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Abstract 
Bankruptcy prediction has long been an important area of study, yet the evolution of these predictive 

models in the context of modern machine learning techniques remains underexplored. Our thesis addresses 

this by comparing the effectiveness of probit analysis – a time-tested statistical approach – with XGBoost 

– a new-era machine learning technique – in predicting corporate bankruptcy among Swedish firms. 

Utilizing a dataset of Swedish industrial firms, we meticulously assess the accuracy of each model, looking 

also at their capacity to select and leverage relevant independent variables. Our findings reveal notable 

differences in the performance of these models, providing valuable insights for researchers and 

practitioners. While the probit model offers a reliable, well-established framework, XGBoost demonstrates 

superior adaptability and performance, marking a significant advancement in bankruptcy prediction 

methodologies. The machine learning technique also proves better at extracting useful information through 

feature selection and appears more generalizable when tested on firms of different industries and sizes. We 

perform several robustness checks to ensure the viability of these conclusions and end by discussing our 

findings, limitations and potential future research directions. 
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1. Introduction 
No one can have missed the recent boom in artificial intelligence (AI). A recurring topic of news reporting, 

included in the strategies of most Fortune 500 companies and even the topic of casual conversation – the 

recent advancements in AI has had a pervasive impact on our lives. Today, we can witness how AI programs 

power autonomous vehicles, detect signs of disease on medical images that are otherwise invisible to the 

human eye, and enable you to unlock your smartphone with face recognition. They paint portraits, prepare 

tax returns, respond to emails, and debug code. The list can be made very long. This transition represents 

the most important technological breakthrough since social media (Time, 2023). 

 

The current boom in AI is driven by breakthroughs in an area known as machine learning – specifically 

generative AI – with McKinsey recently dubbing 2023 “Generative AI’s breakout year” in their global 

survey on the current state of AI (McKinsey, 2023). Rather than depend on human programming, 

computers are “trained” to execute tasks based on examples. While the models are trained by humans, their 

abilities can often extend far beyond those of any human – a famous example being when AI defeated the 

world champion of a complex board game called Go in 2016 (Wired, 2023). McKinsey states in the survey 

that AI historically has been a topic for tech employees but has risen as a focus of managers amid recent 

advances (McKinsey, 2023). The two tech-giants, Microsoft, and Alphabet reported complete shifts to their 

corporate strategies to capture what they see as a new infrastructure layer of the economy. For example, 

Microsoft is investing USD 10 billion in OpenAI (the organization behind ChatGPT and Dall-E) and is 

planning on updating its Office software and search engine, Bing, with generative AI integrations. As a 

response, Google was quick to launch their own chatbot, Bard, onto the market (Time, 2023). While there 

are tons of advocators of AI, there are just as many critics. Criticism is often directed towards generative 

AI and centered around concerns such as ethics, sustainability, disinformation, bias and even copyright 

(Wired, 2023). Yet beyond all the hype of generative AI, there is an area where machine learning has been 

applied ever since the late 1990s: bankruptcy prediction.  

 

Corporate failure remains a ubiquitous topic due to its negative effects on stakeholders and society, 

including financial distress, job losses, and a reduced trust in the affected business. Counterparty risk has 

always been a central part in doing business and it has been in the interest of both governments, lenders, 

financial institutions, fund managers, and financial market participants alike to assess the risk in order to 

manage it.  As such, researchers started exploring methods of corporate bankruptcy prediction as far back 

as the 1930s. An early discovery was that capital market information can be utilized to develop bankruptcy 

prediction models, despite the stochastic nature of default events (Altman et al., 2017). Bankruptcy 

prediction research has evolved since it first emerged nearly a century ago, with various approaches 

employed, frequently relying on quantitative analysis of financial ratios and accounting metrics (Bellovary 

et al., 2007).  

 

As the access to more computational power exploded near the turn of the millennia, researchers began 

experimenting with machine learning techniques to see if corporate failure could be predicted more 

accurately than with traditional statistical techniques. And yet, nearly thirty years later, there is still an 

ongoing debate whether machine learning models are better (Clement, 2020). The initial critique largely 

concerned the lack of any noteworthy performance gains (Altman et al., 1994), but this was likely due to 

constraints in the computational capacity of widely available computers. Today, the critique revolves around 

the lack of transparency (Kim et al., 2022) and overfitting tendencies (Ptak-Chmielewska, 2019). Machine 

learning models are continuously being improved upon with efforts being made to make them both more 

transparent and resistant to overfitting. We will refer to these models as new-era machine learning models, 

as they are distinct from their predecessors and do not come with the same flaws. We ask ourselves, can 

the recent advancements in AI put an end to a thirty-year-old debate?  
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1.1 Purpose & research questions 
Our purpose with this study is to evaluate the comparative accuracy of an established statistical technique 

compared to a new-era machine learning model for the task of predicting corporate bankruptcy. An 

important aspect of maximizing accuracy is to extract useful information from the independent variables. 

Our purpose results in the following primary research questions: 

 

(i) How does the comparative accuracy of a new-era machine learning model differ from an established statistical 

technique in predicting corporate bankruptcy? 

 

(ii) How effective are the techniques at identifying useful independent variables from a larger set of potentially useful 

variables? 

 

Another critical aspect to consider is the generalizability of the models. While comparative accuracy may 

indicate superior performance in a test setting resembling the training data conditions, it could be 

susceptible to overfitting, leading to greater performance drops on settings different from the training data. 

Two pivotal dimensions for exploration are industry and size, aiming to discern whether the relative 

performance of statistical and machine learning techniques remains consistent when asked to predict 

bankruptcies in firms distinct from their training samples. To address these considerations, we delve into 

the secondary research questions: 

 

(iii) How does the comparative accuracy of a new-era machine learning model differ from an established statistical 

technique in predicting corporate bankruptcy for firms in other industries than the training sample? 

 

(iv) How does the comparative accuracy of a new-era machine learning model differ from an established statistical 

technique in predicting corporate bankruptcy for firms of other sizes than the training sample? 
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2. Review of literature 
Since our study aims to compare an established statistical technique to a new-era machine learning model 

in predicting corporate bankruptcy, the literature review is divided into six sections, each covering 

information relevant to the study. The first section presents guidance from theory on capital investment 

risk and its importance in business. The second section explores how researchers started using statistics to 

measure bankruptcy risk and presents the most prominent traditional models in the field. The third section 

gives an overview of the most used machine learning techniques in bankruptcy prediction. The fourth 

section covers selected studies comparing different techniques. The fifth section explores the field of 

bankruptcy prediction in a Swedish context and discusses a potential research gap in current literature. 

Finally, the sixth section summarizes the key takeaways from previous literature and ends with a proposal 

on how our study can contribute.  

 

2.1 Capital investment risk 
Risk is a crucial component in business. Understanding, managing, and sometimes embracing risk is key 

for business success (Moore, 1983). A manager faces many types of risks in their role, from supply chain 

risks to compliance risk and counterparty risk. A capital investor looking to invest in a business by acquiring 

company shares needs to consider both variability risk and bankruptcy risk. Variability risk refers to the 

“return variability risk of a capital investment” whereas bankruptcy risk is the “drop-dead risk of a capital 

investment” (Skogsvik, S., p.3, 2021). With regards to the latter, Skogsvik highlights a component to 

valuation, denoted Pfail. It is an estimate to account for the probability of a firm going bankrupt and it can 

be assessed through: (i) employing statistical models like probit and logit analysis based on financial data, 

(ii) considering bond ratings, or (iii) implied by market prices, i.e. reverse engineering.1 While (ii) and (iii) 

might be useful for large public firms, the majority of firms are SMEs. Furthermore, a study conducted by 

Dichev (1998) found evidence that suggested a higher bankruptcy risk is not necessarily compensated by 

higher returns, casting doubt on the suitability of deriving risk from market implications. 

 

Damodaran (2006) discusses the implications of bankruptcy risk in traditional valuation techniques, arguing 

that its effects on value are often short-changed, if not completely ignored. For example, in Discounted 

Cash Flow analyses (DCF) and relative valuation, firms are implicitly assumed to be going concerns and 

that any exposure to financial distress is temporary. A large part of the value in a DCF is captured in the 

terminal value, often far into the future – but what if there is a real chance that the company will not make 

it to the terminal value and the financial distress is not temporary? Damodaran argues that we tend to 

overvalue such firms using traditional valuation models primarily because the effect of financial distress is 

difficult to capture in the discount rate and expected cash flows (Damodaran, 2006).  

 

Empirical observations indicate that many companies – primarily smaller and higher growth – will fail 

(Damodaran, 2006). Some companies fail because they borrow to fund their operations and default on 

these debt payments, while others lack sufficient cash to cover operating needs. The number of 

bankruptcies will vary depending on the definition of distress. For example, distress is much more common 

when defining it as failing to make interest payments or meet contractual commitments rather than the 

number of firms entering chapter 11 (Damodaran, 2006).2  

 

 
1 Starting with the known market price of e.g. a bond, and working backward, or reverse-engineering the bond 

valuation from its market price, we can work out the implied probability of failure 
2 A case filed under chapter 11 of the United States Bankruptcy Code is frequently referred to as a "reorganization" 

bankruptcy. Usually, the debtor remains “in possession,” has the powers and duties of a trustee, may continue to 

operate its business, and may, with court approval, borrow new money (US Courts).  
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From a valuation perspective, failing to consider bankruptcy risk is problematic as it will prevent us from 

reaching the true market value of a business. As a company defaults on its debt, it is often forced to liquidate 

assets at bargain prices.3 However, the consequences of financial distress go far beyond the direct costs of 

bankruptcy. The perception of financial distress can harm a company significantly as it affects employees, 

customers, suppliers, and lenders. Distressed firms experience customer loss, increased employee turnover, 

and face stricter supplier terms. These indirect bankruptcy costs can be devastating, effectively turning the 

perception of distress into a reality for many companies (Damodaran, 2006). The widespread interest in the 

ability to predict corporate failure becomes evident and will be further explored and validated in the 

forthcoming section as we review the existing literature to date. 

 

2.2 Pioneering bankruptcy prediction models 
Existing literature on bankruptcy prediction consists mostly of empirical studies, comparing data of 

bankrupt and non-bankrupt firms rather than applying theory (Brenes, 2022). The author discusses why 

there is an apparent lack of theoretical models and points to the complexity of bankruptcy as a potential 

explanation. While bankruptcy is driven by several deterministic factors such as the company’s financial 

health, market conditions and industry trends, there are instances of bankruptcies that cannot be adequately 

explained by these factors alone. Sudden economic downturns, shifts in consumer behavior and even 

natural disasters can all drive a company bankrupt and are difficult to predict with a single theory (Bradley, 

2004). In a review paper, Scott (1981) examines the alignment of empirical and theoretical models for 

bankruptcy prediction. While fundamental theoretical models, such as the Gambler’s Ruin model, explain 

some of the empirical findings, they fail to account for it fully.4  This suggested that an empirically based 

model could successfully predict causes of bankruptcy that bankruptcy theory at the time failed to explain. 

Empirical models are practical – they make sense. If we think of financial data as a proxy for a company's 

true health, looking at the financial data of companies that went bankrupt and those that remained solvent 

should help us predict how well a company might do in the future based on its financial information. 

 

The modern use of financial ratios to predict bankruptcy was pioneered in the 1960s, in papers by Beaver 

(1966) and Altman (1968). Previous research consisted mainly of univariate ratio analysis, comparing the 

ratios of healthy and bankrupt firms, and identifying indicators of oncoming financial distress. With Beaver 

and Altman, the hypothesis that financial ratios might be employed to statistically predict bankruptcy was 

introduced, first with Beaver’s univariate approach followed by Altman’s multivariate (Bellovary et al., 

2007). The aim of Beaver’s study was to empirically verify the usefulness (predictive ability) of accounting 

data (financial statements). In doing so, the author investigated 79 failed and 79 non-failed firms across 38 

industries by comparing the mean values of 30 ratios. The study was conducted during a period between 

1954 to 1964 and the data was based on publicly listed industrial firms in the US with an average asset size 

of USD 7.4 million. Based on a paired-sample design, a non-failed firm of the same asset size and industry 

was selected for each failed firm in the sample. “Failure” was used as the dependent variable, defined as:  

 

“The inability of a firm to pay its financial obligations as they mature. Operationally, a firm is said to have failed when 

any of the following events have occurred: bankruptcy, bond default, an overdrawn bank account, or nonpayment of a 

preferred stock dividend” (Beaver, p. 71, 1966).  

 

 
3 Found by, for example, Shleifer & Vishny (1992), Aghion et al. (1994), Berkovitch & Israel (1995), White (1994), 

and Pulvino (1998). Eckbo & Thorburn (2000) fail to find support for asset fire-sales in Swedish bankruptcy auctions. 
4 The Gambler’s Ruin model is a construct in probability theory, exploring the probable outcomes of the gambler 

either attaining a predetermined fortune or succumbing to financial ruin (Coolidge, 1909). A key concept is that a 

game with unfavorable odds, i.e. of negative value to the gambler, will always result in the gambler’s ruin. For 

bankruptcy prediction, this should imply that firms who fail to create value will eventually go bankrupt. 
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The author examined multiple forecast horizons, including one-, two-, three-, four-, and five years prior to 

failure, achieving average prediction errors as low as 13%, 20%, and 23% for the first three years, 

respectively. The author then computed 30 ratios from every available set of financial statements selected 

based on: (i) the frequency of the ratio in previous literature, (ii) ratios with high performance in recent 

studies (to be able to analyze the consistency), and (iii) ratios defined based on a “cash-flow” concept. 

Certain ratios with obvious overlaps were excluded to ensure each single ratio extracts as much additional 

information as possible. Unlike previous studies in the field, the author tested predictive abilities of the 

individual ratios in classifying firms as either bankrupt or non-bankrupt (Beaver, 1966). His results indicated 

that the ratio of net income to total debt achieved the highest predictive ability one year prior to failure 

with an accuracy of 92%, followed by net income to sales at 91%. Net income to net worth, cash flow to 

total debt, and cash flow to total assets showed accuracies of 90% (Bellovary et al., 2007). Beaver’s univariate 

study paved the way for multivariate bankruptcy prediction models (Bellovary et al., 2007). However, several 

other univariate studies have been developed (e.g. Pinches et al., 1975 and Chen & Shimerda, 1981) 

 

Pointing to the shortcomings of univariate analysis, such as the inherent flaws of looking at a single ratio in 

isolation, Altman was the first to publish a multivariate study in 1968. He employed multivariate 

discriminant analysis (MDA) to formulate a five-factor model for the prediction of bankruptcy among 

manufacturing firms in the US. This model, known as the "Z-Score Model", indicated bankruptcy when a 

firm's score fell within a specific range. Using a paired-sample design, a total of 66 manufacturing 

corporations were divided into two groups. The first group consisted of 33 corporations (“failure” firms) 

that had filed for bankruptcy under Chapter 10 of the National Bankruptcy Act between any of the years 

1946 to 1965. The asset size of the corporations ranged between USD 0.7 million and USD 25.9 million, 

with a mean of USD 6.4 million. The second group contained the remaining 33 corporations and were still 

in existence in 1966. The data for the second group was based on the same period as for the first group. 

With the sample of companies in place, the author compiled a set of 22 ratios for evaluation, each classified 

into one of five categories including liquidity, leverage, solvency, profitability, and activity ratios. Most ratios 

were selected based on popularity in previous studies and potential relevancy to the study, while a few new 

ratios were created (Altman, 1968). Altman analyzed the 22 ratios’ relative contribution, inter-correlations, 

predictive accuracies, as well as applied his own judgement. This resulted in a five-variable model as the 

overall best predictor of bankruptcy. 

 

The Z-Score Model exhibited a predictive accuracy in the initial sample of 95% one year prior to failure 

and 72% two years prior to failure. When tested out-of-sample, the model obtained a predictive accuracy 

of 79%.5 However, its predictive performance diminished rapidly after year two. Corresponding accuracies 

three, four and five years prior to bankruptcy amounted to 48%, 29%, and 36%, respectively (Altman, 

1968). In summary, the author’s results suggest that bankruptcy can be accurately predicted at least one year 

prior to failure.  

 

Over the years, researchers have investigated new quantitative approaches to improve bankruptcy 

prediction models. For example, as Ohlson (1980) developed the first logit-based bankruptcy prediction 

model, the next two decades saw a shift towards models based on logit and probit analysis (Bellovary et al., 

2007). Unlike Altman's (1968) model, which assigns scores to classify observations as good or bad payers, 

Ohlson's (1980) model calculates the default probability of the prospective borrower (Altman et al., 2017). 

Although initially designed for industrial firms, the model is now considered an industry-agnostic model, 

similar to Altman’s original 1968 model (Bellovary et al., 2007). In line with Altman, Ohlson applied a 

 
5 Out-of-sample generally refers to the performance or testing of a model on data that was not used during the 

model’s training phase. It is important for assessing a model’s ability to generalize to real-world situations beyond 

the data it was trained on.  
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legalistic definition of failure stating that the firms: “… must have filed for bankruptcy in the sense of Chapter 10, 

Chapter 11, or some other notification indicating bankruptcy proceedings” (Ohlson, p. 114, 1980). The sample 

consisted of 2,163 listed industrial firms, 105 bankrupt and 2,058 non-bankrupt, with data from the period 

1970 to 1976. Exclusions were made to small and privately held corporations as well as utilities, financial 

services companies, and transportation companies. Three sets of estimates were computed for the logit 

model: (i) one year prior to bankruptcy, (ii) two years prior to bankruptcy, and (iii) one or two years prior 

to bankruptcy. Although Ohlson did not attempt to create any “new or exotic” ratios, his model stood out 

from its peers by incorporating unique independent variables (Ohlson, 1980). For example, it emphasized 

the significance of firm size, which was found to be one of the main drivers of failure, as well as the 

development of profitability over time. Furthermore, Ohlson’s study differed from others at the time as he 

was able to consider the timing issue by assessing whether the company underwent bankruptcy before or 

after the release date of the financial statements. Several earlier studies have overlooked this issue by 

assuming the financial statements were available at the fiscal year-end date (Ohlson, 1980). 

 

Table 1. Overview of pioneering bankruptcy prediction models 

 
* Including two additional factors. ** The author also tested current cost accounting (CCA) ratios. 

 

With regards to the predictive ability one year prior to bankruptcy, the model achieved an accuracy of 96% 

and Ohlson identified four factors influencing the probability of failure: “(i) the size of the company; (ii) a 

Period Data Model Dependent variable Independent variable Accuracy

1954-1964
79 failed

79 non-failed
UDA

Failure: (i) bankruptcy, (ii) 

bond default, (iii) an 

overdrawn bank account, or 

(iv) nonpayment of a 

preferred stock dividend

30 financial-statement ratios 

(incl. cash-flow, profitability, 

capital structure, liquidity, 

turnover)

50% to 92%

1946-1965
33 failed

33 non-failed
MDA

Filing for bankruptcy under 

Chapter X of the National 

Bankruptcy Act

5 ratios (incl. liquidity, 

leverage, solvency, 

profitability, activity)

Year before failure:

(1) - 95%

(2) - 72%

(3) - 48%

(4) - 29%

(5) - 36%

Hold-out - 79%

1970-1976
105 failed

2,058 non-failed
Logit

Filing for bankruptcy under 

Chapter X, Chapter XI, or 

other notification indicating 

bankruptcy proceedings

9 ratios, (incl. size, changes 

over time, profitability, capital 

structure, liquidity)

Year before failure

(1) - 96%

(2) - 96 %

(1 or 2) - 93%

1* - 96.3%

1966-1979
51 failed

328 non-failed
Probit

Failure: (i ) Bankruptcy or 

composition agreement, (ii) 

Voluntary shut-down of 

primary production activity or 

(iii) Receipt of a substantial 

state subsidy 

17 HCA** ratios from 71 

initially (incl. profitability, cost 

structure, capital turnover, 

liquidity, asset structure, 

financial structure, growth)

Year before failure:

(1) - 83.3%

(2) - 78.4%

(3) - 74.7%

(4) - 73.9%

(5) - 74.6%

(6) - 73.3%

Beaver (1966)

Altman (1968)

Ohlson (1980)

Skogsvik (1990)
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measure(s) of the financial structure; (iii) a measure(s) of performance; (iv) a measure(s) of current liquidity (the evidence 

regarding this factor is not as clear as compared to cases (i)- (iii))” (Ohlson, 1980, s. 110).  

 

In 1984, Zmijewski proposed a new logit model (similar to Ohlson’s), although with two important 

contributions pertaining to the data selection phase. The author argued that since bankruptcy prediction 

models are typically estimated on non-random samples, it can result in biased parameter and probability 

estimates unless appropriate estimation techniques are used. Zmijewski identified two biases: (i) the bias of 

using a matched-pair research design, since the real population of bankrupt vs. non-bankrupt firms is not 

balanced, and (ii) the bias of excluding firms with missing data, arguing that incomplete accounting data is 

correlated with a higher risk of bankruptcy, which makes for a non-representative sample. By examining 17 

bankruptcy prediction studies, the author found that 12 of the studies used a matched-pair design to collect 

the non-bankrupt sample. Furthermore, all 17 studies used a share of bankrupt firms far above the actual 

population, with only three of the studies using shares lower than 40%. Therefore, it is likely that these 

studies constructed models using non-random samples with compositions significantly different from that 

of the overall population, without proper adjustments (Zmijewski, 1984).  

 

Numerous, subsequent studies have attempted to replicate Altman’s and Ohlson’s models in new settings 

(e.g., Hillegeist et al., 2004 and Griffin & Lemmon, 2002). Hillegeist et al. (2004) examined whether publicly 

available information regarding the probability of failure is effectively captured in accounting-based 

measures, particularly Altman’s (1968) Z-Score Model and Ohlson’s (1980) O-Score Model. The authors 

developed a market-based measure of the probability of bankruptcy using the Black-Scholes-Merton 

option-pricing model (referred to as BSM-Prob), which is then compared to the two scores in terms of 

their relative information content. The results indicate that significantly more information is provided by 

the BSM-Prob compared to the two accounting-based measures. The authors argue that accounting-based 

bankruptcy prediction models often lack measures of asset volatility. Without accounting for asset volatility, 

these models may not accurately assess the risk of firms defaulting on their debt, even when they have 

identical leverage ratios. According to the authors, both Altman’s (1968) and Ohlson’s (1980) prediction 

models fail to include volatility as a variable (Hillegeist et al., 2004).  

 

Furthermore, the higher information content of the BSM-prob also holds true after making several 

modifications to the Z-Score Model and O-Score Model, for example by revising the coefficients and 

making industry adjustments. The authors conclude that many of the coefficients from Altman’s and 

Ohlson’s models are outdated. Their findings are in line with Begley et al. (1996), who contended that the 

widely used models rooted in Altman (1968) and Ohlson (1980) had lost accuracy and proposed 

improvements in the modelling of default risk. Around this time, following advancements in computer 

technology, a new family of models was made available for the task of bankruptcy prediction. AI models, 

such as neural networks, emerged and quickly became popular choices for researchers (Bellovary et al., 

2007). Capitalizing on more recent technological progress, scholars and practitioners began exploring new 

tools to assess corporate failure in ways that were less susceptible to the limitations of the once prominent 

model (Altman et al., 2017). 

 

2.3 Bankruptcy prediction using machine learning models 
Despite having been the most popular approach for predicting corporate bankruptcy throughout the 

second half of the 20th century, statistical techniques such as logistic regression have been shown to have 

certain limitations (Kruppa et al., 2013). They come with several, potentially unrealistic, underlying 

assumptions (Tay & Shen, 2002) and can cause model misspecification if not dealt with correctly (Malley et 

al., 2012). For instance, Skogsvik (1990) performs several statistical tests to conclude that MDA is not an 

ideal approach for his sample of firms despite having been used by popular studies, with similar firm 
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samples, prior to his. Consequently, when the access to more computational power for the masses 

introduced machine learning models as potentially useful techniques, researchers have increasingly turned 

away from statistical techniques in recent years (Clement, 2020). Machine learning models, being non-

parametric, are not subject to the same set of underlying assumptions and are therefore less restrictive 

(Altman, 2017). Additionally, since credit risk assessment resembles pattern-recognition problems – a 

specialty of machine learning models – some researchers have emphasized the potential of their use to solve 

the bankruptcy prediction problem (Kruppa et al., 2013). 

 

Broadly speaking, the key difference between the two approaches is that a traditional statistical model makes 

assumptions about data distribution while a machine learning model finds generalizable patterns (Bzdok et 

al., 2018). One approach cannot be hailed superior to the other. Instead, the optimal choice depends on 

the specific circumstances and perhaps most crucially – the data.  To showcase how the approaches solve 

the same problem differently, let us use a concrete example. Consider a binary classification problem, where 

the task is to predict whether a passenger on the Titanic survived or not based on their demographic 

information. A formulation of the probability using logistic regression might look like this: 

 

𝑃(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙) =  
1

1 + 𝑒−(𝛽0+𝛽1∗𝐴𝑔𝑒+𝛽2∗𝑆𝑒𝑥+𝛽3∗𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠&𝑆𝑝𝑜𝑢𝑠𝑒𝑠)
 

 

Where β0, β1, β2 and β3 are the independent variables estimated during training and P(Survive) is the 

probability of the passenger surviving. A decision tree-based machine learning model instead creates several 

decision trees to derive a prediction. The first decision tree might have the following information: 

 

 
Figure 1a. Illustrative example of a potential decision tree classifying passengers on the Titanic as either survivors or 

deceased, based on gender, age and the number of siblings or spouses aboard. The number next to a node denotes 

the share of the sample following that path in the decision tree and the number in each end-leaf denotes the probability 

of survival. There is an implied cut-off of P(Survive), where a passenger is either classified as deceased or survived, 

between 0.17 and 0.73. The reason for the male-part of the tree having more layers is because the model could not 

effectively categorize men as dead or alive, as it could with women. A woman was likely to survive, solely based on 

gender, while a man was likely to die or survive based on both age and the number of siblings and spouses aboard. 

 

Naturally, creating a single deep decision tree runs the risk of overfitting to the training data.6 Evidence of 

this, in the context of bankruptcy, was found by Wang et al. (2012). The goal of training a model is not to 

 
6 Deep refers to how many layers a decision tree has, the more layers, the deeper the tree. 
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perfectly capture the differences between survivors and deceased in the training data, it is to find 

generalizable patterns from which it can make accurate and robust out-of-sample predictions. A solution 

to overfitting is to use an ensemble model, that combines multiple estimators to a combined prediction 

(Wang et al., 2011). Random Forest is a popular and well-known ensemble model that combines multiple 

decision trees, each trained on different parts of the data, to derive a single prediction. 

 

Figure 1b. Illustrative example of a potential Random Forest model. Each tree is given a random subsample of the 

dataset, causing it to construct different routes to classify the data. The results of all decision trees are then combined 

to a final result, typically by majority voting for classification tasks and averaging for regression tasks. 

 

Once a model stops improving, the predictions of the trees are combined, which for an ensemble model 

typically means to simply average the probabilities in order to arrive at a final probability: 

 

𝑃(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙) =
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑇𝑟𝑒𝑒 1 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑇𝑟𝑒𝑒 2 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑇𝑟𝑒𝑒 𝑁

𝑁
 

 

This method varies rather drastically from the statistical approach. The use of algorithms to find patterns 

makes machine learning models better at handling certain data structures (Bzdok, 2018). One such structure 

is “wide data”, where the proportion of independent variables is high relative to the number of 

observations. Another structure is non-linear data, where the independent variables and the dependent 

variable do not show a linear relationship. While statistical models like logistic or polynomial regression can 

effectively capture nonlinear shapes such as curves or waves, an algorithm does not infer any probability 

distribution and is therefore even less sensitive to complex, nonlinear relationships (Kumar & Ravi, 2007). 

However, corporate failure is a complex occurrence and it was not certain at the time that machine learning 

models would be better equipped to predict it. As such, numerous studies were dedicated to exploring the 

efficacy of machine learning techniques for bankruptcy prediction. 

 

Tam & Kiang (1992) employed Artificial Neural Networks (ANN) to forecast bankruptcy risk in the 

banking industry and subsequently conducted a comparative analysis with a linear discriminant model, a 

logistic regression model, decision tree (DT), and K-Nearest Neighbor algorithm (KNN). The authors 

describe a neural net as: “a nonlinear discriminant function as a pattern of connections between its processing units” (Tam 

& Kiang, p. 926, 1992). The study is based on data from Texas banks one and two years prior to failure 

over the period 1985 to 1987. A training sample of 118 banks were selected for each period, of which 59 



13 

 

failed and 59 non-failed. Failed banks were matched with non-failed banks based on their respective asset 

size, number of branches, age, and charter status. The authors used 19 financial ratios to describe each bank 

(Tam & Kiang, 1992). With regards to predictive accuracy, adaptability and robustness, the authors 

conclude that neural nets can be used to evaluate the risks in the banking industry. However, several 

limitations of using ANN in forecasting bankruptcy are discussed. First, when the number of network layers 

is large relative to the training sample, the ANN runs the risk of overfitting the network. Second, while 

neural networks can tell you the predictive accuracy of the training sample, they lack a prescribed method 

for deriving the relative importance of each input based on the weights. Assessing the individual inputs’ 

significance can therefore become a constraint.  

 

As one of the domain-defining researchers, Altman continued his research by examining how AI models 

could be used to predict corporate failure. He corroborates the observations of Tam & Kiang in his 1994 

study (Altman et al., 1994). The study compared Linear Discriminant Analysis (LDA) and neural networks 

(NNs) for evaluating the financial data of approximately 1,000 companies registered in the Italian database 

Centrale dei Bilanci over the 1982-1992 period. While NNs showed strong performance, concerns were 

raised regarding their black-box nature and occasional production of seemingly illogical conclusions. LDA 

was ultimately deemed superior due to its transparency and interpretability. The study recommended further 

exploration of NNs, suggesting they could be a valuable technique when their limitations, particularly 

related to transparency, are addressed. 

 

Although multiple machine learning models have been developed and applied to the bankruptcy prediction 

problem, Wang et al. (2014) argued that there was still no consensus around the overall best technique used 

for bankruptcy prediction. The authors concluded that the performance of prediction depends on multiple 

factors, including specific details of the classification problem, data structure, characteristics used, the 

degree to which the classes can be segregated using those characteristics, as well as the objective of 

classification (Wang et al., 2014). Altman co-authored a study commemorating the 50-year anniversary of 

his 1968 paper where he contributes to the discussion of an overall best technique (Altman et al., 2017). 

The authors focused on four promising machine learning techniques, namely support vector machines, 

bagging, boosting and Random Forest. Their analysis covered over 10,000 firm-year observations on North 

American companies over the period 1985 to 2013. Certain findings are interesting to highlight. First, unlike 

the 1994 paper by Altman et al., the authors now find that the machine learning models led to a notably 

higher prediction accuracy, amounting to a 10-percentage increase on average when compared to the 

traditional models. The difference in performance is enhanced further when the authors include several 

complementary financial indicators as predictive variables (e.g. change in price-to-book, change in return-

on-equity, operating margin, and growth in sales, assets and number of employees). Second, the results 

suggest that bagging, boosting and Random Forest are the best predictors of bankruptcy one year prior to 

default, for firms with the same characteristics as in their sample (Altman et al., 2017).   

 

Apart from the highlighted studies, there have been numerous researchers contributing to the literature. 

Several studies have dealt with various types of non-parametric models such as Extreme Learning Machine 

(Yu et al., 2014), Fuzzy-set Qualitative Comparative Analysis (Boratyńska & Grzegorzewska, 2018), various 

types of Neural Networks including Feed-forward, General Regression, Multilayer, Multilayer Perceptron 

and Recurrent Neural Networks (e.g. De Andrés et al., 2011; Song, Cao & Zhang, 2018; Korol, 2019; Tsai, 

Hsu & Yen, 2014; Ozbayoglu, Gudelek & Sezer, 2020), Gaussian Processes (Antunes, Ribeiro & Pereira, 

2017), Classification and Regression Tree (Durica, Frnda & Svabova, 2019), Decision Rule Inducer 

(Parsania, Jani & Bhalodiya, 2014) and k-Nearest Neighbor (Kruppa et al., 2013). In 2020, Clement 

conducted a systematic review of recent machine learning techniques, analyzing 32 texts published between 

2016 and 2020. The findings of the review align with Wang et al.'s (2014) conclusions that there is a lack of 



14 

 

definitive evidence supporting any single model as the superior choice (Clement, 2020). The author 

underlines the need for further research and exploration.  

 

2.4 Review papers comparing techniques 
While the overall objective of the bankruptcy prediction models has remained relatively unchanged since 

Beaver’s 1966 study, the techniques employed have been numerous and the subject of much debate. A 

recurring observation is that the optimal technique depends very much on the specific circumstances and 

data structure (Kumar & Ravi, 2007). The best model among several might be different for one researcher 

than for another, because they tweak the models differently or use different data. To investigate this issue, 

numerous articles have been published that compare techniques and offer methodological guidance. 

 

In Dimitras et al.’s 1996 survey of business failures, the primary focus was to compare a comprehensive 

array of viable prediction techniques spanning from 1932 to 1994, predominantly encompassing statistical 

methods but also incorporating a few, popular at the time, AI approaches. Their selection method involved 

the examination of 47 journal articles featuring models or industrial/retail applications related to business 

failure prediction. The survey revealed that many of the prediction methods emerged primarily after the 

1980s, aimed at addressing the limitations of discriminant analysis (DA) that had been identified at this 

point in time. It was observed that the most crucial financial ratios for prediction were from the solvency 

category (e.g. WC/TA, TD/TA), with profitability ratios also playing a significant role, signifying the vital 

role of a firm’s ability to generate and retain profits.  

 

O'Leary (1998) reviewed studies on predicting corporate failure using neural networks, which had become 

popular at the time. The primary comparison revolved around the performance of neural networks in 

comparison to traditional statistical techniques. The selection method involved an analysis of 15 articles 

that presented research using neural networks for bankruptcy prediction, covering the 1980s to the 1990s. 

Notably, the study found that in certain cases, neural networks performed on par with or even better than 

statistical methods, but in some specific settings, were still found to be inferior. The study suggested that 

there is potential for further development and refinement of neural network models in the context of 

corporate failure prediction, indicating that with time, the new techniques would consistently outperform 

the old ones. 

 

In their review titled "Bankruptcy Prediction in Banks and Firms via Statistical and Intelligent Techniques", 

Kumar & Ravi (2007) comprehensively examined bankruptcy prediction methods spanning from 1968 to 

2005, encompassing an extensive range of techniques. Their selection method involved scrutinizing papers 

published in peer-reviewed journals, international conferences, and edited volumes across various domains, 

including accounts, finance, management, operational research, neural networks, expert systems, and 

decision support systems. The review yielded several noteworthy conclusions: bankruptcy research had 

evolved, and now considered a greater number of independent variables; the focus of predictions had 

shifted towards corporates over banks; data between 1980 and 2003 was most commonly analyzed; neural 

networks tended to outperform statistical techniques, as neural networks can be likened to a combination 

of parallel logistic regressions, thereby contradicting the findings of O’Leary (1998); decision trees were a 

favored machine learning model due to their transparency, aiding researchers in understanding the rationale 

behind predictions; and both neural networks and decision trees exhibited superior performance in different 

datasets, leading to a reduced preference for statistical techniques due to their lower accuracy in bankruptcy 

prediction. 

In recent years, focus has shifted from trying to find the superior technique to realizing that each model 

comes with its benefits and drawbacks (Clement, 2020). In their 2018 systematic review Alaka et al. 

conducted an extensive analysis of bankruptcy prediction techniques, focusing on the eight most used 
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methods (comprising two statistical and six intelligent techniques) and their performance across 13 criteria. 

They selected 49 studies, drawing from the papers of three scientific journals published between 2010 and 

2015. A motivation for the study, as with other review papers comparing techniques, was to provide an 

understanding of the attributes of the techniques used to develop bankruptcy prediction models as well as 

their shortcomings. The review showed that many of the techniques are used in the wrong situation or with 

the wrong data conditions. No single technique outperformed the others consistently across the 13 criteria, 

highlighting the need to choose a technique based on the specific circumstances and objectives rather than 

pursuing a one-size-fits-all approach.  

 

2.5 Bankruptcy prediction in Sweden 
Most bankruptcy prediction research up until 2005 had been conducted on listed US firms (Bellovary et al., 

2007). Since then, more attention has been paid to private firms from other regions (Alaka et al., 2018). 

There is still an ongoing debate about the generalizability of models with regards to the performance loss 

when the models are used on firms in different countries, industries and sizes than what they were trained 

on (Altman et al., 2017). While one might equate an untested sample of firms to a research gap, one must 

first reasonably ascertain some novel characteristic of the sample firms. Some differences are more 

apparent. For instance, Altman’s original model includes the market value of equity, which poses a practical 

challenge to apply on private firms. Models developed for specific industries could also be expected to 

perform worse on other industries where the normal ratio levels vary drastically (Smith & Liou, 2007). With 

other differences, such as the country of origin, it is more difficult to conclude that a model cannot be 

generalized. A previous study by Ooghe & Balcaen (2007) found that with re-estimated coefficients, some 

models were widely usable in other countries while other models performed far worse. Altman (2017) found 

that bankruptcy year and size were two factors that strongly impaired the performance of the Z-Score 

Model, while country and industry did not. These mixed findings warrant a further exploration of the 

generalizability of models, especially with regards to the comparative performance of statistical and machine 

learning techniques.   

 

Although data availability in Sweden is very good, especially on private firms, the body of bankruptcy 

prediction research remains relatively limited. Some studies have been conducted, exploring both a Swedish 

setting holistically (e.g. Yazdanfar, 2008) and specific hypotheses (e.g. Skogsvik, 1990 or Ivanova, 2023). 

Using probit analysis, Skogsvik (1990) was the first to explore bankruptcy prediction in a Swedish setting. 

The article’s focus was to empirically test how current cost accounting information (CCA) could predict 

bankruptcy – as opposed to historical cost accounting (HCA). Skogsvik conducted an empirical test of the 

ability of current cost accounting ratios to predict business failure on a sample of 51 failed and 328 non-

failed Swedish industrial firms. Failure companies were identified using the following three criteria: (i) 

bankruptcy and/or a composition agreement, (ii) voluntary shutdown of the primary production activity, 

and (iii) receipt of a substantial subsidy provided by the state. In groups of six or seven companies, the non-

failure firms were matched with the failure firms. Using probit analysis, prediction models were then 

estimated for each year leading up to bankruptcy, covering all the way back to six years prior to failure. 

Based on Swedish data from the period 1966 to 1979, the author used principal component analysis to 

analyze a total of 79 CCA ratios and 71 HCA ratios. The analysis resulted in 20 CCA- and 17 HCA-

components being generated, covering everything from profitability, cost structure and capital turnover to 

liquidity, asset structure, financial structure, and growth. The comparison of predictive performance 

between CCA and HCA was evaluated based on estimated error rates. A holdout sample was used, in which 

the companies were classified based on calculated probabilities each year prior to failure as either “Error 

type I: Prediction of non-failure for a failure company” or “Error type II: Prediction of failure for a non-
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failure company” (Skogsvik, p. 146, 1990).7 The empirical results indicate that CCA ratios are rather similar 

to HCA ratios with regards to predictive performance, although to a slight advantage of CCA except for 

five and six years prior to failure (Skogsvik, 1990). 

 

The most recent contribution to the bankruptcy prediction research in Sweden is Ivanova et al.'s (2023) 

study, which adds a qualitative variable to popular models to investigate the relationship between directors' 

and CEOs' prior corporate bankruptcy experiences and financial risk. The authors used a large sample of 

more than one million firm-year observations covering Swedish private firms from 1998 to 2014. By 

modifying Altman’s Z-Score Model and Ohlson’s O-Score Model to include executives’ corporate 

bankruptcy experience measures, the study investigates if prediction accuracy can be improved. The authors 

find that companies with directors and CEOs that have prior experience from bankruptcies tend to have a 

higher risk of failure, riskier financial policies, and higher cost of debt (Ivanova et al., 2023).   

 

Additional research within a Swedish context primarily consists of various bachelor’s and master’s theses. 

These studies explore the specifics of Swedish samples and the application of established models. For 

instance, a recent study investigated private retail firms in Sweden (Larsson & Lindhout, 2021), investigating 

the applicability of Altman's Z-Score Model and Ohlson's O-Score Model on Swedish private retailers. 

Similarly, Charraud & Garcia Saez (2021) tested the applicability of Altman's, Ohlson's, and Zmijewski's 

models across approximately 350,000 active Swedish companies between 2017 and 2018. Surprisingly, 

neither they nor any other study has explored the effectiveness of machine learning techniques in a Swedish 

setting. The only exception is Seidu's (2015) master’s thesis, which examined the classification capabilities 

of a Gaussian processes model. Yet, given that only one model was tested on a sample of 2,000 firms, it is 

evident that there is much more to discover in the area of machine learning techniques to predict bankruptcy 

on Swedish firms. 

 

2.6 Summary of findings 
Concluding the literary review of bankruptcy prediction models, several key insights have emerged that 

illuminate our understanding of this complex field. Firstly, we drew on theory to determine the necessity 

of these models in assessing the capital investment risks accurately. Traditional valuation methods, notably 

the Discounted Cash Flow (DCF) analysis, have been consistently found to fall short in adequately 

accounting for the nuances of bankruptcy risk. This gap underscores the importance of integrating more 

sophisticated – but also more accessible – risk assessment methodologies into financial analyses. A 

retrospective look at the development of bankruptcy prediction models reveals a significant evolution from 

the early empirical models introduced by Beaver and Altman. These foundational models, leveraging 

financial ratios to predict bankruptcy, have paved the way for more advanced approaches. It is evident from 

their results that later models, such as Ohlson's and Skogsvik’s, provided a more layered and accurate 

assessment of bankruptcy risk with methodological improvements.  

 

Literature points to a pivotal advancement in the field – the emergence of machine learning models. The 

combined literature seems to indicate a superiority of these models for bankruptcy prediction, attributed to 

their flexibility and pattern recognition capabilities. However, numerous studies across a long period have 

pointed to flaws in their applicability and usefulness, showing that there still is no consensus on their 

superiority. A more harmonized finding from the comparative analyses is the lack of a one-size-fits-all 

technique. The effectiveness and applicability of a model are highly context-dependent, influenced by the 

specific economic environment, the nature of the business under consideration, and the availability and 

 
7 An important clarification is that for our study, we define a type 1 error as an incorrect prediction of bankruptcy 

(false positive) and a type 2 error as an incorrect prediction of non-bankruptcy (false negative). Skogsvik (1990) uses 

the opposite definition. 
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structure of data. The literary review also sheds light on the relevance of these models within specific 

contexts, such as the Swedish market. The adaptability of bankruptcy prediction models to various 

regulatory and economic environments is emphasized as a critical factor. A useful piece of the puzzle is 

therefore knowing how a machine learning technique compares to a statistical technique when it comes to 

not only prediction accuracy, but also the ability to identify useful information to train on and be 

generalizable across different types of firms.  



18 

 

3. Research design 
The research design is structured as follows: first, we present the sample and data collection process, 

followed by the description of the dependent and independent variables used, including key decisions we 

have made. Then, we present and motivate our choice of models for the comparison of techniques, as well 

as the settings in which they were trained and tested. Finally, we conclude the chapter by disclosing how 

the models were evaluated before presenting initial data analysis, showing key characteristics and differences 

between the bankrupt and non-bankrupt firms. The aim of the research design is to create a setting in which 

we can investigate our four research questions accurately and reliably. To do this, we drew inspiration from 

Skogsvik (1990), replicating his study but comparing a machine learning model to a statistical model instead 

of a CCA-model to an HCA-model. Utilizing the method of an existing study, as opposed to creating our 

own, makes for a more efficient mode of comparison as we can use the study to guide our own research 

design. While other bankruptcy prediction studies have often been the subject of a comparative study and 

would be suitable for a comparison, we find it especially fitting to use Skogsvik’s model. Firstly, because it 

allowed us to conduct the study on a sample of Swedish firms without risking that the potentially unique 

characteristics of Swedish firms play a too large part in the prediction results. Secondly, because Skogsvik 

identified a large set of potentially useful independent variables, we could use these to investigate our second 

research question, pertaining to the technique’s ability to extract useful information. Thirdly, because no 

study has investigated Skogvik’s study to the same extent as in this study, we add novelty to our 

contribution, which might be diminished had the study been conducted on Altman’s or Ohlson’s model. 

 

While our research design attempts to replicate Skogsvik’s as closely as possible, some adjustments had to 

be made, which we carefully disclose. Skogsvik’s methodology will not be accounted for in full, so we refer 

readers to his original dissertation for all details. 

 

3.1 Data and collection process 
Data availability for firms, especially private ones, is much better today than it was at the time of Skogsvik’s 

data collection, resulting in our study having a larger sample. Skogsvik’s sample consisted of 379 companies 

that met the following criteria: 

 

(i) Joint-stock limited company (“Aktiebolag”), 

(ii) Classified as either mining or manufacturing business, 

(iii) During the period 1966-1971 had either more than 200 employees, or 

(iv) During the period 1966-1971 had assets of at least 20 million SEK8, and 

(v) Not subject to acquisition, fusion or any similar business combination. 

 

Our data was collected from the Serrano Database – an extensive database on Swedish private (non-listed) 

firms, containing financial statement information and information on bankruptcy filings. It is based on 

financial statement data from the Swedish Companies Registration Office (Bolagsverket), including 

companies’ income statement and balance sheet items. Additionally, general company data is sourced from 

Statistics Sweden (SCB), bankruptcy information from the Swedish Companies Registration Office, and 

group data from Bisnode. The Serrano Database covers most legal forms in the Swedish business 

community. As of October 20th, 2023, there were more than 1,200,000 firms in the total dataset, with data 

spanning from 1932 up to 2021. By gathering bankruptcy data from 2022 and 2023, we were able to use 

the Serrano data all the way up to 2021. This additional data was sourced from Kreditrapporten, a publicly 

accessible compilation of bankrupt firms. After applying the same criterion as Skogsvik, we end up with a 

 
8 20 million SEK at price levels prevailing in the 1970’s. Therefore, we inflation-adjusted all firm-year observations 

before applying the criteria. 
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sample of 192,668 firm-year observations, spanning from 2000 to 2021. All observations preceding the year 

2000 were excluded to prevent the models from being trained on outdated business trends. The selection 

of a specific year is somewhat arbitrary, and it would be equally justifiable to exclude firms from 2002 and 

prior. 

 

To answer the research questions pertaining to the accuracy of models on firms different from the training 

sample, data for two additional samples was collected, to be used in Setting B and Setting C. For Setting B, 

we inverted criteria (ii), effectively creating a sample of all non-industrial firms otherwise fulfilling the 

criterion of size and legal form. For Setting B, we instead inverted criterion (iii) and (iv), thereby creating a 

sample of small and medium sized industrial firms. 

 

3.2 Variables and techniques 

3.2.1 Dependent variable 
Our study focuses on one specific economic event to serve as an indicator of financial distress: bankruptcy 

filings. In Sweden, a bankruptcy filing marks a critical juncture where management and shareholders 

promptly relinquish control of the company, leading to it either being liquidated or integrated into a 

bankruptcy auction buyer's receiving company, effectively culminating its operations (Thorburn, 2000). 

Another type of firm failure that could have been relevant to include in the definition of failure is 

composition (Sw. Företagsrekonstruktion). Apart from being an alternative to bankruptcy filings and 

therefore a sign of failure, a new law on corporate composition took effect in Sweden in 2022.9 The law 

both lowers the requirements for a company to enter composition and allows the composed company to 

terminate lengthy contracts, such as rental contracts. Surprisingly, the number of compositions remains at 

a low level since the law took effect, despite the number of bankruptcy filings being at its highest in twenty 

years (Karlsson-Tuula, 2023). Ultimately, because composition data was not possible to collect from 

Kreditrapporten or elsewhere, we used bankruptcy filings as the sole indicator of failure. Skogsvik used a 

broader scope of bankruptcy in his study, with a definition that includes compositions, a board decision to 

shut down production activity as well as various types of government support beyond a simple bankruptcy. 

Yet again, due to the sheer volume of data, we were limited to using readily available variables, preventing 

us from incorporating such a broad definition.  

 

With the publication of financial accounts often lagging several months after the books have been closed, 

there is a risk that a company will file for bankruptcy before their numbers are published for the prior fiscal 

year. This warrants a methodological decision on how to adjust for the chance of a bankruptcy filing 

happening before the financial statements for the previous year are published. There are three options: (1) 

validating that the annual report was publicly available before the bankruptcy for each company in the 

dataset, (2) not making any adjustments or (3) adjusting so that the model can only look at data up to two 

years before the bankruptcy, thereby creating a “safety margin”. Option one is undoubtedly the preferable 

option, and what Skogsvik did in his study, but practically impossible given the large amount of data. 

Serrano does not include the publication date of the annual reports, meaning they would have to be 

collected manually. Option two and three both have pros and cons, respectively.  

 

Option two involves utilizing all available data, including post-bankruptcy information. This approach 

offers several advantages, notably the capacity to leverage a comprehensive dataset, potentially enhancing 

the predictive accuracy of the model. Moreover, it mirrors the practical scenario in which stakeholders, 

such as creditors and investors, may possess access to non-public information, thereby enabling more 

informed decision-making. Nevertheless, a significant drawback is that it may render the model less 

 
9 Lag (2022:964) om företagsrekonstruktion 
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effective for real-time bankruptcy event prediction or for forecasting future periods, as it incorporates data 

that was not publicly available at the time of the bankruptcy event. Consequently, the alignment with the 

objective of creating a model that accurately reflects the information available at a specific historical point 

may be compromised. 

 

Conversely, option three restricts the data used for modeling to pre-bankruptcy information exclusively. 

This choice maintains congruence with the information available up to the moment of bankruptcy filing, 

rendering the model more attuned to predicting bankruptcies as they would have been projected at that 

precise juncture. Notably, it upholds the temporal validity of the model, making it more applicable for the 

anticipation of future bankruptcy events. Nevertheless, the trade-off lies in the potential exclusion of 

valuable information that could otherwise augment the model's predictive accuracy, possibly resulting in 

reduced predictive performance. 

 

The decision between option two and three hinges on the research objectives, reflecting the trade-off 

between comprehensiveness and temporal alignment of the data used in bankruptcy prediction modeling. 

In line with previous research (e.g. Ivanova et al., 2023 and Ohlson, 1980), and because this study has not 

stated a specific purpose of developing a model for stakeholders with insider information, we opted for 

option three. Another potential benefit of option three is its potential to enhance the model's sensitivity to 

early warning signs of financial distress. By excluding immediate pre-bankruptcy financial data, this 

approach compels the model to seek out other, potentially earlier, indicators of deteriorating financial 

health. Rather than relying solely on the conventional income statement and balance sheet metrics, the 

model is driven to consider a broader range of financial and non-financial factors that may serve as leading 

indicators of distress. These could encompass shifts in working capital, declining profitability, changes in 

management or business strategies, and other factors that precede financial distress. This approach offers 

the advantage of potentially providing more advanced warnings of financial troubles, aligning more closely 

with the decision-making needs of stakeholders who require early signals to make informed choices. It 

underscores the trade-off between data comprehensiveness and the potential for timelier, more sensitive 

predictions in the realm of bankruptcy prediction modeling. 

 

This study aims to contribute to bankruptcy prediction literature by leveraging the latest data available. The 

Serrano Database, current as of October 20th, 2023, provides financial data up to 2021. With our choice to 

include a safety margin for our prediction horizon, the models would be able to analyze financial 

performance up to 2019, before making a prediction for up to 2021. However, by including bankruptcy 

data from Kreditrapporten from 2022 and 2023, the models can look at data up to 2021, before making 

predictions up to 2023.  

 

3.2.2 Independent variables 
For our independent variables, we turn to Skogsvik’s prior research. In his doctoral dissertation, Skogsvik 

(1987) outlined a large set of key ratios from accounting components that were originally identified by 

Pinches et al. (1973). The components were seven in total and pertained to (1) profitability, (2) cost 

structure, (3) capital turnover, (4) liquidity, (5) asset structure, (6) capital structure and (7) growth. 

Altogether, the components contained 71 ratios, of which 69 were financial ratios and 2 absolute measures 

of size. These constituted Skogsvik’s primary set of independent variables and our starting point, from 

which we assembled four models. 

 

Due to constraints in the data, several of Skogvik’s original independent variables required modifications 

while a few ratios had to be excluded altogether. In most of these cases, a specific entry from the balance 

sheet or income statement was absent in the dataset. Upon our assessment, this absence was deemed 
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unlikely to significantly impair the variable’s informational content. Consequently, we opted to retain the 

feature in its modified form. The only data limitation with a considerable impact was the absence of detailed 

categorization of the various untaxed reserve items – only the aggregated sum was available. Skogsvik 

utilized different components of untaxed reserves to compute an alternative measure of a firm’s implied 

tax liability. Among the 71 independent variables, several functioned as pairs or triplets, differing only in 

their measurement of implied tax liability. As such, all pairs and triplets containing these alternative 

measures were consolidated into single variables. Subsequently, Skogsvik introduced 12 new variables in a 

later phase of the study. These variables were normalized versions of existing ones, assessing deviations 

from a firm’s historical benchmarks in metrics such as profit and solvency. Following our modifications 

and exclusions, our core set comprised 77 independent variables. For a comprehensive view of all variables 

and the modifications, please refer to Appendix 1 and Appendix 2. 

 

3.2.3 Statistical technique 
Probit regression is a type of regression where the dependent variable can only take two values. In the 

context of financial crisis forecasting, probit and logit analysis assumes that a certain (unobservable) 

financial crisis index exists and that this can be determined as a linear function of certain independent 

variables (Skogsvik, 1990). Probit regression is statistically rigorous, built on a solid foundation with 

assumptions like a normal distribution for the error term, and is robust to outliers, making it suitable for 

financial data that may exhibit variability over time. Probit regression allows for the comparison of variable 

coefficients, offering insights into the relative importance of each predictor. It assumes linearity between 

independent variables and the latent variable, and its interpretability can be challenging for non-statisticians. 

As highlighted in our literature review, Skogsvik (1990) justifies the choice of probit by noting that the data 

did not meet all the necessary conditions for the proper application of MDA, the prevailing method for 

bankruptcy prediction at that time.10 Consequently, he opted for probit analysis due to its better alignment 

with the data characteristics, acknowledging that there were no essential grounds for choosing probit over 

logit. Our selection of probit as the statistical technique aligns with Skogsvik's methodology in his research. 

 

3.2.4 Machine learning technique 
XGBoost, an ensemble learning algorithm, is a popular choice for predicting corporate bankruptcy and 

various other classification tasks. XGBoost has received attention in the latest years for its exceptional 

predictive performance and versatility (e.g. Nielsen, 2016). Similar to Random Forest, XGBoost is an 

ensemble model that combines multiple decision trees. A key difference, which is also a reason behind its 

superior performance, is how it combines the trees. While Random Forest simultaneously trains individual 

trees and combines their predictions, XGBoost sequentially trains trees, enabling each subsequent tree to 

learn from its predecessors' errors and thereby enhancing the model's predictive accuracy. This is achieved 

by employing a loss function, where each new tree aims to reduce the overall loss of the ensemble model. 

For an in-depth explanation of the XGBoost algorithm and the math behind it, we refer the readers to 

Chen & Guestrin (2016). 

 

Relevant to this study is that XGBoost has proven robustness to overfitting, otherwise a common concern 

in predictive machine learning modeling. It is also able to produce feature importance scores that, albeit 

not as transparent and intuitive as the statistical significance of statistical models, can aid in the identification 

of key variables influencing bankruptcy prediction. We chose XGBoost as the machine learning technique 

for these reasons. However, it is important to note that other machine learning techniques, like support 

 
10 Multivariate Discriminant Analysis assumes homoscedasticity, which is the equality of variance-covariance for the 

independent variables between groups. In his study, Skogsvik could not reject the null hypothesis that there was 

heteroscedasticity. 
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vector machines, various bagging techniques or LightGBM would also make for a valid comparison to the 

statistical techniques. 

 

Figure 1c. Simplified illustration of the XGBoost architecture. A key difference for tree boosted models like 

XGBoost is that trees are created sequentially and not in parallel as with Random Forest (Figure 1b). This effectively 

allows for each new tree to learn from the previous trees’ mistakes by sequentially combining the trees so that the new 

tree decreases the error term of the ensemble model. 

 

3.3 Models and settings 
This section explores the bankruptcy prediction models we developed and the settings in which they were 

evaluated. Four models were developed, two of which are based on probit analysis (referred to as Base 

Probit and Modified Probit) and two using XGBoost (referred to as Base XGBoost and Modified 

XGBoost). The base models use a limited number of predetermined independent variables, while the 

modified models start with a larger set, from which the techniques use different ways to select the most 

useful variables for their final model. 

 

3.3.1 Model 1: Base Probit  
Relying on previous research, domain knowledge and statistical techniques such as principal component 

analysis (PCA) and univariate tests, Skogsvik narrowed down his features from the original 71. Using PCA, 

he identified 17 variables that explained approximately 80 percent of the total variation in the original set 

of ratios. Among these 17 variables, 5 captured changes over time while the remaining 12 measures were 

snapshots of the firm’s performance at one point in time. Skogsvik argued that additional useful information 

could be extracted by creating normalized versions of the 12 ratios that measure deviations from a historical 

average. As a result, 12 new ratios were added to the set of candidate variables. Using a statistical selection 

method, mainly based on backward selection, Skogsvik narrowed it down to six independent variables for 

his 1-year forecast model. These were Return on Assets R(1)T, Interest Expense R(1)Sk, Inventory Turnover Ratio 

TVL(1), Solvency SD(1), Change in Equity E(1)’ and Normalized Interest Expense N.R(1)Sk. Replicating Skogsvik, 

our Base Probit model is therefore: 

 

𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦𝑖𝑡+2 = 1|𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8))

= Φ(𝛼0 + 𝛽1𝑅(1)𝑇𝑖𝑡 + 𝛽2𝑅(1)𝑆𝑘𝑖𝑡 + 𝛽3𝑇𝑉𝐿(1)𝑖𝑡 + 𝛽4𝑆𝐷(1)𝑖𝑡 + 𝛽5𝐸′𝑖𝑡

+ 𝛽6𝑁. (𝑅(1)𝑆𝑘)𝑖𝑡) 
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3.3.2 Model 2: Base XGBoost 
The Base XGBoost model uses the same six independent variables as the Base Probit model, but with 

XGBoost as the classification technique. A comparison of the Base Probit model and the Base XGBoost 

model shows the difference in how probit and XGBoost can predict bankruptcy for the sample. They were 

estimated with the same dataset, using the same variables and evaluation metrics.  

 

3.3.3 Model 3: Modified Probit 
The next pair of models include a recalibration of independent variables. The Modified Probit is a 

recalibration of Skogsvik’s original probit model, starting from the 17 + 12 variables he identified using 

PCA. From there, we repeat the backward selection process in an attempt to identify variables potentially 

more useful for the new data, since the original model was estimated on company data from the 1960s-

1980s. Another option would be to start with the 77 variables in the primary set and repeat the principal 

component analysis. This is most likely a more methodologically sound approach, as the Modified Probit 

model would be a full re-estimation starting from the primary set. However, performing principal 

component analysis falls outside the scope of this study. Instead, we rely on Skogvik’s PCA. We thereby 

assume that the 17 + 12 variables are still the most useful variables. This is not an unreasonable assumption, 

given that both samples consist of large Swedish industrial firms. The one altered characteristic is the time 

component, as our sample contains more recent firm-year observations. After backward selection, we end 

up with the following variables for our Modified Probit model: 

 

𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦𝑖𝑡+2 = 1|𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8))

= Φ(𝛼0 + 𝛽1𝑅(1)𝑇𝑖𝑡 + 𝛽2𝑅(1)𝑆𝑘𝑖𝑡 + 𝛽3𝑆𝐷(1)𝑖𝑡 + 𝛽4𝑂𝐻𝑇(1)𝑖𝑡 + 𝛽5𝐴𝑇𝐴𝑖𝑡

+ 𝛽6𝑀𝐴𝑇𝐴𝑖𝑡 + 𝛽7𝐿𝑁𝑇(1)𝑖𝑡 + 𝛽8𝑁. (𝑅(5)𝐸, 𝑒𝑠)𝑖𝑡) 

 

3.3.4 Model 4: Modified XGBoost 
Finally, the Modified XGBoost model includes all the 77 primary variables and allows XGBoost to perform 

its own feature selection. This model shows not only a machine learning model’s classification ability, but 

also its ability to find the most useful independent variables without the aid of a researcher. A comparison 

of the Modified Probit model and the Modified XGBoost model shows how the techniques differ in feature 

selection. Given a larger set of variables to choose from, the models were free to identify the most important 

variables to solve the problem. While the comparison lacks the same level of purity as the comparison of 

the Base Probit model and the Base XGBoost model, because the Modified Probit model does not start 

with as many variables to choose from as the Modified XGBoost, it still gives a sense of how effective the 

feature selection processes are. This could offer a valuable contribution to researchers curious to know the 

implications of feature selection using different techniques. 

 

3.3.5 Setting A: Large industrials 
Skogsvik (1990) analyzed Swedish industrial companies of the legal form joint-stock limited company, with 

either more than 200 employees or total assets of at least SEK 20 million (1970 price levels). We applied 

the same selection criteria to both our training sample (firm-year observations 2000-2015) and our main 

test setting (firm-year observations 2016-2021).  

 

3.3.6 Setting B: Large non-industrials 
The second setting explores research question (iii) by comparing the four different models’ ability to predict 

bankruptcy for firms of different industries from the training sample. Ceteris paribus, the industry test 

examines how accurately the models can predict bankruptcy in industries they have not been estimated on. 
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It gives an indication of whether one technique is more susceptible to overfitting. The models’ performance 

is disclosed for all industries, categorized by SNI-group.11 

 

3.3.7 Setting C: SME industrials 
The third setting explores research question (iv) by introducing firms of smaller sizes than the ones the 

models were trained on. As with the second setting, the models were asked to make predictions on firms 

with differing characteristics, this time in terms of size rather than industries. The normal levels of ratios 

for smaller firms are likely to vary, presenting a potential challenge for the models. The models’ 

performance is disclosed for different firm sizes, using the number of employees as an indicator of size. 

The groups are 1-4 employees, 5-9 employees, 10-19 employees, 20-49 employees, 50-99 employees and 

100-199 employees.12 

 

3.4 Model evaluation 
To evaluate the models’ performance across the different settings, we primarily look at the Area Under the 

Curve (AUC), as it is a commonly used evaluation metric in current bankruptcy prediction literature and 

shows the trade-off between sensitivity and specificity for every possible cut-off. In addition, a decision 

rule is introduced to enhance the visibility of the models’ classification performance. For each setting, the 

firms with a predicted probability of default in the top 3% of the distribution are classified as bankrupt 

while the rest are classified as healthy firms. With this rule introduced, confusion matrices are presented 

showing the models’ predictions, accuracy, sensitivity and specificity. 3% should be a good level for 

illustrative purposes with regards to the specific samples, since the share of bankrupt firms is slightly smaller 

(0.5-1%) and the predictions will therefore likely yield a number of false positives and false negatives 

alongside the accurate predictions. 

 

3.4.1 Descriptive statistics 
In this section, we explore the potential differences in financial ratios between a bankrupt and a solvent 

firm using a simple mean analysis. Table 2 displays our results from the six independent variables employed 

in Skogsvik’s (1990) model. However, a more detailed review of all the 77 independent variables identified 

by Skogsvik is presented in Appendix 1, along with our calculated mean results for each ratio.  

 

  

 
11 The Swedish Standard Industrial Classification (SNI) is used to classify enterprises and workplaces according to 

the activity carried out. 
12 The group with 100-199 employees was subsequently excluded due to a limited number of bankruptcy observations. 
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Table 2. Characteristics of bankrupt and non-bankrupt firms in their last reported financial statements 

The difference in means were significant beyond the 0.05 level for all variables tested. 

 

Conducting a simple mean analysis in a bankruptcy prediction study helps identify average values of 

financial metrics over a certain period. These trends can highlight deviations or anomalies that might 

indicate financial distress. According to the information presented in Table 2, solvent firms tend to show 

higher profitability, healthier balance sheets as well as positive trends. One striking difference lies in the 

solvency levels and growth patterns of equity. On average, bankrupt firms display a solvency ratio of 5%, 

experiencing a substantial decrease in equity of over 30%. In contrast, solvent firms exhibit an average 

solvency of 41%, paired with a 15% increase in equity. Furthermore, return on capital is significantly 

negative for bankrupt firms as opposed to solvent firms.   

BANKRUPTCY 1 0

R(1)T Return on total capital -0.08 0.10

R(1)Sk Interest expense -0.04 -0.03

TVL(1) Inventory turnover rate 0.22 0.18

SD(1) Solvency 0.05 0.41

E(1) Growth in equity 0.69 1.15

N.(R(1)Sk Normalized interest expense -1.17 -0.90

N = 124,279 1,128 123,151

Variable
Bankrupt firms

Mean

Non-bankrupt firms

Mean
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4. Empirical results & analysis 
This section explores the empirical findings, organized into two primary sections. First, we present the 

results from the training phase, then we present the actual results observed during the testing phase. Table 

4 provides an overview of each model's performance across different settings. As outlined in the research 

design, four models underwent testing across three settings, resulting in a total of 12 tests conducted. 

Results for all four models are initially presented within a single setting before addressing their performance 

in subsequent settings. 

 

4.1 Training phase 
Our training set, after removing observations with missing values, consists of 124,279 firm-year 

observations of industrial firm annual reports in the years 2000-2015. The probit models were trained with 

the statsmodels Python package using the standard parameters, whereas the XGBoost models were trained 

using the XGBoost Python package. Since machine learning models tend to be more sensitive to overfitting 

due to erroneous hyperparameter configuration, we iteratively adjusted the settings in an effort to find the 

best configuration. In our final configuration, the XGBoost models both had a max depth of three in their 

decision trees and 300 training iterations. Each training iteration was only given a subsample of 70% of the 

training set. 

 

As shown in Table 3, the Modified Probit model, using backward selection to construct the final model 

from Skogsvik’s primary set of variables, ends up with 8 independent variables. Three of these were shared 

with the Base Probit model: Return on Assets R(1)T, Interest expense R(1)Sk and Solvency SD(1). In addition, 

the model selects: Asset Turnover OHT(1), Proportion of Fixed Assets (ATA), Proportion of Tangible Assets 

(MATA), Size LNT(1) and Normalized Return on Equity N.R(5)E,es. 

 

To our surprise, the Modified XGBoost model does not exclude any of the 77 available independent 

variables. This indicates that all variables, to some extent, contain useful information. However, the 

difference in feature importance spans several orders of magnitude, with the Return on Assets variable R(3)T 

having a feature importance of 0.8% and the Solvency variable SD(2) having a feature importance of 7.2%. 

 

The training phase indicates that the independent variables were of varying usefulness to the different 

models. For the Base Probit model, only two variables, Return on Assets R(1)T and Interest Expense R(1)Sk, 

were significant beyond the 0.05 level. The Modified Probit model indicated that more variables were useful, 

with six of the eight being significant. This, combined with the higher log likelihood score, which is a 

measure of the goodness of fit of the model in which a less negative value is better, would suggest that the 

additional five variables contain useful information for predicting bankruptcy. The difference in log 

likelihood between the probit models faded in comparison with the log likelihood scores of the XGBoost 

models, however. The Base and Modified Probit models have log likelihood scores of -6158 and -6054, 

respectively, while the Base and Modified XGBoost models have log likelihood scores of -3832 and -2393, 

respectively. 

 

A few observations pertaining to the non-linearity of the data can be made. The Solvency variable SD(1), 

used by all four models, is statistically insignificant beyond the 0.05 level for the probit models, but the 

most useful variable for the Base XGBoost model and third most useful for the Modified XGBoost model 

(outperformed only by the Flow of Capital Ratio Kap(1) and the other Solvency metric SD(2)).13 A potential 

conclusion for the seemingly low importance of solvency for the probit models is that while the linear effect 

 
13 The difference between SD(1) and SD(2), also disclosed in Appendix 1, is that the former excludes the implied tax 

liability from the untaxed reserves in the solvency ratio. 
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of solvency is not statistically significant, the XGBoost models’ ability to capture non-linear relationships 

make the solvency variable more useful. For example, higher solvency might not always be better, but 

certain thresholds might indicate a lower bankruptcy risk which the XGBoost technique can use to 

accurately split the data in a decision tree. However, the difference in variable usefulness can have other 

explanations, such as potential overfitting. 

 

Table 3. Training results of in-sample estimation using the four bankruptcy prediction models 

* Significant beyond the 0.05 level. Feature importance refers to an independent variable’s ability to correctly split 

the data into bankrupt and healthy firms. The higher the number, the more useful the variable is in distinguishing 

bankrupt firms from healthy. With regards to the Modified XGBoost model, all 77 ratios are not presented in this 

table as that would be cumbersome. 

 

 

  

Base Probit Base XGBoost Modified Probit Modified XGBoost

Coefficient

(Z-stat)
Feature importance

Coefficient

(Z-stat)
Feature importance

-2.328 -2.384

(-199.392)* (-28.661)*

-0.881 -0.902

(-24.348)* (-24.007)*

-0.099 -0.120

(-2.480)* (-2.994)*

-0.003 -

(-0.335) -

-0.003 -0.002

(-1.760) (-1.440)

-0.003 -

(-1.614) -

0.000 -

0.302 -

- 0.079

- (8.168)*

- -0.152

- (-2.780)*

- 0.581

- (11.097)*

- -0.035

- (-4.204)*

- -0.001

- (-1.115)

N 124,279 124,279 124,279 124,279

Log likelihood -6,158 -3,832 -6,054 -2,393

              Model

  Variable

Constant

R(1)T

R(1)Sk

ATA

E(1)

OHT(1)

N.R(5)E,es

0.013

0.011

-

N.R(1)Sk 0.089 0.011

0.242

0.104 0.014

0.032

TVL(1)

SD(1)

-

0.125

0.105

0.098

- 0.010

- 0.012

0.013

- 0.010

- 0.010

MATA - 0.010

LNT(1)
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4.2 Testing phase: AUC and other performance indicators 
Overall, Table 4 shows how the two XGBoost models outperform the probit models across all three test 

settings when looking at the AUC-score. As mentioned in our choice of evaluation metric, the AUC 

captures the models’ ability to trade-off specificity and sensitivity at any cut-off point. We applied a cut-off 

point at the 97th percentile, classifying the 3% of firms with the highest probability of default as bankrupt. 

However, depending on the objective of the test, the cut-off can be lowered in order to classify more 

bankruptcies correctly (increased sensitivity) at the cost of classifying more non-bankruptcies incorrectly 

(decreased specificity). The higher the AUC-score, the more a model can increase its sensitivity without 

sacrificing specificity. The Base Probit model is the only probit model to achieve an AUC-score as high as 

80% (79.94% to be exact). However, this is only the case when it is applied to large industrial firms as part 

of Setting A. In contrast, both the Base and Modified XGBoost models consistently achieve an AUC-score 

of 80% or higher, regardless of the test setting.  

 

Table 4. Overview of the four developed models and their three test settings 

 
*1970 price levels 

 

The most notable difference in performance arises when comparing the Modified XGBoost model with 

the Modified Probit model. In the case of large industrial firms (Setting A), the Modified XGBoost model 

achieves an AUC score that is 9.3 percentage points higher than its probit counterpart. This gap widens 

when applied to large non-industrial firms (Setting B), showing a substantial 13.8% advantage for the 

Modified XGBoost model. Interestingly, the closest instance where a probit model approached the 

performance of an XGBoost model was observed when applying the Base Probit and Base XGBoost 

models to large industrial firms, revealing a 6.5 percentage point superiority for the latter. 

 

  

A. Large industrials B. Large non-industrials C. SME industrials

<200 FTEs and

<SEK 20m total assets*

1. Base Probit
A1

AUC: 80%

B1

AUC: 72%

C1

AUC: 75%

2. Base XGBoost
A2

AUC: 86%

B2

AUC: 80%

C2

AUC: 82%

3. Modified Probit
A3

AUC: 78%

B3

AUC: 72%

C3

AUC: 77%

4. Modified XGBoost
A4

AUC: 87%

B4

AUC: 85%

C4

AUC: 84%

                        Setting

           

     Model >200 FTEs or

>SEK 20m total assets*
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4.2.1 Setting A: Large industrials 
Setting A, the study’s primary test, displays the models’ ability to predict bankruptcy for firms similar to 

what they were trained on. The only difference is time, with the training set consisting of firm-year 

observations from 2000-2015 and the test set of Setting A consisting of firm-year observations from 2016 

to 2021.  

 

The Receiver Operating Characteristics (ROC) graphs, plotting the true positive rate against the false 

positive rate, graphically represent the AUC-score, i.e. the trade-off between correctly predicting a 

bankruptcy versus erroneously predicting bankruptcy for a non-bankrupt firm. As can be observed in 

Figures 2a-2d, the Modified XGBoost achieved the highest performance in Setting A with an AUC-score 

of 87%, followed closely by the Base XGBoost model at 86%. Subsequently, there is a substantial gap in 

performance to the Base Probit model which, in turn, is closely followed by the Modified Probit model. 

 

 
 

The performance gap between the two techniques is another sign of the difference in their inherent ability 

to extract useful information from the data. The Modified XGBoost performs the best, showing that access 

to more information improves performance rather than subduing the model to overfitting. However, the 

performance gain is relatively small, with an improvement of only 1 percentage point compared to the Base 

XGBoost model. The Modified Probit model performs worse than the Base Probit model out-of-sample, 

despite being subject to backward selection which resulted in better in-sample performance.   

Figure 2a. ROC for the Base Probit model Figure 2b. ROC for the Base XGBoost model

Figure 2c. ROC for the Modified Probit model Figure 2d. ROC for the Modified XGBoost model

ROC curve (AUC = 0.80) ROC curve (AUC = 0.86)

ROC curve (AUC = 0.78) ROC curve (AUC = 0.87)
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Looking at the confusion matrices, where the outcome of our classification rule is reported, the four models 

are all closely matched in both accuracy (overall rate of correct predictions) as well as specificity (rate of 

correctly identified non-bankrupt firms). This is driven by the overwhelming proportion of non-

bankruptcies in the dataset (99.5%). The metric with more varying results is the sensitivity (rate of correctly 

identified bankrupt firms). For both probit models, the sensitivity is slightly below 21%, whereas the Base 

XGBoost model correctly identifies 25% of the bankrupt firms. The Modified XGBoost shows the 

strongest performance at this cut-off level, with a sensitivity of almost 30%.  

 

Table 5. Classification results for the four models when applied to large industrials 

 
Table 5 reports classification results using the decision rule in which firms with a score above the cut-off of 97% are 

predicted as likely going bankrupt. "True Positive" represents accurately predicted bankruptcies, "True Negative" 

represents accurately predicted non-bankruptcies, "Type I Error" represents non-bankrupt firms incorrectly 

predicted as bankrupt, "Type II Error" represents bankrupt firms incorrectly predicted as non-bankrupt, 

"Accuracy" is the share of accurate predictions out of all observations, "Sensitivity" is the share of predicted 

bankruptcies out of all bankruptcies and "Specificity" is the share of predicted non-bankruptcies out of all non-

bankruptcies. 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base Probit

68,389 71 66,068 1,981 269 96.71% 20.88% 97.09% 79.94%

Base XGBoost

68,389 85 66,082 1,967 255 96.75% 25.00% 97.11% 86.47%

Modified Probit

68,389 70 66,067 1,982 270 96.71% 20.59% 97.09% 78.15%

Modified XGBoost

68,389 100 66,097 1,952 240 96.79% 29.41% 97.13% 87.45%
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4.2.2 Setting B: Large non-industrials 
With Setting B, we are asking the models to predict bankruptcies for firms of different industries than the 

sample they were trained on. As one might expect, the overall performance is worse than in Setting A. 

However, the performance drop differs greatly between the four models. As can be seen in Figures 3a-3d, 

the Base Probit model showed the highest drop, with an AUC that was eight percentage points lower than 

in Setting A. The Modified XGBoost model, however, proved more robust and only had a decrease in AUC 

of two percentage points compared to Setting A. 

 

 
 

Following up on the observation from Setting A, with the Modified Probit model performing worse than 

its base version out-of-sample, they are more closely matched in Setting B. However, the Base model still 

has a slight advantage. 

 

The confusion matrices indicate that, for the given cut-off level of 3%, bankruptcy prediction was more 

difficult in some industries compared to others. For example, real estate and financial firms are often studied 

specifically and subject to exclusion from industry-agnostic bankruptcy prediction studies due to their 

different regulatory requirements and capital structures (see for example Ivanova et al., 2023). As expected, 

our models encountered challenges in analyzing data from these specific industries, particularly noting the 

significant struggle with real estate companies, which consistently exhibited the poorest performance across 

all four models.  

Figure 3a. ROC for the Base Probit model Figure 3b. ROC for the Base XGBoost model

Figure 3c. ROC for the Modified Probit model Figure 3d. ROC for the Modified XGBoost model

ROC curve (AUC = 0.72) ROC curve (AUC = 0.80)

ROC curve (AUC = 0.72) ROC curve (AUC = 0.85)
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The variance in performance yields several noteworthy observations. As evidenced by their closely 

comparable AUC-scores, the probit models demonstrated a near match in their performance. Specifically, 

the Base Probit model outperformed the Modified Probit model in eight out of the fifteen industry 

subsamples. The Modified Probit model displayed an overall lower performance compared to the other 

three models. Notably, it also exhibited the most inconsistent performance trends, with an AUC of only 

47% for real estate firms – worse than simply tossing a coin – yet with a slight redemption as it 

outperformed the Base XGBoost model in the Water supply industry subsample. This discrepancy ultimately 

boiled down to just two firms being predicted differently. 

 

The XGBoost models showed more robust performances. Apart from the Water supply, the Base XGBoost 

model outperformed both probit models across all subsamples. The Modified XGBoost outperformed its 

base version across all industries except education and other service activities. It is worth noting that Water 

supply, Education and Other service activities – the three industries with unexpected trend breaks in performance 

– are the three subsamples with the fewest observations. Evidently, the smaller number of observations 

could have implications for the robustness of the models’ predictions.  

 

Consistent with the findings in Setting A, the predominant proportion of non-bankrupt observations in 

Setting B yields minimal variations in accuracy and specificity among the models and their respective 

subsamples. However, the sensitivity measure provides more nuanced insights. Notably, the lowest 

sensitivity can be observed for the Base Probit model in the Water supply; sewerage, waste management & 

remediation services subsample, in which it failed to identify any bankruptcies and therefore registered a 

sensitivity score of 0. Conversely, the highest sensitivity was obtained by the Modified XGBoost model in 

the Agriculture, forestry and fishing subsample, with a score of 47%. 
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Table 6a. Classification results for the Base Probit model for large non-industrials by industry 

 
Table 6a reports classification results based on the same decision rule as in Table 5. The results in this table are split 

into multiple industries to evaluate how the model performs out-of-sample. Five industries are not shown in the table 

as the subsample contained too few bankruptcies. These are: (1) Mining and quarrying, (2) Electricity, gas, steam and air 

conditioning supply, (3) Public administration and defence; compulsory social security, (4) Activities of households as employers; 

undifferentiated goods- and services-producing activities of households for own use and (5) Activities of extraterritorial organisations and 

bodies. 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base Probit

Agriculture, forestry & fishing

24,340 7 23,586 724 23 96.93% 23.33% 97.02% 75.84%

Water supply; sewerage, waste management & remediation services

2,579 0 2,488 78 13 96.47% 0.00% 96.96% 68.40%

Construction

95,344 134 91,955 2,727 528 96.59% 20.24% 97.12% 72.61%

Wholesale & retail trade; repair of motor vehicles & motorcycles

133,779 127 129,194 3,887 571 96.67% 18.19% 97.08% 77.94%

Transportation & storage

39,405 41 38,040 1,142 182 96.64% 18.39% 97.09% 72.10%

Accommodation & food service activities

25,506 20 24,595 746 145 96.51% 12.12% 97.06% 69.50%

Information & communication

35,463 22 34,308 1,042 91 96.81% 19.47% 97.05% 76.61%

Financial & insurance activities

13,383 3 12,956 399 25 96.83% 10.71% 97.01% 63.76%

Real estate activities

115,985 15 112,432 3,465 73 96.95% 17.05% 97.01% 61.31%

Professional, scientific & technical activities

97,999 44 94,839 2,896 220 96.82% 16.67% 97.04% 71.88%

Administrative & support service activities

26,563 24 25,632 773 134 96.59% 15.19% 97.07% 72.51%

Education

8,192 6 7,921 240 25 96.77% 19.35% 97.06% 69.78%

Human health & social work activities

18,233 15 17,614 532 72 96.69% 17.24% 97.07% 70.96%

Arts, entertainment & recreation

10,160 4 9,822 301 33 96.71% 10.81% 97.03% 67.53%

Other service activities

5,187 4 5,010 152 21 96.66% 16.00% 97.06% 73.52%

Total

652,118 466 630,392 19,104 2,156 96.74% 17.77% 97.06% 71.72%
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Table 6b. Classification results for the Base XGBoost model for large non-industrials by industry 

 
Table 6b reports classification results based on the same decision rule as in Table 5. The results in this table are split 

into multiple industries to evaluate how the model performs out-of-sample. These are: (1) Mining and quarrying, (2) 

Electricity, gas, steam and air conditioning supply, (3) Public administration and defense; compulsory social security, (4) Activities of 

households as employers; undifferentiated goods- and services-producing activities of households for own use and (5) Activities of 

extraterritorial organizations and bodies. 

 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base XGBoost

Agriculture, forestry & fishing

24,340 8 23,587 723 22 96.94% 26.67% 97.03% 89.86%

Water supply; sewerage, waste management & remediation services

2,579 3 2,491 75 10 96.70% 23.08% 97.08% 71.15%

Construction

95,344 135 91,956 2,726 527 96.59% 20.39% 97.12% 81.98%

Wholesale & retail trade; repair of motor vehicles & motorcycles

133,779 164 129,231 3,850 534 96.72% 23.50% 97.11% 84.02%

Transportation & storage

39,405 43 38,042 1,140 180 96.65% 19.28% 97.09% 80.74%

Accommodation & food service activities

25,506 29 24,604 737 136 96.58% 17.58% 97.09% 74.84%

Information & communication

35,463 24 34,310 1,040 89 96.82% 21.24% 97.06% 80.32%

Financial & insurance activities

13,383 5 12,958 397 23 96.86% 17.86% 97.03% 76.59%

Real estate activities

115,985 10 112,427 3,470 78 96.94% 11.36% 97.01% 63.20%

Professional, scientific & technical activities

97,999 66 94,861 2,874 198 96.87% 25.00% 97.06% 83.71%

Administrative & support service activities

26,563 28 25,636 769 130 96.62% 17.72% 97.09% 76.68%

Education

8,192 7 7,922 239 24 96.79% 22.58% 97.07% 84.23%

Human health & social work activities

18,233 22 17,621 525 65 96.76% 25.29% 97.11% 77.30%

Arts, entertainment & recreation

10,160 4 9,822 301 33 96.71% 10.81% 97.03% 75.00%

Other service activities

5,187 6 5,012 150 19 96.74% 24.00% 97.09% 85.50%

Total

652,118 554 630,480 19,016 2,068 96.77% 21.13% 97.07% 80.34%
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Table 6c. Classification results for the Modified Probit model for large non-industrials by industry 

 
Table 6c reports classification results based on the same decision rule as in Table 5. The results in this table are split 

into multiple industries to evaluate how the model performs out-of-sample. These are: (1) Mining and quarrying, (2) 

Electricity, gas, steam and air conditioning supply, (3) Public administration and defense; compulsory social security, (4) Activities of 

households as employers; undifferentiated goods- and services-producing activities of households for own use and (5) Activities of 

extraterritorial organizations and bodies. 

 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Modified Probit

Agriculture, forestry & fishing

24,340 4 23,583 727 26 96.91% 13.33% 97.01% 77.29%

Water supply; sewerage, waste management & remediation services

2,579 5 2,493 73 8 96.86% 38.46% 97.16% 72.36%

Construction

95,344 138 91,959 2,723 524 96.59% 20.85% 97.12% 72.69%

Wholesale & retail trade; repair of motor vehicles & motorcycles

133,779 119 129,186 3,895 579 96.66% 17.05% 97.07% 74.58%

Transportation & storage

39,405 46 38,045 1,137 177 96.67% 20.63% 97.10% 74.79%

Accommodation & food service activities

25,506 15 24,590 751 150 96.47% 9.09% 97.04% 66.10%

Information & communication

35,463 19 34,305 1,045 94 96.79% 16.81% 97.04% 72.21%

Financial & insurance activities

13,383 1 12,954 401 27 96.80% 3.57% 97.00% 62.06%

Real estate activities

115,985 12 112,429 3,468 76 96.94% 13.64% 97.01% 47.05%

Professional, scientific & technical activities

97,999 46 94,841 2,894 218 96.82% 17.42% 97.04% 73.65%

Administrative & support service activities

26,563 26 25,634 771 132 96.60% 16.46% 97.08% 69.93%

Education

8,192 3 7,918 243 28 96.69% 9.68% 97.02% 64.80%

Human health & social work activities

18,233 17 17,616 530 70 96.71% 19.54% 97.08% 73.95%

Arts, entertainment & recreation

10,160 3 9,821 302 34 96.69% 8.11% 97.02% 64.71%

Other service activities

5,187 6 5,012 150 19 96.74% 24.00% 97.09% 74.81%

Total

652,118 460 630,386 19,110 2,162 96.74% 17.54% 97.06% 71.60%
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Table 6d. Classification results for the Modified XGBoost model for non-industrials by industry 

 
Table 6d reports classification results based on the same decision rule as in Table 5. The results in this table are split 

into multiple industries to evaluate how the model performs out-of-sample. These are: (1) Mining and quarrying, (2) 

Electricity, gas, steam and air conditioning supply, (3) Public administration and defense; compulsory social security, (4) Activities of 

households as employers; undifferentiated goods- and services-producing activities of households for own use and (5) Activities of 

extraterritorial organizations and bodies. 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Modified XGBoost

Agriculture, forestry & fishing

24,340 14 23,593 717 16 96.99% 46.67% 97.05% 91.51%

Water supply; sewerage, waste management & remediation services

2,579 3 2,491 75 10 96.70% 23.08% 97.08% 84.54%

Construction

95,344 168 91,989 2,693 494 96.66% 25.38% 97.16% 85.43%

Wholesale & retail trade; repair of motor vehicles & motorcycles

133,779 177 129,244 3,837 521 96.74% 25.36% 97.12% 84.64%

Transportation & storage

39,405 58 38,057 1,125 165 96.73% 26.01% 97.13% 84.28%

Accommodation & food service activities

25,506 22 24,597 744 143 96.52% 13.33% 97.06% 79.90%

Information & communication

35,463 27 34,313 1,037 86 96.83% 23.89% 97.07% 83.00%

Financial & insurance activities

13,383 2 12,955 400 26 96.82% 7.14% 97.00% 81.39%

Real estate activities

115,985 20 112,437 3,460 68 96.96% 22.73% 97.01% 73.93%

Professional, scientific & technical activities

97,999 61 94,856 2,879 203 96.86% 23.11% 97.05% 86.27%

Administrative & support service activities

26,563 35 25,643 762 123 96.67% 22.15% 97.11% 81.19%

Education

8,192 7 7,922 239 24 96.79% 22.58% 97.07% 80.87%

Human health & social work activities

18,233 19 17,618 528 68 96.73% 21.84% 97.09% 82.19%

Arts, entertainment & recreation

10,160 7 9,825 298 30 96.77% 18.92% 97.06% 80.04%

Other service activities

5,187 9 5,015 147 16 96.86% 36.00% 97.15% 81.22%

Total

652,118 629 630,555 18,941 1,993 96.79% 23.99% 97.08% 85.43%
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4.2.3 Setting C: SME industrials 
In our last setting, Setting C, the models are tasked with predicting bankruptcy for industrial firms of a 

smaller size compared to their training data. Similar to Setting B, the firms in the test set are expected to 

exhibit varying capital structures and normal ratio levels. 

 

 
 

Figures 4a-4d allows for an observation to be made in line with Setting B: all models displayed an inferior 

performance compared to Setting A. However, in contrast to Setting B, three models exhibited an 

improvement in performance while the Modified XGBoost model, with its 77 independent variables, 

demonstrated an increased difficulty when predicting bankruptcy for smaller industrial firms as opposed to 

larger non-industrial ones, suggesting that size has a larger effect than industry on performance. Despite 

this, it maintained the highest performance across all subsamples, except for the 5-9 FTEs subsample, where 

its base version excelled. In Setting C, the Modified Probit model performed nearly as well as in Setting A, 

with only a one-percentage-point difference in AUC. After lagging behind its Base version in Settings A 

and B, it showcased improved performance in this setting. 

 

Observing the subsamples categorized by the number of FTEs, the performance closely aligns with firm 

size. As the firm size decreases, all models face escalating challenges in accurately predicting bankruptcy. 

An exception arises with the Modified Probit model, which performed best on the 20-49 subsample, 

followed by 5-9, 50-99, 10-19 and 1-4. 

Figure 4a. ROC for the Base Probit model Figure 4b. ROC for the Base XGBoost model

Figure 4c. ROC for the Modified Probit model Figure 4d. ROC for the Modified XGBoost model

ROC curve (AUC = 0.75) ROC curve (AUC = 0.82)

ROC curve (AUC = 0.77) ROC curve (AUC = 0.84)
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Table 7a. Classification results for the Base Probit model for SME industrials by size (number of FTEs) 

Table 7a reports classification results based on the same decision rule as in Table 5. The results in this table are 

grouped into different size categories based on the number of employees.  

 

Table 7b. Classification results for the Base XGBoost for SME industrials by size (number of FTEs) 

 
Table 7b reports classification results based on the same decision rule as in Table 5. The results in this table are 

grouped into different size categories based on the number of employees. 

 

Table 7c. Classification results for the Modified Probit for SME industrials by size (number of FTEs) 

 
Table 7c reports classification results based on the same decision rule as in Table 5. The results in this table are 

grouped into different size categories based on the number of employees. 

 

Table 7d. Classification results for the Modified XGBoost for SME industrials by size (number of FTEs) 

 
Table 7d reports classification results based on the same decision rule as in Table 5. The results in this table are 

grouped into different size categories based on the number of employees. 

  

Size (FTEs) N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

1-4 32,717 36 31,564 946 171 96.59% 17.39% 97.09% 70.21%

5-9 15,065 21 14,527 431 86 96.57% 19.63% 97.12% 79.33%

10-19 12,417 18 11,976 355 68 96.59% 20.93% 97.12% 79.92%

20-49 10,109 12 9,761 292 44 96.68% 21.43% 97.10% 83.12%

50-99 3,948 3 3,818 116 11 96.78% 21.43% 97.05% 87.72%

Base Probit

Size (FTEs) N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

1-4 32,717 45 31,573 937 162 96.64% 21.74% 97.12% 80.72%

5-9 15,065 26 14,532 426 81 96.63% 24.30% 97.15% 84.13%

10-19 12,417 18 11,976 355 68 96.59% 20.93% 97.12% 85.43%

20-49 10,109 13 9,762 291 43 96.70% 23.21% 97.11% 86.88%

50-99 3,948 3 3,818 116 11 96.78% 21.43% 97.05% 88.52%

Base XGBoost

Size (FTEs) N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

1-4 32,717 35 31,563 947 172 96.58% 16.91% 97.09% 74.45%

5-9 15,065 21 14,527 431 86 96.57% 19.63% 97.12% 79.21%

10-19 12,417 20 11,978 353 66 96.63% 23.26% 97.14% 77.54%

20-49 10,109 14 9,763 290 42 96.72% 25.00% 97.12% 83.63%

50-99 3,948 3 3,818 116 11 96.78% 21.43% 97.05% 79.09%

Modified Probit

Size (FTEs) N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

1-4 32,717 48 31,576 934 159 96.66% 23.19% 97.13% 81.81%

5-9 15,065 25 14,531 427 82 96.62% 23.36% 97.15% 83.29%

10-19 12,417 25 11,983 348 61 96.71% 29.07% 97.18% 87.13%

20-49 10,109 16 9,765 288 40 96.76% 28.57% 97.14% 88.23%

50-99 3,948 7 3,822 112 7 96.99% 50.00% 97.15% 89.03%

Modified XGBoost
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5. Additional analysis & robustness checks 
To demonstrate the reliability and stability of our results, we have performed several robustness checks. 

Our main results indicate that the comparative accuracy of a new-era machine learning technique is greater 

than a traditional statistical technique. However, the difference could be circumstantial, pertaining to the 

specific models, our choice of training and testing data, respectively, as well as the metrics we used to 

evaluate the models’ accuracy.  

 

To investigate if our results are consistent with other machine learning and statistical techniques, we 

repeated the test in Setting A, but used logit instead of probit for the base statistical model and Random 

Forest instead of XGBoost for the base machine learning model. They are both popular techniques, not 

only in general but also specifically within bankruptcy prediction (as referred to in the literature review). 

The main difference between logit and probit is a different assumption about the distribution of the error 

term (logistic versus normal distribution). The main difference between Random Forest and XGBoost is 

how the decision trees are trained (parallel versus sequentially). With our new techniques, the performance 

in Setting A decreased slightly for both models. The Base Logit model showed an AUC of 78% (compared 

to 80% for the Base Probit) while the Base Random Forest model had an AUC of 86% (compared to 86% 

for the Base XGBoost). These findings illustrate that although the selection of a particular technique can 

influence outcomes, the consistent performance gap between traditional statistical models and modern 

machine learning models persists. 

 

 
 

Table 8. Classification results for the base models with alternative techniques 

 
Table 8 reports classification results based on the same decision rule as in Table 5. The results from the original 

techniques (probit & XGBoost) are compared to our alternative techniques (logit & Random Forest). 

 

Figure 5a. ROC for the Base Logit model Figure 5b. ROC for the Base Random Forest model

ROC curve (AUC = 0.78) ROC curve (AUC = 0.86)

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base Probit

68,389 71 66,068 1,981 269 96.71% 20.88% 97.09% 79.94%

Base XGBoost

68,389 85 66,082 1,967 255 96.75% 25.00% 97.11% 86.47%

Base Logit

68,389 69 66,066 1,983 271 96.70% 20.29% 97.09% 78.15%

Base Random Forest

68,389 104 66,101 1,948 236 96.81% 30.59% 97.14% 86.08%
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We further investigated the robustness of our results by altering the training and testing data. A recurring 

limitation of bankruptcy prediction studies is that the results of a study do not generalize well outside the 

specific setting, as discussed by Ooghe and Balcaen (2007). This comes as a result of “over-modelling”, 

which means the models are optimized to solve the problem (classifying the data) as opposed to creating a 

stable and useful model for bankruptcy prediction. By altering which firm-year observations are included 

in the training and testing set, we can investigate whether the performance gap is stable over time. For our 

main results, we limited the training data to observations from 2000-2015 and the testing data to 2016-

2021. Experimenting with different combinations of years – ranging from shorter to longer training periods 

and even an inversion (training data from 2016-2021, testing data from 2000-2015) still resulted in a 

relatively higher performance from the machine learning models. 

 

Finally, to ensure the findings were not specific to our choice of evaluation metrics, we tested other 

alternatives. While the ROC-curve and AUC-score is a particularly useful metric for a binary classification 

task because it demonstrates the relative performance – and trade-off between specificity and sensitivity – 

across all potential cut-off points, it rewards sensitivity and specificity equally. Although two models may 

share the same AUC, when you examine their ROC-curves, you might find that one model achieves higher 

sensitivity but at the cost of lower specificity, while the other model achieves higher specificity but with 

lower sensitivity. Arguably, because bankruptcies are so costly, a model that finds more bankruptcies at the 

cost of lower specificity (more false positives) is the more useful model. The F2-score is a metric that 

rewards sensitivity twice as much as specificity, making it a useful metric when capturing bankruptcies is 

the priority. When evaluated with the F2-score, both machine learning models still outperform the statistical 

models in Setting A. 

𝐹2 =
(1 + 22) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(22 × Precision) + Recall
 

 

Table 9. Classification results for all models with additional evaluation metrics 

 
Table 9 reports classification results based on the same decision rule as in Table 5. The results from Setting A are 

reported with additional evaluation metrics: precision, recall (which is sensitivity) and the F2-score. 

 

Another key finding of our main result was that the machine learning model is more effective at identifying 

useful variables from a larger set of potential useful variables. But there are many feature selection methods 

that can be used for probit analysis, and it could be that backward selection did not work optimally for the 

specific circumstances. Using forward selection, the Modified Probit model selected the same set of 

independent variables. With LASSO regression as the selection method, another selection method used in 

bankruptcy prediction studies (Tian et al., 2015), different variables were selected. However, performance 

for the Modified Probit model was even worse using these variables. Our findings, along with the results 

from these robustness checks, suggest that the selected variables do not demonstrate strong generalization 

capabilities. While the training results surpass those of the Base Probit model, the out-of-sample 

classification performance is notably inferior. 

 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC Precision Recall F2 Score

Base Probit

68,389 71 66,068 1,981 269 96.71% 20.88% 97.09% 79.94% 3.46% 20.88% 10.40%

Base XGBoost

68,389 85 66,082 1,967 255 96.75% 25.00% 97.11% 86.47% 4.14% 25.00% 12.46%

Modified Probit

68,389 70 66,067 1,982 270 96.71% 20.59% 97.09% 78.15% 3.41% 20.59% 10.26%

Modified XGBoost

68,389 100 66,097 1,952 240 96.79% 29.41% 97.13% 87.45% 4.87% 29.41% 14.65%
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Forward selection: 

𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦𝑖𝑡+2 = 1|𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8))

= Φ(𝛼0 + 𝛽1𝑅(1)𝑇𝑖𝑡 + 𝛽2𝑅(1)𝑆𝑘𝑖𝑡 + 𝛽3𝑆𝐷(1)𝑖𝑡 + 𝛽4𝑂𝐻𝑇(1)𝑖𝑡 + 𝛽5𝐴𝑇𝐴𝑖𝑡

+ 𝛽6𝑀𝐴𝑇𝐴𝑖𝑡 + 𝛽7𝐿𝑁𝑇(1)𝑖𝑡 + 𝛽8𝑁. (𝑅(5)𝐸, 𝑒𝑠)𝑖𝑡) 

 

LASSO:  

𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦𝑖𝑡+2 = 1|𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, ))

= Φ(𝛼0 + 𝛽1𝐴𝑇𝐴𝑖𝑡 + 𝛽2𝑂𝑅′𝑖𝑡 + 𝛽3𝑅𝐵𝑆′𝑖𝑡 + 𝛽4𝐿𝐼(1)𝐼𝐼𝐼𝑖𝑡 + 𝛽5𝐿𝐼(3)𝐼𝑖𝑡

+ 𝛽6𝑂𝐻𝑇(1)𝑖𝑡 + 𝛽7𝑅(1)𝑇𝑖𝑡 + 𝛽8𝑅(5)𝐸, 𝑒𝑠𝑖𝑡 + 𝛽9𝐴𝑇𝐴𝑖𝑡 + 𝛽10𝑁. (𝐿𝐼(3)𝐼)𝑖𝑡

+ 𝛽11𝑁. (𝑆𝐷(1))𝑖𝑡) 

 

Another potential limitation lies in the construction of the Modified Probit model. The omission of 

principal component analysis constrained the model to a more restricted set of variables, albeit likely 

containing the most pertinent ones. To explore the efficacy of the variables employed by the Modified 

XGBoost model, mirroring the selection process of the Modified Probit, we confined the Modified 

XGBoost model to the 29 independent variables identified through backward selection by the Modified 

Probit. While this yielded an equivalent AUC of 87%, the classification performance at the cut-off point 

was marginally inferior. Taking an additional step, we assessed the Modified XGBoost's performance with 

only the 8 variables chosen by the Modified Probit model following feature selection. The AUC remained 

at 87%, but there was a slight, further decrease in classification performance at the cut-off point. These 

results imply that while the access to more information through additional variables yielded higher 

performance, the performance gap remains relatively large when the access to variables is constrained. 

 

 
 

  

Figure 6a. ROC for the Modified XGBoost with 29 

independent variables

Figure 6b. ROC for the Modified XGBoost with 8 

independent variables

ROC curve (AUC = 0.87) ROC curve (AUC = 0.87)
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Table 10. Classification results for the modified models with alternative variable constrictions 

 
Table 10 reports classification results based on the same decision rule as in Table 5. The modified models are 

compared to alternative configurations of the Modified XGBoost model, using both 29 variables and 8 variables. 

 

Our final key finding in the main results was that machine learning techniques seem to perform better than 

statistical techniques when asked to predict bankruptcy on firms different from what they were trained on. 

However, this might only hold true when the training sample is industrial firms, potentially because the 

decision rules it creates generalize well on other firms. To ensure the superior performance still holds true 

when trained on another industry, we replaced the training set with retail firms instead.  

 

Tested on Setting B, all models performed similarly when trained on retail firms compared to industrial 

firms. However, the results are still consistent with our main results, as both XGBoost models achieve 

higher AUC-scores than the probit models. As a final test, we repeated the same procedure for Setting C, 

investigating potential changes if we train the models on small firms instead of large, and test them on large 

firms as opposed to small firms. In other words, using firms from Setting C as the training data and firms 

from Setting A as the testing data. The models all performed worse, but the XGBoost models were 

consistent in their superior performance. This indicates that large firms contain information that generalize 

better on small firms than vice versa. 

 

Table 11. Classification results for all models using retail firms as the training sample 

 
Table 11 reports classification results based on the same decision rule as in Table 5. The results show the models’ 

performance when trained on retail firms and tested on all other firms (including industrial). 

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Modified Probit

68,389 70 66,067 1,982 270 96.71% 20.59% 97.09% 78.15%

Modified XGBoost

68,389 100 66,097 1,952 240 96.79% 29.41% 97.13% 87.45%

Modified XGBoost (29 independent variables)

68,389 92 66,089 1,960 248 96.77% 27.06% 97.12% 86.93%

Modified XGBoost (8 independent variables)

68,389 85 66,082 1,967 255 96.75% 25.00% 97.11% 86.66%

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base Probit

586,728 419 567,181 17,188 1,940 96.74% 17.77% 97.06% 71.66%

Base XGBoost

583,728 499 567,261 14,108 1,860 97.26% 21.15% 97.57% 80.05%

Modified Probit

586,728 418 567,179 17,190 1,941 96.74% 17.72% 97.06% 72.23%

Modified XGBoost

586,728 567 567,328 17,041 1,792 96.79% 24.04% 97.08% 85.45%
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Table 12. Classification results for all models using SMEs as the training sample 

 
Table 12 reports classification results based on the same decision rule as in Table 5. The results show the models’ 

performance when trained on SME industrial firms and tested large industrial firms. 

 

In summary, our additional checks confirmed the robustness of our main findings, indicating that machine 

learning techniques consistently outperform traditional statistical methods in bankruptcy prediction. 

Through various checks, we validated the stability of the performance gap between these approaches, 

considering alternative techniques, variable selection methods and evaluation metrics. Notably, even when 

adjusting for different training and testing data periods, our machine learning models exhibited superior 

predictive accuracy. Furthermore, our exploration of industry and firm-size variations upheld the 

superiority of XGBoost models. Whether trained on retail or industrial firms, or on large or small firms, 

and tested accordingly, the performance gap endured.  

  

N
True 

Positive

True 

Negative

Type I 

Error

Type II 

Error
Accuracy Sensitivity Specificity AUC

Base Probit

68,389 76 65,953 1,999 360 96.55% 17.42% 97.06% 73.82%

Base XGBoost

68,389 91 65,993 1,960 345 96.63% 20.94% 97.12% 81.63%

Modified Probit

68,389 77 65,968 1,985 359 96.57% 17.76% 97.08% 76.52%

Modified XGBoost

68,389 104 66,002 1,950 333 96.66% 23.79% 97.13% 83.77%
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6. Discussion 
The results of our study make a compelling case for machine learning techniques with regards to the thirty-

year-old debate. Machine learning techniques, in their current state, outperform traditional statistical 

techniques decidedly and reliably. With our four research questions, we sought to thoroughly explore the 

comparative performance of the two categories of techniques, not only in terms of accuracy but also in 

terms of extracting useful information. The results overwhelmingly point to the conclusion that new-era 

machine learning models are better at predicting corporate bankruptcy. We find support for this conclusion 

all throughout our results, with both superior goodness of fit in the training phase and more accurate 

predictions across all three test settings. Our findings contribute to the ongoing discussion in the 

bankruptcy prediction field and corroborate the findings of Altman (2017) and Kumar & Ravi (2007). In 

Setting A, our main test setting, both XGBoost models display a convincingly higher AUC, indicating that 

for any cut-off point, they will be able to classify bankrupt and non-bankrupt firms more accurately than 

their probit counterparts. To put things into perspective, Skogsvik’s ambitious current cost accounting 

approach, where he meticulously derived current cost values in a manner that arguably required more effort 

than feeding raw data to the XGBoost algorithm, resulted in largely equal performances compared to 

historical cost accounting information. As shown by comparing the Base Probit to the Base XGBoost 

model, by simply substituting the probit technique for XGBoost, all else equal, the AUC increased by 6.5 

percentage points. 
 

We also find evidence of machine learning models being better at identifying variables with useful 

information through feature selection. However, this conclusion is not immune to objections. Our 

approach of modifying the probit model can be argued to be too simplistic and not the optimal way to 

modify the probit model to incorporate useful information from new independent variables. Our intention, 

however, was to evaluate just what effect an uncomplicated feature selection approach would have for the 

probit model and the XGBoost model, respectively. The Modified XGBoost model clearly improved its 

performance when all we did was to give it more information and leave the algorithm to make use of the 

information. The Modified Probit model did not demonstrate a clear improvement in performance. 

Furthermore, as demonstrated by our robustness checks, even with alternative feature selection methods 

for the Modified Probit model and heavy restrictions on the Modified XGBoost model, the results were 

consistent. 
 

Contributing to the ongoing debate of bankruptcy prediction models’ generalizability in general, and 

machine learning techniques in particular, we formulated research questions (iii) and (iv). The results of 

Settings B and C demonstrate that the machine learning models were more robust outside their “comfort 

zone” than the statistical models. This discovery introduces nuance to the conclusions of Hillegeist et al. 

(2004) and Begley et al. (1996), both of whom identified poor generalizability in bankruptcy prediction 

models. Our findings suggest that this issue can be mitigated by leveraging machine learning techniques. 
 

While the XGBoost algorithm showed superior performance, we do not necessarily suggest it will be the 

optimal technique for any bankruptcy classification study. As the literature review revealed, recent papers 

by Alaka et al. (2018) and Clement (2020) argue that the search for a one-size-fits-all is futile. Substituting 

XGBoost for Random Forest in our robustness check yielded a nearly identical performance. Instead, our 

results demonstrate the robustness of the new-era machine learning techniques. The results also indicate 

that they are more “forgiving” than their statistical counterparts. Consider the performance drop of the 

Modified XGBoost in Setting B and C, compared to Setting A. It is intuitive to think that a model with 77 

independent variables will overfit and perform poorly when faced with firms of different financial structure 

than those it was trained on. Nevertheless, the largest performance drop for the Modified XGBoost was a 

three-percentage point decrease in AUC, compared to six percentage points for the Modified Probit and 

eight for the Base Probit. 
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6.1 Limitations and suggestions for further research 
Naturally, our study has a number of limitations, most of them relating to the research design. Among 

other things, our choice to follow Skogsvik’s method – while having several advantages – limited our 

exploration of potentially useful variables to the 71 (77) in his primary set. While there are a considerable 

number of relevant variables, an XGBoost algorithm is capable of handling many more variables, which 

would have been interesting to explore. Further research should collect an even larger set of variables, say 

the 500 most commonly used financial and non-financial ratios in financial statements, to see if 

performance could be improved further. Another limitation with the study is our narrow definition of 

failure. While it was motivated by both data collection procedures and the fact that non-legalistic 

definitions of failure are fuzzy by nature, the fact remains that many firms would be considered failed 

without ever reaching bankruptcy. Consider Samhällsbyggnadsbolaget (SBB), a Swedish real estate firm 

that has been the subject of intense media coverage during 2023 due to their declining financial situation. 

Many would agree the firm failed in spirit, despite not formally declaring bankruptcy. Regardless, further 

research could more carefully review literature and create a research design that more sophisticatedly deals 

with failure to better capture real-world failures exhaustively. Also related to our research design is the 

choice to only look at different industries and sizes when assessing the generalizability of our models. As 

found in the literature, country of origin and age, among other factors, might pose different challenges to 

the models and should be investigated by further research. As a final limitation, our comparison of AUC 

scores and other metrics could be deemed as rather subjective. We find differences in the models’ 

respective results but lack a clear framework or test with which to compare them. As such, we can 

definitively say that a higher score is better, but any assessment of the magnitude of the difference comes 

with a degree of subjectivity. Further research should seek ways to enable an objective assessment of the 

differences. 
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7. Appendix 
Appendix 1. Overview of Skogsvik's independent variables 

 
 

  

# Variable Symbol Formula Bankrupt firms Non-bankrupt firms

Mean Mean

Profitability

1 Profit margin VM RR(2)/RI -0.14 -0.03

2 Return on total capital R(1)T (RE(2)+FK-EO(3)-EO(4))/T -0.08 0.10

3 Return on total capital R(2)T (RE(2)+FK-EO(3)-EO(4))/(T-KS+KS(4)) -0.04 0.18

4 Return on total capital R(3)T (RE(2)+FK-EO(3)-EO(4))/(T-KS+KS(4)-Lask(2)) -0.04 0.19

5 Return on total capital R(4)T (RE(2)+FK-EO(3)-EO(4))/(T-KS) -0.07 0.19

6 Return on total capital R(5)T (RE(1)-FK)/(T-KS) -0.05 0.17

7 Return on total capital R(6)T (RE(1)+RK(3)+RK(4)+RK(5)+FK+EO(5))/(T-KS) 0.09 0.26

8 Return on equity R(1)E,es (RE(2)-SKT-Ch(Lask(2))-(1-ss)*(EO(3)+EO(4))/(ER+OR+BR) -0.28 0.20

9 Return on equity R(2)E,es (RE(2)-SKT-(1-ss)*(EO(3)+EO(4))/(ER+OR+BR) -0.15 0.18

10 Return on equity* R(3)E,es (RE(2)-SKT-Ch(Lask(1))-(1-ss)*(EO(3)+EO(4))/(ER+BR+OR-Lask(1)) - -

11 Return on equity R(4)E,es (RE(1)-SKT-Ch(Lask(2))+ss*((EO(3)+EO(4))/(ER+BR+OR-Lask(1)) -0.20 0.12

12 Return on equity R(5)E,es (RE( 1)+RK(3)+RK(4)+RK(5)+EO(5)-SKT)/(ER+BR+OR) -0.01 0.34

13 Value added ratio FVK(1) (RE(2)+RK-FI(1)+FK-EO(3)-EO(4))/(T-AT(1)) -2.15 -1.58

14 Value added ratio FVK(2) (RE(2)+RK-FI+FK-EO(3)-EO(4))/(T-OT(2)-AT(1)-AT(2)-AT(3)) -2.19 -1.61

Cost

15 Proportion of salaries LÖA RK(1)/(RK+ED(2)-min(EO(5),0)) -0.33 -0.31

16 Proportion of depreciation AVA (RK(3)+RK(4)+RK(5))/(RK+EO(2)-min(EO(5),0)) -0.04 -0.04

17 Interest expense R(1)Sk FK/(KS+LS+Lask(2)) -0.04 -0.03

18 Interest expense R(2)Sk FK/(KS+LS) -0.04 -0.03

19 Interest expense* R(3)Sk FK/(KS+LS+Lask(1)) - -

20 Interest expense R(4)Sk FK/(KS(4)+LS) -0.19 -1.06

21 Proportion of taxes S(1) (SKT+Ch(Lask(2)))/RE(2) -0.40 -0.19

22 Proportion of taxes S(2) SKT/RE(2) -0.43 -0.20

23 Proportion of taxes* S(3) (SKT+Ch(Lask(1)))/RE(2) - -

24 Operating allowance* DBA EO(3)/(RK+FK+EO(2)-min(EO(5),0)) - -

Capital turnover

25 Asset turnover OHT(1) RI/T 1.93 1.72

26 Asset turnover OHT(2) RI/(T-KS+KS(4)) 2.63 3.43

27 Asset turnover OHT(3) RI/(T-KS+KS(4)-Lask(2)) 2.73 3.65

28 Asset turnover OHT(4) RI/(T-KS) 4.17 4.01

29 Accounts receivables turnover rate TKF (OT(3)+OT(5))/RI 0.31 0.56

30 Inventory turnover rate TVL(1) OT(6)/RI 0.22 0.18

31 Inventory turnover rate TVL(2) OT(6)/RK 0.19 0.13

32 Cash asset turnover rate TCH (OT(1)+OT(2))/RI 0.10 0.46

33 Liquid current asset turnover rate TLI (OT-OT(6))/RI 0.54 1.31

34 Current asset turnover rate TOT OT/RI 0.76 1.49

35 Working capital  turnover rate TRK (OT-KS)/RI 0.14 0.82

36 Working capital size NRK (OT-KS)/OT(6) 1.00 8.34

Liquidity

37 Liquidity ratio I LI(1)I (OT(1)+OT( 2))/T 0.03 0.14

38 Liquidity ratio I LI(2)I (OT(1)+OT( 2))/KS 0.07 0.99

39 Liquidity ratio I LI(3)I (OT(1)+OT( 2))/(KS-KS(2)) 0.33 12.78

40 Liquidity ratio II LI(1)II (OT-OT(6))/T 0.41 0.48

41 Liquidity ratio II LI(2)II (OT-OT(6))/KS 0.83 2.43

42 Liquidity ratio II LI(3)II (OT-OT(6))/(KS-KS(2)) 3.09 25.55

43 Liquidity ratio III LI(1)III OT/KS 1.40 3.15

44 Liquidity ratio III LI(2)III (OT)/(KS-KS(2)) 4.50 29.45

45 Flow of capital ratio KAP(1) (RE(1)+RK(3)+RK(4)+RK(5)+FK+EO(5))/KS -3.75 -4.23

46 Flow of capital ratio KAP(2) (RE(1)+RK(3)+RK(4)+RK(5)+FK+EO(5))/FK 0.31 -162.89

47 Flow of capital ratio KAP(3) (RE(1)+RK(3)+RK(4)+RK(5)+FK+EO(5))/(KS+LS) -0.03 0.40
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Appendix 1 - continued. Overview of Skogsvik's independent variables 

 
Appendix 1 shows a gross list of all independent variables included in this study, as well as their respective results 

from the simple mean analysis. We excluded a total of six ratios, still presented in this table and marked with a * 

symbol, to reach a primary set of 77 independent variables. The following exclusions were made: #10 Return on 

equity: R(3)E,es, #19 Interest expense: R(3)Sk, #23 Proportion of taxes: S(3), #24 Operating Allowance: DBA, #56 

Solvency (3): SD(3) and #65 Growth in equity (3): E(3)’. #24 was excluded since a detailed item was missing from the 

financial statements. The other five exclusions were made due to data limitations, where a categorization of the 

different items related to untaxed reserves were missing.  

 

# Variable Symbol Formula Bankrupt firms Non-bankrupt firms

Mean Mean

Asset structure

48 Proportion of inventory VLA OT(6)/T 0.27 0.20

49 Proportion of working capital RKA (OT-KS)/T 0.05 0.28

50 Proportion of fixed assets ATA AT/T 0.32 0.32

51 Proportion of tangible assets MATA (OT(6 )+AT(4)+AT(5)+AT(6))/T 0.51 0.44

52 Size (1) LNT(1) ln(T) 9.02 9.34

53 Size (2) LNT(2) ln(T-KS) 8.15 8.79

Capital structure

54 Solvency (1) SD(1) (ER+BR+OR-Lask(2))/T 0.05 0.41

55 Solvency (2) SD(2) (ER+BR+OR)/T 0.05 0.43

56 Solvency (3)* SD(3) (ER+BR+OR-Lask(1))/T - -

57 Proportion of untaxed reserves ORA OR/T 0.02 0.10

58 Proportion of short-term liabilities KSA KS/T 0.63 0.40

59 Proportion of accounts payable LESA (KS(1)+KS(3) )/T 0.27 0.17

60 Proportion of interest-bearing liabilities RBSA (KS(4)+LS )/T 0.40 0.20

Growth

61 Growth in revenue RI' Ch(RI)/RI(t-1) 1.17 1.30

62 Growth in assets T' Ch(T)/T(t-1) 1.04 1.20

63 Growth in equity (1) E(1)' Ch(ER+BR+OR-Lask(2))/[(ER+BR+OR-Lask(2)](t-1) 0.69 1.15

64 Growth in equity (2) E(2)' Ch(ER+BR+OR)/[(ER+BR+OR)](t-1) 0.70 1.15

65 Growth in equity (3)* E(3)' Ch(ER+BR+OR-Lask(1))/[(ER+BR+OR-Lask(1)](t-1) - -

66 Growth in untaxed reserves OR' Ch(OR)/OR(t-1) 0.70 1.28

67 Growth in short-term liabilities KS' Ch(KS)/KS(t-1) 1.28 1.41

68 Growth in accounts payable LES' Ch(KS(1)+KS(3))/[(KS(1)+KS(3)](t-1) 2.35 2.99

69 Growth in interest-bearing liabilities RBS' Ch(KS(4)+LS)/[(KS(4)+LS)](t-1) 1.27 2.29

70 Growth in fixed assets AT' Ch(AT)/AT(t-1) 1.38 1.70

71 Growth in tangible assets MAT' Ch(OT(6)+AT(4)+AT(5)+AT(6))/[(OT(6)+AT(4)+AT(5)+AT(6))](t-1) 1.35 1.64

Normalized ratios

72 Normalized interest expense N.R(1)Sk R(1)Sk / R(1)Sk last four year average -1.17 -0.90

73 Normalized asset turnover N.OHT(1) OHT(1) / OHT(1) last four year average -0.08 -0.11

74 Normalized inventory turnover rate N.TVL(1) TVL(1) / TVL(1) last four year average 1.47 0.92

75 Normalized proportion of taxes N.S(1) S(1) / S(1) last four year average -7.95 0.50

76 Normalized proportion of taxes N.S(2) S(2) / S(2) last four year average -7.00 -4.86

77 Normalized return on total capital N. R(1)T R(1)T / R(1)T last four year average -1.38 -0.05

78 Normalized return on total capital N.R(5)E,es R(5)E,es / R(5)E,es last four year average -1.30 -0.25

79 Normalized liquidity ratio I N.LI(3)I Standard deviation of LI(3)I based on the last 4 years 136.62 36.07

80 Normalized liquidity ratio III N.LI(1)III Standard deviation of LI(1)III based on the last 4 years 0.93 1.18

81 Normalized proportion of fixed assets N.ATA Standard deviation of ATA based on the last 4 years 1.11 1.15

82 Normalized proportion of tangible assets N.MATA Standard deviation of Mata based on the last 4 years 1.22 1.05

83 Normalized solvency (1) N.SD(1) Standard deviation of SD(1) based on the last 4 years 0.66 1.04
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Appendix 2. Overview of all financial statement items and related variables in Serrano 

 
 

  

Financial statement item Symbol Serrano variable

Balance sheet

Assets

Cash and bank balances OT(1-2) KABASU

Accounts receivable OT(3) KUNDFORD

Other current receivables OT(4) KFORDOV

Current receivables - group companies and associates OT(5) KFORDKNC

Inventory OT(6) LAGERSU

Other current assets OT(7) OT less the sum of OT(1) through OT(6)

Current assets OT OMSTGSU

Participation in group companies and associates AT(1) ANDKNC

Long-term receivables AT(2) LFORDKNC

Loans to partners and related parties AT(3) LANDELAG

Machinery and equipment AT(4) MASKINV

Buildings and land AT(5) BYGGMARK

Intangible fixed assets AT(7) IMANLSU

Other fixed assets AT(8) AT less the sum of AT(1) through AT(7)

Total fixed assets AT ANLTSU

Total assets T TILLGSU

Liabilities

Accounts payable KS(1) KSKLEV

Other current liabilities KS(2) KSKOV

Current liabilities - group companies and associates KS(3) KSKKNC

Current liabilities - credit institutions KS(4) KSKKRIN

Övriga korta skulder KS(5) KS less the sum of KS(1) through KS(4)

Total current liabilities KS KSKSU

Non-current liabilities - group companies and associates LS(1) LSKKNC

Non-current liabilities - credit institutions LS(2) OBLLAN+LSKKRIN

Contingent liabilities LS(3) ANSVFSU

Total non-current liabilities LS LSKSU

Untaxed reserves OR OBESKRES

Equity

Share capital ER(1) AKTIEKAP

Other restricted equity ER(2) OVRGBKAP

Accumulated profit or loss ER(3) BRUTORES

Profit/loss for the year ER(4) RESARB

Total equity ER EKSU
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Appendix 2 – continued. Overview of all financial statement items and related variables in Serrano 

   

Financial statement item Symbol Serrano variable

Income statement

Net sales RI NTOMS

Personnel expenses RK(1) PERSKOS

Other external expenses RK(2) EXTKOSOV

Operating profit/loss before depreciation and amortization RR(1) RORRESUL-AVSKRIV

Depreciation and amortization RK(3-5) AVSKRIV

Operating profit/loss RR(2) RORRESUL

Operating expenses RK NTOMS-RORRESUL

Profit/loss from group companies and associates FI(1) RESAND

Interest income FI(2) RTEINKNC+RTEINEXT+RTEINOV

Interest expense FK RTEKOKNC+RTEKOEXT+RTEKOOV

Profit/loss after net financial income RE(1) RESEFIN

Group contributions EO(4) KNCBDR

Other extraordinary income and expenses EO(5) EXTRAINT+EXTRAKOS

Profit/loss before appropriations and tax RE(2) RESAR-SKATTER-BSLDISP

Change in untaxed reserves BO BSLDISP

Profit/loss before tax RE(3) RESAR-SKATTER

Recorded tax SKT SKATTER

Profit/loss for the year RE(4) RESAR

Other items

Implied tax liabilities Lask(1) OBESKRES * ss

Changes in implied tax liabilities Ch(Lask(1)) Lask/Lask (t-1)

Tax rate ss -
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redovisning. Ekonomiska forskningsinstitutet vid Handelshögskolan. EFI. 
 

Skogsvik, K. (1990). Current cost accounting ratios as predictors of business failure: The Swedish case. Journal of Business 

Finance & Accounting, 17(1), 137-160. 
 

Skogsvik, S. (2021). Financial Analysis: Capital Investment Risk [Lecture two]. Stockholm School of Economics, Stockholm, 

Sweden.  
 

Smith, M., & Liou, D. K. (2007). Industrial sector and financial distress. Managerial Auditing Journal, 22(4), 376-391. 
 

Song, Y. G., Cao, Q. L., & Zhang, C. (2018). Towards a new approach to predict business performance using machine learning. 

Cognitive Systems Research, 52, 1004-1012. 
 

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: the case of bank failure predictions. Management 

science, 38(7), 926-947. 
 

Tay, F. E., & Shen, L. (2002). Economic and financial prediction using rough sets model. European Journal of Operational 

Research, 141(3), 641-659. 
 

Thorburn, K. S. (2000). Bankruptcy auctions: costs, debt recovery, and firm survival. Journal of financial economics, 58(3), 337-

368. 
 

Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-

100. 
 

Tsai, C. F., Hsu, Y. F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft 

Computing, 24, 977-984. 
 

Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert systems 

with applications, 38(1), 223-230. 
  

Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. 

Expert Systems with Applications, 41(5), 2353-2361. 
 

Wang, G., Ma, J., Huang, L., & Xu, K. (2012). Two credit scoring models based on dual strategy ensemble trees. Knowledge-

Based Systems, 26, 61-68. 
 

Weidenman, Per. “The Serrano Database for Analysis and Register-Based Statistics.” at Swedish House of Finance Research 

Data Center. Accessed 2023-10-20. https://www.hhs.se/en/houseoffinance/data-center/ 
 

White, M. J. (1994). The costs of corporate bankruptcy: A US-European comparison. Available at SSRN 5552. 
 

Yazdanfar, D., & Nilsson, M. (2008). The bankruptcy determinants of Swedish SMEs. In ISBE International Entrepreneurship 

Conference, Belfast, Ireland, November, 4-7, 2008. 
 

Yu, Q., Miche, Y., Séverin, E., & Lendasse, A. (2014). Bankruptcy prediction using extreme learning machine and financial 

expertise. Neurocomputing, 128, 296-302. 
 

Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of 

Accounting research, 59-82. 

https://www.wired.com/story/guide-artificial-intelligence/
https://www.wired.com/story/guide-artificial-intelligence/
https://www.hhs.se/en/houseoffinance/data-center/

