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Abstract

It has been argued that rational choice theory is unable to explain
the occurrence of social revolutions. This paper argues that if social
revolutions are modelled in an evolutionary setting it is possible to pre-
dict when revolutions occur. It is shown that revolutions are expected
to occur when regimes lose their determination to punish revolutionary
activity early and severely. In the process of constructing the model
some results about public good provision are generalized.
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1 Introduction

Since social revolutions have the power to alter the fate of society and indi-
vidual alike they have attracted the attention of theorists who have tried to
understand, predict, justify or denounce this practice. Although the norma-
tive status of revolutions is an interesting question it is best left for moral
philosophers. What might interest us, as social scientists, is whether it is
possible to predict or understand the mechanisms of revolutions. Such an
understanding might help us to either prevent or orchestrate them.1

In this essay we will build an evolutionary model of revolutions and inves-
tigate how revolutionary participation is affected by changes to the regime’s
intervention policy and its strength. By intervention policy we mean the
point at which the regime decides to retaliate against demonstrators and
rebels, and by the regime’s strength we mean the cost they are able to
incur on the citizens who decide to participate. These variables will be for-
mally introduce below. We will show how changes to these variables are
related to the asymptotic stable equilibria of the model. Since the results
are intuitively appealing and since evolutionary models demand less of rev-
olutionaries in terms of rationality, it fits the data better than other models
of revolutionary participation.

The plan of the essay is as follows: section 2 will offer a review of the
literature on rational choice and revolutions. Section 3 will describe the
formal model. Sections 4 and 5 will offer analyses of the model in a static
and an evolutionary game theoretic setting respectively. And finally, section
6 will conclude.

2 Previous Research

Within rational choice theory a revolution has traditionally been viewed as
a free-rider problem where a successful revolution is modeled as a public
good (see for example Mancur Olson [1965] and Gordon Tullock [1971]).
Although Tullock himself does not claim that the revolutionary situation
is a prisoner’s dilemma type of game where abstaining from revolutionary
action is a dominant strategy, it seems as many following him have done
so. Allen Buchanan [1979] for example explicitly models the revolution as
a prisoner’s dilemma played between the individual and the rest of society.
The conclusion have thus been that without private incentives revolutionary

1Which ought to be prevented and which to be orchestrated is for someone else to
decide.
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collective action cannot occur (Jack Goldstone [1994]). We have, however,
observed and continue to observe social revolutions around the world where
it seems as individual incentives are lacking. It has been suggested that this
is a bit of a conundrum for rational choice theorist. Goldstone [1994, p.139-
140] claims that ’given that the empirical evidence contradicts the theoretical
conclusion of rational choice theory, either the starting assumptions or the
logic of the argument must be flawed.’

A lot of work has focused on showing that the schedule of rewards and
punishments does in fact not constitute a prisoner’s dilemma. This has been
done by attempting to identify the private incentives that motivate individ-
uals to revolutionary action. Morris Silver [1974], for example, developed
Tullock’s model in order to incorporate both psychological and material ben-
efits received from participating in a revolution. He suggests that everything
from an individual’s sense of duty to class, country, democracy, law, race,
rulers, God, or a revolutionary ideal, to his taste for violence or adventure
should be included among the relevant psychological private benefits. The
most influential suggestion of what motivates individual revolutionaries is,
however, derived from their membership in various groups. Theda Skocpol’s
[1979] study of the French, Russian, and Chinese revolutions made her con-
clude that the causes and difference in outcomes of the three revolutions
was in large influenced by the difference in composition of the countries’
peasant class. Goldstone’s [1994] own solution to the problem is reached
by formalizing Skocpol’s argument and showing that group membership can
help transform a revolutionary situation from a prisoner’s dilemma to an
assurance game.2

Although there seems to be a lot to the idea that revolutionaries are
motivated by ’what-would-my-neighbor-think-of-me’-considerations, it is a
bit of a straw-man argument. Sussanne Lohmann [1997, p.304-305] claims,
for example, that most arguments that use selective incentives as necessary

conditions for participation in revolutionary action are based on a misin-
terpretation of Tullock and Olson. They argued that the production of a
collective good (in this case a revolution) was subject to a free-rider prob-
lem since each and everyone had an incentive to let the others pay the cost.
Being a free-rider problem, however, does not mean that public good provi-
sion should be modeled as a prisoner’s dilemma with non-contribution as a

2An assurance game, also called a coordination game, is a game where everyone prefers
to do what everyone else are doing. If everyone else are participating in revolutionary
action, then I would prefer to participate. The reason might be that I fear punishment
from the other revolutionaries if I don’t. And if no one else participates, then I prefer to
abstain since I fear that the regime will punish me.
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dominant strategy. For example, think of a situation where two neighboring
storekeepers would like to install lights outside their stores. If one makes
the investment both would benefit equally, so both prefers to free-ride on
the other storekeeper’s investment rather than make the investment them-
selves. However, they would prefer to make the investment themselves if
they believed that their neighbor would not invest. So although there exists
an incentive to free-ride on the neighbor’s effort, non-contributing is not a
dominant strategy. Thomas Palfrey and Howard Rosenthal [1984] have for
example shown that public good provision is more adequately modeled as a
clash of wills game than as a prisoner’s dilemma. A game where everyone
prefers to not participate if the good is produced, but prefers that the good
is produced and they participate if the alternative is that the good is not
produced at all. That is, everyone prefers to participate if and only if they
are pivotal to the production of the good. Thus, this sort of model allows for
non-zero turnout even if everyone involved are rational, fully informed, and
lack private incentives. So if this model is used to describe revolutionary
situations then the alleged discrepancy between rational choice theory and
empirical observations is diminished. Or as Lohmann [1997, p.305] puts it,
’the real issue is not whether game theory can explain the fact of collective
action’ but rather whether it can explain ’the turnout of huge numbers of
people - thousands, and sometimes tens and hundreds of thousands, or even
millions.’

Lohmann’s [2000] answer to the challenge is to model revolutionary
movements in a dynamic setting. Building on the theories of informational
cascades and herd effects [Banerjee, 1992, Bikhchandani et al., 1992] she
argues that if we view potential revolutionaries as responding to ’herd’ me-
chanics we can greatly increase our prediction of revolutionary turn-out to
match our empirical observations. She models the revolution as a repeated
game with asymmetric information. Each player receives a private signal
about the value of a successful revolution and in the first round each players
chose whether to participate or to abstain from revolutionary action based
on this signal. In the forthcoming rounds each agent rationally updates
his belief about the value of the successful revolution based on his obser-
vation of the turnout in previous rounds. Since everyone act in this way,
and this is common knowledge, there are two ways in which a player’s de-
cision to participate can become pivotal in Lohmann’s model. The first is
the same as in Palfrey and Rosenthal’s model of public good provision, viz
being decisive for the immediate success of the revolution. The second way
of being pivotal is to be the player whose participation starts an (positive)
’informational cascade’ that cause the rest of the players to ignore their pri-
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vate signal and instead ’go with the flow.’ By including the influence that
revolutionaries have on each other Lohmann’s model becomes intuitively ap-
pealing. Although her argument is purely theoretical she uses the Monday
demonstrations of Leipzeig as anecdotal evidence for the soundness of her
model.3 Considering that we usually think of political unrest as starting
out slow before culminating in a full scale revolution, it would seem as she
could have added more anecdotes as evidence had she wanted to. That the
revolutionary process should be modeled as dynamic seems plausible. The
problem, however, with Lohmann’s model is that it demands a lot from the
revolutionaries in terms of rationality. Not only should they be able to cal-
culate (and implement) the optimal mixed strategy, but also to do so given
the knowledge that everyone (knows that everyone knows... that everyone)
rationally updates their beliefs. Their decision to participate or abstain ef-
fects the other players’ beliefs and thus their future decision to participate
or abstain. To solve for equilibrium proves to be somewhat of an herculean
task.

We will retain the idea that the revolutionary process should be modeled
in a dynamic setting by using evolutionary game theory to describe the
changes in the population. By using evolutionary game theory to analyze the
situation we will abandon the requirement of rational players and common
knowledge. Instead we will consider a population consisting of two types of
individuals: revolutionaries and abstainers. The population’s share of, say,
revolutionaries will in the long run be determined by their relative success.
Before we get to the evolutionary analysis we will introduce the underlying
model and give a brief analysis of it with the help of classic game theory.

3 The Model

The revolution will be modeled as a game of discrete public good provision as
described by Palfrey and Rosenthal [1984]. The idea is that if the revolution
is successful every member of the citizenry will reap the benefits of improved
institutions, reduced repression and increased freedom. We will thus assume
that all players, i ∈ {1, 2, ...,M}, are alike in the sense that everyone are
repressed and prefers a successful revolution to the status quo. Furthermore
we will assume that the value of a successful revolution is known by all.
This seems to be a somewhat reasonable assumption at least when it comes

3The Monday demonstrations started of as prayers for peace in Leipzig’s Nikolai Church
but then gradually grew until at its peak 320.000 out of Leipzig’s 500.000 inhabitants
participated.
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to examples such as East Germany where information about life in West
Germany was readily available. The value of a successful revolution and of
the status quo will be normalized to 1 and 0 respectively.

A general model could be constructed where the players have the choice
of participating as a reactionary fighting for the regime. The model offered
by Tullock [1971], for example, allows for such considerations. Another
possibility would be to allow the citizenry to chose a revolutionary effort
level ei ∈ [0, 1]. This would allow us to capture the fact that there are
different levels of involvement in a revolution: some shirk at work, while
others launch an attack on the Bastille. However, in order to make the model
as simple as possible we will limit the citizenry’s strategies to ‘abstaining’,
si = 0, and ‘participating’, si = 1.

Furthermore we will follow Palfrey and Rosenthal [1984] and assume
that if the number of participants, m ∈ {1, 2, ...,M}, exceeds the regime’s
breaking point, w > 0, the revolution will succeed, otherwise it will fail.
We will also assume that the regime has a response threshold, t ∈ [1,M ].
t is determined by what was called the regime’s intervention policy in the
introduction and will be taken as exogenous to the model. If m is greater or
equal to t, then the regime will use their military or police forces to punish
the revolutionaries. Note that it is possible that the revolutionaries get
punished even if the revolution succeeds, this will be the case if m ≥ w and
m ≥ t. If m ≥ t a cost of c will be suffered by everyone who participated
in the attempt. c is determined by the regime’s strength and will also be
taken as exogenous to the model. It is here possible to complicate things
and, quite realistically, assume that since there is a maximum fixed amount
of punishment that the regime can distribute due to its limited capacities c
should be a function of m. If 2000 people participated in the revolution each
individual would expect a lesser punishment than if 200 participated since
the probability of getting hurt is lower the more people participate. Russel
Hardin [1995], for example, argues that this is the reason why revolutions
are coordination problems rather than free-rider problems, this argument
is formalized by Magnus Jiborn [1999]. For our purposes it is, however,
sufficient that there is some positive cost involved in choosing to participate
if m is equal to or greater than t. To treat the cost as a function of m would
only complicate matters. Thus we will assume that c > 0.

Table 1 specifies the citizen’s payoff-function u for player i. The first
four rows specifies the outcomes when the regime does not retaliate, that
is when the number of participants, m, is less than the regime’s response
threshold, t. If the total number of participants, m, is less than the regime’s
breaking point, w, then player i will receive a payoff of 0 irrespective of
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Rules of the Game

If m < t
and m < w

and si = 1, then ui = 0
and si = 0, then ui = 0

and m ≥ w
and si = 1, then ui = 1
and si = 0, then ui = 1

If m ≥ t
and m < w

and si = 1, then ui = −c
and si = 0, then ui = 0

and m ≥ w
and si = 1, then ui = 1 − c
and si = 0, then ui = 1

Table 1: Rules of the Game

which strategy he plays. If m is less than t, but greater than or equal to
w (the revolution succeeds and the regime does not retaliate), then player i
will get a payoff of 1 no matter what he does. This is the outcome where the
regime’s response threshold is higher than its breaking point. This might
be the case in states where the regime is severely weakened or where it has
overestimated its own tenacity. Many regimes in the former eastern block
seem to have had a response thresholds higher than their breaking point at
the end of the 1980’s. Another point worth making about the 3rd and 4th
row is that player i is not indifferent between participating and abstaining
since it might be the case that his participation is pivotal. In that case the
revolution would stand and fall with i’s participation, and he would strictly
prefer to participate to abstaining.

The last four rows specifies the outcome where the number of participants
exceeds the regime’s response threshold. If the total number of participants,
m, is less than the regime’s breaking point, w, then player i strictly prefers
to abstain to participate. If, on the other hand, both the threshold and the
breaking points are exceeded, then player i prefers to participate only if he
believes that his participation is pivotal.

4 Static Equilibrium Analysis

In order to analyze the game’s equilibria we follow Palfrey and Rosenthal
[1984] and partition the M players into three groups:

G1: If i ∈ G1, si = 1, so i participates.
G2: If i ∈ G2, si = 0, so i abstains.
G3: If i ∈ G3, i has si = 1 with probability q, so i plays a mixed strategy.

Since we will only analyze symmetric mixed-strategy equilibria, we will not
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need to distinguish between different players in G3, and thus there is no
need to use a i subscript on q.

4.1 Case 1: |G3| = 0 (pure strategy equilibrium)

If only pure strategies are allowed, then a player will strictly prefer to par-
ticipate if he believes that his contribution is pivotal. This will be the case
if he believes that he is the w:th participant. He will prefer to abstain from
revolutionary action if he believes that his contribution will be punished and
that he will not add to the revolutionary success. This will be the case if
he believes that the number of other participants are at least t− 1 and that
he will not be the w:th participant. In all other cases he will be indifferent
between participating and abstaining from revolutionary action. In calcu-
lating the number of equilibria we will distinguish between the three cases
where t < w, t = w and t ≥ w. We will also assume that c < 1.

If t < w then all outcomes where exactly w people participate will be
equilibria. Any possible outcome where less than or equal to t − 1 players
participate will be equilibria as well. The reason is simply that a player will
be indifferent between participating and abstaining if he believes that the
combined effort will not provoke retaliation and that the revolution will not
succeed. However, only the equilibria where exactly w people participate
will be Pareto efficient. If t < w and t−1 ≥ 1 then the total number of pure
strategy equilibria is

(

M

w

)

+

t−1
∑

i=1

(

M

i

)

.

If t − 1 = 0 then the number of equilibria becomes

(

M

w

)

+

(

M

0

)

=

(

M

w

)

+ 1.

The incentives provided by the game where t = 1 are sometimes referred to
as ’fear’ and ’greed’. A player has an incentive to abstain from participating
out of fear that not enough others contribute and that he will be punished
without receiving any reward. He does, however, also have a greed-incentive
to abstain due to the possibility that enough others participate and he re-
ceives the benefit without having to pay the cost of contributing. As t
increases the probability that a player will have to pay the cost of contribut-
ing without receiving the reward diminishes, as does the influence of the fear
incentive.
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In the second case, t = w, all outcomes where less than or equal to w
participate are equilibria, except the case where exactly w − 1 participate.
If exactly w − 1 participated then each and everyone who abstains from
revolutionary action has an incentive to unilaterally change to participate
(since he would then be pivotal). Once again, however, only the outcomes
where exactly w people participate are efficient. The number of equilibria is

w
∑

i=1

(

M

i

)

−

(

M

w − 1

)

.

It is also worth noting that when t equals w the fear incentive has disap-
peared. There is no longer any reason for a player to abstain from partici-
pating out of fear of paying the cost of contribution without getting anything
in return. The greed incentive on the other hand is left unchanged.

The third case resembles the second. All outcomes where less than or
equal to t − 1 players participate are equilibria except (once again) the
outcome where exactly w − 1 participate. And all outcomes where the
number of participants are greater than or equal to w and less than t are
efficient. The total number of equilibria is

t−1
∑

i=1

(

M

i

)

−

(

M

w − 1

)

.

If we plug numbers into the formulas we will soon see that for even
modest values of M , w, and t the number of equilibria becomes very large.
Assume that we have M = 10 citizens where w = 5 are needed to participate
in order for the revolution to succeed and where the regime will retaliate
if at least t = 1 citizens participate, then there are 253 equilibria in pure
strategies. If we increase M to 100 and w to 50 then the number of equilibria
becomes approximately 1029. Since there is no a priori way for a rational
individual to discriminate between the pure strategy equilibria he might be
better off deciding to play an equilibrium mixed strategy.

4.2 Case 2: |G3| 6= 0 (symmetric mixed strategy equilibria)

Once again we follow Palfrey and Rosenthal [1984] and introduce some def-
initions in order to facilitate the analysis:

k = |G1|, j = |G2|, m = number of participants in G3

and, for i ∈ G3

m−i = number of participants other than i in G3
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That is, k and j are the number of players who have committed to participate
and to abstain respectively before i ∈ G3 decides the probability to play si =
1. m are the total number of players in G3 who end up participating, and,
finally, m−i are the number of other players in G3 who end up participating.
In order to simplify the analysis, let us assume that there are no ’committers’
in the population, i.e. k = j = 0. Expanding the analysis to situations that
include committers is fairly straightforward.

In equilibrium the members of G3 will be indifferent between partici-
pating and abstaining. This will be the case if, and only if, the expected
payoff for participating is equal to the expected payoff for abstaining. The
expected payoffs, in turn, can be derived from table 1. For i ∈ G3 the
expected payoff for abstaining is

Pr{m−i < w ∩ m−i < t} · 0 + Pr{m−i ≥ w ∩ m−i < t} · 1+

Pr{m−i < w ∩ m−i ≥ t} · 0 + Pr{m−i ≥ w ∩ m−i ≥ t} · 1

= Pr{m−i ≥ w}. (1)

Similarly, the expected payoff for participating is

Pr{m−i < w − 1 ∩ m−i < t − 1} · 0 + Pr{m−i ≥ w − 1 ∩ m−i < t − 1} · 1+

(1 − c) · Pr{m−i ≥ w − 1 ∩ m−i ≥ t − 1}+

(−c) · Pr{m−i < w − 1 ∩ m−i ≥ t − 1}

= Pr{m−i ≥ w − 1} − cPr{m−i ≥ t − 1}. (2)

In equilibrium (1) equals (2)

Pr{m−i ≥ w} = Pr{m−i ≥ w − 1} − c · Pr{m−i ≥ t − 1}.

Rearranging the terms gives us the equilibrium condition for members of G3

as specified by the equation

Pr{m−i = w − 1} = c · Pr{m−i ≥ t − 1}. (3)

Which can be rewritten in algebraic form in terms of M , w, t, and c as

(

M − 1

w − 1

)

qw−1(1 − q)M−w

= c ·

M−1
∑

i=t−1

(

M − 1

i

)

qi(1 − q)M−1−i (4)
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The q∗ that satisfies this condition constitute the mixed-strategy equilibrium
of the game. By solving for c we get

c =

(

M−1

w−1

)

qw−1(1 − q)M−w

∑M−1

i=t−1

(

M−1

i

)

qi(1 − q)M−1−i
. (5)

We are interested in the relationship between t, c, and q∗. The condition is
admittedly quite messy. There is, for example, no straightforward way to
solve for q∗ in terms of t and c. Furthermore, since q∗ is not continuous on
t we are not able to take the partial derivative of q∗ in terms of t even if we
somehow managed to solve for q∗. What we could do, however, is to analyze
the condition in a more informal manner. We could, for example, distinguish
between the three cases where t < w, t = w, and t > w and analyze the
expression for each case respectively. The analysis would be analogous to
the proof of proposition 1 in the appendix. We will, for example, see that
for the case t < w there are multiple mixed strategy equilibria. Since there
is no way to distinguish between these with the help of static game theory
we will instead turn to the dynamic equilibrium analysis of the game.

5 Dynamic Equilibrium Analysis

Assume that we have a large population consisting of N individuals who
are either revolutionaries or abstainers.4 A revolutionary is a person who
participates, and an abstainer is a person who abstains. The share of rev-
olutionaries in the population is x ∈ [0, 1]. Furthermore, assume that the
individuals are randomly matched into groups of M ≥ 2 members each. If
at least w revolutionaries end up in a group, then the revolution succeeds
and everyone receives a payoff of 1. Assume that 1 ≤ w ≤ M . And as before
if at least t members of a group are revolutionaries they will sustain a cost
of c. The interpretation is that from time to time the population find itself
divided into groups of M individuals at various public spaces. If at such an
occasion there are at least t revolutionaries there, then the regime will send
military or police to punish the revolutionary activity. As before, if there
are at least w revolutionaries, then the regime will fall. These events are
not mutually exclusive.

4Josephson and Wärneryd [2008] have analyzed Palfrey and Rosenthal’s model in an
evolutionary setting for the case where t = 1. The derivation of our model will, thus,
resemble theirs.
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If m−i is the random number of other revolutionaries in a group, then
the expected fitness of a revolutionary can be retrieved from equation 2

uR(x) = Pr(m−i ≥ w − 1) − c · Pr(m−i ≥ t − 1)

and that of the abstainer from equation 1

uA(x) = Pr(m−i ≥ w).

Thus the average expected fitness in the population becomes

ū(x) = x · uR(x) + (1 − x) · uA(x)

and the difference between the expected fitness of a revolutionary and the
population average becomes

uR(x) − ū(x) = (1 − x)(Pr(m−i = w − 1) − c · Pr(m−i ≥ t − 1)).

Since m−i is binomially distributed we can algebraically rewrite this expres-
sion in a similar fashion as we did with equation (4) in section 4.2, and define
the following function, h(x), as

h(x) = Pr(m−i = w − 1) − c · Pr(m−i ≥ t − 1)

=

(

M − 1

w − 1

)

xw−1(1 − x)M−w − c ·

M−1
∑

i=t−1

(

M − 1

i

)

xi(1 − x)M−1−i.

(6)

Following Jens Josephson and Karl Wärneryd [2008] we assume that ac-
tions are taken at discrete times T ∈ {1/N, 2/N, 3/N, ...}, and that in each
time period exactly one individual chosen at random gets the opportunity
to assess and revise his strategy. Furthermore we assume that individuals
update their strategies by way of imitation. The individual whose turn it
is to assess and potentially revise his strategy will compare his payoff to
the current expected payoff of another randomly chosen individual in the
population and then decide whether to imitate the other strategy. It then
seems reasonable to assume that a strategy that is expected to do worse
than the current one will never be imitated. Furthermore, following Karl
Schlag [1998] we assume that the probability that a strategy will be adopted
is proportional to how much better it does compared to the current one.

In the revolutionary context we might need to give an intuitive interpre-
tation to this behavior. There is after all no actual payoff for a successful
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revolution to include in a comparison unless the revolution have succeeded,
and if that happens then the game has ended. What seems to be crucial is
that the individuals have some knowledge of the expected payoffs for each
course of action. That is, they compare the current expected payoff based
on the previous round’s population state; the relative share of revolutionar-
ies in the population. Thus, a round’s revolutionary turnout will affect the
next round’s turnout in much the same way as in Lohmann’s model, except
that in this model people will not bother with how their participation affects
future turnout.

Still following Josephson and Wärneryd [2008] we assume that given
that the payoff difference is positive the probability of imitation is exactly
equal to the expected payoff difference between the current strategy and the
randomly drawn other strategy. This allows us to define a Markov chain XN

on the space ∆NX={0, 1/N, 2/N, ..., 1}. That is, a collection of random
variables having the property that, given the present value, the future values
are independent of the past. In this case the probability of moving to one
population state is determined by the present population state according to
the following transition probabilities

Pr(x, x + 1/N) = x(1 − x)max{h(x), 0}.

Pr(x, x − 1/N) = x(1 − x)max{−h(x), 0}.

Pr(x, y) = 0, for |x − y| ≥
2

N
.

The first two equation specify the probability that the populations state
will change from x to x + 1/N and x− 1/N . In other words the probability
that the revising individual changes his strategy from abstain to revolt, or
from revolt to abstain. The third equation states that it is impossible that
more than one individual changes his strategy during each revision period.
If we subtract the second transition probability from the first we will get the
expected increase of revolutionaries in the population from one time period
to the next, given the that the present population state is x:

FR(x) = Pr(x, x + 1/N) − Pr(x, x − 1/N) = x(1 − x) · h(x).

What we are interested in is the change in the population state when the
population is large and the time between the transition periods are small.
This is achieved if we allow N to approach infinity. This gives us the mean
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field equation: an ordinary differential equation describing the rate of pop-
ulation change for all possible x

ẋ = ϕ(x) := x(1 − x) · h(x)

= x(1 − x)

[(

M − 1

w − 1

)

xw−1(1 − x)M−w − c ·
M−1
∑

i=t−1

(

M − 1

i

)

xi(1 − x)M−1−i

]

(7)

We are interested in the population states where the population is at rest,
that is where no revolutionary becomes an abstainer and where no abstainer
becomes a revolutionary. In terms of the function describing the dynamics
we can define a rest point as the x where ϕ(x) = 0. We say that a rest point
x is interior if 0 < x < 1. Furthermore, define cmax,t as the highest value of
c given t, for which (7) have at least one interior rest point.

Although the function ϕ is admittedly quite messy it is possible to make
some claims about its rest points. In order to do this we repeat the steps of
section 4.1 and distinguish between three cases: t < w, t = w, and t > w.
The proofs of the results are given in appendix A.

Proposition 1 Under the replicator dynamic x = 0 and x = 1 are
always rest points. Furthermore,

1. if t < w, then

(a)
(

M−1

w−1

)

( w−1

M−1
)w−1(M−w

M−1
)M−w ≤ cmax,t < 1, and cmax,t increases in

t.

(b) if c < cmax,t then there are two interior rest points, x and x, and
if c = cmax,t then there exists exactly one interior rest point, x′.

(c) if t increases, then x decreases and x increases.

(d) if c increases, then x decreases and x increases.

2. if t = w, then

(a) cmax,w → 1, and for c ≤ cmax,w there exists exactly one interior
rest point, x∗.

(b) x∗ increases in terms of c

3. if t > w, then

(a) cmax,t → ∞, and for all c < cmax,t there exists exactly one interior
rest point, x∗∗.
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(b) if t increases, then x∗∗ increases.

(c) if c increases, then x∗∗ decreases.

4. for given M , w and c then if there exist interior rest points for all t,
then the rest points for t = w − 1 are smaller than the rest point for
t = w, which in turn is smaller than the rest point for t = w + 1:
xw−1 < xw−1 < x∗ < x∗∗

w+1

The result about interior rest points when t = w correspond to the sym-
metric mixed strategy equilibria identified by Palfrey and Rosenthal [1984]
under what they call the ’refund-rule’. The results obtained by Josephson
and Wärneryd [2008] when they analyze the case where t = 1 are more
detailed then ours. Our results are, however, compatible with theirs.

The next result is a generalization of Josephson and Wärneryd’s [2008]
result about asymptotic rest points for the case t = 1 to cases where 1 ≤ t ≤
M . A rest point is asymptotically stable (henceforth referred to as stable) if
the replicator dynamic brings a small perturbation of the population state
back to the rest point. A population state of only abstainers would, for
example, be stable if it would return to only abstainers if we changed a
small number of citizens into revolutionaries. In terms of our mean field
equation, ϕ(x), it means that the first derivative of ϕ(x) is negative with
respect to x at the rest point in order for the rest point to be stable.5

Proposition 2 Under the replicator dynamic

1. if t < w, then x = 0 is always a stable rest point, and x = 1 is always
unstable and

(a) if c < cmax,t then x is unstable and x stable.

(b) if c = cmax,t then x′ is unstable.

2. if t = w, then x = 1 is unstable and

(a) if c < 1 then x∗ is a stable rest point while x = 0 is unstable.

(b) if c ≥ 1 then x = 0 is stable.

3. if t > w, then x = 0 and x = 1 are always unstable rest points, and
x∗∗ is always stable.

We immediately see that only if c ≥ cmax and t < w can we expect
there to be no stable interior rest point, and thus it is only under these

5A small change in some direction will be off-set by a move back towards the rest point.
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circumstances that we can expect there to be no revolutionaries in a stable
population. This is not surprising since under these cicrumstances the in-
centives create a prisoner’s dilemma game where abstaining is a dominant
strategy. The general case does, however, allow for other payoff configura-
tions. For example if t < w and c < cmax, then a population containing no
revolutionaries will be stable, as well as a population containing a positive
x share of revolutionaries. Furthermore, even if c becomes high enough for
a citizen to prefer to abstain to get punished while participating in a suc-
cessful revolution (c > 1) it is still possible that the stable population ends
up with a positive share of revolutionaries (if t > w). These results can be
illustrated with the help of some numerical examples that show the dynamic
behavior of the deterministic model.

5.1 Examples

We put M = 10 and w = 5 in the examples and investigate the population
dynamic with respect to different values of t and c. The phase diagram
shown in figure 1 illustrate the case where t = 1 and c = 0.1 < cmax,1.

6 The
two interior rest points are x ≈ 0.236 which is unstable and x ≈ 0.669 which
is stable. We can also note that the stable rest point is ineffecient in the
sense that the number of revolutionaries M · x ≈ 6.69 exceeds the efficient
number w = 5. The diagram also shows the intervals where the dynamic
pulls towards more abstainers and where it pulls towards more revolution-
aries. At the points where the graph is below the x-axis it pulls towards
more abstainers, and at the points where it is above it pulls towards more
revolutionaries. Therefore, if the population contains, say, a share of 0.2
revolutionaries, then we can expect there to be a move towards less revo-
lutionaries. If on the other hand it contains a share of 0.3 revolutionaries,
then the population will move towards more revolutionaries. We could say
that the lower interior restpoint, x, works as a critical mass that needs to
be reached in order for the population to converge to a stable revolutionary
rest point.

Figure 2 shows the case where t = 1 and c = 0.3 > cmax,1. There
are no interior rest points, and the only stable point is x = 0. The graph
also illustrates that whatever the initial composition of the population is, it
will always converge to 0 revolutionaries. This example illustrates the pris-
oner’s dilemma type of situation that some social scientists have proposed
revolutions should be modelled as.

6All figures are found in the second appendix.
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Figure 3 shows the case where t has been increased to w = 5 and where
c = 0.3. There is one stable interior rest point x∗ ≈ 0.52. Revolutionary
turnout is still inefficient but to a lower extent than in the previous case. We
can also note that the population will converge to x∗ from all possible initial
conditions. Thus if the revolutionaries do not expect the regime to intervene
until it is too late (t = w), and they do not expect the punishment to be
too severe (c < 1), then a successful revolution will occur. If, on the other
hand, the cost is increased to exceed 1 then the dynamics are illustrated by
figure 4 (c = 2) where the population converges to x = 0.

If we keep the cost at c = 2 and increase the regime’s intervention level to
t = 10, then the results are shown in figure 5. The figure shows that there is
one interior rest point x∗∗ ≈ 0.696 which is also the unique rest point of the
dynamic. This outcome is not inefficient since any turnout between w and
t is efficient. It is also interesting to note that although the punishment in
this case is severe, in the sense that a person would prefer to be oppressed to
participating in a successful revolution and getting punished, the population
will still converge to a state with a significant share of revolutionaries.

Let us end with a historical anecdote that could be used to illustrate
the model. We have shown that if the regime loses its resolve to intervene
early whenever revolutionary activity appears, then the probability of a
successful revolution increases. This appears to have been the case with the
former communist regimes of the eastern block. When Soviet introduced
its glasnost policy it resulted in political oppeness and reduced censorship,
of which a consequence must have been that the regime’s acceptence of
subversive activities increased. Once it was clear that Soviet would or could
not intervene in its European satellite states t skyrocketed and the only
stable population state became one containing enough revolutionaries to
overthrow the regimes. It did, however, take some time in order for the
population to reach its new stable rest point since change did not proceed
through ’rational’ analysis of the situation, but rather through imitation. In
Leipzig, for example, when people unmolested took to the streets showing
their dissatisfaction with the regime it increased the probability that another
citizen while revising his strategy would compare his own expected payoff
with the expected payoff of a revolutionary. More and more people joined
until the stable rest point was reached. The demonstrations in Leipzig were
then imitated in other cities throughout Eastern Germany, until they finally
lead to the regime’s collapse.
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6 Concluding Remarks

This essay have shown how revolutionary action can be modeled in an evo-
lutionary game theoretic setting. It has been shown that this model can
predict when revolutions can be expected to occur and when the status quo
can be predicted to remain in place. It also attempted to show that a rev-
olutionary situation can be both a prisoner’s dilemma and a coordination
problem, and that the particular form of the game is decided by the values
of the variables. It was shown that the rest points’ value and status (as
stable and unstable) depended on the cost of participating in a revolution
and the regime intervention threshold.

In the process of formulating an evolutionary model of revolutionary ac-
tion we have attempted to generalize some of the results of Josephson and
Wärneryd [2008]. What we have not done, however, is to have investigated
what the long-run dynamics of the model are if small mutations are intro-
duced. Such a study would be desirable since it would allow us to make
better predictions in situation where we have to consider populations whith
multiple stable rest points, such as when t < w and c < cmax,t. We will
leave this for future research.

A Proofs

That x = 0 and x = 1 are rest points is obvious. In order for a rest point to
be interior we must have that

(

M−1

w−1

)

xw−1(1 − x)M−w

∑M−1

i=t−1

(

M−1

i

)

xi(1 − x)M−1−i
= c (8)

which is continuous on the interval 0 < x < 1. We will start by proving the
second (t = w) and third (t > w) part of the proposition and finish with the
first part (t < w).

Proof of proposition 1. In the case of t = w expression (8) can be
rewritten as7

c =

[

1 +

M−1
∑

i=w

i
∏

j=w

(

M − j + 1

j

)(

x

1 − x

)i−w+1]−1

(9)

7Palfrey and Rosenthal [1984], who analyze the case where t = w, rewrite the expression
in a similar fashion.
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Now let us define y = x/(1 − x) and analyze the following function

g(y) = 1 +

M−1
∑

i=w

i
∏

j=w

(

M − j + 1

j

)

yi−w+1 (10)

Since (i−w+1) and (M−j+1

j
) are strictly greater than 0, g(y) is a polynomial

of degree at least 1 with strictly positive coefficients. Thus the first derivative
of g(y) with respect to y must be strictly positive. Since dy

dx
> 0 it is possible

to use the chain rule to assert that

dg

dx
> 0

We are, however, interested in f(x) = 1/g(x). Applying the chain rule once
again we get that

df

dx
< 0.

Since f(x) is a strictly decreasing function we get the maximum and min-
imum values by taking the limit as x approaches 0 and 1. Since x/(1 − x)
approaches 0 as x approaches 0, and x/(1 − x) approaches infinity as x
approaches 1 we get that

lim
x→0

f(x) = 1, lim
x→1

f(x) = 0.

We know that the x:s that solve (9) are interior rest points, and we know that
it is satisfied when when the function f(x) is equal to c. Since we know that
at its maximum f(x) approaches 1, we also know that cmax,t = 1− ξ where
ξ is an arbitrarily small positive number. If 0 < c ≤ cmax,t, then f(x),
being strictly decreasing, will intersect c at exactly one point x∗ ∈]0, 1[.
Furthermore, since f ′(x) < 0 it means that if c becomes smaller, then f(x)
will intersect c at a higher x∗. And conversely if c increases x∗ will decrease.

Proving the third part of the proposition (t > w) is somewhat analogous.
We rewrite equation (8) as

c =

[ M−1
∑

i=t−1

i
∏

j=w

(

M − j + 1

j

)(

x

1 − x

)i−w+1]−1

(11)

Once again let us use y = x/(1 − x) and define a function h(y) as

h(y) =

M−1
∑

i=t−1

i
∏

j=w

(

M − j + 1

j

)

yi−w+1. (12)
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Just as in the previous case it is easy to realize that (M−j+1

j
) and (i − w +

1) are strictly greater than 0, and thus h(y) is a polynomial of degree at
least 1 with coefficients strictly greater than 0. This means that h′(y) > 0.
Applying the chain rule in the same way as above, gives us that f(x) =
1/h(x) has a strictly negative slope. Furthermore, we find the the maximum
and minimum of f(x) as x approaches 0 and 1 respectively:

lim
x→0

f(x) = +∞, lim
x→1

f(x) = 0.

This means that there is no upper limit to c for which there exists a solution,
x∗∗ ∈]0, 1[, to equation (8) and thus we can always expect to find an interior
rest point when t > w. Furthermore, x∗∗ increases when c decreases for
the same reason as x∗. In order to realize that an increase in t lead to an
increase in x∗∗ we can study equation (11). If t increases it leads to less
(positive) terms in the right hand side’s denominator. In order for c to
remain unchanged x∗∗ must increase.

Proving the first part of the proposition, the case where (1 ≤ t < w),
utilizes the proofs of part two and three of the proposition. We rewrite (8)
as

c =

[ w−2
∑

i=t−1

w−1
∏

j=i+1

(

j

M − j + 1

)(

1

x/(1 − x)

)w−i−1

+

1 +

M−1
∑

i=w

i
∏

j=w

(

M − j + 1

j

)(

x

1 − x

)i−w+1]−1

(13)

Setting y = x/(1 − x) and recognizing that the second part of the denomi-
nator is function g(y) from (10), allows us to define the following functions

v(y) =

w−2
∑

i=t−1

w−1
∏

j=i+1

(

j

M − j + 1

)(

1

y

)w−i−1

(14)

u(y) = v(y) + g(y)

We know from above that the first derivative of g(y) is strictly positive. Since
g(y) is a polynomial of at least degree 1 with strictly positive coefficients, its
second derivative must be positive. The first derivative of v(y) with respect
to y is, on the other hand, negative. This can be seen if we treat v as a
function of z = 1/y and then apply the chain rule to get the derivative in
terms of y

dv(z)

dy
=

dv

dz
·
dz

dy
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Since dv
dz

> 0 and dz
dy

< 0, it must be the case that dv
dy

< 0. Following the
same reasoning we get that the second derivative of v(y) with respect to y
must be positive.

Switching back to functions of x with the help of the chain rule gives us
that

du

dx
> 0

which means that u(x) is a convex function. Taking the limits of u(x) as x
approaches 0 and 1 gives us that

lim
x→0

u(x) = +∞, lim
x→1

u(x) = +∞.

Since u(x) is convex and approaches infinity as x approaches 0 and 1 it is
easy to see that that u(x) is u-shaped with a minimum at some point, x′,
and that u(x) is strictly decreasing up to the point x′ and strictly increasing
afterwards.

We are as always interested in the function f(x) = 1/u(x). Note that the
function 1/u(x) is continuous and strictly decreasing on u(x) > 0. Further-
more, f(x) approaches 0 as x approaches 0 and 1. This means that f(x) is
increasing whenever u(x) is decreasing and decreasing whenever u(x) is in-
creasing. Thus f(x) has a maximum at the same x′ as u(x) has a minimum.
The maximimum value of f(x) becomes cmax,t.

Since f(x) is strictly increasing on 0 < x < x′ and strictly decreasing
on x′ < x < 1, f(x) will intersect c at exactly two points if c < cmax,t,
and at exactly one point if c = cmax,t, and at no points if c > cmax,t. In
the first case let us call the smallest and largest interior rest points x and
x respectively. We can also note that if c increases it will move closer to
the maximum value of f(x), and thus the points where f(x) intersect c will
move closer to each other, i.e. x increases and x decreases. Conversely if c
decreases the points of intersection will move further and further apart, i,e,
x decreases and x increases.

By studying equation (13) we can also see that cmax,t increase as t in-
crease. An increase in t leads to less positive terms in the right hand side
denominator, this means that c increases if all other variables are held con-
stant. It also means that in terms of t the smallest cmax,t is achieved when
t = 1. Palfrey and Rosenthal [1984] and Josephson and Wärneryd [2008]
have calculated cmax,t for this case

cmax,1 =

(

M − 1

w − 1

)(

w − 1

M − 1

)w−1(M − w

M − 1

)M−w

.
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We can thus conclude that this is the lowest value cmax,t can take. If all
other variables are held constant, then the largest possible value for cmax,t

on the interval t ∈ {1, ..., t − 1} is achieved when t = w − 1.8

In order to show that the interior rest points x and x grow further apart
as t increases it sufficient to note that f(x) increases if t increases, which
means that an increase in t leads to an ’upward shift’ of f(x). Thus the
points of intersection x moves leftwards and x moves toward the right.

Now for the fourth part of the proposition, showing that xw−1 < xw−1 <
x∗ < x∗∗

w+1. xw−1 < xw−1 by definition. In order to show that xw−1 < x∗

we utilize the fact that the different values of t (t = w− 1, t = w, t = w + 1)
specify three different functions that intersect the line c. If we can show
that the function corresponding to t = w, i.e. 1/g(x), is always greater
than the one corresponding function to t = w − 1, i.e. 1/(v(x) + g(x))
for any given M and w, it must be the case that, since 1/g(x) is strictly
decreasing, it intersects the line c at higher x. This proves to be a somewhat
straightforward task

1

g(x)
>

1

v(x) + g(x)

v(x) + g(x) > g(x)

v(x) > 0.

Since v(x) is strictly greater than zero the inequality holds. And thus we
can conclude that for any given M , w, and c x∗ > xw−1.

In order to show that x∗ < x∗∗

w+1 we prove that the following inequality
holds

1

h(x)
>

1

g(x)

g(x) > h(x)

If we put t = w + 1 we get the following inequality

1 +

M−1
∑

i=w

i
∏

j=w

(

M − j + 1

j

)

yi−w+1 >

M−1
∑

i=w

i
∏

j=w

(

M − j + 1

j

)

yi−w+1

which reduce to
1 > 0.

8Calculating the maximum for t = w − 1 in terms of M , w and c is unfortunately
beyond my mathematical competence.
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This shows that the function corresponding to t = w + 1 is always greater
than the function corresponding to t = w for any given M and w. And since
the function corresponding to t = w + 1 is strictly decreasing it intersects
the line c at a higher x than the function corresponding to t = w. And thus
it must be the case that x∗∗

w+1 > x∗ for any given M , w and c.
Proof of proposition 2. In order to prove proposition 2 we begin by

noticing that ϕ(x) is continuous on 0 ≤ x ≤ 1 and that it apporaches 0 as x
approaches 0 and 1. We then rewrite the function as

ϕ(x) =

x(1 − x)

M−1
∑

i=t−1

(

M − 1

i

)

xi(1 − x)M−1−i

[

(

M−1

w−1

)

xw−1(1 − x)M−w

∑M−1

i=t−1

(

M−1

i

)

xi(1 − x)M−1−i
− c

]

.

(15)

We note that the terms outside the parenthesis are all greater than or equal
to zero, and that the first term within the parenthesis is the left hand side
of equation (8). The strategy is to prove proposition 2 for the interior rest
points by showing the direction ϕ(x) intersect the x-axis. If it crosses from
positive to negative the first derivative of ϕ(x) must be negative at the point
of intersection, and if it crosses from negative to positive then the derivative
must be positive. At the end points we take the limit of ϕ(x) as x approaches
0 and 1. If as x approaches 0 the function approaches from ’below’ then the
first derivative must be negative, and if it approaches from ’above’ then it
must be positive. If as x approaches 1 the function approaches from ’below’
then the first derivative must be positive, and if from ’above’ it must be
negative. Since the terms outside the parenthesis are all positive it will
suffice to investigate the sign of the expression within the parenthesis.

Let us begin with the case where t < w. We know that ϕ(x) has the roots
x = 0 and x = 1, and if c < cmax then two additional roots x = x and x = x,
and if c = cmax,t one additional root x = x′. Let us start by investigating
the first two roots, x = 0 and x = 1. In order to investigate whether ϕ(x)
approach the x-axis from above or below, we study the expression within
the parenthesis which can be rewritten in terms of v(x) and g(x) ((14) and
(10))

1

v(x) + g(x)
− c (16)

We know from the proof to proposition 1 that v(x) approahces infinity and
g(x) approaches 0 as x approaches 0. Since the expression approahces −c as
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x approaches 0 it must mean that ϕ(x) approaches the x-axis from ’below’,
and thus the slope at x = 0 must be negative. Similar reasoning shows us
that the slope of ϕ(x) is positive at x = 1. Thus we have shown that x = 0
is a stable rest point whereas x = 1 is unstable.

Let us now turn to the interior rest points and start with the case when
c < cmax,t. We know that there are two interior rest points, x = x and
x = x. We also know that x < x′ < x, and that the function (v(x)+g(x))−1

has its maximum at x = x′, and that (v(x′) + g(x′))−1 = cmax,t. Thus,

1

v(x) + g(x)
− c ≥ 0 if x ≤ x ≤ x

which implies that ϕ(x) ≥ 0 on the same interval. Which in turn implies
that the slope at x is positive and the rest point unstable. And that the
slope is negative at x and the rest point stable. If c = cmax, then expression
(16) achieves its maximum at the rest point x′, and thus its first derivative
at the point must be zero, which renders the rest point unstable.

If t = w then ϕ(x) has three roots x = 0, x = x∗ and x = 1. We can
rewrite the expression within the parenthesis of (15) in terms of g(x)

1

g(x)
− c (17)

Since g(x) approaches infinity as x approaches 1 it means that this expression
approaches −c. Thus ϕ(x) approaches the x-axis from below, implying that
the slope is positive as x approaches 1 and that the rest point is unstable.
The status of the rest point x = 0 depends on the value of c since g(x)
approaches 1 as x approaches 0. If c < 1 then (17) is greater than zero as
x approaches zero, meaning that the slope at x = 0 is positive and the rest
point unstable. On the other hand, if c ≥ 1 then (17) will never achieve a
value strictly greater than zero, meaning that ϕ(x) will not intersect the x-
axis. Thus the slope at x = 0 should be negative, and the rest point stable.
Turning to the interior rest point x = x∗ we know that the slope must be
negative since ϕ(x) achieves a positive value before x∗ and a negative value
afterwards. Thus x = x∗ is a stable rest point.

If t > w then ϕ(x) has three roots x = 0, x = x∗∗ and x = 1. We can
rewrite the expression within the parenthesis of function (15) in terms of
h(x) (function (12))

1

h(x)
− c (18)
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Since h(x) approaches 0 as x approaches 0, and infinity as x approaches 1,
expression (18) is positive as x approaches 0 and negative as x approaches
1. Since ϕ(x) approaches x-axis from ’above’ as x approaches 0 and from
’below’ as x approaches 1, the slopes are positive at both points. Both rest
points are therefore unstable. This also means that the slope at x = x∗∗

is negative since ϕ(x) is positive before this point and negative afterwards.
Therefore, the interior rest point x = x∗∗ is stable.
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Figure 1: t=1, c=0.1
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Figure 2: t=1, c=0.3
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Figure 3: t=5, c=0.3
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Figure 4: t=5, c=2
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Figure 5: t=10, c=2
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