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AbstratThis thesis aims at testing the E�ient Market Hypothesis (EMH) by imple-menting and evaluating four distint algorithms (Universal Portfolio, Exponen-tiated Gradient, Antior and Constant Proportion Portfolio Insurane) for auto-mated rebalaning of �xed-asset portfolios based on the past performane of theindividual assets inluded in the portfolio. If the EMH holds, tehnial analysissuh as algorithm based investments should not be able to generate abnormalreturns without introduing abnormal risk. The algorithms are implementedaording to the artiles presenting them, and I perform statistial hypothesistests to determine whether the algorithms an provide signi�ant positive ab-normal return over broad indies.The results indiate that abnormal returns above broad indies suh as theS&P500 and the STOXX are possible. In Monte Carlo simulations, results arestatistially signi�ant at the 1% level for three of the algorithms. In tests onatual time series, one algorithm provides statistially signi�ant abnormal re-turn on the 5% level. All algorithms have eonomially signi�ant abnormalreturns for atual time series, indiating that tehnial analysis an reate valuedespite the assertion of the weak form of the EMH.Trading osts are also introdued. Two algorithms prove very sensitive to trad-ing osts, one is fairly sensitive and one is almost ompletely insensitive totrading osts, indiating that this algorithm might be useful even for smallerinvestors.
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1 IntrodutionA ommon joke in the �eld of �nane is that of two investors walking down aroad, when one of them sees a $100 bill. The other one, a �rm believer in markete�ieny, quikly says "Don't bother piking it up. If it were real, someone elsewould already have piked it up."This thesis aims to test the weak form of the e�ient market hypothesis byexamining four algorithms1 using only publily available, numerial informa-tion to determine how to invest in baskets of seurities. I will test the abilityof the algorithms to beat di�erent benhmarks over extended time periods.Historial seurity data will be used as input to the algorithms, ensuring thatrealisti onditions are used. To test the algorithms more thoroughly, MonteCarlo simulations will also be employed, primarily using the observed historialdistribution of returns.The term algorithmi portfolio rebalaning refers to a partiular lass of in-vestment strategies. They use numerial information about �nanial assets,suh as past market pries, to alulate a suggested rebalaning sheme foroming time periods. Only the weighting of wealth among the assets in theportfolio is alulated; the starting hoie of whih assets to use must be deter-mined exogenously. This lass of algorithms is interesting to study beause ofthe possibility to earn higher returns than what is possible using buy-and-holdshemes or similar unsophistiated strategies, while still having a rebalaningstrategy that does not require human analysis beyond the initial hoie of assets.The �rst algorithm studied is the Universal Portfolio algorithm. It was in-trodued by Thomas Cover [6℄, who also o-wrote several artiles elaboratingon di�erent aspets of the algorithm [7℄, [8℄, [23℄, [14℄. Kalai and Vempala [16℄aimed to redue implementational and omputational omplexity. Some furtherextensions were provided by Blum and Kalai [3℄. Intuitively, this algorithm triesto pik up momentum in the assets, alloating more to the assets that have per-formed best in the past.The seond algorithm, the Exponentiated Gradient algorithm (EG), was intro-dued by Helmbold et al [13℄. While the theoretial properties of this algorithmare weaker than those of Universal Portfolio, the artile authors �nd that inexperiments, EG tends to outperform Universal Portfolio. Like Universal Port-folio, EG also tries to bene�t from momentum in the assets, moving wealth fromassets that have performed poorly to assets with higher returns.The third algorithm, Antior, was introdued by Borodin et al [4℄. It di�ersfrom Universal Portfolio and EG in the sense that it does not try to use mo-mentum e�ets. Instead, it is developed to bene�t from negative orrelationsand mean reversion in the pries of the assets. The artile authors also �nd thatthis algorithm tends to prefer di�erent assets ompared to Universal Portfolioand EG.The �nal algorithm evaluated, the Constant Proportion Portfolio Insurane1The word algorithm refers to a rule, or set of rules, that unambiguously de�nes a proessfor solving a partiular task. 1



(CPPI), was introdued by Blak and Jones [2℄ and Perold and Sharpe [24℄as an insurane type algorithm, whih ombines a guaranteed, riskless mini-mum return with a ontrolled investment in a risky asset that enables exessreturns. There is a oneptual limitation in this algorithm ompared to the oth-ers used in this thesis; CPPI by onstrution allows only portfolios onsisting oftwo assets, one risky and one risk free. Extensions to the CPPI algorithm havebeen devised by Bertrand and Prigent [1℄ and Boulier and Kanniganti [5℄.To determine how useful the results would be in pratie, transation ostswill be introdued into the model. This will allow evaluating whether the al-gorithms are truly usable for investment purposes. I will try to determine theritial transation ost level at whih any bene�t from using the algorithms isextinguished.The main question examined in this thesis is Does the E�ient Market Hy-pothesis hold for these algorithms? If it does, the algorithms should not be ableto give higher returns than market benhmarks without also having higher risk.The rest of the thesis is organized as follows: Setion 2 desribes previous workon market e�ieny and also gives the tehnial bakground for the algorithmsused, setion 3 presents the data series that are used, setion 4 desribes themethodology, setion 5 holds the �ndings of the tests used, setion 6 ontainsthe analysis of the results and setion 7 provides onlusions and suggestionsfor further researh. Some of the tehnialities regarding the algorithms arepresented in appendies to make the ore subjet of the thesis easier to follow.In the last appendix, a glossary is provided for onvenient aess to terminologyexplanations.
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2 Theoretial bakground2.1 Literature reviewThe E�ient Market Hypothesis (EMH) in essene builds upon the theory ofHomo Oeonomius, the rational human, whih an aess information and reatto it in a balaned, eonomially rational manner. A market onsisting of largeamounts of investors whih are assumed to be rational an be assumed to be arational, e�ient market. The EMH has been a prevalent model for the priesof seurities in �nanial markets. It has three ommon forms [29℄,
• Weak form: All past market pries and data are fully re�eted in seuritiespries. In other words, tehnial analysis does not provide a possibility toearn abnormal risk-adjusted returns.
• Semi-strong form: All publily available information is fully re�eted inseurities pries. In other words, fundamental analysis does not provide apossibility to earn abnormal risk-adjusted returns.
• Strong form: All information is fully re�eted in seurities pries. Inother words, even insider information does not provide a possibility toearn abnormal risk-adjusted returns.Fama [10℄ wrote an in�uential artile about the EMH, in whih was de�ned that'a market in whih pries always "fully re�et" available information is alled"e�ient"'. Fama has in later works hanged the exat wording of the de�n-ition to re�ne its meaning. He has also tested for autoorrelations in returnsdata[9℄, �nding that there are often positive serial orrelations of the �rst order,suggesting that there are momentum e�ets.In [11℄, Fama provides an overview of the researh presented so far in the markete�ieny �eld. Apart from his own previous �ndings, other authors have alsofound positive autoorrelations, espeially in small stoks. However, Fama andothers argue that the preditability of returns is largely obsured by daily varia-tions in stok pries, implying that the atual usefulness of the preditability issmall. Over longer time periods, some authors have found anomalies that theyargue an be onsidered irrational deviations, but Fama and others argue thatthe patterns are not distinguishable from rational time-varying expeted returns.Another artile by Fama [12℄ inludes event studies where abnormal returnsfrom stoks are examined to determine whether there are any anomalies thatindiate none�ieny of �nanial markets. Fama �nds that the evidene doesnot suggest abandoning the EMH when srutinized. Apparent overreations ofstok pries to new information is found to be about as ommon as underrea-tions, and it is about as ommon for pre-event abnormal returns to ontinue asit is for them to reverse after the event. In addition, Fama �nds that long-termreturn anomalies are fragile and tend to disappear rather quikly.The EMH has not been unanimously aepted by all observers and investorsin the �nanial market however. Many attempts have been made to disprovethe theory, and Malkiel [22℄ has written an artile that addresses several suhattaks. Malkiel personally argues that the EMH does hold and that evidene3



of the opposite often is built upon questionable methodology, suh as e.g. us-ing a time frame with properties whih are not representative for longer timeperiods. He also argues that it is important to distinguish between statisti-al and eonomi signi�ane and points out that transation osts are likely tohave a notable impat on the true pro�tability of suggested investment shemes.Earlier, Malkiel [20℄ has also argued that a blindfolded himpanzee throwingdarts at the Wall Street Journal ould selet a portfolio that would do as well asthe experts. In later work [21℄, he explains that the main point of this laim isto reommend investments into index funds rather than atively managed funds.Shostak [27℄ argues that there is reason to use fundamental analysis to earnabnormal returns, and onsequently that the EMH does not hold. His mainpoint is that the EMH is largely an equilibrium model that does not representthe real behavior of �nanial markets in the short run. This does not really on-tradit most EMH proponents however, sine the EMH is typially only arguedto hold over longer time periods.Shleifer and Summers [26℄ among others point to the stok market rash of1987 as a sign that �nanial markets are in fat not e�ient. Malkiel's responseis that while psyhologial fators ould be held as evidene against the EMH,the rash was also largely explained by a series of negative events for the in-vestment environment. Shiller [25℄ among others onsiders the internet bubbleat the end of the 1990s evidene against the EMH. Malkiel omments on thisby noting the di�ulties in orretly valuing equity and that despite the over-valuation of high teh stok, no strit arbitrage opportunities existed, sine itwas not possible to predit the time that the bubble would burst. Furthermore,he argues that sine this type of bubble ours infrequently, it does not reallyontradit the idea that an e�ient market on average pries seurities orretly.Lo and MaKinlay [17℄ have found that serial orrelations in stok pries areoften non-zero, meaning that there in fat is evidene of momentum, and onse-quently that the random walk model is not fully realisti. Similar �ndings werepresented by Lo, Mamaysky and Wang [18℄, that used non-parametri statistialtehniques to show that some prie series patterns studied in tehnial analysis,for instane head-and-shoulders and double-bottom formations, atually havesome preditive power.Jensen [15℄ gives support to the EMH, performing the �rst study on mutualfund performane, in whih he �nds that ative fund managers on average un-derperform the market by approximately the amount of their added expenses.Malkiel [22℄ shares this argument by laiming that there is also a substantialsurvivorship bias, meaning that the true average ative fund performane shouldbe even lower.It should be noted that few observers or investors believe that the EMH stritlyholds at all times. Malkiel argues that investors learly are not rational at alltimes, and that over ertain time windows, apparent ine�ienies an arise andbe exploitable for some time. The ommon view of EMH proponents is thatsuh ourenes will be exeption rather than rule and will disappear quikly ifand when they are disovered. 4



2.2 Algorithm desriptionsIn this setion, the bakground of algorithmi portfolio rebalaning in generaland for the four algorithms to be used will be desribed brie�y. The setion hasbeen kept short, moving the more tehnial parts to appendies for interestedreaders. This is to make the testing of the EMH the fous of the thesis ratherthan the tehnialities of the partiular algorithms.2.2.1 Common notationThe investment period is assumed to be disrete points in time starting at time0, i.e. t = 0, 1, 2, . . . , n. A total of m assets are assumed to be available for thealgorithms to divide wealth among. These assets are assumed to have a prie ateah of the disrete points in time inluded in the investment period, with st,j de-noting the prie of asset j at time t. Then, the vetor xt = (xt1, xt2, . . . , xtm)
T

,2where
xtj =

st,j

st−1,j
,denotes the performane of the investment universe from time t − 1 to t, sine

xtj = (1+rtj), where rtj is the simple periodi return on asset j from time t−1to time t.The onept of wealth is de�ned as a time series that takes real number values
St at all time points and that starts at time 0 with the value 1, S0 = 1. Valuesat later points in time denote relative wealth ompared to the initial wealth of1; a wealth of 2 at some point in time denotes twie the initial wealth et.Let the weight vetor at time t be denoted bt = (bt1, bt2, . . . , btm)

T. By de-�nition of a weight vetor, ∑

j btj = 1 at all times t. In this notation, btjis the fration of total wealth that is invested in the j:th asset at time t.When one time period has passed from the initial state, the wealth will be
S1 = b11x11 + b12x12 + . . .+ b1mx1m = b

T
1 x1, and after n time periods, the totalwealth, heneforth referred to as total return fator, is alulated as:3

Sn =

n
∏

t=1

b
T
t xt (1)The total return fator will be used throughout the thesis as a performanemeasure.The term onstant rebalaned portfolio (CRP) refers to a rebalaning shemewhere the portfolio is only rebalaned in order to keep the fration of wealthinvested in eah of the assets in the portfolio unhanged at all rebalaning times.Using equation 1 and the notation b for the onstant weight vetor, it is learthat after n time periods, the wealth of suh a portfolio will be Sn =

∏n
t=1 b

T
xt.From the de�nition of CRP, it is lear that ex post, there must for eah set2The raised T refers to the transpose operation that shifts row vetors into olumn vetorsand vie versa.3The large Pi harater denotes multipliation over the index t, whih goes from 1 to n.Eah fator in this produt is a sum of m produts of a weight btj and a relative prie hange

xtj as shown in the example alulation of S1.5



of assets be a best onstant rebalaned portfolio (BCRP), whih is the portfolioof the CRP lass that has obtained the highest wealth after n time periods.Mathematially, its wealth after n time periods an be written
S∗

n = max
b

n
∏

t=1

b
T
xt.Clearly, the determination of the BCRP requires that the outomes of assetpries are known, and thus it an only be determined after the outomes havebeen observed. It should be noted that by onstrution the BCRP will alwaysprovide a wealth whih is at least as good as the best individual omponent ofthe portfolio.42.2.2 Universal PortfolioThe Universal Portfolio algorithm, introdued by Cover [6℄, an ensure that theasymptoti performane of the portfolio is omparable to BCRP performane.With a sequene of market performane vetors x1,x2, . . . as de�ned above,the Universal Portfolio algorithm spei�es that weights should be alulatedaording to the following equation:

b̂k =

∫

b
∏k−1

t=1 b
T
xt dµ (b)

∫
∏k−1

t=1 bTxt dµ (b)
, (2)Here, µ (b) should be the multivariate probability distribution of the BCRPweights for the spei� asset set used.Intuitively, this an be interpreted as follows: the weights are alulated asthe weighted average of all possible weight alloations, using the CRP perfor-mane over all past time periods as weight funtion. A methodologial problemfor this algorithm is that the right hand side of equation 2 is not feasible toalulate for all probability distributions.In this thesis, the Dirihlet distribution will be used. It is limited to the [0, 1]interval for eah variable and is thus suitable for weight vetors. Furthermore,Universal Portfolio will only be tested on portfolios onsisting of two assets, sinethe algorithm beomes omputationally infeasible for larger portfolios. Thus,the distribution used is the two-variable Dirihlet distribution.After a long derivation, whih is given in appendix A.1, it is shown that theUniversal Portfolio weights after n time periods, using the Dirihlet distribution,an be alulated as follows:

b̂n =
1

∑n−1
l=0 Qn−1(l)

[

∑n−1
l=0

l+α1

n+α1+α2−1Qn−1(l)
∑n−1

l=0
n−l+α2−1

n+α1+α2−1Qn−1(l)

]

.4From a set of m assets, taking any individual asset is equivalent to a CRP with a weightvetor that ontains exatly one element that is 1, and the remaining elements 0. Sine theBCRP by de�nition is the best CRP, it will be at least as good as the best one asset portfolio.6



In the above expression, Qn(l) must be alulated reursively using Q0(0) = 1,and the following reursion rules
Qn(l) = xn1

l + α1 − 1

n + α1 + α2 − 1
Qn−1(l − 1) + xn2

n − l + α2 − 1

n + α1 + α2 − 1
Qn−1(l)for 1 ≤ l ≤ n − 1, and the orresponding endpoint reursions are

Qn(0) = xn2
n + α2 − 1

n + α1 + α2 − 1
Qn−1(0),

Qn(n) = xn1
n + α1 − 1

n + α1 + α2 − 1
Qn−1(n − 1).These equations speify the Universal Portfolio weights for general values of α1and α2, the parameters of the two variable Dirihlet distribution.Universal Portfolio has a theoretial guarantee (as shown by Cover [6℄) that(with S∗

n denoting BCRP performane and Ŝn Universal Portfolio performane)
lim

n→∞

1

n
ln

(

S∗
n

Ŝn

)

= 0whih intuitively means that asymptotially5, the Universal Portfolio will growat the same average ontinuously ompounded rate as the BCRP. Note that thisrequires that the probability distribution used is in fat the true distribution ofBCRP weights; the Dirihlet distribution might not be able to atually ful�llthis property even asymptotially.2.2.3 Exponentiated GradientThis algorithm, introdued by Helmbold et al [13℄, has slightly weaker theoret-ial properties than Universal Portfolio. Using the same notation as above,
lim

n→∞

1

n
ln

(

S∗
n

Ŝn

)

=

√

ln
( m

2r2

)where m is the number of assets in the portfolio and r is a lower bound on therelative prie hanges between trading days. This an hypothetially be arbi-trarily lose to zero, meaning that the right hand side ould be large.It is possible aording to Helmbold et al to ahieve the same asymptoti per-formane with Exponentiated Gradient (EG) as with Universal Portfolio, butonly using a modi�ed version that is signi�antly more omplex to alulate.However, aording to the authors, EG often provides better performane thanUniversal Portfolio in experiments. Results in their artile show that EG anoften ome quite lose to BCRP performane.The EG algorithm has one parameter, denoted η, whih is the so alled learningrate. In this thesis, this parameter will be held onstant over time for eah test,although it is tehnially possible to let it vary over time. A high value of η5As time approahes in�nity. 7



means that EG more quikly realloates to the strongest performing assets. Theweights are alulated aording to the following expression
bt+1,j =

bt,j exp
(

ηxtj

bTt x

)

∑m
k=1 bt,k exp

(

ηxtk

bTt x

) , (3)whih is given without any derivation or formal justi�ation in the soure ar-tile. One property an be noted: If the initial weight vetor has no negativeelements, then onseutive weight vetors also annot have negative elements,sine the exponential funtion is stritly positive. Thus, EG an be omparedfairly to Universal Portfolio using the Dirihlet distribution in the sense thatneither of them allow short selling of assets.It should be noted that for EG it is omputationally feasible to use portfolios ofmore than two assets. Sine EG and Universal Portfolio are otherwise similar,it is interesting to see whether it is bene�ial to use portfolios of more than twoassets with EG. If it is not, then this an heuristially be assumed to hold alsofor Universal Portfolio, sine it is similar to EG in oneptual funtionality; italso tries to apture momentum and to obtain BCRP performane.2.2.4 AntiorThe Antior algorithm was introdued by Borodin et al [4℄. The BCRP perfor-mane is not a strit upper bound for Antior, as it is for Universal Portfolioand EG. Also, Antior does not try to alloate to past strong performers, butinstead tries to �nd mean reversion patterns in the asset pries. The algorithmhas one parameter, namely the length of the window. This is a period of timeused to determine orrelations between the assets in the portfolio. The weightsfor oming periods are then determined using the alulated orrelations. Thename of the algorithm re�ets the fat that it works best with negatively orre-lated assets.Denote the length of the window w, whih should be an integer number ofpoints in time. The growth rate of an asset over the length of the window de-notes the prie of the asset at the end of the window period divided by the prieat the beginning of the window period. Antior will realloate from asset j toasset k at time t if both of these onditions hold:
• The growth rate of asset j must be higher than that of asset k over thewindow starting at t − w + 1 and ending at t.
• There must be a positive orrelation between asset j over the window from

t − 2w + 1 to t − w and asset k over the window from t − w + 1 to t.If it is assumed that assets are mean-reverting and perform on average equallywell over longer time periods, these two onditions together an be taken asan intuitive indiation that asset k should outperform asset j over the windowgoing from t + 1 to t + w.The full formal desription of the Antior weight alulation is rather om-pliated, and for this reason it is presented in appendix A.2.8



2.2.5 CPPIThe Constant Proportion Portfolio Insurane (CPPI) algorithm was introduedby Blak and Jones [2℄ and Perold and Sharpe [24℄ and later tested by Bertrandand Prigent [1℄. It is relatively ommon in ommerial settings, where it is usedas a form of insurane strategy. CPPI uses one risky asset and one risk freeasset that inreases in value at a ontinuously ompounded risk free rate r.The base form of CPPI is thus onstrained to portfolios onsisting of two assets,though it is tehnially possible to let the risky asset be a portfolio of severalrisky assets, even a Universal Portfolio, EG or Antior algorithmi portfolio.Let V0 denote the initial portfolio value and F0 the initial �oor. The purposeof the �oor is to provide a guaranteed minimum portfolio value at any point intime. It is neessary to have F0 < V0. The �oor will then be allowed to growdeterministially at the ontinuously ompounded rate r, i.e. the same as therisk free asset. At all points in time t, Ct denotes the ushion, whih is de�nedby
Ct = Vt − Ft.The total investment in the risky asset, whih is alled the exposure, is denotedby Et. CPPI presribes that the exposure should be
Et = mCt,where m is a parameter alled the multiplier. The expeted payo� funtionbeomes onvex if m > 1, but the �oor is then no longer absolutely guaranteed.If m ≤ 1 is enfored, the exposure will never be larger than the ushion, so atleast the amount that onstitutes the �oor will be invested in the risk free asset.Some generalizations of CPPI were introdued by Boulier and Kanniganti [5℄.One extension is the moving �oor, that is immediately raised following large in-reases in the value of the risky asset, thus limiting the ushion and onsequentlythe exposure to the risky asset. The moving �oor protets against subsequentfalls in the prie of the risky asset. An obvious disadvantage is that persistentstrong performane of the risky asset will not be fully aptured, sine a higher�oor implies a smaller ushion and thus a smaller exposure.The moving �oor version of CPPI also introdues a new parameter whih isalled p. It denotes the maximum fration of the total wealth permitted toinvest in the risky asset. To keep the guarantee of the �oor as minimum wealth,set p = 1 − f , where f = (F/V )min, the minimum �oor allowed expressed asa fration of total wealth. The p parameter an also be used to invest moreaggressively in the CPPI algorithm: Letting p > 1 allows short selling of therisk free asset to invest more in the risky asset, allowing the investor to leveragereturns from the risky asset.Using this version of the CPPI gives the following expression for the �oor ateah point in time t:

F new
t =

{

m−p
m Vt if mCt > pVt

F old
t otherwise.The explanation for this an be found in appendix A.3.9



In both versions of CPPI, the weights for the two omponents are given by
bt,risky =

Et

Vt
and bt,riskfree = 1 − Et

Vt
.The total return fator is alulated as

Ŝn =
Vn

V0
.2.2.6 Algorithm summaryFor onveniene, an overview of the algorithms is provided in table 1 below toremind the reader of their respetive parameters, desired asset features and anyother algorithm features.Table 1: Overview of the algorithms used and their featuresAlgorithm Parameters Desired asset features Other featuresUniversal Distribution of Momentum ComputationallyPortfolio BCRP weights feasible only fortwo asset portfoliosEG Learning rate η Momentum NotomputationallyomplexAntior Window length w Negative orrelation, Mediummean reversion omputationalomplexityCPPI Multiplier m, One risk free asset, The �oor is amax leverage p momentum guarantee level2.2.7 Trading ostsTrading has additional osts besides the atual purhase pries, a�eted by rel-ative prie hanges of the assets. There is also a trading ost, whih is oftena ertain fration of the total volume traded. This approah is referred by e.g.Blum and Kalai [3℄ and Blak and Jones [2℄. Clearly, this will primarily a�etalgorithms that make large hanges to the portfolio weights.In this thesis, trading osts are implemented as a redution of a ertain numberof basis points (hundredths of perentage units) of the total volume of assetstraded at eah transation. I will perform tests with a range of trading ostsfor algorithms that show apability of generating abnormal returns. This willtest the robustness of the algorithms in the sense of their ability to providesatisfatory returns even with trading osts and thus how useful the algorithmsare for smaller investors.

10



3 DataThe data used is time series of past prie data for a number of di�erent assets ofseveral ategories. Categories represented are mainly broad indies and volatil-ity indies. Some ommodities and the Swedish T-bill index OMRX are alsoinluded.Broad indies inluded are STOXX with 3528 daily observations from Deem-ber 1991 to November 2005, OMX with 1891 daily observations from February1998 to June 2005, S&P500 with 19562 daily observations from January 1928 toNovember 2005 and MSCI and MSCI Russia with 1638 daily observations fromFebruary 1998 to June 2004.The volatility indies used are VIX, whih is the implied volatility of the S&P500index, with 5011 daily observations from January 1986 to November 2005, VXN,whih is the implied volatility of the Nasdaq omposite index, with 1202 dailyobservations from February 2001 to November 2005 and VDAX, whih is theimplied volatility of the DAX index, with 3351 daily observations from January1992 to April 2005. Volatility indies are introdued beause these indies arein themselves highly volatile, and their volatility might be useful for generatinghigh returns. In �gure 1 below, the time series for the VIX index is presented todemonstrate the harateristis of a volatility index. The very high spike orre-sponds to Otober 19, 1987, also known as the Blak Monday, when the S&P500fell by more than 20% in one day. VXN and VDAX have similar harateristisand are not shown.
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Figure 1: Development of the VIX indexCommodities inluded are gold and oil, both with 1638 daily observations fromFebruary 1998 to June 2004. The OMRX index, with 4023 daily observationsfrom January 1990 to June 2005, is the only T-bill index inluded beause T-billindies do not di�er muh from one another in terms of riskyness or returns.The index has very low volatility and a low rate of return that remains nearlyonstant over time. It is inluded primarily to serve as the riskfree asset neededby the CPPI algorithm. 11



4 MethodologyTo test the algorithms, experiments will be performed using atual time series ofseurities pries, but Monte Carlo simulations using the historial distributionof per period returns will also be used.4.1 Monte Carlo simulationValues are sampled from a (preferably large) set of empirial data with uniformprobabilities for eah observation. If the set is a representative sample of thedata series in a longer time frame, realisti time series of virtually unlimited sizean be generated to simulate what types of behavior to expet if longer atualtime series were available. It should be noted that the proess is likely to elimi-nate momentum from the original time series and might worsen performane ofthe algorithms that rely on momentum.4.2 Performane measures usedTwo performane measures will be used: A omparison of the return of an al-gorithmi strategy using a broad index suh as the S&P500 to the return ofthe broad index itself, and the Sharpe measure, whih will be used to measureeonomi signi�ane6 of performane di�erenes.Formally, the test performed will be to simulate 1000 time series, eah of 10years length, and to alulate the di�erene between the return of the algorithmand the return of the market index inluded in the portfolio,
X = ra − rmwhere ra is the geometri average annual return of the algorithmi portfolioand rm is the geometri average annual return on the broad index whih isrepresented in the algorithmi portfolio. Then, the hypothesis that the averageof this stohasti variable is zero is tested against a two sided alternative thatit is di�erent from zero. Let µX denote the expeted value of X. Then thehypotheses tested an be formally written as
H0 : µX = 0

H1 : µX 6= 0This is tested using the test statisti
t =

X − µX

σ/
√

nwhere n is the number of observations, i.e. 1000, and σ is the standard deviationof X. Under the assumption that X is normally distributed, the statisti willfollow the Student's t distribution with n − 1 = 999 degrees of freedom.6In this thesis, eonomi signi�ane is used to desribe the situation where a performanedi�erene is likely to be onsidered relevant by an investor, regardless of whether the di�ereneis found to have a statistially signi�ant deviation from zero or not.12



Apart from this test, the estimated standard deviation σ̂ will also be used totest the hypothesis that the return on the algorithmi portfolio when the atualtime series are used is larger than the atual return on the index inluded in theportfolio. Formally, this an be written
H0 : X = 0

H1 : X 6= 0The test statisti is then
t =

X̂ − X

σwhih follows the Student's t distribution with one degree of freedom under theassumption that X is normally distributed. As stated, the standard deviationwill be estimated from the 1000 Monte Carlo runs in eah ase.The yearly Sharpe measure Sp for a portfolio with yearly return rp and yearlyvolatility σp when the risk free rate is rf is alulated aording to
Sp =

rp − rf

σp
.4.3 Experimental strutureEah of the algorithms will be tested in turn. Some tests of the sensitivity tothe hoie of parameters will be performed and the algorithm performane willbe ompared to the two benhmarks, �rst using simulated time series aordingto the desription of Monte Carlo simulation and then using the atual timeseries. The results of the hypothesis tests will be shown and the observed dis-tributions of the X variable will be shown in histograms to determine whetherthe normality assumption holds or if it is otherwise lear that any disrepanyfrom normality does not atually a�et the validity of the hypothesis tests. Fortesting eonomi signi�ane, the results when using real time series will beshown and the Sharpe measure will be alulated.In ase the null hypothesis is rejeted for the real time series, an additionaltest will be run to determine at what trading ost level the result is no longersigni�ant. This is done to determine whether the result is also eonomiallysigni�ant, i.e. if it an be exploited not only by agents with low transationosts but also by e.g. individual investors who typially fae higher transationosts.4.4 DelimitationsThe issue of asset liquidity will not be addressed in this thesis. It may be thease that some of the assets used annot atually be traded aording to thepatterns suggested by the algorithms. No analysis will be performed to seee�ets of limited liquidity. Experiments will impliitly assume that neessaryliquidity is present.The algorithms will only be evaluated using daily rebalanings, sine this wasfound by Lundahl [19℄ to give the best performane even in the presene oftrading osts. 13



5 ExperimentsThe testing will inlude testing the algorithms' performane on simulated dataas well as their performane on real asset prie data, to �nd out what theoptimal patterns are for the salable algorithms (e.g. if it seems preferrable touse a partiular number of assets) and to �nd evidene of the dependene ofalgorithms on the di�erent parameters of the assets used.5.1 Universal PortfolioThe only parameters of the Universal Portfolio algorithm are the parameters ofthe probability distribution assumed for the BCRP weights. Using the Dirih-let distributions as disussed earlier, it is interesting to see whether there aresigni�ant di�erenes in performane of the algorithm using e.g. the Dirih-let(1/2,1/2) and the Dirihlet(1,1) distributions. This is tested by simulating1000 runs of the algorithm on two randomly seleted assets and alulating thedi�erene between the portfolio total return fator and the arithmeti averagetotal return fator of the two individual assets. This di�erene an intuitivelybe viewed as a measure of performane of the algorithm, sine it shows anyextra performane ompared to the simple buy-and-hold portfolio on the sametwo assets.
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Figure 2: Comparison of Universal Portfolio algorithm using Dirihlet(1/2,1/2)(left) and Dirihlet(1,1) measures (right)Besides the fat that these partiular assets do not seem to provide partiu-larly impressive algorithm return, it is also seems that, having settled for theDirihlet lass of probability measures, the atual hoie of its parameters isnot very relevant. The histograms are virtually idential. A number of othertests of di�erent Dirihlet parameters indiate the same thing. Also, in someof the soure artiles, there are also tests of the Universal Portfolio algorithmwith respet to the sensitivity to the hoie of probability measure, reahingthe same onlusion. The probability measure hosen does not appear to bean important onern. Heneforth, this thesis shall for Universal Portfolio usethe Dirihlet(1,1) probability measure, whih is equivalent (see appendix A.1)to the uniform distribution. 14



One seletion of assets that seems to work well with the Universal Portfolioalgorithm is the STOXX index [30℄ ombined with the VIX volatility index [28℄.This portfolio has the advantage that the VIX index, re�eting the impliitvolatility of the S&P500 index, does not exhibit onsistent growth over timebut rather stays lose to a onstant level apart from oasional spikes when theS&P500 beomes highly volatile. This makes it reasonable to ompare the algo-rithmi return only to the return on the STOXX index, sine the return on theVIX index is typially lose to zero over most periods, with exeption only forshort periods from the "base level" to the height of a peak as shown in setion3. For a portfolio based on these two assets, the distribution of the X variableis shown in �gure 3 below.
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Figure 3: Histogram of the distribution of the X variable for Universal Portfolioon STOXX and VIXThe �rst hypothesis test gives an observed value of the t statisti that is 11.526.With 999 degrees of freedom, this orresponds to a p value of 0.0000, i.e. thenull hypothesis is rejeted on the 1% level. There is a signi�ant positive e�etfrom using the Universal Portfolio algorithm on these assets. Similar resultsare obtained using other assets, for instane the other volatility indies or otherbroad indies. Combining VIX with S&P500 improves results, as would be in-tuitively assumed.It should be noted that the distribution does not look quite normal. In parti-ular, it appears to have a fat upper tail. Other than this tail, the normalityassumption appears to be justi�ed. However, the fat upper tail does not ontra-dit the onlusion that the algorithm's return is greater than the return on theSTOXX index. Rather, it orroborates this onlusion, showing that in some15



ases, the average yearly return is muh higher using the algorithm omparedto not using the algorithm.Testing on the atual time series of STOXX and VIX, approximately 14 yearsfrom the end of 1991 to the end of 2005, gives the result presented in �gure 4below.
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Figure 4: Performane of Universal Portfolio on atual time series ompared toonstituent indexFrom the plot, it appears that the return is learly higher for the Universal Port-folio algorithm but that this omes at the prie of higher volatility. It turns outhowever that the average yearly return is not signi�antly higher for UniversalPortfolio in this ase, with a t value of only 0.1885 and one degree of freedom,orresponding to a p value of 0.8814. The null hypothesis that the UniversalPortfolio does not give a higher return an not be rejeted at any onventionallevel. In terms of eonomi signi�ane7 however, investors are likely to thinkthat earning approximately 250% is learly better than earning approximately150%. The Sharpe measure is 0.1805 for the Universal Portfolio and 0.1064 forthe STOXX index, strengthening the view that there is an eonomially signif-iant di�erene between the Universal Portfolio and the STOXX index.To test the sensitivity to trading osts, a series of tests on atual time se-ries were run with suessively inreasing trading osts. For the portfolios withvolatility indies, trading osts of 1.5% of the traded volume at eah trade bringsthe performane in level with the underlying broad index. At 1% of the traded7Reall from the methodology setion that eonomi signi�ane is used in this thesis todenote performane di�erenes that investors are likely to �nd relevant.16



volume, there still appears to be eonomially signi�ant exess return. Large�nanial institutions will typially fae 0.02-0.03% trading osts aording tothe author's work life experiene.5.2 Exponentiated GradientThe Exponentiated Gradient (EG) algorithm has one parameter, the learningrate η. The sensitivity to the hoie of η will be tested �rst by alulating returnsfor di�erent values of this parameter. The time series used are the STOXX andVIX indies also used in the Universal Portfolio experiments.
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Figure 5: EG total return fator as a funtion of ηThe results are in line with what Helmbold et al [13℄ �nd. A low η seems to bethe best hoie. This orresponds to a rather slow rebalaning proess, while alarge η means realloating very quikly to the strong performers in the portfolio.An η value of 0.01 will be used for the remainder of the EG experiments.Sine the EG algorithm is not very omputationally omplex, it is suitable fortests on portfolios of more than two assets. Experiments show that portfolios ofmore than two assets do not provide any additional performane ompared toportfolios of two assets. In �gure 6 is the result of one suh experiment. Usinga set of N assets, it is possible to onstrut 2N −N −1 portfolios of at least twoassets8, and in this partiular experiment, nine assets were used to test a total8It is possible to onstrut a total of 2
N portfolios (eah of the N assets an either beinluded or not inluded, independently of one another) and of these, one is the empty portfoliowith no assets and N portfolios have one asset eah.17



of 502 portfolios.In the �gure, the total return fators of the portfolios are plotted against theportfolio number, whih is originally the deimal representation of the nine bitbinary string used to selet the assets from the set of nine assets. Note that inthe �gure, the original order of the portfolio numbers has been hanged to sortthe portfolios aording to number of onstituent assets keeping the portfolioswith few omponents to the left. This is intended to help drawing onlusionsabout whether there are any bene�ts when using a partiular number of assets.
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Portfolio number (Sorted with fewest asset portfolios left)Figure 6: Total return fator for 502 EG portfolios, sorted by number of on-stituent assetsThere seems to be no signi�ant bene�t from inluding more than two assetsin a partiular portfolio. Return fators appear to be largely una�eted whilethe volatility of the return appears to deline as more assets are inluded. Thevolatility onlusion is based on the fat that there seems to be smaller �u-tuations in the total return fator in the right part of the �gure, where theportfolios ontaining several assets are represented. This should not ome as asurprise, but rather be seen as a sign of the diversi�ation e�et. More assetsshould imply lower volatility, even if the weights are determined aording toan algorithm. The results in �gure 6 are also on�rmed by several other testson other sets of assets and over di�erent time periods.As pointed out earlier, the oneptual similarity between EG and UniversalPortfolio an be used to argue that heuristially, the same result ould be as-sumed to hold for Universal Portfolio. For the remainder of the thesis, experi-ments will be performed on two asset portfolios. Coneptually, an investor thatwants to exploit diversi�ation to derease volatility ould do so by dividing18



investment among several separate algorithmi portfolios rather than reating asingle algorithmi portfolio of more assets. In onlusion, fousing on two assetportfolios is not a severe limitation.When running a 1000 run experiment on the EG algorithm using the STOXXand VIX indies, the observations of the X variable are distributed aordingto the histogram in �gure 7.
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Figure 7: Histogram of the distribution of the X variable for the EG algorithmon STOXX and VIXThe �rst hypothesis test results in an observed t statisti value of 11.895. Thestatisti has 999 degrees of freedom, meaning that the observed value orre-sponds to a p value of 0.0000. The null hypothesis is rejeted on the 1% level ofsigni�ane. There is on average a positive ontribution to yearly return fromusing the EG algorithm on these assets.The histogram looks similar to the one observed for the Universal Portfolio algo-rithm. The right tail looks perhaps somewhat less heavy than in the UniversalPortfolio test, although it is still heavier than the left tail in this histogram. Theshape of the distribution suggests that the normality assumption is not unjus-ti�ed. There appears to be a skew, but that skew strengthens the rejetion ofthe null hypothesis rather than ontradits it. There appears to be a signi�antpositive e�et from using the EG algorithm.The test performed using the atual time series gives a t statisti of 0.3393,with one degree of freedom, whih orresponds to a p value of 0.7918. The nullhypothesis of no ontributing e�et an in this ase not be rejeted on any on-19



ventional level of signi�ane. In �gure 8 below, the performane of EG usingthe atual time series is shown.
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Figure 8: Performane of EG on atual time series ompared to onstituentindexEven more than in the Universal Portfolio ase, there seems to be eonomisigni�ane in the results presented in �gure 8. Almost 400% return should beonsidered signi�antly better than almost 150% return. For omparison, theSharpe measure for this EG portfolio is 0.2825, almost three times the Sharpemeasure of the STOXX index whih was alulated to be 0.1064 in the previoussetion. Results are similar for all tested portfolios, espeially those ontainingvolatility indies, and the S&P500 and VIX ombination again seems to be thebest ombination. The STOXX and VIX ombination is representative of thetypial performane of portfolios ontaining at least one volatility index. Port-folios of only other assets, for instane ombinations of broad indies, do notexhibit the same overperformane, but does show an ability to give a returnhigher than the arithmeti average of the onstituent asset returns ombinedwith a lower volatility than an equally weighted buy-and-hold portfolio has.The EG algorithm with a low learning rate η proves to make very small weightadjustments at eah rebalaning and, as a result, the algorithm is almost om-pletely insensitive to trading osts. Even trading osts of 50% of the tradedvolume still leaves an eonomially signi�ant abnormal return. It takes trad-ing osts of 100% of the traded volume to bring the portfolio return in level withthe underlying index, indiating that the realloations the algorithm makes onaverage are return generating. 20



5.3 AntiorThe Antior algorithm has one parameter, namely the length of the windowwhih is denoted by w. As a �rst step, the sensitivity of the algorithm to thisparameter will be tested by alulating total return fators for the STOXX-VIXportfolio for a range of di�erent values of w. In �gure 9 below, the results ofthis test an be seen.
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Figure 9: Antior total return fator as a funtion of wAs an be seen, the results seem quite sensitive to the hoie of w. This isin aordane with what Borodin et al [4℄ �nd. Their suggested solution isto instead hoose one minimum and one maximum w, alulate the suggestedAntior weights for eah w between these two values and take the arithmetiaverage of the suggested weights, essentially reating a buy-and-hold portfoliowith a number of Antior portfolios as onstituents. Very low values of w shouldbe avoided sine the suggested weights an di�er signi�antly from suggestedweights when a slightly larger w is used (and the result is typially worse forvery low w aording to Borodin et al).The minimum value of w is set to 5, and the obtained results are similar tothose presented by Borodin et al, i.e. the algorithm is not so sensitive to themaximum value of w as long as it is at least somewhere around 20. In theremainder of this thesis, averaging will be used with wmin = 5 and wmax = 30.The �rst experiment on Antior using 1000 runs of simulated time series givesthe histogram of the X variable distribution presented in �gure 10.21
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Figure 10: Histogram of the distribution of the X variable for Antior onSTOXX and VIXLike before, the normality assumption appears from the shape of the distrib-ution histogram to be justi�ed, and the mean appears to be well above zero.The observed value of the t statisti in this �rst test is 39.481, and with 999degrees of freedom as before, this orresponds to a p value of 0.0000. The hy-pothesis test indiates a signi�ant positive ontribution from using the Antioralgorithm ompared to investing only in the STOXX index. Similar results areseen using other ombinations inluding at least some volatility index.The portfolio on the atual STOXX and VIX time series over the same timeperiod as before gives the result presented in �gure 11 below.
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Figure 11: Performane of Antior on atual time series ompared to onstituentindexAs an be seen from the �gure, Antior manages to provide an abnormal returnthat is quite impressive. The t statisti has a value of 6.5507 with one degree offreedom, orresponding to a p value of 0.0964. Thus, the null hypothesis an berejeted on the 10% level of signi�ane. As for eonomi signi�ane, the per-formane of Antior is learly muh better than that of the underlying STOXXindex. The Sharpe ratio for the Antior portfolio is 1.5759, muh higher thanthe 0.1064 seen for the STOXX index.This pair of assets learly �ts the desired harateristis for the Antior al-gorithm well. There is high volatility in the VIX volatility index, and it isnegatively orrelated with the STOXX index. This negative orrelation is notperfetly intuitive, but there is at least one possible explanation. The VIX indexre�ets the impliit volatility of the S&P500 index. Thus, a negative orrelationshould be expeted between the returns on S&P500 and the returns on VIX,sine when S&P500 is falling, the volatility tends to inrease, and when it is ris-ing, volatility tends to fall. Furthermore, while the STOXX index is made up ofEuropean omponents in ontrast to the S&P500 whih is made up of Amerianomponents, there is a orrelation between the behavior of the STOXX indexand that of the S&P500. This also means that a negative orrelation an befound between STOXX and VIX.For referene, some results when ombining VIX with the S&P500 are alsogiven. In �gure 12 below are the results when using the atual time series overa period of almost 20 years, from the beginning of 1986 to present day.23
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Figure 12: Performane of Antior on atual time series ompared to onstituentindexNote that the S&P500 atually is plotted in the graph and normalized to startat 1 in the beginning of 1986 just as the total return fator of Antior, but dueto the performane of the Antior algorithm, the S&P500 series is not visiblesine the omparatively small magnitude of its returns makes it blend togetherwith the horizontal axis. It appears that the e�et is even stronger when om-bining the VIX with the S&P500, whih is to be expeted sine the S&P500is the underlying index whose impliit volatility is re�eted by the VIX. A hy-pothesis test of the same type as above gives a t statisti value of 13.8942, whihorresponds to a p value of 0.0457. The null hypothesis an be rejeted on the5% level of signi�ane. The Sharpe measure is 3.4848 for this portfolio, to beompared with 0.1471 for the S&P500. The volatility is 23.86%, whih is higherthan the 8.61% that the S&P500 exhibits.The ombination of S&P500 and VIX gives the best results with the Antioralgorithm, but in general, all portfolios tested that ontain at least one volatilityindex exhibit behavior similar to the STOXX-VIX ombination. Unlike for theUniversal Portfolio and EG algorithms, Antior also outperforms the individ-ual assets in portfolios of only broad indies. The overperformane in this aseis not as large as in the portfolios that have volatility indies, but there is apositive e�et that is omparable to what Universal Portfolio and EG show inportfolios with volatility indies.
24



5.3.1 Antior under extreme onditionsAs a test of the Antior algorithm's behavior under extreme onditions, theperformane over 1987 is presented in �gure 13 below. The large drop in theS&P500 orresponds to Otober 19, also known as the Blak Monday.
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Figure 13: Performane of Antior under extreme onditionsIn this �gure, it is espeially interesting to note that while there appears to besome volatility at the end of the year, the Antior algorithm makes a ratherlarge pro�t on the Blak Monday, suessfully apturing the sharp spike in theVIX index that ourred on that day and is shown in �gure 1 in setion 3.The whole year performane is approximately up 40%, to be ompared with theS&P500 index whole year return of 0.25%.While the Antior algorithm has rather strong performane, it ahieves thisperformane through rather large realloations at eah rebalaning. As a onse-quene, muh of the abnormal returns is lost if trading osts are high. At tradingosts of 1% of the traded volume, Antior has a performane omparable to thatof Universal Portfolio or EG at low trading osts. When trading osts are 1.2%,the algorithm performane is brought to level with the underlying index.5.4 CPPIThe CPPI algorithm will be used in the moving �oor version only, sine it is ageneralization of the basi version. The �oor will not be allowed to grow at therisk free rate, sine this was found by Lundahl [19℄ to be undesirable, ausing25



the portfolio to fall through the �oor too often. There are two parameters forthis algorithm, the multiplier m and the maximum relative investment in therisky asset p. Sine the CPPI algorithm is not intended to be an abnormalreturn generating algorithm like the previous three tested, but rather an in-surane algorithm providing a safety level ombined with potential upside, thesame types of results should not be expeted for CPPI. Also, it is spei�allyonstruted for two asset portfolios where one of the assets is reasonably riskfree. For this purpose, the Swedish OMRX T-bill index will be used in this the-sis sine it has very low volatility and a preditable, nearly onstant growth rate.Tests were run to determine reasonable values for the m and p parameters.The p parameter proved to have a rather irregular in�uene on the resultingtotal return fator as an be seen in �gure 14 below.
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�gure 15 below, the results of the seond test are shown. The results of the �rsttest are very similar and are thus not shown here.
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Figure 15: CPPI total return fator as a funtion of mIt appears that as long as m > 5, the atual value does not a�et return verymuh. This is reasonable, sine p spei�es an upper limit on the investmentin the risky asset. Inreasing m would inrease the suggested exposure to therisky asset, but if it already is larger than the maximum allowed exposure, itdoes not matter if m is inreased. The atual exposure will be the one spei�edby the value of p. In this thesis, m = 6 will be used. Higher values of both mand p ould be used to amplify returns, but that would also amplify risks, sinehigher p values means that it is possible to short sell the riskfree asset more,and higher m values means that the sensitivity for drops in the risky asset isinreased, as is shown in appendix A.3.Using the parameters mentioned above and a portfolio onsisting of the STOXXand OMRX indies for the 1000 runs provides the histogram presented in �gure16 below.
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Figure 16: Histogram of the distribution of the X variable for CPPI on STOXXand OMRXThe observed value of the t statisti is -8.4851, orresponding to a p value of0.0000 with 999 degrees of freedom. There appears to be a signi�ant negativee�et on return if CPPI is used ompared to investing only in the STOXX index.There is however a heavy right tail as for the other algorithms. The shape ofthe distribution resembles the normal distribution.When the atual STOXX and OMRX time series are used, with the same timeperiod as the previous experiments, the result is as in �gure 17 below. Thevalue of the t statisti in this ase is 0.8235 with one degree of freedom, whihorresponds to a p value of 0.5614. The null hypothesis an not be rejeted onany onventional level of signi�ane. The behavior of the algorithm is similarregardless of what index is used instead of STOXX. The algorithm is not verywell suited for other types of assets, so only pairs of OMRX and a broad indexhave been tested.The CPPI algorithm is very sensitive to presene of trading osts. Apart fromthe empirial fat that CPPI proves to make large realloations at eah rebal-aning, the sensitivity an intuitively be understood, sine an important featureof the algorithm is to raise the �oor to seure returns. If trading osts must bepaid, there is not room for raising the �oor, and subsequent falls will a�et theportfolio more. In fat, for trading osts of only 0.20% of the traded volume,the portfolio performane is at the same level as the underlying index.
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Figure 17: Performane of CPPI on atual time series ompared to onstituentindexThe Monte Carlo simulation tehnique does not quite apture the momentumharateristi of the STOXX index, meaning that the potential for CPPI togenerate abnormal returns is signi�antly limited. Also, another point of theCPPI algorithm is the guarantee provided by the �oor. In appendix A.3, it isshown that if the risky asset does not fall by a fration larger than 1/m overone period, the portfolio will not break through the �oor. Thus, as is shownin �gure 17 above, CPPI would provide a guaranteed return that mathes theSTOXX level at the height of the IT bubble, provided that STOXX never fallsmore than 1/6 ≈ 0.1667 = 16.67% over one period, i.e. over one day with dailyrebalaning. Over the 14 year period used, the maximum daily drop in STOXXwas 5.39%, so learly, falls of more than 16% appear to be rare. Even if theportfolio falls below the �oor, it will then alloate fully into the risk free assetand remain invested in it until wealth is above the �oor again.The Sharpe measure for the CPPI portfolio is 0.3885, whih is learly higherthan the Sharpe measure for the STOXX index. The average annual volatil-ity is 11.32%, to be ompared with 8.03% for the STOXX index. Combinedwith the added insurane that the portfolio will not fall below the �oor un-less the STOXX index falls by more than 16% in one day, it appears that theCPPI algorithm is indeed useful in reality despite the negative outome of theMonte Carlo simulation. The fat that CPPI strutures are provided by largeinvestment banks also strengthens this view.
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6 AnalysisThe experiments for the Universal Portfolio, EG and Antior algorithms showlearly signi�ant positive results in Monte Carlo simulations. The CPPI algo-rithm shows a signi�ant negative result in Monte Carlo simulations, but theorresponding result when using atual time series indiates that ertain hara-teristis of the underlying time series that are important to the CPPI algorithmmight not be aptured by the Monte Carlo simulation.For all algorithms, real time series results show eonomi signi�ane, whileonly Antior manages to provide statistial signi�ane at onventional levelsfor these tests. Also, the Sharpe measures observed for the di�erent algorithmsindiate that the algorithms manage to provide performane that is superior tothe underlying broad indies.A natural question is why the EMH, whih is ertainly plausible on an intu-itive level, appears to fail to hold even in the weak form. A possible explanationis that while the EMH impliitly assumes perfet distribution of information toallow for enlightened and equally knowledgeable investors, in reality not all in-vestors might have aess to all information. While the time series of past priedata ertainly are available to a large share of investors and tehnial analy-sis in many forms is ommonly used, the knowledge of partiular quantitativetehniques might not be widely available. Also, the very existane of the EMHmight disourage many investors from even trying to use insights from tehnialanalysis. Even for investors willing to use tehnial analysis, omplexity of im-plementation might disourage the use of ertain algorithms in favor of simplermethods.It should also be noted that one of the delimitations made in this thesis isthat asset liquidity is not researhed. While the broad market indies suh asthe S&P500 and the STOXX are generally known to be highly liquid, volatilityindies suh as VIX or VDAX might not be widely traded. Futures ontratsdo exist for these indies, but they might not be widely traded. If liquidity islimited, the atual usefulness of the results, at least for large sale investmentpurposes, might be signi�antly redued.The algorithmi portfolios might be pereived as more risky by some investors.However, apart from the potential liquidity risk, there is not muh evidene ofsigni�antly inreased risk. Observed volatilities of the algorithmi portfoliosare not substantially larger than those of the broad market indies themselvesand ertainly not larger than typial single stok volatilities, indiating thatvolatility is not a major onern.Trading osts is an issue that might erode the eonomi signi�ane of theresults. The experiments show that in partiular CPPI is sensitive to trad-ing osts and might thus be best suited for implementation in larger �nanialinstitutions. In the presene of high trading osts, Antior loses most of its ab-normal performane, meaning that it might not be suitable for small investors.EG proves to be very resistant to trading osts and might be interesting evenfor individuals. 30



7 ConlusionsDespite the plausibility of the EMH, tehnial analysis seems to improve in-vestment performane. Clearly signi�ant results in large simulations indiaterobustness of several purely tehnial investment strategies. Experiments onatual time series do not onsistently provide onvining statistial signi�anein themselves, but evidene from the exeution of hypothesis tests indiate thatthere is an eonomially signi�ant e�et from using algorithmi tehniques.Also, it is lear that abnormal returns need to be very high to be statistiallysigni�ant in single tests on atual time series. Thus, eonomi signi�ane anlearly exist even in the absene of statistial signi�ane.Some onerns about the validity of the results an be raised, and among these,the liquidity issue is arguably the most potentially troubling, possibly along withthe issue of trading osts. With low liquidity or high trading osts, salabilityand pro�tability might be limited.In onlusion, within the delimitations of this thesis, there is strong evidenethat the EMH does not hold fully onsidering the performane of these algorith-mi tehniques. Assuming neessary liquidity and trading osts not exeedingspei�ed levels, there appears to be potential for persistent and eonomiallysigni�ant abnormal returns for the algorithms tested in this thesis.7.1 Suggestions for further researhLimited length of atual time series data gives rise to onerns about sustain-ability of the results over longer periods of time. While Monte Carlo simulationsan redue this onern, it is not lear that the simulated time series mimi a-tual time series losely enough to be realisti. For instane, serial orrelationsmight not be aptured. As time passes and longer atual time series are pos-sible, tests ould be run again to determine in hindsight whether there is anysustainable pro�tability for any partiular algorithmi strategy.Another interesting topi would be to evaluate the psyhologial impliationsof using algorithmi investment strategies. Investment managers might wantto add an element of fundamental analysis to reate a strategy that does notunonditionally follow the algorithm suggestions but under ertain onditionsallows non-automated input as support for investment deisions. Helmbold etal [13℄ expand on this by introduing the onept of side information. Hybridstrategies of this kind is an interesting extension of the algorithmi approahand ould provide many further researh topis.The issue of liquidity might be addressed by either introduing signi�antlyinreased trading osts for partiular assets. Also, if the portfolio wealth needsto be kept small to alleviate liquidity problems, it ould be interesting to roundalgorithm weights to multiples of some perentage9 to handle problems withlarge ontrat sizes and see if the observed patterns remain.9If, for instane, ontrats in a partiular asset an only be integer multiples of 100 000and liquidity is low, a portfolio wealth of 1 000 000 ould be kept as a means of ensuring thatneessary liquidity is available, but in this ase, weights for the non-liquid asset ould only beinteger multiples of 100 000 as a fration of 1 000 000, i.e. 10%.31
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A AppendiesA.1 Derivation of Universal Portfolio weight formulasAs noted, this thesis uses the two variable Dirihlet distribution for UniversalPortfolio. To onveniently desribe the two variable Dirihlet distribution, theGamma funtion must �rst be de�ned:
Γ(t) =

∫ ∞

0

xt−1e−x dx, t ≥ 0A property of this funtion is that if t is an integer, Γ(t) = (t − 1) · Γ(t − 1),and it is easily seen by solving the integral that Γ(1) = 1. Using the Gammafuntion, the Beta funtion an be written
B(t, u) =

Γ(t)Γ(u)

Γ(t + u)
, t, u ≥ 0The two variable Dirihlet probability distribution has two parameters α1 and

α2 and is haraterised by the probability density funtion
f (b) =

Γ
(

∑2
i=1 αi

)

∏2
i=1 Γ (αi)

bα1−1
1 bα2−1

2 =
1

B(α1, α2)
bα1−1
1 bα2−1

2 .In addition the restritions b1 + b2 = 1 and 0 ≤ b1, b2 ≤ 1 must hold, whihimplies that the Universal Portfolio algorithm will not be able to short sell anyassets (sine weights below zero are prohibited).In the speial ase where α1 = α2 = 1, the density funtion beomes
f (b) =

Γ (1 + 1)

Γ (1)
2 b1−1
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2 =

Γ (2)

Γ (1)
2 b0

1b
0
2 = 1,i.e. the uniform distribution (sine Γ(2) = 1 · Γ(1) = 1 · 1 = 1). If instead

α1 = α2 = 1/2 the distribution beomes
f (b) =

Γ (1/2 + 1/2)
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2sine Γ(1/2) =

√
π and Γ(1) = 1.Next, a derivation of a losed form solution of the obtained total return fa-tor, Ŝn, will be performed for general α1 and α2, sine it is ontained in theexpression for the Universal Portfolio weights (2).First, the general Universal Portfolio weight formula is restated for onvenieneof referene.
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∫

b
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T
xt dµ (b)

∫
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t=1 bTxt dµ (b)
, (4)To expliitly alulate the algorithm weights and the total return for UniversalPortfolio in the ase when portfolios are limited to two assets, it is neessary to�nd a losed form solution to the integrals in equation (4). Firstly, to reah an34



expression for Ŝn, rewrite the total return fator for an arbitrary CRP after nrebalaning time points:
Sn(xn,b) =
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 ,where Tn(l) is the set of all sequenes J ∈ {1, 2}n with l ourenes of 1 and
(n − l) ourenes of 2. Next, let

Xn(l) =
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J∈Tn(l)
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xtjt
, (5)whih gives

Sn (xn,b) =
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bl
1b

n−l
2 Xn(l).To alulate the integrals in equation (4) above and the realized total returnfator of the Universal Portfolio, this expression is integrated over the Dirihletprobability measure that was assumed to hold for the BCRP weights.
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2 dµ (b) , (6)the total return fator expression an be written

Ŝn (xn) =
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Xn(l)Cn(l).Using this result, a losed form expression for the Universal Portfolio weightsand also its realized total return fator at time n an be obtained. Continuingfrom equation (4),
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,the weights an in fat be alulated using a proedure whih is very similar tothe one just used to alulate the Universal Portfolio return. One an see that
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Now, to obtain formulas that an be e�iently implemented in a program, theintegrals in equation (6) need to be solved. The Dirihlet density will now proveto be a good hoie. Reall that its density funtion is given by
f (b) =

1

B(α1, α2)
bα1−1
1 bα2−1

2 ,meaning that the integrals in equation (6) an be solved relatively easily. Firstly,note that
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2 db1,where b2 = 1 − b1.Take the onstant Beta funtion outside the integral and merge the b1 and
b2 fators to obtain
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bl+α1−1
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2 db1.In this integral, we an see that the integrand is essentially a Dirihlet densityfuntion. If it were ompleted with a onstant fator ontaining suitable gammafuntions, it would beome a true Dirihlet density funtion. Now, identify theparameters of this distribution, alling them γ1 and γ2. These new parameterslearly have the following relation to the original distribution parameters α1and α2:
γ1 = l + α1,

γ2 = n − l + α2.The general probability theory de�nition of a probability measure states
∫

dµ (b) = 1.The Cn(l) integrals in equation (6) an thus be solved. The solution is
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.Substituting the expressions introdued earlier for γ1 and γ2 into this gives
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.Using equation (6), it is lear that C0(0) =

∫

dµ (b) = 1 regardless of whatvalues are hosen for the α1 and α2 parameters. Using the rule that Γ(N +1) =
NΓ(N), Cn(l) an now be expressed reursively as a funtion of the values of
α1 and α2, by relating Cn(l) to Cn−1(l − 1) and Cn−1(l).

Cn(l) =
l + α1 − 1

n + α1 + α2 − 1
Cn−1(l − 1)36



Cn(l) =
n − l + α2 − 1

n + α1 + α2 − 1
Cn−1(l)For Xn(l) from equation (5), it is lear that when 1 ≤ l ≤ n − 1, the followingreursion an be used:

Xn(l) = xn1Xn−1(l − 1) + xn2Xn−1(l).At the endpoints, two spei� reursions hold:
Xn(0) = xn2Xn−1(0)

Xn(n) = xn1Xn−1(n − 1).To simplify further, note that in the expressions in equation (7) for the Uni-versal Portfolio weights and also in the adjaent equation for the realized totalreturn fator, Xn(l) and Cn(l) only our multiplied by one another. Thus, byintroduing
Qn(l) = Xn(l)Cn(l),the realized total return fator for Universal Portfolio after n rebalanings anbe more onveniently written:̂
Sn (xn) =

n
∑
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Qn(l).Note that also the quantities Cn(l + 1)Xn−1(l) and Cn(l)Xn−1(l), ouring inequation (7), an be simpli�ed by using the Qn(l) notation. Use the Cn(l)reursions to see that:
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Cn−1(l)Xn−1(l) =

=
n − l + α2 − 1

n + α1 + α2 − 1
Qn−1(l).Finally, insert the above expressions into equation (7), and the expliit UniversalPortfolio weight expression is obtained:

b̂n =
1

∑n−1
l=0 Qn−1(l)

[

∑n−1
l=0

l+α1

n+α1+α2−1Qn−1(l)
∑n−1

l=0
n−l+α2−1

n+α1+α2−1Qn−1(l)

]

.
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A.2 Desription of Antior weight alulationTo desribe Antior more thoroughly, we must �rst de�ne
LX1t = [log(xt−2w+1), . . . , log(xt−w)]

T
, LX2t = [log(xt−w+1), . . . , log(xt)]

Twhere log(xt0) denotes [log(xt01), . . . , log(xt0m)]
T, t0 is a point in time and m isthe number of assets in the portfolio as before. Thus, LX1t and LX2t are w×mmatries, ontaining logarithms of relative pries of assets over the windowsfrom t − 2w + 1 to t − w and from t − w + 1 to t respetively. Denote the jtholumn of LXlt by LXlt(j) (where l is 1 or 2). Also, let µl = [µl(1), . . . , µl(m)]and σl = [σl(1), . . . , σl(m)] denote the vetors of sample averages and samplestandard deviations of the olumns of LXlt (i.e. the sample averages and samplestandard deviations over the two windows for all assets) respetively. Using thisnotation, the ross orrelation matrix an be alulated aording to

Mcov,t(j, k) =
1

w − 1
(LX1t(j) − µ1(j))

T(LX2t(k) − µ2(k))

Mcor,t(j, k) =

{

Mcov,t(j,k)
σ1(j)σ2(k) if σ1(j), σ2(k) 6= 0

0 otherwise.Here, Mcor(j, k) is the sample orrelation between the log-relative pries of asset
j over the window from t−2w+1 to t−w with those of asset k over the windowfrom t − w + 1 to t. Should σ1(j) or σ2(k) be zero over either of the windows,it means that the logarithm of the relative prie of that asset is onstant overthat interval. Antior does not realloate between assets j and k in this ase.The next step is to alulate the laim matrix. Here, claimi(j, k) denotes aninitial approximation of the amount of wealth to realloate from asset j to asset
k.
claimt(j, k) =

{

Mcor,t(j, k) + At(j) + At(k) if µ2(j) > µ2(k) and Mcor,t(j, k) > 0
0 otherwise.The Ai(h) quantity in the above expression is alulated aording to

At(h) =

{

|Mcor,t(h, h)| if Mcor,t(h, h) < 0
0 otherwise.Intuitively, if Mcor,t(j, k) > 0, one ould argue that assets j and k are orrelatedin onseutive windows, so that a rise in one predits a future rise in the other,and Mcor,t(h, h) < 0 shows that asset h is negatively autoorrelated in onse-utive windows.Next, the transfers that are made are alulated:

transfert(j, k) =

{

bt(j)
claimt(j,k)P
k

claimt(j,k) if ∑

k claimt(j, k) 6= 0

0 otherwise.With the transfers alulated, the portfolio weights at time t+1 an be alulatedusing the weights at time t through the following relation:
bt+1 = bt +

∑

k 6=j

[transfert(k, j) − transfert(j, k)] .38



A.3 Tehnial details of the CPPI algorithmThe moving �oor version of CPPI takes advantage of inreases in the value ofthe risky asset to put more wealth into the seured �oor part of the portfolio.Enforing the maximum relative exposure determined by p, there an now bean exess ushion if the risky asset inreases in value. The exess ushion isgiven by
mCt − pVt

m
=

m(Vt − Ft) − pVt

m
=

m − p

m
Vt − Ftand this should be added to the previous �oor, Ft, to limit the exposure to therisky asset. The new �oor is related to the old �oor as follows:

F new
t =

{

m−p
m Vt if mCt > pVt

F old
t otherwise.Intuitively, this an be interpreted as 'If the alulated exposure is larger thanthe maximum allowed fration of the portfolio wealth, the �oor is moved up-wards until the exposure beomes exatly the maximum allowed fration ofportfolio wealth'. To see this, note that if mCt > pVt, we set

Ft =
m − p

m
Vt,giving

Et = mCt = m(Vt − Ft) = m

(

Vt −
m − p

m
Vt

)

= m
(

Vt − Vt +
p

m
Vt

)

=

m
p

m
Vt = pVt,i.e. exatly the maximum exposure allowed.In the base CPPI version, if the risky asset behaves like a geometri Brownianmotion, i.e. with normally distributed logarithmi returns, the CPPI algorithmexpeted wealth at time T has been shown [5℄ to be

VT = V0 + C0e
−km

(

ST

S0

)m

,where
km = (m − 1)

(

mσ2

2
+ r

)In the moving �oor version, there exists no losed form solution for the portfoliowealth, but the SDE an be expressed as
dVt =







rVtdt if Vt ≤ Ft

(Vt − Ft)dZt + rFtdt if Ft < Vt < m
m−pFt

VtdXt if Vt ≥ m
m−pFt.Here,

dZt = (m(µ − r) + r)dt + mσdWt,

dXt = (p(µ − r) + r)dt + pσdWt.Another version of the CPPI presented by Boulier and Kanniganti [5℄ insteadfouses on not letting the exposure to the risky asset grow too small in the ase39



of a deline of the value of the risky asset, noting that a CPPI portfolio willfollow the �oor if it ever reahes it and behave unpreditably in the ase ofaggressive investing leading to a portfolio value below the �oor.Denote the initial margin M0. Also, de�ne E∗
t as a lower limit for the exposureat any time t. The margin version of CPPI states that, whenever Et < E∗

t /2,
F new

t = F old
t − Mt

2
,

Mnew
t =

Mold
t

2
,

Enew
t = mCt = m(Vt − F new

t ).The lower limit an be set in several fashions. This CPPI version will not beused in this thesis, and hene it is only overed shortly here.There is a maximum limit on how muh the risky asset an fall during oneinvestment period before the CPPI portfolio falls through the �oor. Denotethis ritial level expressed as a fration by the letter d. The CPPI portfoliodevelopment over one period an then be approximately written
Vt+1 = Et · (1 − d) + (Vt − Et) · 1if the return on the riskfree asset an be approximated to have zero return overone period. Here, Et = mCt = m (Vt − Ft). Substitute to obtain

Vt+1 = m (Vt − Ft) · (1 − d) + (Vt − m (Vt − Ft))Expand the above expression to obtain
Vt+1 = mVt − mFt − dm (Vt − Ft) + Vt − mVt + mFt = Vt − dm (Vt − Ft)The portfolio has fallen through the �oor if and only if

Vt+1 < Ftor equivalently if and only if
Vt − dm (Vt − Ft) < FtRearrange to obtain
dm (Vt − Ft) > Vt − FtFinally, divide through by m (Vt − Ft) to obtain

d >
1

mThus, as long as the risky asset does not fall by a fration larger than 1/m (orslightly less if p > 1 and the riskless asset atually inreases while the investoris net a short position in it) over one period, the CPPI portfolio stays above its�oor. As a orollary, if m ≤ 1, the portfolio will never break through the �oor.40



A.4 GlossaryAlgorithm - A rule or a set of rules that unambiguously de�nes a proess forsolving a partiular task. In this thesis, it spei�ally refers to a proess whereportfolio weights for a given portfolio are alulated using past asset pries.Antior - An algorithm whih primarily bene�ts from negatively orrelatedand mean reverting assets. It uses serial and ross orrelations to determineasset weights.Best Constant Rebalaned Portfolio (BCRP) - For eah set of assets,the BCRP is the CRP whih gives the highest total return fator. Its totalreturn fator is a strit upper bound for the total return fators of EG andUniversal Portfolio.Constant Proportion Portfolio Insurane (CPPI) - An algorithm whihis oneptually limited to two asset portfolios, where one asset should be riskfree and the other risky. It is primarily suitable for insurane purposes and notfor return generation. A prominent feature is the �oor, whih is the guaranteedlevel of wealth. The algorithm bene�ts from momentum in the risky asset.Constant Rebalaned Portfolio (CRP) - A portfolio where weights arekept onstant over time. Rebalanings are only made to ensure that the sameweights are kept at all times.Eonomi signi�ane - In this thesis, the term eonomi signi�ane is usedto desribe the situation where a performane di�erene is likely to be onsid-ered relevant by an investor, regardless of whether the di�erene is found tohave a statistially signi�ant deviation from zero or not.Exponentiated Gradient (EG) - An algorithm whih uses momentum ef-fets to generate abnormal returns. It has only one parameter, the learning rate
η, and it tries to ahieve BCRP performane.Total return fator - The fator by whih initial wealth has hanged forany algorithm at any time.Universal Portfolio - Another algorithm whih uses momentum e�ets. Ituses an assumption about BCRP weight distribution to alulate weights andBCRP total return fator is an upper bound for the algorithm's total returnfator. Due to omputational omplexity, it is only feasible for two asset port-folios.
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