403.

Choi, S. and Shin, J. (2022). Bitcoin: An inflation hedge but not a safe haven. Finance
Research Letters, 46:102379.

Cologni, A. and Manera, M. (2008). Oil prices, inflation and interest rates in a structural
cointegrated VAR model for the G-7 countries. Energy Economics, 30(3):856–888.

Cooper, D., Fuhrer, J. C., and Olivei, G. (2020). Predicting recessions using the yield
curve: The role of the stance of monetary policy. Federal Reserve Bank of Boston Research
Paper Series Current Policy Perspectives Paper, (87522).

D’Amico, S., Kim, D. H., and Wei, M. (2018). Tips from tips: The informational content of
treasury inflation-protected security prices. Journal of Financial and Quantitative Analysis,
53(1):395–436.

Evans, M. D. D. (1998). Real rates, expected inflation, and inflation risk premia. The
Journal of Finance, 53(1):187–218.

Fama, E. F. (1981). Stock returns, real activity, inflation, and money. The American
Economic Review, 71(4):545–565.

Fama, E. F. and MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests.
Journal of Political Economy, 81(3):607–636.

Fama, E. F. and Schwert, G. (1977). Asset returns and inflation. Journal of Financial
Economics, 5(2):115–146.

Fang, X., Liu, Y., and Roussanov, N. (2022). Getting to the core: Inflation risks within and
across asset classes. Working Paper 30169, National Bureau of Economic Research.

Fischer, S. and Modigliani, F. (1978). Towards an understanding of the real effects and
costs of inflation. Review of World Economics, 114(4):810–833.

Fisher, I. (1930). The theory of interest. Macmillan.



REFERENCES 51

Gorton, G. and Rouwenhorst, K. G. (2004). Facts and fantasies about commodity futures.
Working Paper 10595, National Bureau of Economic Research.

Grishchenko, O. V. and Huang, J.-Z. (2013). The inflation risk premium: Evidence from
the tips market. The Journal of fixed income, 22(4):5–30.

Hardin, W. G., Jiang, X., and Wu, Z. (2012). Reit stock prices with inflation hedging and
illusion. The Journal of Real Estate Finance and Economics, 45:262–287.

Hartzell, D., Hekman, J. S., and Miles, M. E. (1987). Real estate returns and inflation.
Real Estate Economics, 15(1):617–637.

Hernandez, R. (2023). What caused inflation to spike after 2020?
https://www.bls.gov/opub/mlr/2023/beyond-bls/what-caused-inflation-to-spike-after-
2020.html.

Hollander, H. and Liu, G. (2016). Credit spread variability in the u.s. business cycle: The
great moderation versus the great recession. Journal of Banking Finance, 67:37–52.

Hollifield, B. and Yaron, A. (2001). The foreign exchange risk premium: Real and nominal
factors. IDEAS Working Paper Series from RePEc.

Hou, A. J., Platanakis, E., Ye, X., and Zhou, G. (2023). Commodity inflation risk premium
and stock market returns.

Huberman, G. and Kandel, S. (1987). Mean-variance spanning. The Journal of Finance,
42(4):873–888.

Ilmanen, A. (2003). Stock-bond correlations. The Journal of Fixed Income, 13:55–66.

James, C., Koreisha, S., and Partch, M. (1985). A varma analysis of the causal relations
among stock returns, real output, and nominal interest rates. The Journal of Finance,
40(5):1375–1384.

Kang, J. and Pflueger, C. E. (2015). Inflation risk in corporate bonds. The Journal of
finance (New York), 70(1):115–162.

Katz, M., Lustig, H., and Nielsen, L. (2016). Are Stocks Real Assets? Sticky Discount
Rates in Stock Markets. The Review of Financial Studies, 30(2):539–587.

Kleibergen, F. and Zhan, Z. (2014). Mimicking portfolios of macroeconomic factors.
Technical report, Technical report, Brown University Working Paper.

Klier, T. (2000). Structural change and cyclicality of the auto industry. Chicago Fed Letter,
(159).

Kozlowski, J. and Jordan-Wood, S. (2023). What did the fed do in response to the covid-19
crisis?



REFERENCES 52

Lee, B.-S. (1992). Causal relations among stock returns, interest rates, real activity, and
inflation. The Journal of Finance, 47(4):1591–1603.

Lustig, H., Roussanov, N., and Verdelhan, A. (2011). Common Risk Factors in Currency
Markets. The Review of Financial Studies, 24(11):3731–3777.

Lustig, H., Roussanov, N., and Verdelhan, A. (2014). Countercyclical currency risk premia.
Journal of Financial Economics, 111(3):527–553.

Miller, K. D., Jeffrey, F. J., and Mandelker, G. (1976). The “fisher effect” for risky assets:
An empirical investigation. The Journal of Finance, 31(2):447–458.

Milstein, E. and Wessel, D. (2021). What did the fed do in response to the covid-19 crisis?

Neville, H., Draaisma, T., Funnell, B., Harvey, C. R., and Van Hemert, O. (2021). The best
strategies for inflationary times. The Journal of Portfolio Management, 47(8):8–37.

Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica, 55(3):703–708.

Pukthuanthong, K., Roll, R., Wang, J., and Zhang, T. (2019). A toolkit for factor-mimicking
portfolios. SSRN Electronic Journal.

Ready, R., Roussanov, N., and Ward, C. (2013). Commodity Trade and the Carry Trade:
a Tale of Two Countries. NBER working paper series no. w19371. National Bureau of
Economic Research, Cambridge, Mass.

Ready, R. C. (2017). Oil Prices and the Stock Market*. Review of Finance, 22(1):155–176.

Rubens, J. H., Bond, M. T., and Webb, J. R. (1989). The inflation-hedging effectiveness of
real estate. The Journal of real estate research, 4(2):45–55.

Sahm, C. (2023). Real-time sahm rule recession indicator.
https://fred.stlouisfed.org/series/SAHMREALTIME.

Shiller, R. J. and Beltratti, A. E. (1992). Stock prices and bond yields: Can their
comovements be explained in terms of present value models? Journal of Monetary
Economics, 30(1):25–46.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1):1–48.

Solnik, B. (1983). The relation between stock prices and inflationary expectations: The
international evidence. The Journal of Finance, 38(1):35–48.

Spierdĳk, L. and Umar, Z. (2015). Stocks, bonds, t-bills and inflation hedging: From great
moderation to great recession. Journal of economics and business, 79:1–37.

Stack, J., Perrina, G., Steven, Q., and Hillman, M. (2023). Adapting to change: how hedge
funds may benefit in a new volatility regime.



REFERENCES 53

Stock, J. H. and Watson, M. W. (2001). Vector autoregressions. Journal of Economic
Perspectives, 15(4):101–115.

Swanson, N. R. (1998). Money and output viewed through a rolling window. Journal of
Monetary Economics, 41(3):455–474.

United States Treasury Fiscal Data (2023). Understanding the national debt.
https://fiscaldata.treasury.gov/americas-finance-guide/national-debt/. Accessed: 2023-
11-27.

Vuolteenaho, T. (2002). What drives firm-level stock returns? The Journal of Finance,
57(1):233–264.

Wu, B. D., Beatrice Yeo, C., DiCiurcio, K. J., and Wang, Q. (2021). The stock/bond
correlation: Increasing amid inflation, but not a regime change.

Yang, J., Zhou, Y., and Wang, Z. (2009). The stock–bond correlation and macroeconomic
conditions: One and a half centuries of evidence. Journal of Banking Finance, 33(4):670–
680.



Appendix

Table 15. Additional Inflation Summary Statistics

1968-1999 2000-2019
A. Summary Statistics

Mean SD Autocorr Mean SD Autocorr
Headline 5.15 1.64 0.75 2.16 1.33 -0.04
Core 5.20 1.45 0.71 2.01 0.33 0.35
Food 4.96 2.22 0.43 2.28 0.91 0.46
Energy 5.23 6.86 0.36 4.37 13.50 -0.10

B. Headline Composition

β s.e. β s.e.
Core 0.70 0.02 0.92 0.07
Food 0.22 0.01 0.15 0.03
Energy 0.09 0.00 0.09 0.00

C. Correlation Matrix

Headline Core Food Energy Headline Core Food Energy
Headline 1.00 1.00
Core 0.88 1.00 0.33 1.00
Food 0.64 0.40 1.00 0.19 0.10 1.00
Energy 0.68 0.39 0.28 1.00 0.95 0.10 0.08 1.00

Note: This table provides summary statistics for headline, core, food end energy inflation components. Panel A
presents summary statistics for each inflation component, including their mean, standard deviation and autocor-
relation. All the values are annualized. Panel B reports the regression results of headline inflation on core, food
and energy inflation. Panel C reports the correlation matrix.
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Table 16. Headline Inflation Shock Decomposition for All Periods

A. Full Sample

Energy coefficient 0.10 0.10 0.09
Food coefficient 0.31 0.27 0.20
Core coefficient 0.96 0.72
R2 0.64 0.16 0.40 0.75 0.96

B. 1968-1999

Energy coefficient 0.11 0.10 0.09
Food coefficient 0.30 0.27 0.21
Core coefficient 0.87 0.70
R2 0.37 0.28 0.57 0.60 0.95

C. 2000-2019

Energy coefficient 0.10 0.10 0.09
Food coefficient 0.52 0.18 0.19
Core coefficient 1.61 0.89
R2 0.91 0.08 0.21 0.92 0.98

D. 2020-2023

Energy coefficient 0.10 0.10 0.08
Food coefficient 0.13 0.12 0.16
Core coefficient 1.06 0.79
R2 0.67 0.01 0.66 0.68 1.00

Note: This table decomposes headline inflation shocks into core, energy, and food inflation shocks, using
regression models with varying combinations of explanatory variables. We do this for the full sample period, a
period from 1968-1999, one from 2000-2019, as well as one from 2020-2023.
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Table 17. Asset Return Exposure to Monthly Inflation Shocks Using Varying Lags

Headline β t-stat Core β t-stat Energy β t-stat

A. All Inflation Shocks Lagged

Stock -1.06 -1.75 -3.40 -2.50 -0.07 -1.10
Treasury -0.81 -2.04 -0.68 -1.19 -0.07 -1.68
Agency -0.47 -1.42 -0.32 -0.69 -0.03 -1.00
Corporate -0.71 -2.61 -0.98 -0.97 -0.05 -1.64
Currency -0.17 -0.55 1.10 1.44 -0.05 -2.00
Commodity 0.68 0.53 1.18 0.75 0.01 0.03
REIT -1.23 -1.30 -2.17 -0.94 -0.09 -0.85
Int Stock -2.04 -3.21 -3.04 -2.40 -0.19 -2.99

B. Core Inflation Shocks Lagged

Stock -0.73 -0.73 -3.45 -2.71 0.07 0.87
Treasury -1.63 -3.94 -0.71 -1.29 -0.17 -4.07
Agency -0.77 -3.46 -0.25 -0.59 -0.06 -3.10
Corporate -0.33 -0.94 -1.01 -0.95 -0.03 -0.94
Currency 0.99 2.28 0.95 1.18 0.11 3.15
Commodity 5.24 3.28 1.13 0.69 0.75 4.99
REIT 1.49 0.82 -2.45 -1.27 0.15 1.16
Int Stock 0.38 0.36 -3.17 -2.53 0.17 1.68

C. No Inflation Shocks Lagged

Stock -0.73 -0.73 -1.88 -2.19 0.08 0.92
Treasury -1.63 -3.94 -1.11 -2.21 -0.17 -3.96
Agency -0.77 -3.46 -0.70 -1.39 -0.06 -3.04
Corporate -0.33 -0.94 -0.55 -0.43 -0.03 -1.09
Currency 0.99 2.28 -0.53 -0.69 0.11 3.21
Commodity 5.24 3.28 -0.25 -0.17 0.75 4.99
REIT 1.49 0.82 -0.68 -0.25 0.15 1.12
Int Stock 0.38 0.36 -1.55 -1.52 0.17 1.69

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t are
excess asset returns and εi,t is the error term from the VAR (see Equation 3.1). We run a univariate regression
for headline shocks, while for core and energy inflation shocks we run the regression jointly. The t-statistics we
report are adjusted in accordance with the Newey-West methodology. All mean returns and standard deviations
reported are annualized. We report the results for the full sample period differentiating between all inflation
shocks lagged, only core inflation shocks lagged and no inflation shocks lagged.
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Table 18. Monthly Fama-MacBeth Regression Results Using Varying Lags

All Lagged Core Lagged None Lagged

Headline λ -1.03 0.14 0.14
t-stat -2.24 0.51 0.51
Core λ -1.05 -1.09 -0.97
t-stat -3.07 -5.39 -1.90
Energy λ 6.38 3.68 6.42
t-stat 0.89 3.74 2.90
R2 0.09 0.37 0.02 0.52 0.02 0.21

Note: This table presents the price of risk estimated from the 35 test assets, using the standard Fama-MacBeth
approach with the following specification; E (ri,t ) = αi+λβi+ui,t , where E (ri,t ) represents the average annualized
return of an asset, βi is the asset’s inflation shock beta and λ is the price of risk. The regression is run separately
for headline and jointly for core and energy inflation shocks on a monthly basis for the full sample period. This
table compares the regression results when lagging all inflation shocks by one month vs when lagging core
inflation by one month vs when not lagging it for the full sample period. The t-statistics in the table are adjusted
in accordance with White’s approach.
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Figure 4. Betas vs Inflation Levels Over Time

Note: These graphs depict the time series of betas and headline, core and energy level inflation over time. The
betas are compiled using a rolling 5 year estimation window.
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Figure 5. Betas vs Inflation Levels Over Time - Continued

Note: These graphs depict the time series of betas and headline, core and energy level inflation over time. The
betas are compiled using a rolling 5 year estimation window.
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Table 19. Sensitivities of Inflation Shock Betas to the Level and Volatility of Inflation

Headline t-stat Core t-stat Energy t-stat

A. Sensitivity of Betas to Changes in Inflation Level

Stocks -0.00 -0.15 -0.00 -0.53 -0.00 -0.58
Treasuries -0.00 -1.06 0.00 0.76 -0.00 -0.55
Agency Bonds 0.01 0.92 -0.06 -1.57 0.00 2.78
Corporate Bonds -0.02 -1.75 0.22 1.11 0.00 0.67
Currencies -0.00 -0.06 0.07 1.33 -0.00 -6.36
Commodities 0.00 1.50 -0.00 -0.03 0.00 0.31
REITs -0.23 -3.40 -0.00 -0.02 -0.00 -4.49
International Stocks -0.00 -1.93 0.00 0.53 -0.00 -2.74

B. Sensitivity of Betas to Changes in Inflation Volatility

Stocks 1.39 0.47 -7.62 -0.82 0.00 0.03
Treasuries -1.68 -2.95 1.38 0.66 -0.03 -3.76
Agency Bonds -1.07 -8.04 2.13 3.43 -0.01 -7.27
Corporate Bonds -1.53 -3.48 -8.30 -1.06 -0.01 -3.65
Currencies 0.74 0.82 -5.37 -1.30 0.00 0.57
Commodities 3.51 1.78 -3.23 -0.42 0.07 1.86
REITs 8.91 1.79 -11.54 -0.72 0.07 1.33
International Stocks -0.72 -0.24 -7.11 -0.88 -0.04 -0.86

Note: This table presents the sensitivities of betas to changes in the level and volatility of inflation, with both
sensitivities and changes being derived from the rolling-window regressions as described in Section 3.1.2. Re-
spective betas are run on changes in the level and volatility of inflation jointly.
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Table 20. Full Set of Conventional Assets - Return Exposure to Inflation Risks

Mean S.D. Headline β t-stat Core β t-stat Energy β t-stat

Consumer 13.91 21.96 -0.29 -0.06 -4.44 -1.34 0.12 0.32
Manufacturing 11.73 22.44 2.85 0.66 -7.68 -2.76 0.45 1.11
High Tech 18.10 23.12 -0.23 -0.06 -5.61 -1.54 0.15 0.59
Health 7.55 16.47 0.00 1.10 0.00 2.89 -0.00 -0.05
Others 9.80 23.59 -0.03 -0.88 -0.01 -0.89 -0.00 -0.89
Treasury 1-year -0.44 0.87 -0.29 -2.20 -0.12 -1.39 -0.02 -1.87
Treasury 3-year -1.00 1.87 -0.65 -3.23 -0.27 -1.46 -0.05 -2.19
Treasury 5-year -2.38 4.89 -1.63 -3.68 0.27 0.41 -0.14 -3.85
Treasury 7-year -2.83 6.60 -2.04 -3.38 0.82 0.81 -0.19 -3.63
Treasury 10-year -4.06 8.33 -2.33 -2.82 1.19 0.81 -0.23 -2.99
Treasury 20-year -6.95 12.95 -3.23 -2.29 1.21 0.57 -0.34 -2.43
Treasury 30-year -8.11 17.46 -3.74 -1.82 2.36 0.84 -0.44 -2.08
Agency 1-5 years -1.61 2.24 -0.58 -5.25 -0.24 -1.34 -0.04 -4.23
Agency 5-10 years -2.64 5.73 -1.40 -3.36 0.32 0.47 -0.13 -5.44
Agency 10-15 years -3.72 8.51 -1.67 -2.48 0.15 0.09 -0.15 -2.82
Agency >15 -5.17 11.70 -1.72 -2.00 1.04 0.46 -0.18 -2.97
Corporate 1-3 year -0.61 2.93 -0.15 -1.25 -1.35 -2.81 -0.01 -0.22
Corporate 3-5 year -0.91 5.61 -0.25 -0.28 -2.03 -2.44 -0.01 -0.13
Corporate 10-15 year -1.79 8.89 -0.26 -0.20 -2.32 -1.90 -0.00 -0.02
Carry-1 -0.91 4.02 0.66 1.59 0.03 0.04 0.03 0.77
Carry-2 -1.43 5.71 1.60 2.28 0.51 0.73 0.10 1.79
Carry-3 -0.24 4.74 1.18 1.87 -0.34 -0.71 0.10 1.46
Carry-4 -1.11 3.90 0.97 2.13 -0.76 -1.21 0.09 1.84
Carry-5 -0.49 3.87 0.82 1.73 -0.95 -0.90 0.05 1.03
Carry-6 -0.22 5.24 1.97 2.08 -0.94 -0.74 0.18 1.97
Dollar-Carry 0.74 4.04 -0.02 -0.21 -0.18 -1.17 0.00 0.17
Livestock -0.87 15.19 2.39 0.67 1.05 0.53 0.37 1.19
Agriculture 14.03 16.60 3.50 1.31 -2.30 -0.69 0.29 1.14
Industrial Metal 8.85 21.43 4.27 1.25 -6.51 -2.06 0.46 1.79
Precious Metal 5.44 14.11 0.20 0.16 -0.05 -0.05 -0.05 -1.98
Energy 18.53 46.61 23.00 2.02 -14.93 -1.62 2.18 2.17
North America 12.73 20.34 1.41 0.38 -5.28 -1.74 0.29 1.06
Europe 7.33 21.11 2.99 0.81 -5.50 -1.79 0.43 1.41
Far East 3.02 16.38 -0.37 -0.17 -6.64 -2.84 0.19 1.17

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t are
excess asset returns and εi,t is the error term from the VAR (see Equation 3.1). The time period considered spans
from the beginning of 2020 to mid-2023. We run a univariate regression for headline shocks, while for core and
energy inflation shocks we run the regression jointly. The t-statistics we report are adjusted in accordance with
the Newey-West methodology. All mean returns and standard deviations reported are annualized.
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Table 21. Expanded Asset Universe - Return Exposure to Inflation Risks

Mean S.D. Headline β t-stat Core β t-stat Energy β t-stat

Equity L/S 3.99 10.66 1.90 1.04 -4.94 -2.58 0.27 1.64
Equity Hedge 4.38 12.37 2.09 0.97 -5.35 -2.43 0.30 1.59
Equity Hedge Multi -0.35 11.52 1.68 0.71 -4.12 -2.19 0.26 1.22
Equity Long Biased 6.54 16.58 2.55 0.91 -6.48 -2.25 0.37 1.55
Equity Long Only 9.01 18.43 2.28 0.69 -6.98 -2.25 0.38 1.33
PE index 11.85 30.35 4.16 0.67 -10.00 -2.11 0.59 1.18
Bitcoin 89.61 75.64 -4.17 -0.31 -40.12 -2.98 1.09 0.74
IQ Mrkt NTRL Beta -3.18 5.56 -0.76 -0.50 -1.86 -1.47 -0.01 -0.11
IQ MA -2.77 6.71 0.18 0.16 -1.23 -1.72 0.01 0.11
Blackrock Event driven -0.79 5.54 0.76 0.99 -2.38 -2.06 0.09 1.19
PIMCO 1-5 -2.21 4.47 -0.37 -0.48 -0.74 -0.99 0.00 0.03
PIMCO +15 -5.53 16.46 -3.89 -1.54 0.07 0.02 -0.29 -2.19
CTAs 6.36 4.83 1.33 1.45 -0.49 -0.66 0.13 1.70
SMB -2.77 10.75 1.68 1.25 -5.60 -3.53 0.31 2.15
HML -1.78 17.76 4.18 2.04 -0.18 -0.04 0.36 1.42
RMW 7.16 7.74 -0.74 -1.09 3.50 1.84 -0.10 -1.93
CMA 5.19 12.32 2.06 1.54 1.32 0.56 0.17 1.11
MOM 3.25 13.76 0.66 0.32 1.76 0.76 -0.08 -0.39

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t are
excess asset returns and εi,t is the error term from the VAR (see Equation 3.1). The time period considered spans
from the beginning of 2020 to mid-2023. We run a univariate regression for headline shocks, while for core and
energy inflation shocks we run the regression jointly. The t-statistics we report are adjusted in accordance with
the Newey-West methodology. All mean returns and standard deviations reported are annualized.
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Table 22. Fama-MacBeth Regression Results for Alternative Assets, Active Funds and Fama-French Risk Factors

Alternative Assets Active Funds Fama-French Risk Factors

Headline λ -13.50 3.36 -1.65
t-stat -0.04 8.04 -2.84
Core λ -2.18 1.31 0.68
t-stat 0.34 0.31
Energy λ 5.35 43.55 -8.64
t-stat 0.80 -0.39
R2 0.28 1.00 0.79 0.82 0.48 0.82

Note: This table presents the price of risk estimated from alternative portolios and Fama-French risk factors,
using the standard Fama-MacBeth approach with the following specification; E (ri,t ) = αi + λβi + ui,t , where
E (ri,t ) represents the average annualized return of an asset, βi is the asset’s inflation shock beta from Tables 20
and 21 and λ is the price of risk. The regression is run separately for headline and jointly for core and energy
inflation shocks. The t-statistics in the table are adjusted in accordance with White’s approach.
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Table 23. Asset Return Exposure to Inflation Shocks Using Out-of-Sample Forecasting

Mean S.D. Headline β t-stat Core β t-stat Energy β t-stat

A. Optimized Window

Stock 8.87 16.53 -0.45 -0.14 -2.50 -0.87 0.23 1.31
Treasury 2.50 6.59 -1.83 -4.62 -0.54 -0.55 -0.22 -4.01
Agency 1.93 3.45 -0.96 -4.60 -0.49 -0.83 -0.11 -4.01
Corporate 3.19 5.93 -0.72 -1.68 -1.75 -1.13 -0.04 -0.85
Currency 1.49 6.58 0.81 2.37 -0.71 -0.99 0.14 2.88
Commodity 4.20 24.53 10.87 8.93 2.63 0.76 1.34 7.82
REIT 6.62 19.74 2.41 0.81 -3.00 -0.86 0.34 1.13
Int Stock 5.48 18.54 0.82 0.43 -4.53 -2.05 0.27 1.38

B. Expanding Window

Stock 8.87 16.53 1.11 0.66 -1.83 -0.81 0.18 1.00
Treasury 2.50 6.59 -1.97 -4.62 -0.07 -0.11 -0.22 -4.06
Agency 1.93 3.45 -0.96 -4.35 0.09 0.32 -0.11 -3.67
Corporate 3.19 5.93 -0.56 -1.84 -0.28 -0.32 -0.05 -1.13
Currency 1.49 6.58 0.88 2.63 -0.73 -1.01 0.13 2.69
Commodity 4.20 24.53 11.24 8.95 -1.10 -0.39 1.34 7.24
REIT 6.62 19.74 2.74 1.15 -1.67 -0.57 0.35 1.13
Int Stock 5.48 18.54 1.21 0.70 -3.40 -1.64 0.26 1.38

Note: This table reports the regression results of the following specification; rei,t = αi + βiπεt + ui,t , where rei,t
are excess asset returns and εi,t is the forecasting error. We run a univariate regression for headline shocks,
while for core and energy inflation shocks we run the regression jointly. The time period considered for this
analysis spans from 1986 until 2023. The t-statistics we report are adjusted in accordance with the Newey-West
methodology. All mean returns and standard deviations reported are annualized.


