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Abstra
tThis thesis aims at testing the E�
ient Market Hypothesis (EMH) by imple-menting and evaluating four distin
t algorithms (Universal Portfolio, Exponen-tiated Gradient, Anti
or and Constant Proportion Portfolio Insuran
e) for auto-mated rebalan
ing of �xed-asset portfolios based on the past performan
e of theindividual assets in
luded in the portfolio. If the EMH holds, te
hni
al analysissu
h as algorithm based investments should not be able to generate abnormalreturns without introdu
ing abnormal risk. The algorithms are implementeda

ording to the arti
les presenting them, and I perform statisti
al hypothesistests to determine whether the algorithms 
an provide signi�
ant positive ab-normal return over broad indi
es.The results indi
ate that abnormal returns above broad indi
es su
h as theS&P500 and the STOXX are possible. In Monte Carlo simulations, results arestatisti
ally signi�
ant at the 1% level for three of the algorithms. In tests ona
tual time series, one algorithm provides statisti
ally signi�
ant abnormal re-turn on the 5% level. All algorithms have e
onomi
ally signi�
ant abnormalreturns for a
tual time series, indi
ating that te
hni
al analysis 
an 
reate valuedespite the assertion of the weak form of the EMH.Trading 
osts are also introdu
ed. Two algorithms prove very sensitive to trad-ing 
osts, one is fairly sensitive and one is almost 
ompletely insensitive totrading 
osts, indi
ating that this algorithm might be useful even for smallerinvestors.
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1 Introdu
tionA 
ommon joke in the �eld of �nan
e is that of two investors walking down aroad, when one of them sees a $100 bill. The other one, a �rm believer in markete�
ien
y, qui
kly says "Don't bother pi
king it up. If it were real, someone elsewould already have pi
ked it up."This thesis aims to test the weak form of the e�
ient market hypothesis byexamining four algorithms1 using only publi
ly available, numeri
al informa-tion to determine how to invest in baskets of se
urities. I will test the abilityof the algorithms to beat di�erent ben
hmarks over extended time periods.Histori
al se
urity data will be used as input to the algorithms, ensuring thatrealisti
 
onditions are used. To test the algorithms more thoroughly, MonteCarlo simulations will also be employed, primarily using the observed histori
aldistribution of returns.The term algorithmi
 portfolio rebalan
ing refers to a parti
ular 
lass of in-vestment strategies. They use numeri
al information about �nan
ial assets,su
h as past market pri
es, to 
al
ulate a suggested rebalan
ing s
heme for
oming time periods. Only the weighting of wealth among the assets in theportfolio is 
al
ulated; the starting 
hoi
e of whi
h assets to use must be deter-mined exogenously. This 
lass of algorithms is interesting to study be
ause ofthe possibility to earn higher returns than what is possible using buy-and-holds
hemes or similar unsophisti
ated strategies, while still having a rebalan
ingstrategy that does not require human analysis beyond the initial 
hoi
e of assets.The �rst algorithm studied is the Universal Portfolio algorithm. It was in-trodu
ed by Thomas Cover [6℄, who also 
o-wrote several arti
les elaboratingon di�erent aspe
ts of the algorithm [7℄, [8℄, [23℄, [14℄. Kalai and Vempala [16℄aimed to redu
e implementational and 
omputational 
omplexity. Some furtherextensions were provided by Blum and Kalai [3℄. Intuitively, this algorithm triesto pi
k up momentum in the assets, allo
ating more to the assets that have per-formed best in the past.The se
ond algorithm, the Exponentiated Gradient algorithm (EG), was intro-du
ed by Helmbold et al [13℄. While the theoreti
al properties of this algorithmare weaker than those of Universal Portfolio, the arti
le authors �nd that inexperiments, EG tends to outperform Universal Portfolio. Like Universal Port-folio, EG also tries to bene�t from momentum in the assets, moving wealth fromassets that have performed poorly to assets with higher returns.The third algorithm, Anti
or, was introdu
ed by Borodin et al [4℄. It di�ersfrom Universal Portfolio and EG in the sense that it does not try to use mo-mentum e�e
ts. Instead, it is developed to bene�t from negative 
orrelationsand mean reversion in the pri
es of the assets. The arti
le authors also �nd thatthis algorithm tends to prefer di�erent assets 
ompared to Universal Portfolioand EG.The �nal algorithm evaluated, the Constant Proportion Portfolio Insuran
e1The word algorithm refers to a rule, or set of rules, that unambiguously de�nes a pro
essfor solving a parti
ular task. 1



(CPPI), was introdu
ed by Bla
k and Jones [2℄ and Perold and Sharpe [24℄as an insuran
e type algorithm, whi
h 
ombines a guaranteed, riskless mini-mum return with a 
ontrolled investment in a risky asset that enables ex
essreturns. There is a 
on
eptual limitation in this algorithm 
ompared to the oth-ers used in this thesis; CPPI by 
onstru
tion allows only portfolios 
onsisting oftwo assets, one risky and one risk free. Extensions to the CPPI algorithm havebeen devised by Bertrand and Prigent [1℄ and Boulier and Kanniganti [5℄.To determine how useful the results would be in pra
ti
e, transa
tion 
ostswill be introdu
ed into the model. This will allow evaluating whether the al-gorithms are truly usable for investment purposes. I will try to determine the
riti
al transa
tion 
ost level at whi
h any bene�t from using the algorithms isextinguished.The main question examined in this thesis is Does the E�
ient Market Hy-pothesis hold for these algorithms? If it does, the algorithms should not be ableto give higher returns than market ben
hmarks without also having higher risk.The rest of the thesis is organized as follows: Se
tion 2 des
ribes previous workon market e�
ien
y and also gives the te
hni
al ba
kground for the algorithmsused, se
tion 3 presents the data series that are used, se
tion 4 des
ribes themethodology, se
tion 5 holds the �ndings of the tests used, se
tion 6 
ontainsthe analysis of the results and se
tion 7 provides 
on
lusions and suggestionsfor further resear
h. Some of the te
hni
alities regarding the algorithms arepresented in appendi
es to make the 
ore subje
t of the thesis easier to follow.In the last appendix, a glossary is provided for 
onvenient a

ess to terminologyexplanations.

2



2 Theoreti
al ba
kground2.1 Literature reviewThe E�
ient Market Hypothesis (EMH) in essen
e builds upon the theory ofHomo Oe
onomi
us, the rational human, whi
h 
an a

ess information and rea
tto it in a balan
ed, e
onomi
ally rational manner. A market 
onsisting of largeamounts of investors whi
h are assumed to be rational 
an be assumed to be arational, e�
ient market. The EMH has been a prevalent model for the pri
esof se
urities in �nan
ial markets. It has three 
ommon forms [29℄,
• Weak form: All past market pri
es and data are fully re�e
ted in se
uritiespri
es. In other words, te
hni
al analysis does not provide a possibility toearn abnormal risk-adjusted returns.
• Semi-strong form: All publi
ly available information is fully re�e
ted inse
urities pri
es. In other words, fundamental analysis does not provide apossibility to earn abnormal risk-adjusted returns.
• Strong form: All information is fully re�e
ted in se
urities pri
es. Inother words, even insider information does not provide a possibility toearn abnormal risk-adjusted returns.Fama [10℄ wrote an in�uential arti
le about the EMH, in whi
h was de�ned that'a market in whi
h pri
es always "fully re�e
t" available information is 
alled"e�
ient"'. Fama has in later works 
hanged the exa
t wording of the de�n-ition to re�ne its meaning. He has also tested for auto
orrelations in returnsdata[9℄, �nding that there are often positive serial 
orrelations of the �rst order,suggesting that there are momentum e�e
ts.In [11℄, Fama provides an overview of the resear
h presented so far in the markete�
ien
y �eld. Apart from his own previous �ndings, other authors have alsofound positive auto
orrelations, espe
ially in small sto
ks. However, Fama andothers argue that the predi
tability of returns is largely obs
ured by daily varia-tions in sto
k pri
es, implying that the a
tual usefulness of the predi
tability issmall. Over longer time periods, some authors have found anomalies that theyargue 
an be 
onsidered irrational deviations, but Fama and others argue thatthe patterns are not distinguishable from rational time-varying expe
ted returns.Another arti
le by Fama [12℄ in
ludes event studies where abnormal returnsfrom sto
ks are examined to determine whether there are any anomalies thatindi
ate none�
ien
y of �nan
ial markets. Fama �nds that the eviden
e doesnot suggest abandoning the EMH when s
rutinized. Apparent overrea
tions ofsto
k pri
es to new information is found to be about as 
ommon as underrea
-tions, and it is about as 
ommon for pre-event abnormal returns to 
ontinue asit is for them to reverse after the event. In addition, Fama �nds that long-termreturn anomalies are fragile and tend to disappear rather qui
kly.The EMH has not been unanimously a

epted by all observers and investorsin the �nan
ial market however. Many attempts have been made to disprovethe theory, and Malkiel [22℄ has written an arti
le that addresses several su
hatta
ks. Malkiel personally argues that the EMH does hold and that eviden
e3



of the opposite often is built upon questionable methodology, su
h as e.g. us-ing a time frame with properties whi
h are not representative for longer timeperiods. He also argues that it is important to distinguish between statisti-
al and e
onomi
 signi�
an
e and points out that transa
tion 
osts are likely tohave a notable impa
t on the true pro�tability of suggested investment s
hemes.Earlier, Malkiel [20℄ has also argued that a blindfolded 
himpanzee throwingdarts at the Wall Street Journal 
ould sele
t a portfolio that would do as well asthe experts. In later work [21℄, he explains that the main point of this 
laim isto re
ommend investments into index funds rather than a
tively managed funds.Shostak [27℄ argues that there is reason to use fundamental analysis to earnabnormal returns, and 
onsequently that the EMH does not hold. His mainpoint is that the EMH is largely an equilibrium model that does not representthe real behavior of �nan
ial markets in the short run. This does not really 
on-tradi
t most EMH proponents however, sin
e the EMH is typi
ally only arguedto hold over longer time periods.S
hleifer and Summers [26℄ among others point to the sto
k market 
rash of1987 as a sign that �nan
ial markets are in fa
t not e�
ient. Malkiel's responseis that while psy
hologi
al fa
tors 
ould be held as eviden
e against the EMH,the 
rash was also largely explained by a series of negative events for the in-vestment environment. Shiller [25℄ among others 
onsiders the internet bubbleat the end of the 1990s eviden
e against the EMH. Malkiel 
omments on thisby noting the di�
ulties in 
orre
tly valuing equity and that despite the over-valuation of high te
h sto
k, no stri
t arbitrage opportunities existed, sin
e itwas not possible to predi
t the time that the bubble would burst. Furthermore,he argues that sin
e this type of bubble o

urs infrequently, it does not really
ontradi
t the idea that an e�
ient market on average pri
es se
urities 
orre
tly.Lo and Ma
Kinlay [17℄ have found that serial 
orrelations in sto
k pri
es areoften non-zero, meaning that there in fa
t is eviden
e of momentum, and 
onse-quently that the random walk model is not fully realisti
. Similar �ndings werepresented by Lo, Mamaysky and Wang [18℄, that used non-parametri
 statisti
alte
hniques to show that some pri
e series patterns studied in te
hni
al analysis,for instan
e head-and-shoulders and double-bottom formations, a
tually havesome predi
tive power.Jensen [15℄ gives support to the EMH, performing the �rst study on mutualfund performan
e, in whi
h he �nds that a
tive fund managers on average un-derperform the market by approximately the amount of their added expenses.Malkiel [22℄ shares this argument by 
laiming that there is also a substantialsurvivorship bias, meaning that the true average a
tive fund performan
e shouldbe even lower.It should be noted that few observers or investors believe that the EMH stri
tlyholds at all times. Malkiel argues that investors 
learly are not rational at alltimes, and that over 
ertain time windows, apparent ine�
ien
ies 
an arise andbe exploitable for some time. The 
ommon view of EMH proponents is thatsu
h o

uren
es will be ex
eption rather than rule and will disappear qui
kly ifand when they are dis
overed. 4



2.2 Algorithm des
riptionsIn this se
tion, the ba
kground of algorithmi
 portfolio rebalan
ing in generaland for the four algorithms to be used will be des
ribed brie�y. The se
tion hasbeen kept short, moving the more te
hni
al parts to appendi
es for interestedreaders. This is to make the testing of the EMH the fo
us of the thesis ratherthan the te
hni
alities of the parti
ular algorithms.2.2.1 Common notationThe investment period is assumed to be dis
rete points in time starting at time0, i.e. t = 0, 1, 2, . . . , n. A total of m assets are assumed to be available for thealgorithms to divide wealth among. These assets are assumed to have a pri
e atea
h of the dis
rete points in time in
luded in the investment period, with st,j de-noting the pri
e of asset j at time t. Then, the ve
tor xt = (xt1, xt2, . . . , xtm)
T

,2where
xtj =

st,j

st−1,j
,denotes the performan
e of the investment universe from time t − 1 to t, sin
e

xtj = (1+rtj), where rtj is the simple periodi
 return on asset j from time t−1to time t.The 
on
ept of wealth is de�ned as a time series that takes real number values
St at all time points and that starts at time 0 with the value 1, S0 = 1. Valuesat later points in time denote relative wealth 
ompared to the initial wealth of1; a wealth of 2 at some point in time denotes twi
e the initial wealth et
.Let the weight ve
tor at time t be denoted bt = (bt1, bt2, . . . , btm)

T. By de-�nition of a weight ve
tor, ∑

j btj = 1 at all times t. In this notation, btjis the fra
tion of total wealth that is invested in the j:th asset at time t.When one time period has passed from the initial state, the wealth will be
S1 = b11x11 + b12x12 + . . .+ b1mx1m = b

T
1 x1, and after n time periods, the totalwealth, hen
eforth referred to as total return fa
tor, is 
al
ulated as:3

Sn =

n
∏

t=1

b
T
t xt (1)The total return fa
tor will be used throughout the thesis as a performan
emeasure.The term 
onstant rebalan
ed portfolio (CRP) refers to a rebalan
ing s
hemewhere the portfolio is only rebalan
ed in order to keep the fra
tion of wealthinvested in ea
h of the assets in the portfolio un
hanged at all rebalan
ing times.Using equation 1 and the notation b for the 
onstant weight ve
tor, it is 
learthat after n time periods, the wealth of su
h a portfolio will be Sn =

∏n
t=1 b

T
xt.From the de�nition of CRP, it is 
lear that ex post, there must for ea
h set2The raised T refers to the transpose operation that shifts row ve
tors into 
olumn ve
torsand vi
e versa.3The large Pi 
hara
ter denotes multipli
ation over the index t, whi
h goes from 1 to n.Ea
h fa
tor in this produ
t is a sum of m produ
ts of a weight btj and a relative pri
e 
hange

xtj as shown in the example 
al
ulation of S1.5



of assets be a best 
onstant rebalan
ed portfolio (BCRP), whi
h is the portfolioof the CRP 
lass that has obtained the highest wealth after n time periods.Mathemati
ally, its wealth after n time periods 
an be written
S∗

n = max
b

n
∏

t=1

b
T
xt.Clearly, the determination of the BCRP requires that the out
omes of assetpri
es are known, and thus it 
an only be determined after the out
omes havebeen observed. It should be noted that by 
onstru
tion the BCRP will alwaysprovide a wealth whi
h is at least as good as the best individual 
omponent ofthe portfolio.42.2.2 Universal PortfolioThe Universal Portfolio algorithm, introdu
ed by Cover [6℄, 
an ensure that theasymptoti
 performan
e of the portfolio is 
omparable to BCRP performan
e.With a sequen
e of market performan
e ve
tors x1,x2, . . . as de�ned above,the Universal Portfolio algorithm spe
i�es that weights should be 
al
ulateda

ording to the following equation:

b̂k =

∫

b
∏k−1

t=1 b
T
xt dµ (b)

∫
∏k−1

t=1 bTxt dµ (b)
, (2)Here, µ (b) should be the multivariate probability distribution of the BCRPweights for the spe
i�
 asset set used.Intuitively, this 
an be interpreted as follows: the weights are 
al
ulated asthe weighted average of all possible weight allo
ations, using the CRP perfor-man
e over all past time periods as weight fun
tion. A methodologi
al problemfor this algorithm is that the right hand side of equation 2 is not feasible to
al
ulate for all probability distributions.In this thesis, the Diri
hlet distribution will be used. It is limited to the [0, 1]interval for ea
h variable and is thus suitable for weight ve
tors. Furthermore,Universal Portfolio will only be tested on portfolios 
onsisting of two assets, sin
ethe algorithm be
omes 
omputationally infeasible for larger portfolios. Thus,the distribution used is the two-variable Diri
hlet distribution.After a long derivation, whi
h is given in appendix A.1, it is shown that theUniversal Portfolio weights after n time periods, using the Diri
hlet distribution,
an be 
al
ulated as follows:

b̂n =
1

∑n−1
l=0 Qn−1(l)

[

∑n−1
l=0

l+α1

n+α1+α2−1Qn−1(l)
∑n−1

l=0
n−l+α2−1

n+α1+α2−1Qn−1(l)

]

.4From a set of m assets, taking any individual asset is equivalent to a CRP with a weightve
tor that 
ontains exa
tly one element that is 1, and the remaining elements 0. Sin
e theBCRP by de�nition is the best CRP, it will be at least as good as the best one asset portfolio.6



In the above expression, Qn(l) must be 
al
ulated re
ursively using Q0(0) = 1,and the following re
ursion rules
Qn(l) = xn1

l + α1 − 1

n + α1 + α2 − 1
Qn−1(l − 1) + xn2

n − l + α2 − 1

n + α1 + α2 − 1
Qn−1(l)for 1 ≤ l ≤ n − 1, and the 
orresponding endpoint re
ursions are

Qn(0) = xn2
n + α2 − 1

n + α1 + α2 − 1
Qn−1(0),

Qn(n) = xn1
n + α1 − 1

n + α1 + α2 − 1
Qn−1(n − 1).These equations spe
ify the Universal Portfolio weights for general values of α1and α2, the parameters of the two variable Diri
hlet distribution.Universal Portfolio has a theoreti
al guarantee (as shown by Cover [6℄) that(with S∗

n denoting BCRP performan
e and Ŝn Universal Portfolio performan
e)
lim

n→∞

1

n
ln

(

S∗
n

Ŝn

)

= 0whi
h intuitively means that asymptoti
ally5, the Universal Portfolio will growat the same average 
ontinuously 
ompounded rate as the BCRP. Note that thisrequires that the probability distribution used is in fa
t the true distribution ofBCRP weights; the Diri
hlet distribution might not be able to a
tually ful�llthis property even asymptoti
ally.2.2.3 Exponentiated GradientThis algorithm, introdu
ed by Helmbold et al [13℄, has slightly weaker theoret-i
al properties than Universal Portfolio. Using the same notation as above,
lim

n→∞

1

n
ln

(

S∗
n

Ŝn

)

=

√

ln
( m

2r2

)where m is the number of assets in the portfolio and r is a lower bound on therelative pri
e 
hanges between trading days. This 
an hypotheti
ally be arbi-trarily 
lose to zero, meaning that the right hand side 
ould be large.It is possible a

ording to Helmbold et al to a
hieve the same asymptoti
 per-forman
e with Exponentiated Gradient (EG) as with Universal Portfolio, butonly using a modi�ed version that is signi�
antly more 
omplex to 
al
ulate.However, a

ording to the authors, EG often provides better performan
e thanUniversal Portfolio in experiments. Results in their arti
le show that EG 
anoften 
ome quite 
lose to BCRP performan
e.The EG algorithm has one parameter, denoted η, whi
h is the so 
alled learningrate. In this thesis, this parameter will be held 
onstant over time for ea
h test,although it is te
hni
ally possible to let it vary over time. A high value of η5As time approa
hes in�nity. 7



means that EG more qui
kly reallo
ates to the strongest performing assets. Theweights are 
al
ulated a

ording to the following expression
bt+1,j =

bt,j exp
(

ηxtj

bTt x

)

∑m
k=1 bt,k exp

(

ηxtk

bTt x

) , (3)whi
h is given without any derivation or formal justi�
ation in the sour
e ar-ti
le. One property 
an be noted: If the initial weight ve
tor has no negativeelements, then 
onse
utive weight ve
tors also 
annot have negative elements,sin
e the exponential fun
tion is stri
tly positive. Thus, EG 
an be 
omparedfairly to Universal Portfolio using the Diri
hlet distribution in the sense thatneither of them allow short selling of assets.It should be noted that for EG it is 
omputationally feasible to use portfolios ofmore than two assets. Sin
e EG and Universal Portfolio are otherwise similar,it is interesting to see whether it is bene�
ial to use portfolios of more than twoassets with EG. If it is not, then this 
an heuristi
ally be assumed to hold alsofor Universal Portfolio, sin
e it is similar to EG in 
on
eptual fun
tionality; italso tries to 
apture momentum and to obtain BCRP performan
e.2.2.4 Anti
orThe Anti
or algorithm was introdu
ed by Borodin et al [4℄. The BCRP perfor-man
e is not a stri
t upper bound for Anti
or, as it is for Universal Portfolioand EG. Also, Anti
or does not try to allo
ate to past strong performers, butinstead tries to �nd mean reversion patterns in the asset pri
es. The algorithmhas one parameter, namely the length of the window. This is a period of timeused to determine 
orrelations between the assets in the portfolio. The weightsfor 
oming periods are then determined using the 
al
ulated 
orrelations. Thename of the algorithm re�e
ts the fa
t that it works best with negatively 
orre-lated assets.Denote the length of the window w, whi
h should be an integer number ofpoints in time. The growth rate of an asset over the length of the window de-notes the pri
e of the asset at the end of the window period divided by the pri
eat the beginning of the window period. Anti
or will reallo
ate from asset j toasset k at time t if both of these 
onditions hold:
• The growth rate of asset j must be higher than that of asset k over thewindow starting at t − w + 1 and ending at t.
• There must be a positive 
orrelation between asset j over the window from

t − 2w + 1 to t − w and asset k over the window from t − w + 1 to t.If it is assumed that assets are mean-reverting and perform on average equallywell over longer time periods, these two 
onditions together 
an be taken asan intuitive indi
ation that asset k should outperform asset j over the windowgoing from t + 1 to t + w.The full formal des
ription of the Anti
or weight 
al
ulation is rather 
om-pli
ated, and for this reason it is presented in appendix A.2.8



2.2.5 CPPIThe Constant Proportion Portfolio Insuran
e (CPPI) algorithm was introdu
edby Bla
k and Jones [2℄ and Perold and Sharpe [24℄ and later tested by Bertrandand Prigent [1℄. It is relatively 
ommon in 
ommer
ial settings, where it is usedas a form of insuran
e strategy. CPPI uses one risky asset and one risk freeasset that in
reases in value at a 
ontinuously 
ompounded risk free rate r.The base form of CPPI is thus 
onstrained to portfolios 
onsisting of two assets,though it is te
hni
ally possible to let the risky asset be a portfolio of severalrisky assets, even a Universal Portfolio, EG or Anti
or algorithmi
 portfolio.Let V0 denote the initial portfolio value and F0 the initial �oor. The purposeof the �oor is to provide a guaranteed minimum portfolio value at any point intime. It is ne
essary to have F0 < V0. The �oor will then be allowed to growdeterministi
ally at the 
ontinuously 
ompounded rate r, i.e. the same as therisk free asset. At all points in time t, Ct denotes the 
ushion, whi
h is de�nedby
Ct = Vt − Ft.The total investment in the risky asset, whi
h is 
alled the exposure, is denotedby Et. CPPI pres
ribes that the exposure should be
Et = mCt,where m is a parameter 
alled the multiplier. The expe
ted payo� fun
tionbe
omes 
onvex if m > 1, but the �oor is then no longer absolutely guaranteed.If m ≤ 1 is enfor
ed, the exposure will never be larger than the 
ushion, so atleast the amount that 
onstitutes the �oor will be invested in the risk free asset.Some generalizations of CPPI were introdu
ed by Boulier and Kanniganti [5℄.One extension is the moving �oor, that is immediately raised following large in-
reases in the value of the risky asset, thus limiting the 
ushion and 
onsequentlythe exposure to the risky asset. The moving �oor prote
ts against subsequentfalls in the pri
e of the risky asset. An obvious disadvantage is that persistentstrong performan
e of the risky asset will not be fully 
aptured, sin
e a higher�oor implies a smaller 
ushion and thus a smaller exposure.The moving �oor version of CPPI also introdu
es a new parameter whi
h is
alled p. It denotes the maximum fra
tion of the total wealth permitted toinvest in the risky asset. To keep the guarantee of the �oor as minimum wealth,set p = 1 − f , where f = (F/V )min, the minimum �oor allowed expressed asa fra
tion of total wealth. The p parameter 
an also be used to invest moreaggressively in the CPPI algorithm: Letting p > 1 allows short selling of therisk free asset to invest more in the risky asset, allowing the investor to leveragereturns from the risky asset.Using this version of the CPPI gives the following expression for the �oor atea
h point in time t:

F new
t =

{

m−p
m Vt if mCt > pVt

F old
t otherwise.The explanation for this 
an be found in appendix A.3.9



In both versions of CPPI, the weights for the two 
omponents are given by
bt,risky =

Et

Vt
and bt,riskfree = 1 − Et

Vt
.The total return fa
tor is 
al
ulated as

Ŝn =
Vn

V0
.2.2.6 Algorithm summaryFor 
onvenien
e, an overview of the algorithms is provided in table 1 below toremind the reader of their respe
tive parameters, desired asset features and anyother algorithm features.Table 1: Overview of the algorithms used and their featuresAlgorithm Parameters Desired asset features Other featuresUniversal Distribution of Momentum ComputationallyPortfolio BCRP weights feasible only fortwo asset portfoliosEG Learning rate η Momentum Not
omputationally
omplexAnti
or Window length w Negative 
orrelation, Mediummean reversion 
omputational
omplexityCPPI Multiplier m, One risk free asset, The �oor is amax leverage p momentum guarantee level2.2.7 Trading 
ostsTrading has additional 
osts besides the a
tual pur
hase pri
es, a�e
ted by rel-ative pri
e 
hanges of the assets. There is also a trading 
ost, whi
h is oftena 
ertain fra
tion of the total volume traded. This approa
h is referred by e.g.Blum and Kalai [3℄ and Bla
k and Jones [2℄. Clearly, this will primarily a�e
talgorithms that make large 
hanges to the portfolio weights.In this thesis, trading 
osts are implemented as a redu
tion of a 
ertain numberof basis points (hundredths of per
entage units) of the total volume of assetstraded at ea
h transa
tion. I will perform tests with a range of trading 
ostsfor algorithms that show 
apability of generating abnormal returns. This willtest the robustness of the algorithms in the sense of their ability to providesatisfa
tory returns even with trading 
osts and thus how useful the algorithmsare for smaller investors.

10



3 DataThe data used is time series of past pri
e data for a number of di�erent assets ofseveral 
ategories. Categories represented are mainly broad indi
es and volatil-ity indi
es. Some 
ommodities and the Swedish T-bill index OMRX are alsoin
luded.Broad indi
es in
luded are STOXX with 3528 daily observations from De
em-ber 1991 to November 2005, OMX with 1891 daily observations from February1998 to June 2005, S&P500 with 19562 daily observations from January 1928 toNovember 2005 and MSCI and MSCI Russia with 1638 daily observations fromFebruary 1998 to June 2004.The volatility indi
es used are VIX, whi
h is the implied volatility of the S&P500index, with 5011 daily observations from January 1986 to November 2005, VXN,whi
h is the implied volatility of the Nasdaq 
omposite index, with 1202 dailyobservations from February 2001 to November 2005 and VDAX, whi
h is theimplied volatility of the DAX index, with 3351 daily observations from January1992 to April 2005. Volatility indi
es are introdu
ed be
ause these indi
es arein themselves highly volatile, and their volatility might be useful for generatinghigh returns. In �gure 1 below, the time series for the VIX index is presented todemonstrate the 
hara
teristi
s of a volatility index. The very high spike 
orre-sponds to O
tober 19, 1987, also known as the Bla
k Monday, when the S&P500fell by more than 20% in one day. VXN and VDAX have similar 
hara
teristi
sand are not shown.

Jan1985 Jan1990 Jan1995 Jan2000 Jan2005 Jan2010
0

20

40

60

80

100

120

140

160

In
de

x 
le

ve
l

VIX index

Figure 1: Development of the VIX indexCommodities in
luded are gold and oil, both with 1638 daily observations fromFebruary 1998 to June 2004. The OMRX index, with 4023 daily observationsfrom January 1990 to June 2005, is the only T-bill index in
luded be
ause T-billindi
es do not di�er mu
h from one another in terms of riskyness or returns.The index has very low volatility and a low rate of return that remains nearly
onstant over time. It is in
luded primarily to serve as the riskfree asset neededby the CPPI algorithm. 11



4 MethodologyTo test the algorithms, experiments will be performed using a
tual time series ofse
urities pri
es, but Monte Carlo simulations using the histori
al distributionof per period returns will also be used.4.1 Monte Carlo simulationValues are sampled from a (preferably large) set of empiri
al data with uniformprobabilities for ea
h observation. If the set is a representative sample of thedata series in a longer time frame, realisti
 time series of virtually unlimited size
an be generated to simulate what types of behavior to expe
t if longer a
tualtime series were available. It should be noted that the pro
ess is likely to elimi-nate momentum from the original time series and might worsen performan
e ofthe algorithms that rely on momentum.4.2 Performan
e measures usedTwo performan
e measures will be used: A 
omparison of the return of an al-gorithmi
 strategy using a broad index su
h as the S&P500 to the return ofthe broad index itself, and the Sharpe measure, whi
h will be used to measuree
onomi
 signi�
an
e6 of performan
e di�eren
es.Formally, the test performed will be to simulate 1000 time series, ea
h of 10years length, and to 
al
ulate the di�eren
e between the return of the algorithmand the return of the market index in
luded in the portfolio,
X = ra − rmwhere ra is the geometri
 average annual return of the algorithmi
 portfolioand rm is the geometri
 average annual return on the broad index whi
h isrepresented in the algorithmi
 portfolio. Then, the hypothesis that the averageof this sto
hasti
 variable is zero is tested against a two sided alternative thatit is di�erent from zero. Let µX denote the expe
ted value of X. Then thehypotheses tested 
an be formally written as
H0 : µX = 0

H1 : µX 6= 0This is tested using the test statisti

t =

X − µX

σ/
√

nwhere n is the number of observations, i.e. 1000, and σ is the standard deviationof X. Under the assumption that X is normally distributed, the statisti
 willfollow the Student's t distribution with n − 1 = 999 degrees of freedom.6In this thesis, e
onomi
 signi�
an
e is used to des
ribe the situation where a performan
edi�eren
e is likely to be 
onsidered relevant by an investor, regardless of whether the di�eren
eis found to have a statisti
ally signi�
ant deviation from zero or not.12



Apart from this test, the estimated standard deviation σ̂ will also be used totest the hypothesis that the return on the algorithmi
 portfolio when the a
tualtime series are used is larger than the a
tual return on the index in
luded in theportfolio. Formally, this 
an be written
H0 : X = 0

H1 : X 6= 0The test statisti
 is then
t =

X̂ − X

σwhi
h follows the Student's t distribution with one degree of freedom under theassumption that X is normally distributed. As stated, the standard deviationwill be estimated from the 1000 Monte Carlo runs in ea
h 
ase.The yearly Sharpe measure Sp for a portfolio with yearly return rp and yearlyvolatility σp when the risk free rate is rf is 
al
ulated a

ording to
Sp =

rp − rf

σp
.4.3 Experimental stru
tureEa
h of the algorithms will be tested in turn. Some tests of the sensitivity tothe 
hoi
e of parameters will be performed and the algorithm performan
e willbe 
ompared to the two ben
hmarks, �rst using simulated time series a

ordingto the des
ription of Monte Carlo simulation and then using the a
tual timeseries. The results of the hypothesis tests will be shown and the observed dis-tributions of the X variable will be shown in histograms to determine whetherthe normality assumption holds or if it is otherwise 
lear that any dis
repan
yfrom normality does not a
tually a�e
t the validity of the hypothesis tests. Fortesting e
onomi
 signi�
an
e, the results when using real time series will beshown and the Sharpe measure will be 
al
ulated.In 
ase the null hypothesis is reje
ted for the real time series, an additionaltest will be run to determine at what trading 
ost level the result is no longersigni�
ant. This is done to determine whether the result is also e
onomi
allysigni�
ant, i.e. if it 
an be exploited not only by agents with low transa
tion
osts but also by e.g. individual investors who typi
ally fa
e higher transa
tion
osts.4.4 DelimitationsThe issue of asset liquidity will not be addressed in this thesis. It may be the
ase that some of the assets used 
annot a
tually be traded a

ording to thepatterns suggested by the algorithms. No analysis will be performed to seee�e
ts of limited liquidity. Experiments will impli
itly assume that ne
essaryliquidity is present.The algorithms will only be evaluated using daily rebalan
ings, sin
e this wasfound by Lundahl [19℄ to give the best performan
e even in the presen
e oftrading 
osts. 13



5 ExperimentsThe testing will in
lude testing the algorithms' performan
e on simulated dataas well as their performan
e on real asset pri
e data, to �nd out what theoptimal patterns are for the s
alable algorithms (e.g. if it seems preferrable touse a parti
ular number of assets) and to �nd eviden
e of the dependen
e ofalgorithms on the di�erent parameters of the assets used.5.1 Universal PortfolioThe only parameters of the Universal Portfolio algorithm are the parameters ofthe probability distribution assumed for the BCRP weights. Using the Diri
h-let distributions as dis
ussed earlier, it is interesting to see whether there aresigni�
ant di�eren
es in performan
e of the algorithm using e.g. the Diri
h-let(1/2,1/2) and the Diri
hlet(1,1) distributions. This is tested by simulating1000 runs of the algorithm on two randomly sele
ted assets and 
al
ulating thedi�eren
e between the portfolio total return fa
tor and the arithmeti
 averagetotal return fa
tor of the two individual assets. This di�eren
e 
an intuitivelybe viewed as a measure of performan
e of the algorithm, sin
e it shows anyextra performan
e 
ompared to the simple buy-and-hold portfolio on the sametwo assets.
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Figure 2: Comparison of Universal Portfolio algorithm using Diri
hlet(1/2,1/2)(left) and Diri
hlet(1,1) measures (right)Besides the fa
t that these parti
ular assets do not seem to provide parti
u-larly impressive algorithm return, it is also seems that, having settled for theDiri
hlet 
lass of probability measures, the a
tual 
hoi
e of its parameters isnot very relevant. The histograms are virtually identi
al. A number of othertests of di�erent Diri
hlet parameters indi
ate the same thing. Also, in someof the sour
e arti
les, there are also tests of the Universal Portfolio algorithmwith respe
t to the sensitivity to the 
hoi
e of probability measure, rea
hingthe same 
on
lusion. The probability measure 
hosen does not appear to bean important 
on
ern. Hen
eforth, this thesis shall for Universal Portfolio usethe Diri
hlet(1,1) probability measure, whi
h is equivalent (see appendix A.1)to the uniform distribution. 14



One sele
tion of assets that seems to work well with the Universal Portfolioalgorithm is the STOXX index [30℄ 
ombined with the VIX volatility index [28℄.This portfolio has the advantage that the VIX index, re�e
ting the impli
itvolatility of the S&P500 index, does not exhibit 
onsistent growth over timebut rather stays 
lose to a 
onstant level apart from o

asional spikes when theS&P500 be
omes highly volatile. This makes it reasonable to 
ompare the algo-rithmi
 return only to the return on the STOXX index, sin
e the return on theVIX index is typi
ally 
lose to zero over most periods, with ex
eption only forshort periods from the "base level" to the height of a peak as shown in se
tion3. For a portfolio based on these two assets, the distribution of the X variableis shown in �gure 3 below.
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Figure 3: Histogram of the distribution of the X variable for Universal Portfolioon STOXX and VIXThe �rst hypothesis test gives an observed value of the t statisti
 that is 11.526.With 999 degrees of freedom, this 
orresponds to a p value of 0.0000, i.e. thenull hypothesis is reje
ted on the 1% level. There is a signi�
ant positive e�e
tfrom using the Universal Portfolio algorithm on these assets. Similar resultsare obtained using other assets, for instan
e the other volatility indi
es or otherbroad indi
es. Combining VIX with S&P500 improves results, as would be in-tuitively assumed.It should be noted that the distribution does not look quite normal. In parti
-ular, it appears to have a fat upper tail. Other than this tail, the normalityassumption appears to be justi�ed. However, the fat upper tail does not 
ontra-di
t the 
on
lusion that the algorithm's return is greater than the return on theSTOXX index. Rather, it 
orroborates this 
on
lusion, showing that in some15




ases, the average yearly return is mu
h higher using the algorithm 
omparedto not using the algorithm.Testing on the a
tual time series of STOXX and VIX, approximately 14 yearsfrom the end of 1991 to the end of 2005, gives the result presented in �gure 4below.
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Figure 4: Performan
e of Universal Portfolio on a
tual time series 
ompared to
onstituent indexFrom the plot, it appears that the return is 
learly higher for the Universal Port-folio algorithm but that this 
omes at the pri
e of higher volatility. It turns outhowever that the average yearly return is not signi�
antly higher for UniversalPortfolio in this 
ase, with a t value of only 0.1885 and one degree of freedom,
orresponding to a p value of 0.8814. The null hypothesis that the UniversalPortfolio does not give a higher return 
an not be reje
ted at any 
onventionallevel. In terms of e
onomi
 signi�
an
e7 however, investors are likely to thinkthat earning approximately 250% is 
learly better than earning approximately150%. The Sharpe measure is 0.1805 for the Universal Portfolio and 0.1064 forthe STOXX index, strengthening the view that there is an e
onomi
ally signif-i
ant di�eren
e between the Universal Portfolio and the STOXX index.To test the sensitivity to trading 
osts, a series of tests on a
tual time se-ries were run with su

essively in
reasing trading 
osts. For the portfolios withvolatility indi
es, trading 
osts of 1.5% of the traded volume at ea
h trade bringsthe performan
e in level with the underlying broad index. At 1% of the traded7Re
all from the methodology se
tion that e
onomi
 signi�
an
e is used in this thesis todenote performan
e di�eren
es that investors are likely to �nd relevant.16



volume, there still appears to be e
onomi
ally signi�
ant ex
ess return. Large�nan
ial institutions will typi
ally fa
e 0.02-0.03% trading 
osts a

ording tothe author's work life experien
e.5.2 Exponentiated GradientThe Exponentiated Gradient (EG) algorithm has one parameter, the learningrate η. The sensitivity to the 
hoi
e of η will be tested �rst by 
al
ulating returnsfor di�erent values of this parameter. The time series used are the STOXX andVIX indi
es also used in the Universal Portfolio experiments.
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Figure 5: EG total return fa
tor as a fun
tion of ηThe results are in line with what Helmbold et al [13℄ �nd. A low η seems to bethe best 
hoi
e. This 
orresponds to a rather slow rebalan
ing pro
ess, while alarge η means reallo
ating very qui
kly to the strong performers in the portfolio.An η value of 0.01 will be used for the remainder of the EG experiments.Sin
e the EG algorithm is not very 
omputationally 
omplex, it is suitable fortests on portfolios of more than two assets. Experiments show that portfolios ofmore than two assets do not provide any additional performan
e 
ompared toportfolios of two assets. In �gure 6 is the result of one su
h experiment. Usinga set of N assets, it is possible to 
onstru
t 2N −N −1 portfolios of at least twoassets8, and in this parti
ular experiment, nine assets were used to test a total8It is possible to 
onstru
t a total of 2
N portfolios (ea
h of the N assets 
an either bein
luded or not in
luded, independently of one another) and of these, one is the empty portfoliowith no assets and N portfolios have one asset ea
h.17



of 502 portfolios.In the �gure, the total return fa
tors of the portfolios are plotted against theportfolio number, whi
h is originally the de
imal representation of the nine bitbinary string used to sele
t the assets from the set of nine assets. Note that inthe �gure, the original order of the portfolio numbers has been 
hanged to sortthe portfolios a

ording to number of 
onstituent assets keeping the portfolioswith few 
omponents to the left. This is intended to help drawing 
on
lusionsabout whether there are any bene�ts when using a parti
ular number of assets.
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Portfolio number (Sorted with fewest asset portfolios left)Figure 6: Total return fa
tor for 502 EG portfolios, sorted by number of 
on-stituent assetsThere seems to be no signi�
ant bene�t from in
luding more than two assetsin a parti
ular portfolio. Return fa
tors appear to be largely una�e
ted whilethe volatility of the return appears to de
line as more assets are in
luded. Thevolatility 
on
lusion is based on the fa
t that there seems to be smaller �u
-tuations in the total return fa
tor in the right part of the �gure, where theportfolios 
ontaining several assets are represented. This should not 
ome as asurprise, but rather be seen as a sign of the diversi�
ation e�e
t. More assetsshould imply lower volatility, even if the weights are determined a

ording toan algorithm. The results in �gure 6 are also 
on�rmed by several other testson other sets of assets and over di�erent time periods.As pointed out earlier, the 
on
eptual similarity between EG and UniversalPortfolio 
an be used to argue that heuristi
ally, the same result 
ould be as-sumed to hold for Universal Portfolio. For the remainder of the thesis, experi-ments will be performed on two asset portfolios. Con
eptually, an investor thatwants to exploit diversi�
ation to de
rease volatility 
ould do so by dividing18



investment among several separate algorithmi
 portfolios rather than 
reating asingle algorithmi
 portfolio of more assets. In 
on
lusion, fo
using on two assetportfolios is not a severe limitation.When running a 1000 run experiment on the EG algorithm using the STOXXand VIX indi
es, the observations of the X variable are distributed a

ordingto the histogram in �gure 7.
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Figure 7: Histogram of the distribution of the X variable for the EG algorithmon STOXX and VIXThe �rst hypothesis test results in an observed t statisti
 value of 11.895. Thestatisti
 has 999 degrees of freedom, meaning that the observed value 
orre-sponds to a p value of 0.0000. The null hypothesis is reje
ted on the 1% level ofsigni�
an
e. There is on average a positive 
ontribution to yearly return fromusing the EG algorithm on these assets.The histogram looks similar to the one observed for the Universal Portfolio algo-rithm. The right tail looks perhaps somewhat less heavy than in the UniversalPortfolio test, although it is still heavier than the left tail in this histogram. Theshape of the distribution suggests that the normality assumption is not unjus-ti�ed. There appears to be a skew, but that skew strengthens the reje
tion ofthe null hypothesis rather than 
ontradi
ts it. There appears to be a signi�
antpositive e�e
t from using the EG algorithm.The test performed using the a
tual time series gives a t statisti
 of 0.3393,with one degree of freedom, whi
h 
orresponds to a p value of 0.7918. The nullhypothesis of no 
ontributing e�e
t 
an in this 
ase not be reje
ted on any 
on-19



ventional level of signi�
an
e. In �gure 8 below, the performan
e of EG usingthe a
tual time series is shown.
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Figure 8: Performan
e of EG on a
tual time series 
ompared to 
onstituentindexEven more than in the Universal Portfolio 
ase, there seems to be e
onomi
signi�
an
e in the results presented in �gure 8. Almost 400% return should be
onsidered signi�
antly better than almost 150% return. For 
omparison, theSharpe measure for this EG portfolio is 0.2825, almost three times the Sharpemeasure of the STOXX index whi
h was 
al
ulated to be 0.1064 in the previousse
tion. Results are similar for all tested portfolios, espe
ially those 
ontainingvolatility indi
es, and the S&P500 and VIX 
ombination again seems to be thebest 
ombination. The STOXX and VIX 
ombination is representative of thetypi
al performan
e of portfolios 
ontaining at least one volatility index. Port-folios of only other assets, for instan
e 
ombinations of broad indi
es, do notexhibit the same overperforman
e, but does show an ability to give a returnhigher than the arithmeti
 average of the 
onstituent asset returns 
ombinedwith a lower volatility than an equally weighted buy-and-hold portfolio has.The EG algorithm with a low learning rate η proves to make very small weightadjustments at ea
h rebalan
ing and, as a result, the algorithm is almost 
om-pletely insensitive to trading 
osts. Even trading 
osts of 50% of the tradedvolume still leaves an e
onomi
ally signi�
ant abnormal return. It takes trad-ing 
osts of 100% of the traded volume to bring the portfolio return in level withthe underlying index, indi
ating that the reallo
ations the algorithm makes onaverage are return generating. 20



5.3 Anti
orThe Anti
or algorithm has one parameter, namely the length of the windowwhi
h is denoted by w. As a �rst step, the sensitivity of the algorithm to thisparameter will be tested by 
al
ulating total return fa
tors for the STOXX-VIXportfolio for a range of di�erent values of w. In �gure 9 below, the results ofthis test 
an be seen.
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Figure 9: Anti
or total return fa
tor as a fun
tion of wAs 
an be seen, the results seem quite sensitive to the 
hoi
e of w. This isin a

ordan
e with what Borodin et al [4℄ �nd. Their suggested solution isto instead 
hoose one minimum and one maximum w, 
al
ulate the suggestedAnti
or weights for ea
h w between these two values and take the arithmeti
average of the suggested weights, essentially 
reating a buy-and-hold portfoliowith a number of Anti
or portfolios as 
onstituents. Very low values of w shouldbe avoided sin
e the suggested weights 
an di�er signi�
antly from suggestedweights when a slightly larger w is used (and the result is typi
ally worse forvery low w a

ording to Borodin et al).The minimum value of w is set to 5, and the obtained results are similar tothose presented by Borodin et al, i.e. the algorithm is not so sensitive to themaximum value of w as long as it is at least somewhere around 20. In theremainder of this thesis, averaging will be used with wmin = 5 and wmax = 30.The �rst experiment on Anti
or using 1000 runs of simulated time series givesthe histogram of the X variable distribution presented in �gure 10.21
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Figure 10: Histogram of the distribution of the X variable for Anti
or onSTOXX and VIXLike before, the normality assumption appears from the shape of the distrib-ution histogram to be justi�ed, and the mean appears to be well above zero.The observed value of the t statisti
 in this �rst test is 39.481, and with 999degrees of freedom as before, this 
orresponds to a p value of 0.0000. The hy-pothesis test indi
ates a signi�
ant positive 
ontribution from using the Anti
oralgorithm 
ompared to investing only in the STOXX index. Similar results areseen using other 
ombinations in
luding at least some volatility index.The portfolio on the a
tual STOXX and VIX time series over the same timeperiod as before gives the result presented in �gure 11 below.
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Figure 11: Performan
e of Anti
or on a
tual time series 
ompared to 
onstituentindexAs 
an be seen from the �gure, Anti
or manages to provide an abnormal returnthat is quite impressive. The t statisti
 has a value of 6.5507 with one degree offreedom, 
orresponding to a p value of 0.0964. Thus, the null hypothesis 
an bereje
ted on the 10% level of signi�
an
e. As for e
onomi
 signi�
an
e, the per-forman
e of Anti
or is 
learly mu
h better than that of the underlying STOXXindex. The Sharpe ratio for the Anti
or portfolio is 1.5759, mu
h higher thanthe 0.1064 seen for the STOXX index.This pair of assets 
learly �ts the desired 
hara
teristi
s for the Anti
or al-gorithm well. There is high volatility in the VIX volatility index, and it isnegatively 
orrelated with the STOXX index. This negative 
orrelation is notperfe
tly intuitive, but there is at least one possible explanation. The VIX indexre�e
ts the impli
it volatility of the S&P500 index. Thus, a negative 
orrelationshould be expe
ted between the returns on S&P500 and the returns on VIX,sin
e when S&P500 is falling, the volatility tends to in
rease, and when it is ris-ing, volatility tends to fall. Furthermore, while the STOXX index is made up ofEuropean 
omponents in 
ontrast to the S&P500 whi
h is made up of Ameri
an
omponents, there is a 
orrelation between the behavior of the STOXX indexand that of the S&P500. This also means that a negative 
orrelation 
an befound between STOXX and VIX.For referen
e, some results when 
ombining VIX with the S&P500 are alsogiven. In �gure 12 below are the results when using the a
tual time series overa period of almost 20 years, from the beginning of 1986 to present day.23
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Figure 12: Performan
e of Anti
or on a
tual time series 
ompared to 
onstituentindexNote that the S&P500 a
tually is plotted in the graph and normalized to startat 1 in the beginning of 1986 just as the total return fa
tor of Anti
or, but dueto the performan
e of the Anti
or algorithm, the S&P500 series is not visiblesin
e the 
omparatively small magnitude of its returns makes it blend togetherwith the horizontal axis. It appears that the e�e
t is even stronger when 
om-bining the VIX with the S&P500, whi
h is to be expe
ted sin
e the S&P500is the underlying index whose impli
it volatility is re�e
ted by the VIX. A hy-pothesis test of the same type as above gives a t statisti
 value of 13.8942, whi
h
orresponds to a p value of 0.0457. The null hypothesis 
an be reje
ted on the5% level of signi�
an
e. The Sharpe measure is 3.4848 for this portfolio, to be
ompared with 0.1471 for the S&P500. The volatility is 23.86%, whi
h is higherthan the 8.61% that the S&P500 exhibits.The 
ombination of S&P500 and VIX gives the best results with the Anti
oralgorithm, but in general, all portfolios tested that 
ontain at least one volatilityindex exhibit behavior similar to the STOXX-VIX 
ombination. Unlike for theUniversal Portfolio and EG algorithms, Anti
or also outperforms the individ-ual assets in portfolios of only broad indi
es. The overperforman
e in this 
aseis not as large as in the portfolios that have volatility indi
es, but there is apositive e�e
t that is 
omparable to what Universal Portfolio and EG show inportfolios with volatility indi
es.
24



5.3.1 Anti
or under extreme 
onditionsAs a test of the Anti
or algorithm's behavior under extreme 
onditions, theperforman
e over 1987 is presented in �gure 13 below. The large drop in theS&P500 
orresponds to O
tober 19, also known as the Bla
k Monday.
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Figure 13: Performan
e of Anti
or under extreme 
onditionsIn this �gure, it is espe
ially interesting to note that while there appears to besome volatility at the end of the year, the Anti
or algorithm makes a ratherlarge pro�t on the Bla
k Monday, su

essfully 
apturing the sharp spike in theVIX index that o

urred on that day and is shown in �gure 1 in se
tion 3.The whole year performan
e is approximately up 40%, to be 
ompared with theS&P500 index whole year return of 0.25%.While the Anti
or algorithm has rather strong performan
e, it a
hieves thisperforman
e through rather large reallo
ations at ea
h rebalan
ing. As a 
onse-quen
e, mu
h of the abnormal returns is lost if trading 
osts are high. At trading
osts of 1% of the traded volume, Anti
or has a performan
e 
omparable to thatof Universal Portfolio or EG at low trading 
osts. When trading 
osts are 1.2%,the algorithm performan
e is brought to level with the underlying index.5.4 CPPIThe CPPI algorithm will be used in the moving �oor version only, sin
e it is ageneralization of the basi
 version. The �oor will not be allowed to grow at therisk free rate, sin
e this was found by Lundahl [19℄ to be undesirable, 
ausing25



the portfolio to fall through the �oor too often. There are two parameters forthis algorithm, the multiplier m and the maximum relative investment in therisky asset p. Sin
e the CPPI algorithm is not intended to be an abnormalreturn generating algorithm like the previous three tested, but rather an in-suran
e algorithm providing a safety level 
ombined with potential upside, thesame types of results should not be expe
ted for CPPI. Also, it is spe
i�
ally
onstru
ted for two asset portfolios where one of the assets is reasonably riskfree. For this purpose, the Swedish OMRX T-bill index will be used in this the-sis sin
e it has very low volatility and a predi
table, nearly 
onstant growth rate.Tests were run to determine reasonable values for the m and p parameters.The p parameter proved to have a rather irregular in�uen
e on the resultingtotal return fa
tor as 
an be seen in �gure 14 below.
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pFigure 14: CPPI total return fa
tor as a fun
tion of pConsidering the meaning of the p parameter, the above pattern is not very sur-prising. The parameter denotes the maximum investment in the risky asset asfra
tion of the total portfolio value. If p is 1, the entire value 
an be put in therisky asset and if p > 1, it is possible to short sell the risk free asset to in
reaseinvestment into the risky asset. Thus, if p is allowed to be very large, massiveshort selling 
an o

ur, and if the risky asset de
reases in value, the portfoliosharply de
reases in value sin
e it is highly levered. It appears that p = 3 wouldbe a good 
hoi
e.For the m parameter, a similar test was made, both before and after the test for
p, to ensure that the m value suggested before determining a suitable p providesgood results also with the p that was 
hosen in the test for the p parameter. In26



�gure 15 below, the results of the se
ond test are shown. The results of the �rsttest are very similar and are thus not shown here.
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Figure 15: CPPI total return fa
tor as a fun
tion of mIt appears that as long as m > 5, the a
tual value does not a�e
t return verymu
h. This is reasonable, sin
e p spe
i�es an upper limit on the investmentin the risky asset. In
reasing m would in
rease the suggested exposure to therisky asset, but if it already is larger than the maximum allowed exposure, itdoes not matter if m is in
reased. The a
tual exposure will be the one spe
i�edby the value of p. In this thesis, m = 6 will be used. Higher values of both mand p 
ould be used to amplify returns, but that would also amplify risks, sin
ehigher p values means that it is possible to short sell the riskfree asset more,and higher m values means that the sensitivity for drops in the risky asset isin
reased, as is shown in appendix A.3.Using the parameters mentioned above and a portfolio 
onsisting of the STOXXand OMRX indi
es for the 1000 runs provides the histogram presented in �gure16 below.
27
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Figure 16: Histogram of the distribution of the X variable for CPPI on STOXXand OMRXThe observed value of the t statisti
 is -8.4851, 
orresponding to a p value of0.0000 with 999 degrees of freedom. There appears to be a signi�
ant negativee�e
t on return if CPPI is used 
ompared to investing only in the STOXX index.There is however a heavy right tail as for the other algorithms. The shape ofthe distribution resembles the normal distribution.When the a
tual STOXX and OMRX time series are used, with the same timeperiod as the previous experiments, the result is as in �gure 17 below. Thevalue of the t statisti
 in this 
ase is 0.8235 with one degree of freedom, whi
h
orresponds to a p value of 0.5614. The null hypothesis 
an not be reje
ted onany 
onventional level of signi�
an
e. The behavior of the algorithm is similarregardless of what index is used instead of STOXX. The algorithm is not verywell suited for other types of assets, so only pairs of OMRX and a broad indexhave been tested.The CPPI algorithm is very sensitive to presen
e of trading 
osts. Apart fromthe empiri
al fa
t that CPPI proves to make large reallo
ations at ea
h rebal-an
ing, the sensitivity 
an intuitively be understood, sin
e an important featureof the algorithm is to raise the �oor to se
ure returns. If trading 
osts must bepaid, there is not room for raising the �oor, and subsequent falls will a�e
t theportfolio more. In fa
t, for trading 
osts of only 0.20% of the traded volume,the portfolio performan
e is at the same level as the underlying index.
28
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Figure 17: Performan
e of CPPI on a
tual time series 
ompared to 
onstituentindexThe Monte Carlo simulation te
hnique does not quite 
apture the momentum
hara
teristi
 of the STOXX index, meaning that the potential for CPPI togenerate abnormal returns is signi�
antly limited. Also, another point of theCPPI algorithm is the guarantee provided by the �oor. In appendix A.3, it isshown that if the risky asset does not fall by a fra
tion larger than 1/m overone period, the portfolio will not break through the �oor. Thus, as is shownin �gure 17 above, CPPI would provide a guaranteed return that mat
hes theSTOXX level at the height of the IT bubble, provided that STOXX never fallsmore than 1/6 ≈ 0.1667 = 16.67% over one period, i.e. over one day with dailyrebalan
ing. Over the 14 year period used, the maximum daily drop in STOXXwas 5.39%, so 
learly, falls of more than 16% appear to be rare. Even if theportfolio falls below the �oor, it will then allo
ate fully into the risk free assetand remain invested in it until wealth is above the �oor again.The Sharpe measure for the CPPI portfolio is 0.3885, whi
h is 
learly higherthan the Sharpe measure for the STOXX index. The average annual volatil-ity is 11.32%, to be 
ompared with 8.03% for the STOXX index. Combinedwith the added insuran
e that the portfolio will not fall below the �oor un-less the STOXX index falls by more than 16% in one day, it appears that theCPPI algorithm is indeed useful in reality despite the negative out
ome of theMonte Carlo simulation. The fa
t that CPPI stru
tures are provided by largeinvestment banks also strengthens this view.
29



6 AnalysisThe experiments for the Universal Portfolio, EG and Anti
or algorithms show
learly signi�
ant positive results in Monte Carlo simulations. The CPPI algo-rithm shows a signi�
ant negative result in Monte Carlo simulations, but the
orresponding result when using a
tual time series indi
ates that 
ertain 
hara
-teristi
s of the underlying time series that are important to the CPPI algorithmmight not be 
aptured by the Monte Carlo simulation.For all algorithms, real time series results show e
onomi
 signi�
an
e, whileonly Anti
or manages to provide statisti
al signi�
an
e at 
onventional levelsfor these tests. Also, the Sharpe measures observed for the di�erent algorithmsindi
ate that the algorithms manage to provide performan
e that is superior tothe underlying broad indi
es.A natural question is why the EMH, whi
h is 
ertainly plausible on an intu-itive level, appears to fail to hold even in the weak form. A possible explanationis that while the EMH impli
itly assumes perfe
t distribution of information toallow for enlightened and equally knowledgeable investors, in reality not all in-vestors might have a

ess to all information. While the time series of past pri
edata 
ertainly are available to a large share of investors and te
hni
al analy-sis in many forms is 
ommonly used, the knowledge of parti
ular quantitativete
hniques might not be widely available. Also, the very existan
e of the EMHmight dis
ourage many investors from even trying to use insights from te
hni
alanalysis. Even for investors willing to use te
hni
al analysis, 
omplexity of im-plementation might dis
ourage the use of 
ertain algorithms in favor of simplermethods.It should also be noted that one of the delimitations made in this thesis isthat asset liquidity is not resear
hed. While the broad market indi
es su
h asthe S&P500 and the STOXX are generally known to be highly liquid, volatilityindi
es su
h as VIX or VDAX might not be widely traded. Futures 
ontra
tsdo exist for these indi
es, but they might not be widely traded. If liquidity islimited, the a
tual usefulness of the results, at least for large s
ale investmentpurposes, might be signi�
antly redu
ed.The algorithmi
 portfolios might be per
eived as more risky by some investors.However, apart from the potential liquidity risk, there is not mu
h eviden
e ofsigni�
antly in
reased risk. Observed volatilities of the algorithmi
 portfoliosare not substantially larger than those of the broad market indi
es themselvesand 
ertainly not larger than typi
al single sto
k volatilities, indi
ating thatvolatility is not a major 
on
ern.Trading 
osts is an issue that might erode the e
onomi
 signi�
an
e of theresults. The experiments show that in parti
ular CPPI is sensitive to trad-ing 
osts and might thus be best suited for implementation in larger �nan
ialinstitutions. In the presen
e of high trading 
osts, Anti
or loses most of its ab-normal performan
e, meaning that it might not be suitable for small investors.EG proves to be very resistant to trading 
osts and might be interesting evenfor individuals. 30



7 Con
lusionsDespite the plausibility of the EMH, te
hni
al analysis seems to improve in-vestment performan
e. Clearly signi�
ant results in large simulations indi
aterobustness of several purely te
hni
al investment strategies. Experiments ona
tual time series do not 
onsistently provide 
onvin
ing statisti
al signi�
an
ein themselves, but eviden
e from the exe
ution of hypothesis tests indi
ate thatthere is an e
onomi
ally signi�
ant e�e
t from using algorithmi
 te
hniques.Also, it is 
lear that abnormal returns need to be very high to be statisti
allysigni�
ant in single tests on a
tual time series. Thus, e
onomi
 signi�
an
e 
an
learly exist even in the absen
e of statisti
al signi�
an
e.Some 
on
erns about the validity of the results 
an be raised, and among these,the liquidity issue is arguably the most potentially troubling, possibly along withthe issue of trading 
osts. With low liquidity or high trading 
osts, s
alabilityand pro�tability might be limited.In 
on
lusion, within the delimitations of this thesis, there is strong eviden
ethat the EMH does not hold fully 
onsidering the performan
e of these algorith-mi
 te
hniques. Assuming ne
essary liquidity and trading 
osts not ex
eedingspe
i�ed levels, there appears to be potential for persistent and e
onomi
allysigni�
ant abnormal returns for the algorithms tested in this thesis.7.1 Suggestions for further resear
hLimited length of a
tual time series data gives rise to 
on
erns about sustain-ability of the results over longer periods of time. While Monte Carlo simulations
an redu
e this 
on
ern, it is not 
lear that the simulated time series mimi
 a
-tual time series 
losely enough to be realisti
. For instan
e, serial 
orrelationsmight not be 
aptured. As time passes and longer a
tual time series are pos-sible, tests 
ould be run again to determine in hindsight whether there is anysustainable pro�tability for any parti
ular algorithmi
 strategy.Another interesting topi
 would be to evaluate the psy
hologi
al impli
ationsof using algorithmi
 investment strategies. Investment managers might wantto add an element of fundamental analysis to 
reate a strategy that does notun
onditionally follow the algorithm suggestions but under 
ertain 
onditionsallows non-automated input as support for investment de
isions. Helmbold etal [13℄ expand on this by introdu
ing the 
on
ept of side information. Hybridstrategies of this kind is an interesting extension of the algorithmi
 approa
hand 
ould provide many further resear
h topi
s.The issue of liquidity might be addressed by either introdu
ing signi�
antlyin
reased trading 
osts for parti
ular assets. Also, if the portfolio wealth needsto be kept small to alleviate liquidity problems, it 
ould be interesting to roundalgorithm weights to multiples of some per
entage9 to handle problems withlarge 
ontra
t sizes and see if the observed patterns remain.9If, for instan
e, 
ontra
ts in a parti
ular asset 
an only be integer multiples of 100 000and liquidity is low, a portfolio wealth of 1 000 000 
ould be kept as a means of ensuring thatne
essary liquidity is available, but in this 
ase, weights for the non-liquid asset 
ould only beinteger multiples of 100 000 as a fra
tion of 1 000 000, i.e. 10%.31
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A Appendi
esA.1 Derivation of Universal Portfolio weight formulasAs noted, this thesis uses the two variable Diri
hlet distribution for UniversalPortfolio. To 
onveniently des
ribe the two variable Diri
hlet distribution, theGamma fun
tion must �rst be de�ned:
Γ(t) =

∫ ∞

0

xt−1e−x dx, t ≥ 0A property of this fun
tion is that if t is an integer, Γ(t) = (t − 1) · Γ(t − 1),and it is easily seen by solving the integral that Γ(1) = 1. Using the Gammafun
tion, the Beta fun
tion 
an be written
B(t, u) =

Γ(t)Γ(u)

Γ(t + u)
, t, u ≥ 0The two variable Diri
hlet probability distribution has two parameters α1 and

α2 and is 
hara
terised by the probability density fun
tion
f (b) =

Γ
(

∑2
i=1 αi

)

∏2
i=1 Γ (αi)

bα1−1
1 bα2−1

2 =
1

B(α1, α2)
bα1−1
1 bα2−1

2 .In addition the restri
tions b1 + b2 = 1 and 0 ≤ b1, b2 ≤ 1 must hold, whi
himplies that the Universal Portfolio algorithm will not be able to short sell anyassets (sin
e weights below zero are prohibited).In the spe
ial 
ase where α1 = α2 = 1, the density fun
tion be
omes
f (b) =

Γ (1 + 1)

Γ (1)
2 b1−1

1 b1−1
2 =

Γ (2)

Γ (1)
2 b0

1b
0
2 = 1,i.e. the uniform distribution (sin
e Γ(2) = 1 · Γ(1) = 1 · 1 = 1). If instead

α1 = α2 = 1/2 the distribution be
omes
f (b) =

Γ (1/2 + 1/2)

Γ (1/2)
2 b

1/2−1
1 b

1/2−1
2 =

Γ (1)

Γ (1/2)
2 b

−1/2
1 b

−1/2
2 =

1

π
b
−1/2
1 b

−1/2
2sin
e Γ(1/2) =

√
π and Γ(1) = 1.Next, a derivation of a 
losed form solution of the obtained total return fa
-tor, Ŝn, will be performed for general α1 and α2, sin
e it is 
ontained in theexpression for the Universal Portfolio weights (2).First, the general Universal Portfolio weight formula is restated for 
onvenien
eof referen
e.

b̂k =

∫

b
∏k−1

t=1 b
T
xt dµ (b)

∫
∏k−1

t=1 bTxt dµ (b)
, (4)To expli
itly 
al
ulate the algorithm weights and the total return for UniversalPortfolio in the 
ase when portfolios are limited to two assets, it is ne
essary to�nd a 
losed form solution to the integrals in equation (4). Firstly, to rea
h an34



expression for Ŝn, rewrite the total return fa
tor for an arbitrary CRP after nrebalan
ing time points:
Sn(xn,b) =

n
∏

t=1

b
T
xt =

n
∏

t=1

(b1xt1 + b2xt2) =
∑

J∈{1,2}n

n
∏

t=1

bjt
xtjt

=

n
∑

l=0

bl
1b

n−l
2





∑

J∈Tn(l)

n
∏

t=1

xtjt



 ,where Tn(l) is the set of all sequen
es J ∈ {1, 2}n with l o

uren
es of 1 and
(n − l) o

uren
es of 2. Next, let

Xn(l) =
∑

J∈Tn(l)

n
∏

t=1

xtjt
, (5)whi
h gives

Sn (xn,b) =
n

∑

l=0

bl
1b

n−l
2 Xn(l).To 
al
ulate the integrals in equation (4) above and the realized total returnfa
tor of the Universal Portfolio, this expression is integrated over the Diri
hletprobability measure that was assumed to hold for the BCRP weights.

Ŝn (xn) =

∫ n
∑

l=0

bl
1b

n−l
2 Xn(l) dµ (b) =

n
∑

l=0

Xn(l)

∫

bl
1b

n−l
2 dµ (b) .By introdu
ing the notation

Cn(l) =

∫

bl
1b

n−l
2 dµ (b) , (6)the total return fa
tor expression 
an be written

Ŝn (xn) =

n
∑

l=0

Xn(l)Cn(l).Using this result, a 
losed form expression for the Universal Portfolio weightsand also its realized total return fa
tor at time n 
an be obtained. Continuingfrom equation (4),
b̂n =

∫
∏n−1

t=1 b
T
xtb dµ (b)

Ŝn−1 (xn−1)
=

1

Ŝn−1 (xn−1)

[ ∫

b1

∏n−1
t=1 b

T
xt dµ (b)

∫

b2

∏n−1
t=1 b

T
xt dµ (b)

]

,the weights 
an in fa
t be 
al
ulated using a pro
edure whi
h is very similar tothe one just used to 
al
ulate the Universal Portfolio return. One 
an see that
b̂n =

1

Ŝn−1 (xn−1)

[ ∑n−1
l=0 Xn−1(l)

∫

bl+1
1 bn−1−l

2 dµ (b)
∑n−1

l=0 Xn−1(l)
∫

bl
1b

n−l
2 dµ (b)

]

=

=
1

Ŝn−1 (xn−1)

[
∑n−1

l=0 Xn−1(l)Cn(l + 1)
∑n−1

l=0 Xn−1(l)Cn(l)

]

. (7)35



Now, to obtain formulas that 
an be e�
iently implemented in a program, theintegrals in equation (6) need to be solved. The Diri
hlet density will now proveto be a good 
hoi
e. Re
all that its density fun
tion is given by
f (b) =

1

B(α1, α2)
bα1−1
1 bα2−1

2 ,meaning that the integrals in equation (6) 
an be solved relatively easily. Firstly,note that
Cn(l) =

∫

bl
1b

n−l
2 dµ (b) =

∫ 1

0

bl
1b

n−l
2

1

B(α1, α2)
bα1−1
1 bα2−1

2 db1,where b2 = 1 − b1.Take the 
onstant Beta fun
tion outside the integral and merge the b1 and
b2 fa
tors to obtain

Cn(l) =
1

B(α1, α2)

∫ 1

0

bl+α1−1
1 bn−l+α2−1

2 db1.In this integral, we 
an see that the integrand is essentially a Diri
hlet densityfun
tion. If it were 
ompleted with a 
onstant fa
tor 
ontaining suitable gammafun
tions, it would be
ome a true Diri
hlet density fun
tion. Now, identify theparameters of this distribution, 
alling them γ1 and γ2. These new parameters
learly have the following relation to the original distribution parameters α1and α2:
γ1 = l + α1,

γ2 = n − l + α2.The general probability theory de�nition of a probability measure states
∫

dµ (b) = 1.The Cn(l) integrals in equation (6) 
an thus be solved. The solution is
Cn(l) =

B(γ1, γ2)

B(α1, α2)

∫ 1

0

1

B(γ1, γ2)
bγ1−1
1 bγ2−1

2 db1 =

=
B(γ1, γ2)

B(α1, α2)

∫

dµ (b) =
B(γ1, γ2)

B(α1, α2)
.Substituting the expressions introdu
ed earlier for γ1 and γ2 into this gives

Cn(l) =
B(l + α1, n − l + α2)

B(α1, α2)
=

1

B(α1, α2)

Γ (l + α1) Γ (n − l + α2)

Γ (n + α1 + α2)
.Using equation (6), it is 
lear that C0(0) =

∫

dµ (b) = 1 regardless of whatvalues are 
hosen for the α1 and α2 parameters. Using the rule that Γ(N +1) =
NΓ(N), Cn(l) 
an now be expressed re
ursively as a fun
tion of the values of
α1 and α2, by relating Cn(l) to Cn−1(l − 1) and Cn−1(l).

Cn(l) =
l + α1 − 1

n + α1 + α2 − 1
Cn−1(l − 1)36



Cn(l) =
n − l + α2 − 1

n + α1 + α2 − 1
Cn−1(l)For Xn(l) from equation (5), it is 
lear that when 1 ≤ l ≤ n − 1, the followingre
ursion 
an be used:

Xn(l) = xn1Xn−1(l − 1) + xn2Xn−1(l).At the endpoints, two spe
i�
 re
ursions hold:
Xn(0) = xn2Xn−1(0)

Xn(n) = xn1Xn−1(n − 1).To simplify further, note that in the expressions in equation (7) for the Uni-versal Portfolio weights and also in the adja
ent equation for the realized totalreturn fa
tor, Xn(l) and Cn(l) only o

ur multiplied by one another. Thus, byintrodu
ing
Qn(l) = Xn(l)Cn(l),the realized total return fa
tor for Universal Portfolio after n rebalan
ings 
anbe more 
onveniently written:̂
Sn (xn) =

n
∑

l=0

Qn(l).Note that also the quantities Cn(l + 1)Xn−1(l) and Cn(l)Xn−1(l), o

uring inequation (7), 
an be simpli�ed by using the Qn(l) notation. Use the Cn(l)re
ursions to see that:
Cn(l + 1)Xn−1(l) =

l + 1 + α1 − 1

n + α1 + α2 − 1
Cn−1(l + 1 − 1)Xn−1(l) =

=
l + α1

n + α1 + α2 − 1
Qn−1(l),

Cn(l)Xn−1(l) =
n − l + α2 − 1

n + α1 + α2 − 1
Cn−1(l)Xn−1(l) =

=
n − l + α2 − 1

n + α1 + α2 − 1
Qn−1(l).Finally, insert the above expressions into equation (7), and the expli
it UniversalPortfolio weight expression is obtained:

b̂n =
1

∑n−1
l=0 Qn−1(l)

[

∑n−1
l=0

l+α1

n+α1+α2−1Qn−1(l)
∑n−1

l=0
n−l+α2−1

n+α1+α2−1Qn−1(l)

]

.
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A.2 Des
ription of Anti
or weight 
al
ulationTo des
ribe Anti
or more thoroughly, we must �rst de�ne
LX1t = [log(xt−2w+1), . . . , log(xt−w)]

T
, LX2t = [log(xt−w+1), . . . , log(xt)]

Twhere log(xt0) denotes [log(xt01), . . . , log(xt0m)]
T, t0 is a point in time and m isthe number of assets in the portfolio as before. Thus, LX1t and LX2t are w×mmatri
es, 
ontaining logarithms of relative pri
es of assets over the windowsfrom t − 2w + 1 to t − w and from t − w + 1 to t respe
tively. Denote the jth
olumn of LXlt by LXlt(j) (where l is 1 or 2). Also, let µl = [µl(1), . . . , µl(m)]and σl = [σl(1), . . . , σl(m)] denote the ve
tors of sample averages and samplestandard deviations of the 
olumns of LXlt (i.e. the sample averages and samplestandard deviations over the two windows for all assets) respe
tively. Using thisnotation, the 
ross 
orrelation matrix 
an be 
al
ulated a

ording to

Mcov,t(j, k) =
1

w − 1
(LX1t(j) − µ1(j))

T(LX2t(k) − µ2(k))

Mcor,t(j, k) =

{

Mcov,t(j,k)
σ1(j)σ2(k) if σ1(j), σ2(k) 6= 0

0 otherwise.Here, Mcor(j, k) is the sample 
orrelation between the log-relative pri
es of asset
j over the window from t−2w+1 to t−w with those of asset k over the windowfrom t − w + 1 to t. Should σ1(j) or σ2(k) be zero over either of the windows,it means that the logarithm of the relative pri
e of that asset is 
onstant overthat interval. Anti
or does not reallo
ate between assets j and k in this 
ase.The next step is to 
al
ulate the 
laim matrix. Here, claimi(j, k) denotes aninitial approximation of the amount of wealth to reallo
ate from asset j to asset
k.
claimt(j, k) =

{

Mcor,t(j, k) + At(j) + At(k) if µ2(j) > µ2(k) and Mcor,t(j, k) > 0
0 otherwise.The Ai(h) quantity in the above expression is 
al
ulated a

ording to

At(h) =

{

|Mcor,t(h, h)| if Mcor,t(h, h) < 0
0 otherwise.Intuitively, if Mcor,t(j, k) > 0, one 
ould argue that assets j and k are 
orrelatedin 
onse
utive windows, so that a rise in one predi
ts a future rise in the other,and Mcor,t(h, h) < 0 shows that asset h is negatively auto
orrelated in 
onse
-utive windows.Next, the transfers that are made are 
al
ulated:

transfert(j, k) =

{

bt(j)
claimt(j,k)P
k

claimt(j,k) if ∑

k claimt(j, k) 6= 0

0 otherwise.With the transfers 
al
ulated, the portfolio weights at time t+1 
an be 
al
ulatedusing the weights at time t through the following relation:
bt+1 = bt +

∑

k 6=j

[transfert(k, j) − transfert(j, k)] .38



A.3 Te
hni
al details of the CPPI algorithmThe moving �oor version of CPPI takes advantage of in
reases in the value ofthe risky asset to put more wealth into the se
ured �oor part of the portfolio.Enfor
ing the maximum relative exposure determined by p, there 
an now bean ex
ess 
ushion if the risky asset in
reases in value. The ex
ess 
ushion isgiven by
mCt − pVt

m
=

m(Vt − Ft) − pVt

m
=

m − p

m
Vt − Ftand this should be added to the previous �oor, Ft, to limit the exposure to therisky asset. The new �oor is related to the old �oor as follows:

F new
t =

{

m−p
m Vt if mCt > pVt

F old
t otherwise.Intuitively, this 
an be interpreted as 'If the 
al
ulated exposure is larger thanthe maximum allowed fra
tion of the portfolio wealth, the �oor is moved up-wards until the exposure be
omes exa
tly the maximum allowed fra
tion ofportfolio wealth'. To see this, note that if mCt > pVt, we set

Ft =
m − p

m
Vt,giving

Et = mCt = m(Vt − Ft) = m

(

Vt −
m − p

m
Vt

)

= m
(

Vt − Vt +
p

m
Vt

)

=

m
p

m
Vt = pVt,i.e. exa
tly the maximum exposure allowed.In the base CPPI version, if the risky asset behaves like a geometri
 Brownianmotion, i.e. with normally distributed logarithmi
 returns, the CPPI algorithmexpe
ted wealth at time T has been shown [5℄ to be

VT = V0 + C0e
−km

(

ST

S0

)m

,where
km = (m − 1)

(

mσ2

2
+ r

)In the moving �oor version, there exists no 
losed form solution for the portfoliowealth, but the SDE 
an be expressed as
dVt =







rVtdt if Vt ≤ Ft

(Vt − Ft)dZt + rFtdt if Ft < Vt < m
m−pFt

VtdXt if Vt ≥ m
m−pFt.Here,

dZt = (m(µ − r) + r)dt + mσdWt,

dXt = (p(µ − r) + r)dt + pσdWt.Another version of the CPPI presented by Boulier and Kanniganti [5℄ insteadfo
uses on not letting the exposure to the risky asset grow too small in the 
ase39



of a de
line of the value of the risky asset, noting that a CPPI portfolio willfollow the �oor if it ever rea
hes it and behave unpredi
tably in the 
ase ofaggressive investing leading to a portfolio value below the �oor.Denote the initial margin M0. Also, de�ne E∗
t as a lower limit for the exposureat any time t. The margin version of CPPI states that, whenever Et < E∗

t /2,
F new

t = F old
t − Mt

2
,

Mnew
t =

Mold
t

2
,

Enew
t = mCt = m(Vt − F new

t ).The lower limit 
an be set in several fashions. This CPPI version will not beused in this thesis, and hen
e it is only 
overed shortly here.There is a maximum limit on how mu
h the risky asset 
an fall during oneinvestment period before the CPPI portfolio falls through the �oor. Denotethis 
riti
al level expressed as a fra
tion by the letter d. The CPPI portfoliodevelopment over one period 
an then be approximately written
Vt+1 = Et · (1 − d) + (Vt − Et) · 1if the return on the riskfree asset 
an be approximated to have zero return overone period. Here, Et = mCt = m (Vt − Ft). Substitute to obtain

Vt+1 = m (Vt − Ft) · (1 − d) + (Vt − m (Vt − Ft))Expand the above expression to obtain
Vt+1 = mVt − mFt − dm (Vt − Ft) + Vt − mVt + mFt = Vt − dm (Vt − Ft)The portfolio has fallen through the �oor if and only if

Vt+1 < Ftor equivalently if and only if
Vt − dm (Vt − Ft) < FtRearrange to obtain
dm (Vt − Ft) > Vt − FtFinally, divide through by m (Vt − Ft) to obtain

d >
1

mThus, as long as the risky asset does not fall by a fra
tion larger than 1/m (orslightly less if p > 1 and the riskless asset a
tually in
reases while the investoris net a short position in it) over one period, the CPPI portfolio stays above its�oor. As a 
orollary, if m ≤ 1, the portfolio will never break through the �oor.40



A.4 GlossaryAlgorithm - A rule or a set of rules that unambiguously de�nes a pro
ess forsolving a parti
ular task. In this thesis, it spe
i�
ally refers to a pro
ess whereportfolio weights for a given portfolio are 
al
ulated using past asset pri
es.Anti
or - An algorithm whi
h primarily bene�ts from negatively 
orrelatedand mean reverting assets. It uses serial and 
ross 
orrelations to determineasset weights.Best Constant Rebalan
ed Portfolio (BCRP) - For ea
h set of assets,the BCRP is the CRP whi
h gives the highest total return fa
tor. Its totalreturn fa
tor is a stri
t upper bound for the total return fa
tors of EG andUniversal Portfolio.Constant Proportion Portfolio Insuran
e (CPPI) - An algorithm whi
his 
on
eptually limited to two asset portfolios, where one asset should be riskfree and the other risky. It is primarily suitable for insuran
e purposes and notfor return generation. A prominent feature is the �oor, whi
h is the guaranteedlevel of wealth. The algorithm bene�ts from momentum in the risky asset.Constant Rebalan
ed Portfolio (CRP) - A portfolio where weights arekept 
onstant over time. Rebalan
ings are only made to ensure that the sameweights are kept at all times.E
onomi
 signi�
an
e - In this thesis, the term e
onomi
 signi�
an
e is usedto des
ribe the situation where a performan
e di�eren
e is likely to be 
onsid-ered relevant by an investor, regardless of whether the di�eren
e is found tohave a statisti
ally signi�
ant deviation from zero or not.Exponentiated Gradient (EG) - An algorithm whi
h uses momentum ef-fe
ts to generate abnormal returns. It has only one parameter, the learning rate
η, and it tries to a
hieve BCRP performan
e.Total return fa
tor - The fa
tor by whi
h initial wealth has 
hanged forany algorithm at any time.Universal Portfolio - Another algorithm whi
h uses momentum e�e
ts. Ituses an assumption about BCRP weight distribution to 
al
ulate weights andBCRP total return fa
tor is an upper bound for the algorithm's total returnfa
tor. Due to 
omputational 
omplexity, it is only feasible for two asset port-folios.
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