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1) Introduction 

1a) Overview  

The treatment of decisions under uncertainty has a rich literature behind it. This comes as no 
surprise; most decisions in the real world are made under uncertainty. The more economics can 
explain and make predictions about such decisions, the more the field gains applicability. We aim 
to contribute with an observational study on the probability weights that agents assign to lottery 
outcomes. Weights are estimated in a Cumulative Prospect Theory (CPT) model. The lotteries we 
deal with are drawings of Swedish lottery bonds. We consider two conflicting theories’ views on 
probability weights. In Expected Utility Theory (EUT), weights assigned to events are the 
probabilities. In CPT, weights are allowed to depend on probabilities nonlinearly. Our goal in this 
paper is to determine whether participants in the Swedish lottery bond market evaluate 
probabilities consistent with EUT or CPT. We find the latter to be true. The implications of 
probability weighting are broad. With a more comprehensive understanding of probability 
weighting dynamics, government-funded lotteries can be structured in a more socially optimal 
way. Insurance policies can be more efficiently constructed to increase profits. 

1b) Background 

In the framework of EUT, formalized by von Neumann and Morgenstern (1945), the 
weights assigned to the events of an uncertain prospect1 are their respective probabilities2. That 
is, the expected value function is linear in probabilities3. Under EUT, preferences (or risk 
aversion) are determined solely by the shape of the utility function, which can be, and generally 
is, described by one parameter, e.g., the exponent in power utility. The results from Allais’s (1953) 
choice problem4 challenge EUT, revealing that agents deviate from linearity in probabilities when 
making decisions under uncertainty. Allais paints a scenario5 in which you can win a substantial 
prize with a probability of 0.99 and win 0 with a probability of 0.01. Subjects are willing to pay 
a lot to make the big prize certain (by increasing the probability of winning by 0.01). Allais 
presents another scenario in which the probability of winning the same substantial prize is only 
0.10. Here, people are not willing to pay as much as in the previous setting to increase the 
probability by 0.01. Hence, the probability 0.01 carries a different weight depending on the 
starting point, and subjects in Allais’s experiment exhibit nonlinear probability weighting of 
outcomes.  

Tversky and Kahneman (1992) present a prominent critique and generalization of EUT 
titled “Cumulative Prospect Theory”, reconciling theory with these findings. CPT’s primary 
distinction from EUT is weighting events by probability decision weights (PDW or 𝜋) instead of 
probabilities. Each PDW considers the entire cumulative distribution of the prospect and assigns 

 
1 Basically the same as a gamble or a lottery.  
2 In this paper, we also use the term “objective probability”. This refers to the true (objective) 

probability of an event occurring. With “probability”, we refer to a subjective or objective probability, 
used when a distinction is not needed or should not be made. 

3 A gamble in which you gain 𝑥! with probability 𝑝! and 𝑥" with probability 1 − 𝑝! is combined 
linearly in its expected value as 𝐸𝑉(𝑝!) = 𝑝!𝑢(𝑥!) + (1 − 𝑝!)𝑢(𝑥"). 

4 In 1952, Allais presents a set of gambles to an audience at an economics conference in Paris. 
He clarifies the prize winnings and probabilities of the gambles and makes the participants pick the most 
preferable.  

5 We have changed the scenario in some ways while keeping it in the spirit of the original.  
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a corresponding weight between 0 and 1. CPT adds one6 additional parameter, connected to the 
PDWs, over EUT to characterize preferences. Now, two parameters jointly determine risk 
aversion. Under CPT, the utility function measures changes in utility from a reference point. It is 
important to stress that Neumann and Morgenstern’s axioms do not preclude such a utility 
function. In the present study, the utility function measures changes in utility, both in the context 
of CPT and EUT.   

Tversky and Kahneman’s (1992) paper serves not only as an axiomatic but also as a 
behavioral treatment. While PDWs and the utility function can technically take on any arbitrary 
parametric forms, Tversky and Kahneman argue that they should adhere to certain empirical 
findings, Allais’s being among them. Specifically, they posit that each PDW is a nonlinear 
function that favors overweighting of low probabilities and shows increasing sensitivity around 0 
and 1. With this in mind, CPT is consistent with Allais’s findings. As with probabilities, the sum 
of the PDWs will always equal 1 for positive and negative prospects7, but how this mass of 1 is 
distributed is still up for question. Concerning the utility function, Tversky and Kahneman argue 
that it is characterized by diminishing marginal sensitivity and is steeper for losses than for gains. 
They back up their claims about PDWs and the utility function with an analysis of experimental 
data.  

A range of studies have examined CPT in experiments and largely confirmed Tversky 
and Kahneman’s findings (Wu and Gonzalez 1996; Abdellaoui 2000; Camerer and Ho 1994; 
Bruhin, Fehr-Duda, and Epper 2010). In the wake of CPT, EUT’s status as the go-to framework 
for decisions under uncertainty is fading. However, most research on CPT has been based on 
laboratory experiments to gauge preferences. While experiments can be instructional, the true test 
for theory is its application to the real world. Our goal is to survey CPT in precisely this.  

 
Is probability weighting in bond markets consistent with EUT; does our 
data support linearity in probabilities? 

 
Rejection of our hypothesis, under the CPT paradigm, will lend credence to nonlinear 

probability weighting in the real world. Non-rejection will make the dismissal of EUT more 
questionable. A plethora of research has established a fourfold pattern in risk attitudes. For gains, 
there is risk seeking towards outcomes of low probability and risk aversion towards outcomes of 
high probability. Conversely, for losses, there is risk seeking towards outcomes of high 
probability and risk aversion towards outcomes of low probability. Such risk profiles can explain 
why an agent would be open to buying both lottery tickets and insurance, as noted by Friedman 
and Savage (1948). They argue that EUT can sufficiently account for the fourfold pattern through 
the utility function. Tversky and Kahneman (1992) address the pattern with both the diminishing 
sensitivity of the utility function and nonlinear probability weighting. While the topic of this paper 
revolves around the latter, we cannot disregard the former. We must estimate a complete CPT 
model, including the parameter determining marginal utility, to assess PDWs. Only then can we 
thoroughly scrutinize the model’s properties, with one caveat. The lotteries we deal with only 
permit us to consider gains. The loss aversion aspect of CPT is a salient feature of the model that 
we miss out on.  

To test our hypothesis, agents need to reveal their preference relationships between 
different prospects. We focus on binary choices constructed from a pool of lotteries. For any given 

 
6 𝜋 can take any functional form incorporating arbitrarily many parameters. However, the 

convention is to describe it with one parameter.   
7 For mixed prospects—involving both gains and losses—PDWs can sum to less or greater than 

1. 
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parameter values, the respective Cumulative Prospect Value8 (CPV) of two lotteries implies a 
theoretical preference relationship, with the prospect commanding the highest CPV deemed 
preferable. Theoretical preference relationships are of no value without data on actual choices. In 
the lab, subjects are generally prompted to decide between two or more prospects, and thus, true 
preferences are revealed. We are not afforded such straightforwardness in using real-world data. 

 Nonetheless, from daily prices of Swedish lottery bonds, we can deduce preference 
relationships between lotteries. We proceed to estimate parameters 𝛼 and 𝛾, respectively 
connected to the utility function and the PDWs (see Eq. (3) and Eq. (4) in Chapter 2). In this, we 
follow the approach of Camerer and Ho (1994), using stochastic utility and maximum likelihood 
estimation. 𝛼 and 𝛾 are chosen to maximize the likelihood that, under certain assumptions about 
stochastic terms, theoretical preference relationships match observed choices. To make 
inferences, we simulate 1 000 samples by repeated drawings with replacement from our full 
sample of pairwise lottery comparisons (bootstrapping). Each simulation gives new point 
estimates of parameters 𝛼 and 𝛾. Together, these make out the estimated sampling distributions 
from which we derive confidence intervals for both parameters to make inferences and test our 
hypothesis.  

1c) Relation to previous work 

CPT is an extension of Kahneman and Tversky’s seminal paper “Prospect Theory” (PT) 
(Kahneman and Tversky 1979). In PT, each PDW is a function of an individual probability. While 
conceptionally simpler, such a construction can give rise to violations of first-order stochastic 
dominance9 (Bernheim and Sprenger 2020). With broad unanimity on the subject of dominance, 
PT is significantly constrained. As a remedy, CPT incorporates the weighting of cumulative—
instead of individual—probabilities, introduced by Quiggin (1982). With this, CPT 
accommodates the same behavioral findings as PT and is more readily extended to prospects with 
more than two outcomes. As it stands, CPT has overtaken PT as the leading model of decisions 
under uncertainty.    

On the topic of CPT, relatively few studies have focused on estimating model parameters, 
turning instead toward the qualitative properties of the theory. This may be a consequence of 
Kahneman and Tversky’s heeding in their 1992 paper:  

 
“The estimation of a complex choice model, such as cumulative 
prospect theory, is problematic. If the functions associated with the 
theory are not constrained, the number of estimated parameters for each 
subject is too large. To reduce this number, it is common to assume a 
parametric form (e.g., a power utility function), but this approach 
confounds the general test of the theory with that of the specific 
parametric form.”  

 
However, it seems that Tversky and Kahneman are aware of the merits of model 

estimation because, in that very same paper, they present parametric forms for both the utility 
function and the PDWs. They go on to estimate the parameters and discuss their implications. We 

 
8 The value attained from a prospect in which you gain 𝑥! with probability 𝑝! and 𝑥" with 

probability 1 − 𝑝! is denominated by its Cumulative Prospect Value as 𝐶𝑃𝑉(𝑝!) = 𝜋!(𝑝!)𝑢(𝑥!) +
𝜋"(1 − 𝑝!)𝑢(𝑥"). 

9 Consider a choice between two lotteries that are identical in every way except that in one 
lottery all outcomes have one additional dollar over the outcomes of the other lottery. Preferring the 
lottery with a lower payout at each state is one example of a violation of stochastic dominance.  
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see a distinction between investigating if the general behavioral properties posed by Kahneman 
and Tversky reflect reality and investigating if a specific CPT model exhibits these properties 
when applied to real-world data. There is value in both alternatives; however, we are focused on 
the latter. Bernheim and Sprenger (2020) present a powerful critique of CPT. Still, we are not 
explicitly testing if CPT is true; instead, we assume it is and use the generality it provides to test 
it against a specific case—EUT. 

While maximum likelihood estimation paired with a stochastic element has not been 
applied to market data before the present study, it is a prominent approach in estimating the 
parameters of CPT in laboratory and survey settings (Camerer and Ho 1994; Stott 2006; Harrison 
and Rutström 2009; Zeisberger, Vrecko, and Langer 2012; Jou and Chen 2013; Bocquého, 
Jacquet, and Reynaud 2014). The leading approach is to estimate individual CPT parameters for 
each subject and then pool the estimates to describe the population. We go against the grain, 
following Camerer and Ho (1994), by pooling all subjects before the estimation phase, implicitly 
assuming that all have identical preferences. In the aforementioned studies, “subjects” exclusively 
refer to individual human beings. Our subjects are market behaviors. In this, we use the 
convention of modeling a single representative agent exhibiting these market behaviors. We 
follow Zeisberger, Vrecko, and Langer (2012) and Rieger, Wang, and Hens (2017) in using 
bootstrapping for inferences. 

Other papers modify the maximum likelihood methodology by constraining individuals 
to have parameters distributed according to a group-level distribution (Nilsson, Rieskamp, and 
Wagenmakers 2011; Murphy and ten Brincke 2018). With an appropriate a priori hierarchical 
structure, they should retrieve more reliable estimates of individual subjects’ parameters. In 
contrast to using maximum likelihood estimation, Rieger, Wang, and Hens (2017) follow the 
approach of Tversky and Kahneman (1992) to estimate their model, minimizing the squared error 
between elicited certainty equivalents and theoretical certainty equivalents10 to estimate 
parameters.  

Gurevich, Kliger, and Levy (2009) present the first field study on CPT. They infer risk 
preferences from pricing data of stock options (for the top 30 companies on S&P100). Theoretical 
state prices are inferred from option prices, and probabilities are derived from historical stock 
prices. Estimates of 𝛼 and 𝛾 are retrieved by multiple regression analysis. Unlike their approach, 
we do not rely on theoretical relationships to the same extent; objective probabilities are given 
exogenously by the Swedish Treasury. However, they study CPT for both losses and gains. They 
find nonlinear weighting of probabilities in line with CPT but less drastic than in Tversky and 
Kahneman’s (1992) paper. We are inspired by Gurevich, Kliger, and Levy’s work and want to 
extend it. Our study considers a different market in a different country during the same period—
the 1990s. This paper is the first observational study on CPT involving lottery bonds and 
maximum likelihood estimation. We introduce a novel way to use a cash-equivalent function to 
map market prices to theoretical preferences.  

The paper is organized as follows. Chapter 2 outlines theoretical concepts. Chapter 3 
introduces lottery bonds and our dataset, maps theory to observed variables, goes deeper into the 
estimation method, and presents confidence intervals retrieved by bootstrapping. Chapter 4 
reveals key findings. Chapter 5 discusses underlying assumptions, internal and external validity, 
and ideas for further research.    

 
10 Theoretical certainty equivalents involve inverting CPV to get a corresponding cash value. 
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2) Theory 

2a) Overview 

In examining lottery preferences over market data, we derive aggregate functions and 
thus model the decisions of the representative lottery bond investor. We assume that CPT is the 
primary driver of investor preferences between different lotteries, but we also allow for a 
stochastic element. In fact, we need an additional component in the decision process to explain 
any non-unanimous preferences over identical lotteries—of which there are many. 

We represent lottery drawings as a sequence 𝑓 = {(𝑝!, 𝑥!), (𝑝", 𝑥"), … , (𝑝#, 𝑥#)} of pairs 
of objective probabilities 𝑝$ and prize money outcomes 𝑥$ where 𝑥$ > 𝑥% for 𝑖 > 𝑗. The static 
CPV of lottery 𝑎 with 𝑛 different outcomes is defined as 𝑣(𝑓&) = ∑ 𝜋$𝑢(𝑥$)#

$'! , where 𝜋$ is the 
PDW assigned to outcome 𝑖 and 𝑢(𝑥$) is the utility measure of 𝑥$ amount of prize money. In 
EUT, 𝜋$ is the probability of outcome 𝑖. CPT replaces the probabilities with the more general 
concept 𝜋$ = 𝑤(∑ 𝑝%) − 𝑤(∑ 𝑝%)#

%'$(!
#
%'$  and 𝜋# = 𝑤(𝑝#), where 𝑤:∑ 𝑝% ∈#

%'$ [0,1] → [0,1] 
with 𝑤(0) = 0 and 𝑤(1) = 1. Thus, for each PDW, the entire probability distribution is 
transformed according to some weighting function 𝑤(∙). 

We introduce a probabilistic element by defining stochastic CPV as 𝑉(𝑓&) = 𝑣(𝑓&) + 𝑟&, 
where 𝑟& is the stochastic term for lottery 𝑎. Now, a lottery is evaluated not only by its static CPV 
but also by random trembles in preferences. The representative agent makes a binary choice 
between lotteries 𝑎 and 𝑏 by evaluating their respective stochastic CPV. Specifically, the agent 
follows the decision criteria “choose 𝑓& over 𝑓) if 𝑦&) = 1”, and we define 𝑦&) = 1[𝑦&)∗ > 0], 
where 𝑦&)∗ = 𝑉(𝑓&) − 𝑉(𝑓)) = 𝑣(𝑓&) − 𝑣(𝑓)) + 𝑧&) and 𝑧&) = 𝑟& − 𝑟).  

Further, we assume the relationship:  
 

𝑠𝑎 = 𝐶 !𝑉"𝑓𝑎#$ , 𝐸𝑞. (1) 
 

where 𝐶(∙) is a strictly increasing cash-equivalent function and 𝑠& is the price of lottery 𝑎. Thus, 
we have the equivalence: 
 

𝑠& − 𝑠) > 0⟺ 𝑉(𝑓&) > 𝑉(𝑓)). 𝐸𝑞. (2) 
 

We proceed by deriving the estimation of our parameters of interest from preferences 
over lotteries 𝑎 and 𝑏. We let 𝑧&)	 have the logistic distribution with cumulative distribution 
𝐺(𝑥) = -!

!(-!
 (as in Camerer and Ho’s (1994) paper), and we let ∆&)= 𝑣(𝑓&) − 𝑣(𝑓)).	 To 

construct the log likelihood function, expressions for 𝑃(𝑐ℎ𝑜𝑜𝑠𝑒	𝑓&) and 𝑃(𝑐ℎ𝑜𝑜𝑠𝑒	𝑓)) must be 
derived.  
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𝑃(𝑐ℎ𝑜𝑜𝑠𝑒	𝑓&) = 𝑃(𝑦&) = 1)	
= 𝑃(𝑦&)∗ > 0)	
= 𝑃U𝑉(𝑓&) > 𝑉(𝑓))V	
= 𝑃U−𝑧&) < 𝑣(𝑓&) − 𝑣(𝑓))V	
= 𝑃(−𝑧&) < ∆&))	
= 𝐺(∆&)). 

Conversely, 
𝑃(𝑐ℎ𝑜𝑜𝑠𝑒	𝑓)) = 𝑃(𝑦&) = 0)	

= 𝑃(𝑦&)∗ < 0)	
= 𝑃U𝑉(𝑓)) > 𝑉(𝑓&)V	
= 𝑃U𝑧&) < 𝑣(𝑓)) − 𝑣(𝑓&)V	
= 𝑃(𝑧&) < −∆&))	
= 1 − 𝐺(∆&)). 

We let ℓ&) = 𝑦&)𝐿𝑜𝑔(𝐺(∆&))) + (1 − 𝑦&))𝐿𝑜𝑔((1 − 𝐺(∆&)))) be the log likelihood of 
the observed choice between lotteries 𝑎 and 𝑏 and 𝔽 = {(𝑓& , 𝑓)), (𝑓. , 𝑓/), … } be the set of all pairs 
of lotteries to be compared. We use the functional forms specified by Kahneman and Tversky:  

 
𝑢(𝑥$) = 𝑥$0 𝐸𝑞. (3) 

 

𝑤(𝑝$) =
𝑝$
1

U𝑝$
1 + (1 − 𝑝$)1V

!/1 . 𝐸𝑞. (4) 

 
We define the log likelihood function ℒ𝔽 = ℓ&) + ℓ./ +⋯ and estimate 𝛼 and 𝛾 as 

arg	max
0,1

ℒ𝔽. There are two main underlying assumptions. First is the assumption that lottery 

preferences are independent (independence assumption); 𝑦&) ⊥ 𝑦./ for all 𝑎, 𝑏, 𝑐, 𝑑. Second is 
the assumption that the representative agent does not change across lottery comparisons 
(representative agent assumption); preferences can be represented by a single static CPV function 
𝑣(∙) with an identically distributed stochastic term added. The two assumptions together yield 
𝑉(𝑓$) = 𝑣(𝑓$) + 𝑟$, with 𝑟$ i.i.d. The hypothesis test becomes 𝐻5: 𝛾 = 1, 𝐻6: 𝛾	 < 1, with 𝛾 = 1 
corresponding to 𝑤(𝑝$) = 𝑝$ ⟹ 𝜋$ = 𝑝$ and 𝛾	 < 1 corresponding to 𝑤(𝑝$) ≠ 𝑝$ ⟹ 𝜋$ ≠ 𝑝$. 
Thus 𝛾 = 1 implies EUT, and 𝛾 < 1 implies nonlinear probability weighting in line11 with CPT.  

2b) Further discussion about PDWs 

To understand how PDWs are determined under functional forms (Eq. (3) and Eq. (4)), 
it is important to note that the PDWs depend both on the weighting function 𝑤(∙) and the order 
of the cash prizes to which the probabilities are assigned. The PDWs can be interpreted as the 
difference in weight (determined by 𝑤(∙)) put on the events: “the outcome is at least as good as 
𝑥$” and “the outcome is strictly better than 𝑥$”. The following section will try to shed some light 
on the dynamics of the weighting function and PDWs and their rank-dependent nature with some 
examples.  

 
11 𝛾 > 1 gives nonlinear probability weighing opposite to that proposed by Tversky and 

Kahneman.  
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The weighting function (Figure 1) 

 
A plot of the weighting function (Eq. (4)) for different parameter values. The solid line (𝛾 =
1) represents EUT/linearity in probabilities.   

 
As the value of 𝛾 changes, so do the essential characteristics of the weighting function 

(Figure 1). First, a lower 𝛾 increases the steepness of the function around the endpoints of the 
interval. Second, a lower 𝛾 decreases the steepness of the function on a large part of the interior 
of the interval. This implies high sensitivity to changes in low and high probabilities and low 
sensitivity to changes in moderate probabilities. Third, a lower 𝛾 decreases the fixed point (where 
𝑤(𝑝) = 𝑝) of the function. If this weighting function alone determined the PDWs, every 
probability lower than the fixed point would be overweighted, and all other probabilities would 
be underweighted. But now, the most we can say is that very low probabilities are probable to be 
overweighted. Further, the overweighting will be more severe with a lower 𝛾. Still, this depends 
on the ordering of the probabilities. We introduce two example lotteries to demonstrate (Figure 
2). Let Lottery 1 be structured as (𝑝!, 𝑝", 𝑝<, 𝑝=, 𝑝>) = (0.4, 0.3, 0.15, 0.1, 0.05), with 𝑝! assigned 
to the lowest prize, 𝑝" to the second lowest, etc. We call the same lottery but with the opposite 
order of probabilities Lottery 2.  
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PDWs (Figure 2) 

 
Two graphs of two different lotteries showing how PDWs depend on both probabilities and the order of prizes. In 
the left graph, the prizes are decreasing in probabilities (0.05 is the probability of the largest prize; 0.40 is the 
probability of the smallest). In the right graph, the reverse is true.   

  
The smallest 𝛾 (0.4) gives PDWs that differ the most from probabilities. Over the 

probabilities (0.1,0.15,0.3), which can be seen as moderate, we see lower sensitivity to changes 
in 𝛾. Interestingly, in the case of Lottery 1, the highest probability is overweighted the most (in 
absolute terms). However, the weighting of this probability changes drastically when the order of 
probabilities changes; in Lottery 2, it is instead underweighted. This is due to the fact that π!! =
𝑤(∑ 𝑝%) − 𝑤(∑ 𝑝%)>

%'"
>
%'! = 𝑤(1) − 𝑤(0.6), while π!" = 𝑤(0.4), where π!! is the weight put on 

the outcome with probability 0.4 in Lottery 1, and π!" is the weight put on the outcome with the 
same probability in Lottery 2.  

Last, the functional forms of CPT are merely an attempt to test the qualitative properties 
of the theory against observed behavior in a relatively comprehensive and easy way. Our estimates 
of 𝛾 and 𝛼 should be seen as a “summary” of market behavior put into two numbers.  
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3) Method and Data  

3a) Lottery bonds  

The dataset used for our empirical tests is constructed from daily price data over Swedish 
lottery bonds issued between 1918 and 1994. Lottery bonds are bonds issued by the Swedish 
Treasury that were introduced to make saving more attractive to the average Swede. The term of 
Swedish lottery bonds ranges between 5 to 10 years. They differ from regular bonds by the fact 
that the size of each coupon payment is determined via lottery instead of being certain. The 
distribution of coupon payments is announced by the Treasury together with each issue and can 
vary over time. Every issue has at least two lottery dates per year. For example, the prize 
distribution of the second lottery of the first bond issued in 1994 is presented by the Treasury as 
follows.  

 
Prize distribution of a lottery bond (Figure 3) 

Prize Number of Prizes Number of bonds 
500 52 000 2 600 000 
1 000 940 2 600 000 
5 000 74 2 600 000 
10 000 35 2 600 000 
20 000 17 2 600 000 
100 000 17 2 600 000 
500 000 1 2 600 000 
1 000 000 1 2 600 000 

 

A figure displaying Lottery 94:12 as the Swedish Treasury presented it to potential 
buyers of the bond issue 94:1. The prize of 500 is the partial guarantee. Prizes are 
denoted in SEK.  

 
Over the period of our data, the Treasury often issues more than one lottery bond per year. 

The first bond issued in 1994 is denoted 94:1. The next bond issued in 1994 is denoted 94:2, etc. 
During the period of our data, most lottery bonds were held in accounts at Swedish banks. To 
allow time for banks to determine which bonds held in their accounts had winning numbers, the 
trading of lottery bonds was suspended six business days before a lottery and six business days 
after, a total of 12 business days.  

An important concept is that of the “partial guarantee”. Every lottery bond has a series 
number and an order number. For instance, 95:1 has 540 series with bonds of order number  
1-1 000 in each, making a total of 540 000 bonds. Each lottery is structured such that the winner 
of all prizes, except the smallest, is determined by drawing a series number and order number 
corresponding to one particular bond. In contrast, the winners of the smallest prize are determined 
by drawing only an order number corresponding to the bond with that order number in all series. 
Further, the order numbers are divided into intervals (or sequences), which are presented together 
with each issue. For the smallest payments, one order number is drawn from each of these 
intervals. By owning bonds with order numbers corresponding to a complete interval, one is 
guaranteed to win at least the smallest payment at every lottery: the partial guarantee. For issue 
95:1, one order number is drawn from every interval of 50 bonds, making a total of 200 intervals. 
For instance, by holding bonds of order number 251 to 300, one is guaranteed at least 500 SEK 
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every lottery. Because of the partial guarantee, lottery bonds are traded in bundles of sequenced 
order numbers called sequenced bundles. Bonds are also traded in mixed bundles, which are 
bundles of bonds that are randomly put together. Green and Rydqvist (1997) show that prices of 
sequenced bundles and mixed bundles systematically differ. 

As a result of the partial guarantee, the lotteries are of a two-tier structure. First, the 
winners of the partial guarantee are drawn, and the winning bonds are then “replaced”. Second, 
the winners of the larger prices are drawn. From the view of a holder of a single bond, you can 
win nothing or the partial guarantee and nothing or one of the larger prizes. Hence, Figure 3 does 
not paint the entire picture; the probability tree (Figure 4) fills in the gaps. 

  
Probability tree (Figure 4) 

 
A probability tree explaining the two-stage nature of lotteries tied to Swedish lottery bonds. G is the partial 
guarantee, and 𝑥! is prize level i (1000 to 1 million SEK in Figure 3). 𝑝" is the probability of winning the 
partial guarantee in stage one. 𝑝! is the probability of winning prize level 𝑥! in stage 2. 

 
The second stage of the lottery adds seven prize levels not depicted in Figure 3: the prizes 

1 000 to 1 million SEK, each with the partial guarantee of 500 SEK added. The probability 
measures in Figure 3 must be slightly adjusted to account for the additional outcomes. The correct 
objective probabilities can be derived from the information in Figure 3 with the help of the 
probability tree (Figure 4). The objective probability of winning exactly 𝑥$ is the probability of 
winning nothing in the first stage multiplied by the probability of winning 𝑥$ in the second stage, 
i.e., (1 − 𝑝A)𝑝$. Figure 10 in Chapter 4 showcases the complete two-stage version of Lottery 
94:12. 

Most prior research on Swedish lottery bonds has centered around the ex-day behavior of 
bond prices. “Ex-day” refers to the day after the right to a dividend (the lottery in our case) of a 
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security has been decided. An investor that buys a security (and does not sell) before its ex-day 
will receive the dividend corresponding to this ex-day. An investor buying the security on the ex-
day or later will not be eligible to receive the dividend. Green and Rydqvist (1999) show that 
bond price behavior around ex-days is mainly driven by the tax rate because of the unique tax 
treatment of coupon payments (they are tax-exempt) and capital losses on lottery bonds. Before 
1980, capital losses on lottery bonds could be used to offset income from any other source. An 
investor could, by buying a bond cum-lottery and selling post-lottery, use the capital loss to offset 
income from other sources while gaining a tax-exempt coupon. This kind of tax-arbitrage 
behavior was popularized by Roger Akelius (1974). Bond turnover around lottery drawings 
increased dramatically during this period. In 1980, the tax treatment was changed. Now, capital 
losses on bonds issued 1980 or earlier could be used to offset gains only on equities or other 
lottery bonds, and capital losses on bonds issued 1981 or later could be used to offset gains only 
from other lottery bonds. In 1990, the tax treatment of all living bonds was changed again, but the 
details are not important for our study. Green and Rydqvist (1999) demonstrate that under all tax 
regimes, the average price depreciation of bonds during lotteries is larger than the expected 
coupon. 

3b) Construction of variables  

To bridge theory and reality, we expand on 𝑓& from Chapter 2. Let each bond 𝑚 together 
with a time 𝑡 correspond to a lottery 𝛿 ∈ 𝑎, 𝑏, 𝑐, …. We create the variable �̂�B = 𝑘C,D.EC − 𝑘C,D

FGHD, 
where 𝑘C,D.EC is the cum lottery price of bond 𝑚 at time 𝑡 and 𝑘C,D

FGHD is the post lottery price of the 
same bond. The goal of this section is to recreate Eq. (2) with observed data.  

The representative agent who bought the bond for 𝑘C∗  and sells the bond cum lottery gains 
𝑘C,D.EC − τU𝑘C,D.EC − 𝑘C∗ V, where τ is the marginal tax rate and τU𝑘C,D.EC − 𝑘C∗ V is the tax liability 
caused by the capital gain/loss. Selling post lottery, the agent will gain, 𝑘C,D

FGHD + 𝐶U𝑉(𝑓B)V −
τU𝑘C,D

FGHD − 𝑘C∗ V,	where 𝐶U𝑉(𝑓B)V is her monetary valuation of lottery 𝛿. Under a no-arbitrage 
condition12, the agent must be indifferent between selling cum and post lottery. 

Setting these two expressions equal and solving for 𝐶U𝑉(𝑓B)V yields: 
𝐶U𝑉(𝑓B)V = 𝑘C,D.EC − 𝑘C,D

FGHD + τU𝑘C,D
FGHD − 𝑘C∗ V − τU𝑘C,D.EC − 𝑘C∗ V	

= 𝑘C,D.EC − 𝑘C,D
FGHD − τU𝑘C,D.EC − 𝑘C,D

FGHDV	
= U𝑘C,D.EC − 𝑘C,D

FGHDV(1 − τ)	
= �̂�B(1 − τ) 

Combining with Eq. (1) and incorporating the tax effect (1 − τ) in an error term, we use this 
equality to estimate the price of a lottery as  
 

𝑠B = �̂�B + 𝜖B . 𝐸𝑞. (5) 
  
Eq. (5) asserts that the price of the lottery is the price drop of the lottery bond with some error 
added. Substituting Eq. (5) into the left side of Eq. (2), the difference in the price of two lotteries 
𝑎, 𝑏	can be estimated as 	

𝑠& − 𝑠) = �̂�& − �̂�) + 𝜖&) , 
where 𝜖&) = 𝜖& − 𝜖) is the combined error.  

 
12 In deriving the no-arbitrage condition, we follow Green and Rydqvist (1999) but incorporate 

our novel 𝐶1𝑉(𝑓#)3 term. 
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To determine the representative agent’s preferences (Eq. (2)) using observed price drops, 
the property 𝐸[ϵ&)] = 0 is not enough; we need 𝜖&) = 0. First, the tax effect must be accounted 
for. The ex-day behavior of lottery bonds implies that 𝐸[ϵ&] < 𝐸[ϵ)] if lottery 𝑎 is tied to a bond 
subject to a more liberal tax policy than that which 𝑏 is tied to because investors pay for both the 
lottery and the tax benefits. Therefore, we compare only lotteries taking place under the same tax 
policy. With this restriction, we have	𝐸[𝜖&] = 𝐸[𝜖)] but not 𝜖& = 𝜖). For the latter to be true, we 
compare only lotteries taking place on the same date and tied to bonds in mixed bundles. By 
including only lotteries tied to mixed bonds, the systematic price differences between sequenced 
and mixed bundles of bonds are controlled for. By comparing exclusively lotteries taking place 
on the same date, we fully account for time fixed effects. With the above conditions in place, we 
argue that we are left with 

 
𝑠& − 𝑠) = �̂�& − �̂�) . 𝐸𝑞. (6) 

 
Combining Eq. (6) and Eq. (2), the goal of this section is reached: �̂�& − �̂�) > 0⟺

	𝑉(𝑓&) > 𝑉(𝑓)). Theoretical preference relationships (𝑦&)) can be inferred from observed 
variables (�̂�& and �̂�)). To summarize, we argue that the difference in the price drop over two 
lotteries, tied to mixed bonds and taking place on the same date, is caused only by differences in 
lottery preferences. With these constraints in place, the available dataset of bonds shrinks from 
1918-1994 to 1987-1994.  

Last, we want the time span of our sample to be as recent and short as possible while still 
retaining an appropriate number of observations. Preferences are more likely to be stable over a 
shorter time span, increasing the validity of the representative agent assumption. By using the 
latest data available, our results are more applicable to the current society. We are left with the 
pairs of bonds (89:1,89:2), (91:1,91:2), (92:1,92:2), (93:1,93:2), and (94:1,94:2), giving a sample 
size of 116 lottery comparisons over a period of circa 11 years13.  

 
Complete sample of lottery comparisons (Figure 5) 

Pair of 
bonds 

Number of 
lottery 

comparisons 

Number 
of 

𝑦#$ = 1 

Date of 
first lottery 
comparison 

Date of last 
lottery 

comparison 

Number of 
distributions 

Average 
expected 
coupon 

89:1 89:2 28 13 1990-01-18 1999-01-14 2 1 21.02 22.50 
91:1 91:2 24 12 1991-11-14 1999-06-23 9 8 19.12 18.88 
92:1 92:2 22 9 1993-01-07 2000-01-13 7 5 19.42 19.09 
93:1 93:2 22 9 1994-02-03 2001-02-01 4 4 17.29 14.04 
94:1 94:2 20 14 1995-03-16 2001-06-29 2 1 11.50 12.00 

 

A table giving an overview of our sample of 116 lottery comparisons. “Number of distributions” and “Average expected coupon” 
correspond to the bonds in the “Pair of bonds” column. For example, 91:1 has nine different distributions; 91:2 has eight. 
“Number of 𝑦#$ = 1” indicates the number of times a lottery of the left bond (from the “Pair of bonds” column) is valued higher 
than that of the right. “Average expected coupon” is denoted in SEK. No issue from 1990 is included because there is no other 
issue with coinciding lotteries.  

 
Note that most of the issues have variability in their lottery distribution. For instance, 

91:1 has nine different lotteries denoted 91:11, 91:12 etc. The first lottery of issue 91:1 has the 
distribution 91:11, the second 91:12, etc. From the ninth lottery onwards, every lottery has the 
distribution 91:19. This process follows for all bonds.  

 
13 While we use bonds issued between 1989 and 1994, they come to term several years later. For 

instance, bonds issued in 1994 have lottery drawings until 2001. 
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The turnover of lottery bonds is small compared to other securities. On some days, there 
is no turnover for some bundles of bonds. This was common in the earlier parts of the 20th century 
but much less so during the 1980s and 1990s. When compiling our dataset, we include 
observations in which bonds were last traded at a maximum of three days before the suspension 
of trading tied to a lottery and traded first at a maximum of three days after the suspension. This 
is a potential source of bias in our data. If one bond that is traded directly after the suspension is 
compared with one that is first traded three days after, we could be confounding lottery 
preferences with other external factors occurring during those days. However, for the period of 
our sample, this potential issue only surfaces four times, merely in the case of a single day with 
no trading before or after the suspension. It is hard to argue that four infractions would 
significantly bias our estimates, and the exclusion of these observations could very well be worse 
than including them.  

All lotteries in our dataset follow a similar structure to that of lottery 94:12 (Figure 3). 
There are seven prize levels, ranging from 1 000 to 1 million SEK, not counting the partial 
guarantee. The partial guarantee ranges from 500 to 750 SEK.  The probability of winning nothing 
dominates (around 98%), and most of the residual probability mass is assigned to the lowest non-
zero prize14. The probability distributions we deal with are quite different from those of laboratory 
experiments in which the probabilities can be more evenly distributed. This has implications for 
the conclusions we can draw based on our results.  

3c) Estimation of population parameters 

The decision of how to group subjects in the estimation phase is an important one. 
Gurevich, Kliger, and Levy (2009) are, like us, faced with market decisions instead of individual 
decisions. They estimate parameters separately for each stock in addition to providing a pooled 
estimate. With grouping, they can survey heterogeneity in risk attitudes between stocks. We are 
constrained by the number of observations. While bond pairs (Figure 5) seem a fitting 
stratification, no group would reach 30 observations15. We proceed to pool all observations to 
estimate 𝛼 and 𝛾. 

To apply maximum likelihood estimation, the joint likelihood of observing our sample 
(116 binary choices over 232 lotteries) must be a function of CPT parameters 𝛼 and 𝛾. From the 
independence assumption, we can write the joint likelihood as the sum of log individual 
probabilities. From the representative agent assumption, market choices are modeled by a single 
stochastic CPV function. Through this function, we compare stochastic CPVs of lotteries, in 
which the difference (𝑧&)) in the stochastic terms (𝑟& and 𝑟)) is cumulatively distributed according 
to 𝐺(𝑥) = -!

!(-!
. 

  

 
14 The probability of winning the smallest non-zero prize conditional on winning any non-zero 

prize is also around 98%. 
15 Evinced by the “Number of lottery comparisons” column. 
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 Logistic cumulative probability function (Figure 6) 

 
A graph showing the function we use to model the probability of choosing a given lottery over another. For 
instance, a difference of 1.5 in static CPV between two lotteries gives a 0.8 probability of picking the one 
with the higher static CPV. 

 
Our G-function (Figure 6) has a range between 0 and 1 and is commonly used as the 

cumulative probability of the realization of observed variables (e.g., logit model). The properties 
of the G-function limit us to consider only binary decisions over lotteries. In Chapter 2, we show 
that introducing a stochastic term implies that the probability of choosing lottery 𝑎 over lottery 𝑏 
is solely determined by the difference in their respective static CPV, i.e., Δ&). The cumulative 
probability of choosing 𝑎 over 𝑏 is then 𝐺(𝛥&)). Intuitively, the more utility lottery 𝑎 brings the 
agent, the more likely she is to prefer it to lottery 𝑏.  

We see the application of stochastic utility as uniquely fitting in describing the 
representative agent on the bond market. The markets for bonds and stocks are innately 
characterized by random market noise: various forms of volatility, such as price corrections and 
price fluctuations. We posit that this volatility arises from the probabilistic nature of human 
decisionmaking (Rieskamp 2008). A great deal of contradictions are amended by modeling 
decisionmaking as a probabilistic process instead of a deterministic one. In our sample of 116 
decisions, several involve choices over identical pairs, i.e., 𝑓& = 𝑓. and 𝑓) = 𝑓/. Letting 𝛥&) > 0, 
identical lottery pairs, 𝛥&) = 𝛥./, implies �̂�& > �̂�) and �̂�. > �̂�/ in a deterministic world. But in 
our sample, we are confronted with instances of �̂�& > �̂�) and �̂�. < �̂�/ and vice versa. A more 
realistic point of view is that of the probabilistic: identical lottery pairs increase the likelihood of 
the inequalities pointing in the same direction but do not preclude the possibility of market noise, 
such as intraday volatility, distorting the stochastic CPV sufficiently to switch the preference 
relationship. Our G-function and observed 𝑦&)-variables enable us to estimate 𝛾 and 𝛼 with a 
maximum likelihood function that performs a grid search.  

3d) Inferences 

To test our hypothesis, we need to estimate confidence intervals for 𝛾x. Confidence 
intervals are provided for 𝛼x as well. To this end, we use a bootstrapping process, the foundation 
of which rests on repeated resampling. From our realized sample, observations are drawn with 
replacement until there are again 116 observations. We use the estimation method from 3c to 
estimate 𝛾%) and 𝛼%), which are the 𝛾x and 𝛼x of this particular bootstrap sample. The process is 
repeated 1 000 times, and every pair of estimates (𝛾%) and 𝛼%)) is stored. Under certain 
conditions—which we assume fulfilled—the characteristics of the distributions of 𝛾%) and 𝛼%) 
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will reflect those of the sampling distributions that are important when performing statistical 
inference (Horowitz 2001). The bias in our point estimates is estimated by 𝐵𝑖𝑎𝑠U𝜃{V = 𝐸U𝜃{V −
𝜃 ≈ 𝜃)}}} − 𝜃{, where 𝜃 is the parameter of interest. Below are three ubiquitous confidence intervals 
presented by Hesterberg (2011) and Johnson (2001). 

The simplest is the percentile interval: 
~𝐹{J!(𝛽/2)	, 	𝐹� J!(1 − 𝛽/2)�, 

where 𝐹{ is the bootstrap approximated sampling distribution and 𝛽	is the confidence level.  
If we want to take bias into account, we use the pivot confidence interval. It is derived 

from the approximated distribution of the variable 𝜃 − 𝜃{. 
𝑃 ~𝜃{ − 𝐹{J!(1 − 𝛽/2) < 𝜃{ − 𝜃) < 𝜃{ − 𝐹{J!(𝛽/2)� ≈ 

≈ 𝑃 ~𝜃{ − 	𝐹� J!(1 − 𝛽/2) < 𝜃 − 𝜃{ < 𝜃{ − 𝐹{J!(𝛽/2)� = 

= 𝑃 ~2𝜃{ − 	𝐹� J!(1 − 𝛽/2) < 𝜃 < 2𝜃{ − 𝐹{J!(𝛽/2)�, 
which yields the confidence interval:  

(2𝜃{ − 	𝐹� J!(1 − 𝛽/2)	, 2𝜃{ − 𝐹{J!(𝛽/2)). 
The last confidence interval is the bias-corrected and accelerated interval (BCa). This 

interval considers not only the bias but also the “acceleration”. With acceleration, the standard 
error of the point estimate depends on the point estimate itself and does not reflect the true 
standard deviation of the sampling distribution. The BCa confidence interval is defined as: 

~𝐹{J!U𝑝(𝛽/2)V	, 	𝐹� J!U𝑝(1 − 𝛽/2)V�, 

where 𝑝(𝑥) = 𝛷 �𝑧5 +
K"(L#$(M)

!J&NK"(L#$(M)O
�, and 𝛷(∙) is the cumulative normal density function. The 

bias estimate, 𝑧5 = 𝛷J!U#U𝜃) < 𝜃{V/𝐵V, is estimated using the number of bootstrap estimates 
that fall below the point estimate, where #(𝑥) is a function counting the number of times the 
statement 𝑥 is true, and 𝐵 is the number of bootstrap estimates. The acceleration parameter is 

defined as 𝑎 = ∑ NQ%R JQ%S O
&'

()$

TU∑ NQ%RJQ%S O
*'

()$ V
&/*, where 𝜃W�  is the point estimate calculated by excluding 

observation 𝑖 and 𝜃W�  is the average of those values.  
Confidence intervals are calculated for both 𝛼 and 𝛾 using an appropriate bootstrapping 

package in R. We follow convention by estimating 1 000 bootstraps to create our confidence 
intervals. To test our hypothesis, we survey the three confidence intervals presented. If no interval 
for 𝛾x intersects 1, there is a rejection of our null hypothesis. 
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4) Results 

 
Main results (Figure 7) 

 𝜶 𝜸 
Point estimate 0.46 0.43 

Bias 0.02 0.13 
Percentile interval ( 0.00 , 0.73 ) ( 0.28 , 0.92 ) 

Pivot confidence interval ( 0.18 , 0.91 ) ( -0.05 , 0.59 ) 
BCa interval ( 0.00 , 0.65 ) ( 0.23 , 0.74 ) 

 

A table presenting the CPT parameters of our study. Confidence intervals and bias are presented as well. 
The different confidence intervals are described in section 3d. Every confidence interval is a 95% 
confidence interval. The leftmost endpoint of two 𝛼-confidence intervals is rounded to zero (the 
bootstrap estimates are of order 10%&). 

 
For both point estimates, none of the confidence intervals include 1. We reject our null 

hypothesis at the 0.025 confidence level16; the representative agent displays nonlinear weighting 
of objective probabilities (see Figure 9 for a graphical depiction). The estimated bias in 𝛼x is almost 
negligible, whereas there is a relatively large estimated upward bias in 𝛾x. 
  

Histograms of bootstraps (Figure 8) 

 
Two graphs showing the distribution of bootstrap estimates for our parameters. The dashed lines mark our 
point estimates. Seven outliers (ranging from 9 to 11) are excluded from the right graph to illustrate the 
properties of the distribution of 𝛾-estimates in more detail. 

 
Both distributions in Figure 8 are far from normally distributed, and there is a significant 

bunching of 𝛼-estimates at 0.  
  

 
16 Because of our one-sided hypothesis test.  
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The weighting function of the representative agent (Figure 9) 

 
A graph depicting the weighting function implied by our estimate 𝛾 = 0.43. The dashed line 
represents EUT (𝛾 = 1), i.e., linearity in probabilities. 

 
Figure 9 gives a clear account of the significant nonlinear weighting of objective 

probabilities exhibited by the representative agent. The function has a fixed point at roughly 0.23. 
Moreover, the function is very steep around the endpoints of the interval but relatively flat on 
most of the interior.   
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PDWs contrasted with objective probabilities (Figure 10) 

 

Prize Obj. Probability 
(𝛾 = 1) 

PDW  
(𝛾 = 0.43) 

𝑃𝐷𝑊
𝑂𝑏𝑗. 𝑃𝑟𝑜𝑏 

0 0.979591 0.87 0.89 
500 0.020 0.096 4.78 

1 000 0.00035 0.017 48.25 
1 500 7.2 ∙ 10JT 0.00073 100.20 
5 000 2.8 ∙ 10J> 0.0035 125.53 
5 500 5.7 ∙ 10J] 9.0 ∙ 10J> 157.51 
10 000 1.3 ∙ 10J> 0.0025 189.35 
10 500 2.7 ∙ 10J] 6.3 ∙ 10J> 234.30 
20 000 6.4 ∙ 10JT 0.0018 278.46 
20 500 1.3 ∙ 10J] 4.4 ∙ 10J> 339.51 
100 000 6.4 ∙ 10JT 0.0035 539.78 
100 500 1.3 ∙ 10J] 0.00016 1185.96 
500 000 3.8 ∙ 10J] 0.00056 1481.11 
500 500 7.7 ∙ 10J^ 1.4 ∙ 10J> 1832.28 

1 000 000 3.8 ∙ 10J] 0.0013 3550.55 
1 000 500 7.7 ∙ 10J^ 0.00030 39151.56 

A table showing the difference between our estimated weights (PDW) and those predicted by EUT (Obj. 
Probability) over outcomes of the complete two-stage version of lottery 94:12 (Figure 3).  

 
In our CPT model, the zero-prize outcome is underweighted compared to its objective 

probability (0.87 < 0.98). The other prizes are considerably overweighted; the weight mass 
assigned to all non-zero prizes under EUT is 0.02 (summing objective probabilities) compared to 
0.13 under CPT (summing PDWs). The relative difference between the PDWs and their 
corresponding objective probabilities widens as the prize level increases.  The weight assigned to 
the event of winning at least 1 million SEK in prizes is overweighted by a factor of 430017. This 
pattern follows for every lottery of our sample.  

 
17 Calculated by dividing the sum of the PDWs assigned to prize levels equal to or greater than 1 

million SEK by the sum of the objective probabilities assigned to the same prize levels.  
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5) Discussion 

5a) Representative agent assumption 

The representative agent assumption is crucial for us to facilitate estimation. Camerer and 
Ho (1994) employ it as a remedy for a scarcity of observations on individual subjects. We face 
the same predicament and argue that individual purchasing decisions over lottery bonds can be 
aggregated into a single parameter estimate for a single representative agent. Two factors 
strengthen its use. First, with the narrow timespan of our sample, the composition of the lottery 
bond market is likely to be stable, making the representative agent assumption more fitting. 
Second, market data is especially geared towards the assumption. Markets are an aggregation of 
thousands of people exhibiting the modal characteristics of its participants. Still, we are surely 
missing important dynamics between market participants by describing the market’s risk attitudes 
with a single parameter estimate. Bruhin, Fehr-Duda, and Epper (2010) survey the heterogeneity 
of risk preferences within and across countries. They discover a persistent share (around 20 %) 
of people across countries to be EUT maximizers. The remaining share is split between agents 
exhibiting moderate probability weighting and more radical probability weighting. Even if the 
lottery bond market is characterized by a similar split of risk attitudes, the nature of our dataset 
makes differentiating between them impossible.  

5b) Independence assumption  

The independence assumption is an implication of the construction of our log likelihood 
function. A main concern is self-perpetuating valuations. To demonstrate, let two lotteries be 
compared on multiple occasions. Assume that the second lottery is preferred at the first decision. 
If, in the following instances, the market reminisces about and confirms the previous relative 
valuation, independence is broken. With self-reinforcing decisionmaking stemming from the first 
decision, stochastic terms are serially correlated. Still, we believe the concern is unlikely. Self-
perpetuating valuations of this kind stand in conflict with efficient markets. 

5c) Validity of analysis 

While our point estimates are reasonable and in line with other empirical findings (Figure 
11), some of the bootstrap estimates are not. A few bootstrapped 𝛾:s are extremely large. While a 
𝛾 greater than 1 is not necessarily unreasonable, it goes against the empirical findings that 
motivated CPT. Specifically, it indicates that lower probabilities are prone to be underweighted 
or even neglected, while higher ones are prone to be overweighted. For 𝛾:s greater than 7, which 
are encountered in our sample, probabilities as high as 0.3 could be neglected; this, we find 
unreasonable. Further, 6% of estimated 𝛼:s are approximately zero. In these cases, the 
representative agent exhibits no marginal utility in money. The fact that our sample of lottery 
comparisons and/or our estimation process can imply something that is so incoherent with 
economic theory suggests that some degree of caution is needed.  

A likely cause of these breaches of logic and the significant bias in 𝛾 is limitations in 
functional forms (Eq. (3) and Eq. (4)). We are faced with more complex lotteries than other 
studies. Further, there are repeated close calls of stochastic dominance in which the almost 
dominated lottery is preferred. In some cases, it is a question of a basis point difference in one or 
two probabilities that makes a lottery not dominated. With just one parameter to determine the 
form of our weighting function (Figure 9), these slight differences in probabilities cannot be 
effectively modeled. Instead, our maximum likelihood process is forced to lower the marginal 
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utility of money. As this reaches 0, the stochastic dominance factor is attenuated. Now, say that 
such observations are drawn adversely many times in a bootstrap sample. Then, the parameter 
values that maximize the likelihood of this observed sample will likely be unreasonable. One 
approach to these kinds of issues, used by Nilsson, Rieskamp, and Wagenmakers (2011), is to set 
the domain of the parameters to a priori specified interval. If applied in our case, it would decrease 
the standard errors of the point estimates but not solve the root cause of our unreasonable values. 
Still, our point estimates are reasonable when put in the context of other CPT model estimation 
papers (Figure 11). That we get there with fewer restrictions is a sign of the strength of our 
estimation process. Ultimately, the existence of unreasonable values could be an indication that 
choices under uncertainty in this market are better described by other functional forms than the 
ones suggested by Tversky and Kahneman (1992). 

An important factor in both lab and field experiments is the framing of probabilities. That 
is, how should the probabilities of a prospect be depicted for an experiment to reflect a decision 
made in real life? In real life, you rarely have access to stated objective probabilities, and if you 
do, the framing of these might affect your decisionmaking. To demonstrate, a probability of 0.3 
can be stated as 

30%  ,  <
!5

  ,  0.3  ,  3/10  ,  “3 out of 10”  ,  3 ∙ 10J!  ,    ,  6/20  ,  0.03 ∙ 10. 

Although some of these depictions are quite unorthodox, they emphasize that the subjective 
probability of an event can very well depend on how its objective probability is framed. This 
becomes even more apparent when smaller and more complex probabilities are introduced. Most 
lab experiments use the standard decimal form (Tversky and Kahneman 1992) or percentages 
(Zeisberger, Vrecko, and Langer 2012; Stott 2006) to express objective probabilities, but some 
use alternatives such as pie charts (Harrison and Rutström 2009). In our case, a 17 in 2 600 000 
chance to win 100 000 SEK (Figure 3) could be interpreted more favorably than a probability of 
0.00000653846 to win 100 000 SEK. Concurrently, the two-tier structure (Figure 4) of the 
lotteries and the extremely small probabilities (Figure 3) may make it difficult for the 
representative agent to weight outcomes linearly in objective probabilities even if she wants to. 
Ultimately, we cannot rule out the possibility that the framing process and complexity of the 
lotteries are the main drivers of observed behavior. We can only say that the representative agent 
exhibits nonlinear weighting of objective probabilities. 

5d) Generalization 

By focusing on the estimation of CPT, we inherently constrain our study’s implications. 
The estimated parameters of our model reflect not only the chosen parametric form but also a 
specific population at a specific point in time, making decisions under a particular context. For 
studies set in the laboratory, the limitations are even more stark. It is in no way obvious that 
decisionmaking in fictional scenarios is in any way generalizable. By carrying out a field study, 
we are at the least making conclusions about the specific “field” of lottery bonds in Sweden, 
which we find valuable in itself. Moreover, the specific population under consideration is 
considerably larger than most experimental studies to date. But exactly who makes up this 
population and, in turn, whom our representative agent embodies are difficult questions. Lottery 
bonds in Sweden were launched to entice the average Swede to start saving. By the 1990s, the 
wild turnover (a result of traders chasing arbitrage opportunities) around lottery drawings had 
subsided with changed tax laws. Taken together, we see the representative agent to reasonably 
approximate the average retail bond investor in Sweden during the 1990s and 2000s. Still, to draw 
wide generalizations from our results is problematic. First, during the period of our sample, 
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Sweden was dealing with a severe financial crisis and, later, a boom. It is conceivable that 
people’s risk attitudes during such periods do not reflect their behavior in more stable times. 
Second, Swedes might exhibit different weighting of probabilities than other nationalities; Rieger, 
Wang, and Hens (2017) show wide differences in CPT parameters between countries. Third, 
decisionmaking under uncertainty is likely to be context-dependent (Figure 11). Considering the 
significant difference between the estimates of Gurevich, Klinger, and Levy (2009) and ours (we 
find more nonlinear functions), risk behavior in options markets seemingly varies from risk 
behavior in lottery bond markets. Options markets are likely to be characterized by a different 
kind of investor than bond markets.  

 
CPT parameters for different studies (Figure 11) 

 𝜶 𝜸 
Present paper  0.46 0.43 
Tversky and Kahneman 1992 0.88 0.61 
Jou and Chen 2013  0.92 0.80 
Rieger, Wang, and Hens 2017 0.46 0.50 
Bocquého, Jacquet, and Reynaud 2014 0.28 0.66 
Gurevich, Kliger, and Levy 2009 0.98 0.84 

 

A table presenting CPT estimates for six different studies (ours included) set in different contexts. In Kahneman 
and Tversky’s study, graduate students at Berkeley and Stanford choose between different money gambles. Jou 
and Chen’s study deals with the risk attitudes of Taiwanese highway drivers. Rieger, Wang, and Hens survey the 
risk preferences of a large number of undergraduate students in 53 countries. Bocquého, Jacquet, and Reynaud 
research the risk aversion of French farmers to risky gambles. In Gurevich, Kliger, and Levy’s paper, the 
preferences of investors in US options markets are explored. 

 
Further, the lotteries in our sample are of a very specific character; only a very small 

portion of the probability mass is allocated to winning a non-zero prize. Our study exclusively 
focuses on the shape of the weighting function around the endpoints of the unit interval, and 
interpolation of these results to the whole interior should be done with caution. For our results to 
be more comparable to other studies, we need greater variance in the probability density of our 
lotteries.  

5e) Further research 

With the above discussion in mind, there are multiple ways our sample could be examined 
further. Parameters could be estimated using other functional forms for 𝑢(∙) and 𝑤(∙). With more 
advanced forms, the underlying decision processes may be modeled more accurately. Other 
estimation methods than maximum likelihood can be used to capitalize on the fact that we can 
infer cash equivalences of the lotteries up to some, mostly tax-dependent, error. In the present 
paper, these cash equivalences are only used in an ordinal manner. Further, lotteries in our sample 
frequently share prize levels and probabilities. This might provide ample testing ground for the 
concept of Cancellation presented by Kahneman and Tversky (1979). Another angle worth 
exploring is how, from the perspective of evolutionary economics, the behavior observed in this 
paper can survive (Alchian 1950). Intuitively, the optimal behavior in a financial market to ensure 
survival (i.e., positive profits) should be to maximize expected returns. 
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6) Conclusion 

We establish Swedish lottery bond investors to significantly overweight low objective 
probabilities of winning large prizes. Specifically, events of low probability are overweighted by 
a factor of 4300. We conclude that investors do not adhere to linearity in objective probabilities. 
Our estimates for 𝛼 and 𝛾 imply more diminishing sensitivity in the representative agent’s utility 
function and more drastic probability weighting than those of Tversky and Kahneman (1992) 
imply. Estimates from Gurevich, Kliger, and Levy’s (2009) field study are even more linear. The 
difference may indicate that decisionmaking under uncertainty is highly dependent on the context. 
Further, nonsensical values from the bootstrapping process suggest limitations in our functional 
forms. The former poses problems in generalizing our findings, and the latter underscores the 
necessity for further investigation.  
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