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Abstract

This thesis aims at testing the Efficient Market Hypothesis (EMH) by imple-
menting and evaluating four distinct algorithms (Universal Portfolio, Exponen-
tiated Gradient, Anticor and Constant Proportion Portfolio Insurance) for auto-
mated rebalancing of fixed-asset portfolios based on the past performance of the
individual assets included in the portfolio. If the EMH holds, technical analysis
such as algorithm based investments should not be able to generate abnormal
returns without introducing abnormal risk. The algorithms are implemented
according to the articles presenting them, and I perform statistical hypothesis
tests to determine whether the algorithms can provide significant positive ab-
normal return over broad indices.

The results indicate that abnormal returns above broad indices such as the
S&P500 and the STOXX are possible. In Monte Carlo simulations, results are
statistically significant at the 1% level for three of the algorithms. In tests on
actual time series, one algorithm provides statistically significant abnormal re-
turn on the 5% level. All algorithms have economically significant abnormal
returns for actual time series, indicating that technical analysis can create value
despite the assertion of the weak form of the EMH.

Trading costs are also introduced. Two algorithms prove very sensitive to trad-
ing costs, one is fairly sensitive and one is almost completely insensitive to
trading costs, indicating that this algorithm might be useful even for smaller
investors.
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1 Introduction

A common joke in the field of finance is that of two investors walking down a
road, when one of them sees a $100 bill. The other one, a firm believer in market
efficiency, quickly says "Don’t bother picking it up. If it were real, someone else
would already have picked it up."

This thesis aims to test the weak form of the efficient market hypothesis by
examining four algorithms' using only publicly available, numerical informa-
tion to determine how to invest in baskets of securities. I will test the ability
of the algorithms to beat different benchmarks over extended time periods.
Historical security data will be used as input to the algorithms, ensuring that
realistic conditions are used. To test the algorithms more thoroughly, Monte
Carlo simulations will also be employed, primarily using the observed historical
distribution of returns.

The term algorithmic portfolio rebalancing refers to a particular class of in-
vestment strategies. They use numerical information about financial assets,
such as past market prices, to calculate a suggested rebalancing scheme for
coming time periods. Only the weighting of wealth among the assets in the
portfolio is calculated; the starting choice of which assets to use must be deter-
mined exogenously. This class of algorithms is interesting to study because of
the possibility to earn higher returns than what is possible using buy-and-hold
schemes or similar unsophisticated strategies, while still having a rebalancing
strategy that does not require human analysis beyond the initial choice of assets.

The first algorithm studied is the Universal Portfolio algorithm. It was in-
troduced by Thomas Cover [6], who also co-wrote several articles elaborating
on different aspects of the algorithm [7], [8], [23], [14]. Kalai and Vempala [16]
aimed to reduce implementational and computational complexity. Some further
extensions were provided by Blum and Kalai [3]. Intuitively, this algorithm tries
to pick up momentum in the assets, allocating more to the assets that have per-
formed best in the past.

The second algorithm, the Exponentiated Gradient algorithm (EG), was intro-
duced by Helmbold et al [13]. While the theoretical properties of this algorithm
are weaker than those of Universal Portfolio, the article authors find that in
experiments, EG tends to outperform Universal Portfolio. Like Universal Port-
folio, EG also tries to benefit from momentum in the assets, moving wealth from
assets that have performed poorly to assets with higher returns.

The third algorithm, Anticor, was introduced by Borodin et al [4]. It differs
from Universal Portfolio and EG in the sense that it does not try to use mo-
mentum effects. Instead, it is developed to benefit from negative correlations
and mean reversion in the prices of the assets. The article authors also find that

this algorithm tends to prefer different assets compared to Universal Portfolio
and EG.

The final algorithm evaluated, the Constant Proportion Portfolio Insurance

"The word algorithm refers to a rule, or set of rules, that unambiguously defines a process
for solving a particular task.



(CPPI), was introduced by Black and Jones [2] and Perold and Sharpe [24]
as an insurance type algorithm, which combines a guaranteed, riskless mini-
mum return with a controlled investment in a risky asset that enables excess
returns. There is a conceptual limitation in this algorithm compared to the oth-
ers used in this thesis; CPPI by construction allows only portfolios consisting of
two assets, one risky and one risk free. Extensions to the CPPI algorithm have

been devised by Bertrand and Prigent [1] and Boulier and Kanniganti [5].

To determine how useful the results would be in practice, transaction costs
will be introduced into the model. This will allow evaluating whether the al-
gorithms are truly usable for investment purposes. I will try to determine the
critical transaction cost level at which any benefit from using the algorithms is
extinguished.

The main question examined in this thesis is Does the Efficient Market Hy-
pothesis hold for these algorithms? 1f it does, the algorithms should not be able
to give higher returns than market benchmarks without also having higher risk.

The rest of the thesis is organized as follows: Section 2 describes previous work
on market efficiency and also gives the technical background for the algorithms
used, section 3 presents the data series that are used, section 4 describes the
methodology, section 5 holds the findings of the tests used, section 6 contains
the analysis of the results and section 7 provides conclusions and suggestions
for further research. Some of the technicalities regarding the algorithms are
presented in appendices to make the core subject of the thesis easier to follow.
In the last appendix, a glossary is provided for convenient access to terminology
explanations.



2 Theoretical background

2.1 Literature review

The Efficient Market Hypothesis (EMH) in essence builds upon the theory of
Homo Oeconomicus, the rational human, which can access information and react
to it in a balanced, economically rational manner. A market consisting of large
amounts of investors which are assumed to be rational can be assumed to be a
rational, efficient market. The EMH has been a prevalent model for the prices
of securities in financial markets. It has three common forms [29],

e Weak form: All past market prices and data are fully reflected in securities
prices. In other words, technical analysis does not provide a possibility to
earn abnormal risk-adjusted returns.

e Semi-strong form: All publicly available information is fully reflected in
securities prices. In other words, fundamental analysis does not provide a
possibility to earn abnormal risk-adjusted returns.

e Strong form: All information is fully reflected in securities prices. In
other words, even insider information does not provide a possibility to
earn abnormal risk-adjusted returns.

Fama [10] wrote an influential article about the EMH, in which was defined that
‘a market in which prices always "fully reflect" available information is called
"efficient"’. Fama has in later works changed the exact wording of the defin-
ition to refine its meaning. He has also tested for autocorrelations in returns
data[9], finding that there are often positive serial correlations of the first order,
suggesting that there are momentum effects.

In [11], Fama provides an overview of the research presented so far in the market
efficiency field. Apart from his own previous findings, other authors have also
found positive autocorrelations, especially in small stocks. However, Fama and
others argue that the predictability of returns is largely obscured by daily varia-
tions in stock prices, implying that the actual usefulness of the predictability is
small. Over longer time periods, some authors have found anomalies that they
argue can be considered irrational deviations, but Fama and others argue that
the patterns are not distinguishable from rational time-varying expected returns.

Another article by Fama [12] includes event studies where abnormal returns
from stocks are examined to determine whether there are any anomalies that
indicate nonefficiency of financial markets. Fama finds that the evidence does
not suggest abandoning the EMH when scrutinized. Apparent overreactions of
stock prices to new information is found to be about as common as underreac-
tions, and it is about as common for pre-event abnormal returns to continue as
it is for them to reverse after the event. In addition, Fama finds that long-term
return anomalies are fragile and tend to disappear rather quickly.

The EMH has not been unanimously accepted by all observers and investors
in the financial market however. Many attempts have been made to disprove
the theory, and Malkiel [22] has written an article that addresses several such
attacks. Malkiel personally argues that the EMH does hold and that evidence



of the opposite often is built upon questionable methodology, such as e.g. us-
ing a time frame with properties which are not representative for longer time
periods. He also argues that it is important to distinguish between statisti-
cal and economic significance and points out that transaction costs are likely to
have a notable impact on the true profitability of suggested investment schemes.

Earlier, Malkiel [20] has also argued that a blindfolded chimpanzee throwing
darts at the Wall Street Journal could select a portfolio that would do as well as
the experts. In later work [21], he explains that the main point of this claim is
to recommend investments into index funds rather than actively managed funds.

Shostak [27] argues that there is reason to use fundamental analysis to earn
abnormal returns, and consequently that the EMH does not hold. His main
point is that the EMH is largely an equilibrium model that does not represent
the real behavior of financial markets in the short run. This does not really con-
tradict most EMH proponents however, since the EMH is typically only argued
to hold over longer time periods.

Schleifer and Summers [26] among others point to the stock market crash of
1987 as a sign that financial markets are in fact not efficient. Malkiel’s response
is that while psychological factors could be held as evidence against the EMH,
the crash was also largely explained by a series of negative events for the in-
vestment environment. Shiller [25] among others considers the internet bubble
at the end of the 1990s evidence against the EMH. Malkiel comments on this
by noting the difficulties in correctly valuing equity and that despite the over-
valuation of high tech stock, no strict arbitrage opportunities existed, since it
was not possible to predict the time that the bubble would burst. Furthermore,
he argues that since this type of bubble occurs infrequently, it does not really
contradict the idea that an efficient market on average prices securities correctly.

Lo and MacKinlay [17] have found that serial correlations in stock prices are
often non-zero, meaning that there in fact is evidence of momentum, and conse-
quently that the random walk model is not fully realistic. Similar findings were
presented by Lo, Mamaysky and Wang [18], that used non-parametric statistical
techniques to show that some price series patterns studied in technical analysis,
for instance head-and-shoulders and double-bottom formations, actually have
some predictive power.

Jensen [15] gives support to the EMH, performing the first study on mutual
fund performance, in which he finds that active fund managers on average un-
derperform the market by approximately the amount of their added expenses.
Malkiel [22] shares this argument by claiming that there is also a substantial
survivorship bias, meaning that the true average active fund performance should
be even lower.

It should be noted that few observers or investors believe that the EMH strictly
holds at all times. Malkiel argues that investors clearly are not rational at all
times, and that over certain time windows, apparent inefficiencies can arise and
be exploitable for some time. The common view of EMH proponents is that
such occurences will be exception rather than rule and will disappear quickly if
and when they are discovered.



2.2 Algorithm descriptions

In this section, the background of algorithmic portfolio rebalancing in general
and for the four algorithms to be used will be described briefly. The section has
been kept short, moving the more technical parts to appendices for interested
readers. This is to make the testing of the EMH the focus of the thesis rather
than the technicalities of the particular algorithms.

2.2.1 Common notation

The investment period is assumed to be discrete points in time starting at time
0,ie. t=0,1,2,...,n. A total of m assets are assumed to be available for the
algorithms to divide wealth among. These assets are assumed to have a price at
each of the discrete points in time included in the investment period, with s; ; de-

. . . . T
noting the price of asset j at time ¢. Then, the vector x; = (741, Ts2, . ., Tem) 52
where
St,j
Tpj = —,
St—1,5

denotes the performance of the investment universe from time ¢ — 1 to ¢, since
xj = (1+74;), where ry; is the simple periodic return on asset j from time ¢ —1
to time ¢.

The concept of wealth is defined as a time series that takes real number values
S; at all time points and that starts at time 0 with the value 1, Sy = 1. Values
at later points in time denote relative wealth compared to the initial wealth of
1; a wealth of 2 at some point in time denotes twice the initial wealth etc.

Let the weight vector at time ¢ be denoted b, = (btl,btg,...,btm)T. By de-
finition of a weight vector, Zj by; = 1 at all times ¢. In this notation, by
is the fraction of total wealth that is invested in the j:th asset at time ¢.
When one time period has passed from the initial state, the wealth will be
S1 =bi1x11 +b1ox10+ ...+ bimTim = b?xl, and after n time periods, the total
wealth, henceforth referred to as total return factor, is calculated as:®

S =] bix (1)
t=1

The total return factor will be used throughout the thesis as a performance
measure.

The term constant rebalanced portfolio (CRP) refers to a rebalancing scheme
where the portfolio is only rebalanced in order to keep the fraction of wealth
invested in each of the assets in the portfolio unchanged at all rebalancing times.
Using equation 1 and the notation b for the constant weight vector, it is clear
that after n time periods, the wealth of such a portfolio will be S,, = H?:l bTx,.

From the definition of CRP, it is clear that ex post, there must for each set

2The raised T refers to the transpose operation that shifts row vectors into column vectors
and vice versa.

3The large Pi character denotes multiplication over the index t, which goes from 1 to n.
Each factor in this product is a sum of m products of a weight b;; and a relative price change
x¢j as shown in the example calculation of S7.



of assets be a best constant rebalanced portfolio (BCRP), which is the portfolio
of the CRP class that has obtained the highest wealth after n time periods.
Mathematically, its wealth after n time periods can be written

n
S* = max | [ bTx,.
n b
t=1

Clearly, the determination of the BCRP requires that the outcomes of asset
prices are known, and thus it can only be determined after the outcomes have
been observed. It should be noted that by construction the BCRP will always
provide a wealth which is at least as good as the best individual component of
the portfolio.4

2.2.2 Universal Portfolio

The Universal Portfolio algorithm, introduced by Cover [6], can ensure that the
asymptotic performance of the portfolio is comparable to BCRP performance.

With a sequence of market performance vectors xi,Xs,... as defined above,
the Universal Portfolio algorithm specifies that weights should be calculated
according to the following equation:

o _ JBIL) b dp(b)
k= — ’
J TS b dp (b)

Here, 1 (b) should be the multivariate probability distribution of the BCRP
weights for the specific asset set used.

(2)

Intuitively, this can be interpreted as follows: the weights are calculated as
the weighted average of all possible weight allocations, using the CRP perfor-
mance over all past time periods as weight function. A methodological problem
for this algorithm is that the right hand side of equation 2 is not feasible to
calculate for all probability distributions.

In this thesis, the Dirichlet distribution will be used. It is limited to the [0, 1]
interval for each variable and is thus suitable for weight vectors. Furthermore,
Universal Portfolio will only be tested on portfolios consisting of two assets, since
the algorithm becomes computationally infeasible for larger portfolios. Thus,
the distribution used is the two-variable Dirichlet distribution.

After a long derivation, which is given in appendix A.1, it is shown that the
Universal Portfolio weights after n time periods, using the Dirichlet distribution,
can be calculated as follows:

n—1 I+oq
— 1 l:01 n-‘,—all-‘raz—lQn_l(l)
n n—1 n—1 n—itas—1
1—0 @n-1(1) 1=0 nrartar—T@n-1(1)
4From a set of m assets, taking any individual asset is equivalent to a CRP with a weight

vector that contains exactly one element that is 1, and the remaining elements 0. Since the
BCRP by definition is the best CRP, it will be at least as good as the best one asset portfolio.

>




In the above expression, @, (!) must be calculated recursively using Qq(0) = 1,
and the following recursion rules
l —|— a1 — 1
"ntar +as -1

n—Il+ay—1

nl: n - 7
Q() v n+aoa +ay—1

anl(l - 1) + Tn2 anl(l)

for 1 <1 <n—1, and the corresponding endpoint recursions are

_ n+ay—1
Qn(o) = anWQn—l(o),
Quin) = s — =L o n—1).

1n+a1+a2—1

These equations specify the Universal Portfolio weights for general values of oy
and as, the parameters of the two variable Dirichlet distribution.

Universal Portfolio has a theoretical guarantee (as shown by Cover [6]) that
(with S denoting BCRP performance and S,, Universal Portfolio performance)

1 *
lim —In (k?n) =0
n—oo n S

n

which intuitively means that asymptotically®, the Universal Portfolio will grow
at the same average continuously compounded rate as the BCRP. Note that this
requires that the probability distribution used is in fact the true distribution of
BCRP weights; the Dirichlet distribution might not be able to actually fulfill
this property even asymptotically.

2.2.3 Exponentiated Gradient

This algorithm, introduced by Helmbold et al [13], has slightly weaker theoret-
ical properties than Universal Portfolio. Using the same notation as above,

tim n (3F) = yfn (55)

n

where m is the number of assets in the portfolio and r is a lower bound on the
relative price changes between trading days. This can hypothetically be arbi-
trarily close to zero, meaning that the right hand side could be large.

It is possible according to Helmbold et al to achieve the same asymptotic per-
formance with Exponentiated Gradient (EG) as with Universal Portfolio, but
only using a modified version that is significantly more complex to calculate.
However, according to the authors, EG often provides better performance than
Universal Portfolio in experiments. Results in their article show that EG can
often come quite close to BCRP performance.

The EG algorithm has one parameter, denoted 7, which is the so called learning
rate. In this thesis, this parameter will be held constant over time for each test,
although it is technically possible to let it vary over time. A high value of n

5As time approaches infinity.



means that EG more quickly reallocates to the strongest performing assets. The
weights are calculated according to the following expression

) NTtj
by e (74
)
m NTtk
Zk:1 by, i exp (b}"x)

which is given without any derivation or formal justification in the source ar-
ticle. One property can be noted: If the initial weight vector has no negative
elements, then consecutive weight vectors also cannot have negative elements,
since the exponential function is strictly positive. Thus, EG can be compared
fairly to Universal Portfolio using the Dirichlet distribution in the sense that
neither of them allow short selling of assets.

(3)

bit1,; =

It should be noted that for EG it is computationally feasible to use portfolios of
more than two assets. Since EG and Universal Portfolio are otherwise similar,
it is interesting to see whether it is beneficial to use portfolios of more than two
assets with EG. If it is not, then this can heuristically be assumed to hold also
for Universal Portfolio, since it is similar to EG in conceptual functionality; it
also tries to capture momentum and to obtain BCRP performance.

2.2.4 Anticor

The Anticor algorithm was introduced by Borodin et al [4]. The BCRP perfor-
mance is not a strict upper bound for Anticor, as it is for Universal Portfolio
and EG. Also, Anticor does not try to allocate to past strong performers, but
instead tries to find mean reversion patterns in the asset prices. The algorithm
has one parameter, namely the length of the window. This is a period of time
used to determine correlations between the assets in the portfolio. The weights
for coming periods are then determined using the calculated correlations. The
name of the algorithm reflects the fact that it works best with negatively corre-
lated assets.

Denote the length of the window w, which should be an integer number of
points in time. The growth rate of an asset over the length of the window de-
notes the price of the asset at the end of the window period divided by the price
at the beginning of the window period. Anticor will reallocate from asset j to
asset k at time ¢ if both of these conditions hold:

e The growth rate of asset j must be higher than that of asset k over the
window starting at ¢t — w + 1 and ending at ¢.

e There must be a positive correlation between asset j over the window from
t—2w+ 1 tot— w and asset k over the window from ¢ — w + 1 to ¢.

If it is assumed that assets are mean-reverting and perform on average equally
well over longer time periods, these two conditions together can be taken as
an intuitive indication that asset k should outperform asset j over the window
going from ¢t + 1 to ¢t 4+ w.

The full formal description of the Anticor weight calculation is rather com-
plicated, and for this reason it is presented in appendix A.2.



2.2.5 CPPI

The Constant Proportion Portfolio Insurance (CPPI) algorithm was introduced
by Black and Jones [2] and Perold and Sharpe [24] and later tested by Bertrand
and Prigent [1]. It is relatively common in commercial settings, where it is used
as a form of insurance strategy. CPPI uses one risky asset and one risk free
asset that increases in value at a continuously compounded risk free rate r.

The base form of CPPI is thus constrained to portfolios consisting of two assets,
though it is technically possible to let the risky asset be a portfolio of several
risky assets, even a Universal Portfolio, EG or Anticor algorithmic portfolio.
Let Vi denote the initial portfolio value and Fj the initial floor. The purpose
of the floor is to provide a guaranteed minimum portfolio value at any point in
time. It is necessary to have Fy < V{. The floor will then be allowed to grow
deterministically at the continuously compounded rate r, i.e. the same as the
risk free asset. At all points in time ¢, Cy denotes the cushion, which is defined
by
Ct = Vvt - Ft.

The total investment in the risky asset, which is called the exposure, is denoted
by E;. CPPI prescribes that the exposure should be

Et = mC’t,

where m is a parameter called the multiplier. The expected payoff function
becomes convex if m > 1, but the floor is then no longer absolutely guaranteed.
If m <1 is enforced, the exposure will never be larger than the cushion, so at
least the amount that constitutes the floor will be invested in the risk free asset.

Some generalizations of CPPI were introduced by Boulier and Kanniganti [5].
One extension is the moving floor, that is immediately raised following large in-
creases in the value of the risky asset, thus limiting the cushion and consequently
the exposure to the risky asset. The moving floor protects against subsequent
falls in the price of the risky asset. An obvious disadvantage is that persistent
strong performance of the risky asset will not be fully captured, since a higher
floor implies a smaller cushion and thus a smaller exposure.

The moving floor version of CPPI also introduces a new parameter which is
called p. It denotes the maximum fraction of the total wealth permitted to
invest in the risky asset. To keep the guarantee of the floor as minimum wealth,
set p =1— f, where f = (F/V)min, the minimum floor allowed expressed as
a fraction of total wealth. The p parameter can also be used to invest more
aggressively in the CPPI algorithm: Letting p > 1 allows short selling of the
risk free asset to invest more in the risky asset, allowing the investor to leverage
returns from the risky asset.

Using this version of the CPPI gives the following expression for the floor at
each point in time ¢:

m

Fhew mip‘/;ﬁ if mCt > th
t FPd otherwise.

The explanation for this can be found in appendix A.3.



In both versions of CPPI, the weights for the two components are given by

E E
bt risky = Vt and = bt riskfree = 1 — Vt
¢ t

The total return factor is calculated as

2.2.6 Algorithm summary
For convenience, an overview of the algorithms is provided in table 1 below to

remind the reader of their respective parameters, desired asset features and any
other algorithm features.

Table 1: Overview of the algorithms used and their features

Algorithm | Parameters Desired asset features | Other features
Universal | Distribution of Momentum Computationally
Portfolio BCRP weights feasible only for
two asset portfolios
EG Learning rate n Momentum Not
computationally
complex
Anticor Window length w | Negative correlation, | Medium
mean reversion computational
complexity
CPPI Multiplier m, One risk free asset, The floor is a
max leverage p momentum guarantee level

2.2.7 Trading costs

Trading has additional costs besides the actual purchase prices, affected by rel-
ative price changes of the assets. There is also a trading cost, which is often
a certain fraction of the total volume traded. This approach is referred by e.g.
Blum and Kalai [3] and Black and Jones [2]. Clearly, this will primarily affect
algorithms that make large changes to the portfolio weights.

In this thesis, trading costs are implemented as a reduction of a certain number
of basis points (hundredths of percentage units) of the total volume of assets
traded at each transaction. I will perform tests with a range of trading costs
for algorithms that show capability of generating abnormal returns. This will
test the robustness of the algorithms in the sense of their ability to provide
satisfactory returns even with trading costs and thus how useful the algorithms
are for smaller investors.
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3 Data

The data used is time series of past price data for a number of different assets of
several categories. Categories represented are mainly broad indices and volatil-
ity indices. Some commodities and the Swedish T-bill index OMRX are also
included.

Broad indices included are STOXX with 3528 daily observations from Decem-
ber 1991 to November 2005, OMX with 1891 daily observations from February
1998 to June 2005, S&P500 with 19562 daily observations from January 1928 to
November 2005 and MSCI and MSCI Russia with 1638 daily observations from
February 1998 to June 2004.

The volatility indices used are VIX, which is the implied volatility of the S&P500
index, with 5011 daily observations from January 1986 to November 2005, VXN,
which is the implied volatility of the Nasdaq composite index, with 1202 daily
observations from February 2001 to November 2005 and VDAX, which is the
implied volatility of the DAX index, with 3351 daily observations from January
1992 to April 2005. Volatility indices are introduced because these indices are
in themselves highly volatile, and their volatility might be useful for generating
high returns. In figure 1 below, the time series for the VIX index is presented to
demonstrate the characteristics of a volatility index. The very high spike corre-
sponds to October 19, 1987, also known as the Black Monday, when the S&P500
fell by more than 20% in one day. VXN and VDAX have similar characteristics
and are not shown.

VIX index
160 T

140

120

100

80

Index level

60

40+
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Figure 1: Development of the VIX index

Commodities included are gold and oil, both with 1638 daily observations from
February 1998 to June 2004. The OMRX index, with 4023 daily observations
from January 1990 to June 2005, is the only T-bill index included because T-bill
indices do not differ much from one another in terms of riskyness or returns.
The index has very low volatility and a low rate of return that remains nearly
constant over time. It is included primarily to serve as the riskfree asset needed
by the CPPI algorithm.
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4 Methodology

To test the algorithms, experiments will be performed using actual time series of
securities prices, but Monte Carlo simulations using the historical distribution
of per period returns will also be used.

4.1 Monte Carlo simulation

Values are sampled from a (preferably large) set of empirical data with uniform
probabilities for each observation. If the set is a representative sample of the
data series in a longer time frame, realistic time series of virtually unlimited size
can be generated to simulate what types of behavior to expect if longer actual
time series were available. It should be noted that the process is likely to elimi-
nate momentum from the original time series and might worsen performance of
the algorithms that rely on momentum.

4.2 Performance measures used

Two performance measures will be used: A comparison of the return of an al-
gorithmic strategy using a broad index such as the S&P500 to the return of
the broad index itself, and the Sharpe measure, which will be used to measure
economic significance® of performance differences.

Formally, the test performed will be to simulate 1000 time series, each of 10
years length, and to calculate the difference between the return of the algorithm
and the return of the market index included in the portfolio,

X=r,—"Tm

where 7, is the geometric average annual return of the algorithmic portfolio
and 7, is the geometric average annual return on the broad index which is
represented in the algorithmic portfolio. Then, the hypothesis that the average
of this stochastic variable is zero is tested against a two sided alternative that
it is different from zero. Let px denote the expected value of X. Then the
hypotheses tested can be formally written as

Ho LU = 0
Hy:px #0
This is tested using the test statistic

_ X -—px
a/\/n

where n is the number of observations, i.e. 1000, and o is the standard deviation
of X. Under the assumption that X is normally distributed, the statistic will
follow the Student’s ¢ distribution with n — 1 = 999 degrees of freedom.

t

6Tn this thesis, economic significance is used to describe the situation where a performance
difference is likely to be considered relevant by an investor, regardless of whether the difference
is found to have a statistically significant deviation from zero or not.
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Apart from this test, the estimated standard deviation & will also be used to
test the hypothesis that the return on the algorithmic portfolio when the actual
time series are used is larger than the actual return on the index included in the
portfolio. Formally, this can be written

HO X =0
H : X#0
The test statistic is then

X-X
t:

o
which follows the Student’s ¢ distribution with one degree of freedom under the
assumption that X is normally distributed. As stated, the standard deviation
will be estimated from the 1000 Monte Carlo runs in each case.

The yearly Sharpe measure S, for a portfolio with yearly return r, and yearly
volatility o, when the risk free rate is 7y is calculated according to

r,—T
_'p f
Sp = p

p

4.3 Experimental structure

Each of the algorithms will be tested in turn. Some tests of the sensitivity to
the choice of parameters will be performed and the algorithm performance will
be compared to the two benchmarks, first using simulated time series according
to the description of Monte Carlo simulation and then using the actual time
series. The results of the hypothesis tests will be shown and the observed dis-
tributions of the X variable will be shown in histograms to determine whether
the normality assumption holds or if it is otherwise clear that any discrepancy
from normality does not actually affect the validity of the hypothesis tests. For
testing economic significance, the results when using real time series will be
shown and the Sharpe measure will be calculated.

In case the null hypothesis is rejected for the real time series, an additional
test will be run to determine at what trading cost level the result is no longer
significant. This is done to determine whether the result is also economically
significant, i.e. if it can be exploited not only by agents with low transaction
costs but also by e.g. individual investors who typically face higher transaction
costs.

4.4 Delimitations

The issue of asset liquidity will not be addressed in this thesis. It may be the
case that some of the assets used cannot actually be traded according to the
patterns suggested by the algorithms. No analysis will be performed to see
effects of limited liquidity. Experiments will implicitly assume that necessary
liquidity is present.

The algorithms will only be evaluated using daily rebalancings, since this was

found by Lundahl [19] to give the best performance even in the presence of
trading costs.
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5 Experiments

The testing will include testing the algorithms’ performance on simulated data
as well as their performance on real asset price data, to find out what the
optimal patterns are for the scalable algorithms (e.g. if it seems preferrable to
use a particular number of assets) and to find evidence of the dependence of
algorithms on the different parameters of the assets used.

5.1 Universal Portfolio

The only parameters of the Universal Portfolio algorithm are the parameters of
the probability distribution assumed for the BCRP weights. Using the Dirich-
let distributions as discussed earlier, it is interesting to see whether there are
significant differences in performance of the algorithm using e.g. the Dirich-
let(1/2,1/2) and the Dirichlet(1,1) distributions. This is tested by simulating
1000 runs of the algorithm on two randomly selected assets and calculating the
difference between the portfolio total return factor and the arithmetic average
total return factor of the two individual assets. This difference can intuitively
be viewed as a measure of performance of the algorithm, since it shows any
extra performance compared to the simple buy-and-hold portfolio on the same
two assets.
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Figure 2: Comparison of Universal Portfolio algorithm using Dirichlet(1/2,1/2)
(left) and Dirichlet(1,1) measures (right)

Besides the fact that these particular assets do not seem to provide particu-
larly impressive algorithm return, it is also seems that, having settled for the
Dirichlet class of probability measures, the actual choice of its parameters is
not very relevant. The histograms are virtually identical. A number of other
tests of different Dirichlet parameters indicate the same thing. Also, in some
of the source articles, there are also tests of the Universal Portfolio algorithm
with respect to the sensitivity to the choice of probability measure, reaching
the same conclusion. The probability measure chosen does not appear to be
an important concern. Henceforth, this thesis shall for Universal Portfolio use
the Dirichlet(1,1) probability measure, which is equivalent (see appendix A.1)
to the uniform distribution.
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One selection of assets that seems to work well with the Universal Portfolio
algorithm is the STOXX index [30] combined with the VIX volatility index [28].
This portfolio has the advantage that the VIX index, reflecting the implicit
volatility of the S&P500 index, does not exhibit consistent growth over time
but rather stays close to a constant level apart from occasional spikes when the
S&P500 becomes highly volatile. This makes it reasonable to compare the algo-
rithmic return only to the return on the STOXX index, since the return on the
VIX index is typically close to zero over most periods, with exception only for
short periods from the "base level" to the height of a peak as shown in section
3. For a portfolio based on these two assets, the distribution of the X variable
is shown in figure 3 below.
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Figure 3: Histogram of the distribution of the X variable for Universal Portfolio
on STOXX and VIX

The first hypothesis test gives an observed value of the t statistic that is 11.526.
With 999 degrees of freedom, this corresponds to a p value of 0.0000, i.e. the
null hypothesis is rejected on the 1% level. There is a significant positive effect
from using the Universal Portfolio algorithm on these assets. Similar results
are obtained using other assets, for instance the other volatility indices or other
broad indices. Combining VIX with S&P500 improves results, as would be in-
tuitively assumed.

It should be noted that the distribution does not look quite normal. In partic-
ular, it appears to have a fat upper tail. Other than this tail, the normality
assumption appears to be justified. However, the fat upper tail does not contra-
dict the conclusion that the algorithm’s return is greater than the return on the
STOXX index. Rather, it corroborates this conclusion, showing that in some
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cases, the average yearly return is much higher using the algorithm compared
to not using the algorithm.

Testing on the actual time series of STOXX and VIX, approximately 14 years
from the end of 1991 to the end of 2005, gives the result presented in figure 4
below.
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Figure 4: Performance of Universal Portfolio on actual time series compared to
constituent index

From the plot, it appears that the return is clearly higher for the Universal Port-
folio algorithm but that this comes at the price of higher volatility. It turns out
however that the average yearly return is not significantly higher for Universal
Portfolio in this case, with a ¢ value of only 0.1885 and one degree of freedom,
corresponding to a p value of 0.8814. The null hypothesis that the Universal
Portfolio does not give a higher return can not be rejected at any conventional
level. In terms of economic significance” however, investors are likely to think
that earning approximately 250% is clearly better than earning approximately
150%. The Sharpe measure is 0.1805 for the Universal Portfolio and 0.1064 for
the STOXX index, strengthening the view that there is an economically signif-
icant difference between the Universal Portfolio and the STOXX index.

To test the sensitivity to trading costs, a series of tests on actual time se-
ries were run with successively increasing trading costs. For the portfolios with
volatility indices, trading costs of 1.5% of the traded volume at each trade brings
the performance in level with the underlying broad index. At 1% of the traded

"Recall from the methodology section that economic significance is used in this thesis to
denote performance differences that investors are likely to find relevant.
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volume, there still appears to be economically significant excess return. Large
financial institutions will typically face 0.02-0.03% trading costs according to
the author’s work life experience.

5.2 Exponentiated Gradient

The Exponentiated Gradient (EG) algorithm has one parameter, the learning
rate 7. The sensitivity to the choice of 5 will be tested first by calculating returns
for different values of this parameter. The time series used are the STOXX and
VIX indices also used in the Universal Portfolio experiments.

Test of EG return factor sensitivity to choice of n parameter
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Figure 5: EG total return factor as a function of n

The results are in line with what Helmbold et al [13] find. A low 1 seems to be
the best choice. This corresponds to a rather slow rebalancing process, while a
large n means reallocating very quickly to the strong performers in the portfolio.
An 7 value of 0.01 will be used for the remainder of the EG experiments.

Since the EG algorithm is not very computationally complex, it is suitable for
tests on portfolios of more than two assets. Experiments show that portfolios of
more than two assets do not provide any additional performance compared to
portfolios of two assets. In figure 6 is the result of one such experiment. Using
a set of N assets, it is possible to construct 2%V — N — 1 portfolios of at least two
assets®, and in this particular experiment, nine assets were used to test a total

81t is possible to construct a total of 2V portfolios (each of the N assets can either be
included or not included, independently of one another) and of these, one is the empty portfolio
with no assets and N portfolios have one asset each.
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of 502 portfolios.

In the figure, the total return factors of the portfolios are plotted against the
portfolio number, which is originally the decimal representation of the nine bit
binary string used to select the assets from the set of nine assets. Note that in
the figure, the original order of the portfolio numbers has been changed to sort
the portfolios according to number of constituent assets keeping the portfolios
with few components to the left. This is intended to help drawing conclusions
about whether there are any benefits when using a particular number of assets.

Performance of EG portfolio sorted by portfolio size
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Figure 6: Total return factor for 502 EG portfolios, sorted by number of con-
stituent assets

There seems to be no significant benefit from including more than two assets
in a particular portfolio. Return factors appear to be largely unaffected while
the volatility of the return appears to decline as more assets are included. The
volatility conclusion is based on the fact that there seems to be smaller fluc-
tuations in the total return factor in the right part of the figure, where the
portfolios containing several assets are represented. This should not come as a
surprise, but rather be seen as a sign of the diversification effect. More assets
should imply lower volatility, even if the weights are determined according to
an algorithm. The results in figure 6 are also confirmed by several other tests
on other sets of assets and over different time periods.

As pointed out earlier, the conceptual similarity between EG and Universal
Portfolio can be used to argue that heuristically, the same result could be as-
sumed to hold for Universal Portfolio. For the remainder of the thesis, experi-
ments will be performed on two asset portfolios. Conceptually, an investor that
wants to exploit diversification to decrease volatility could do so by dividing
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investment among several separate algorithmic portfolios rather than creating a
single algorithmic portfolio of more assets. In conclusion, focusing on two asset
portfolios is not a severe limitation.

When running a 1000 run experiment on the EG algorithm using the STOXX
and VIX indices, the observations of the X variable are distributed according
to the histogram in figure 7.
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Figure 7: Histogram of the distribution of the X variable for the EG algorithm
on STOXX and VIX

The first hypothesis test results in an observed ¢ statistic value of 11.895. The
statistic has 999 degrees of freedom, meaning that the observed value corre-
sponds to a p value of 0.0000. The null hypothesis is rejected on the 1% level of
significance. There is on average a positive contribution to yearly return from
using the EG algorithm on these assets.

The histogram looks similar to the one observed for the Universal Portfolio algo-
rithm. The right tail looks perhaps somewhat less heavy than in the Universal
Portfolio test, although it is still heavier than the left tail in this histogram. The
shape of the distribution suggests that the normality assumption is not unjus-
tified. There appears to be a skew, but that skew strengthens the rejection of
the null hypothesis rather than contradicts it. There appears to be a significant
positive effect from using the EG algorithm.

The test performed using the actual time series gives a t statistic of 0.3393,

with one degree of freedom, which corresponds to a p value of 0.7918. The null
hypothesis of no contributing effect can in this case not be rejected on any con-
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ventional level of significance. In figure 8 below, the performance of EG using
the actual time series is shown.

Performance of EG on STOXX and VIX
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Figure 8: Performance of EG on actual time series compared to constituent
index

Even more than in the Universal Portfolio case, there seems to be economic
significance in the results presented in figure 8. Almost 400% return should be
considered significantly better than almost 150% return. For comparison, the
Sharpe measure for this EG portfolio is 0.2825, almost three times the Sharpe
measure of the STOXX index which was calculated to be 0.1064 in the previous
section. Results are similar for all tested portfolios, especially those containing
volatility indices, and the S&P500 and VIX combination again seems to be the
best combination. The STOXX and VIX combination is representative of the
typical performance of portfolios containing at least one volatility index. Port-
folios of only other assets, for instance combinations of broad indices, do not
exhibit the same overperformance, but does show an ability to give a return
higher than the arithmetic average of the constituent asset returns combined
with a lower volatility than an equally weighted buy-and-hold portfolio has.

The EG algorithm with a low learning rate n proves to make very small weight
adjustments at each rebalancing and, as a result, the algorithm is almost com-
pletely insensitive to trading costs. Even trading costs of 50% of the traded
volume still leaves an economically significant abnormal return. It takes trad-
ing costs of 100% of the traded volume to bring the portfolio return in level with
the underlying index, indicating that the reallocations the algorithm makes on
average are return generating.
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5.3 Anticor

The Anticor algorithm has one parameter, namely the length of the window
which is denoted by w. As a first step, the sensitivity of the algorithm to this
parameter will be tested by calculating total return factors for the STOXX-VIX
portfolio for a range of different values of w. In figure 9 below, the results of
this test can be seen.

Test of Anticor return factor sensitivity to choice of w parameter
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Figure 9: Anticor total return factor as a function of w

As can be seen, the results seem quite sensitive to the choice of w. This is
in accordance with what Borodin et al [4] find. Their suggested solution is
to instead choose one minimum and one maximum w, calculate the suggested
Anticor weights for each w between these two values and take the arithmetic
average of the suggested weights, essentially creating a buy-and-hold portfolio
with a number of Anticor portfolios as constituents. Very low values of w should
be avoided since the suggested weights can differ significantly from suggested
weights when a slightly larger w is used (and the result is typically worse for
very low w according to Borodin et al).

The minimum value of w is set to 5, and the obtained results are similar to
those presented by Borodin et al, i.e. the algorithm is not so sensitive to the
maximum value of w as long as it is at least somewhere around 20. In the
remainder of this thesis, averaging will be used with wy;, =5 and wyax = 30.

The first experiment on Anticor using 1000 runs of simulated time series gives
the histogram of the X variable distribution presented in figure 10.
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Figure 10: Histogram of the distribution of the X variable for Anticor on
STOXX and VIX

Like before, the normality assumption appears from the shape of the distrib-
ution histogram to be justified, and the mean appears to be well above zero.
The observed value of the ¢ statistic in this first test is 39.481, and with 999
degrees of freedom as before, this corresponds to a p value of 0.0000. The hy-
pothesis test indicates a significant positive contribution from using the Anticor
algorithm compared to investing only in the STOXX index. Similar results are
seen using other combinations including at least some volatility index.

The portfolio on the actual STOXX and VIX time series over the same time
period as before gives the result presented in figure 11 below.
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Performance of Anticor on STOXX and VIX
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Figure 11: Performance of Anticor on actual time series compared to constituent
index

As can be seen from the figure, Anticor manages to provide an abnormal return
that is quite impressive. The t statistic has a value of 6.5507 with one degree of
freedom, corresponding to a p value of 0.0964. Thus, the null hypothesis can be
rejected on the 10% level of significance. As for economic significance, the per-
formance of Anticor is clearly much better than that of the underlying STOXX
index. The Sharpe ratio for the Anticor portfolio is 1.5759, much higher than
the 0.1064 seen for the STOXX index.

This pair of assets clearly fits the desired characteristics for the Anticor al-
gorithm well. There is high volatility in the VIX volatility index, and it is
negatively correlated with the STOXX index. This negative correlation is not
perfectly intuitive, but there is at least one possible explanation. The VIX index
reflects the implicit volatility of the S&P500 index. Thus, a negative correlation
should be expected between the returns on S&P500 and the returns on VIX,
since when S&P500 is falling, the volatility tends to increase, and when it is ris-
ing, volatility tends to fall. Furthermore, while the STOXX index is made up of
European components in contrast to the S&P500 which is made up of American
components, there is a correlation between the behavior of the STOXX index
and that of the S&P500. This also means that a negative correlation can be
found between STOXX and VIX.

For reference, some results when combining VIX with the S&P500 are also

given. In figure 12 below are the results when using the actual time series over
a period of almost 20 years, from the beginning of 1986 to present day.
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Performance of Anticor on S&P500 and VIX
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Figure 12: Performance of Anticor on actual time series compared to constituent
index

Note that the S&P500 actually is plotted in the graph and normalized to start
at 1 in the beginning of 1986 just as the total return factor of Anticor, but due
to the performance of the Anticor algorithm, the S&P500 series is not visible
since the comparatively small magnitude of its returns makes it blend together
with the horizontal axis. It appears that the effect is even stronger when com-
bining the VIX with the S&P500, which is to be expected since the S&P500
is the underlying index whose implicit volatility is reflected by the VIX. A hy-
pothesis test of the same type as above gives a t statistic value of 13.8942, which
corresponds to a p value of 0.0457. The null hypothesis can be rejected on the
5% level of significance. The Sharpe measure is 3.4848 for this portfolio, to be
compared with 0.1471 for the S&P500. The volatility is 23.86%, which is higher
than the 8.61% that the S&P500 exhibits.

The combination of S&P500 and VIX gives the best results with the Anticor
algorithm, but in general, all portfolios tested that contain at least one volatility
index exhibit behavior similar to the STOXX-VIX combination. Unlike for the
Universal Portfolio and EG algorithms, Anticor also outperforms the individ-
ual assets in portfolios of only broad indices. The overperformance in this case
is not as large as in the portfolios that have volatility indices, but there is a
positive effect that is comparable to what Universal Portfolio and EG show in
portfolios with volatility indices.
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5.3.1 Anticor under extreme conditions

As a test of the Anticor algorithm’s behavior under extreme conditions, the
performance over 1987 is presented in figure 13 below. The large drop in the
S&P500 corresponds to October 19, also known as the Black Monday.
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Figure 13: Performance of Anticor under extreme conditions

In this figure, it is especially interesting to note that while there appears to be
some volatility at the end of the year, the Anticor algorithm makes a rather
large profit on the Black Monday, successfully capturing the sharp spike in the
VIX index that occurred on that day and is shown in figure 1 in section 3.
The whole year performance is approximately up 40%, to be compared with the
S&P500 index whole year return of 0.25%.

While the Anticor algorithm has rather strong performance, it achieves this
performance through rather large reallocations at each rebalancing. As a conse-
quence, much of the abnormal returns is lost if trading costs are high. At trading
costs of 1% of the traded volume, Anticor has a performance comparable to that
of Universal Portfolio or EG at low trading costs. When trading costs are 1.2%,
the algorithm performance is brought to level with the underlying index.

54 CPPI

The CPPI algorithm will be used in the moving floor version only, since it is a
generalization of the basic version. The floor will not be allowed to grow at the
risk free rate, since this was found by Lundahl [19] to be undesirable, causing
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the portfolio to fall through the floor too often. There are two parameters for
this algorithm, the multiplier m and the maximum relative investment in the
risky asset p. Since the CPPI algorithm is not intended to be an abnormal
return generating algorithm like the previous three tested, but rather an in-
surance algorithm providing a safety level combined with potential upside, the
same types of results should not be expected for CPPI. Also, it is specifically
constructed for two asset portfolios where one of the assets is reasonably risk
free. For this purpose, the Swedish OMRX T-bill index will be used in this the-
sis since it has very low volatility and a predictable, nearly constant growth rate.

Tests were run to determine reasonable values for the m and p parameters.
The p parameter proved to have a rather irregular influence on the resulting
total return factor as can be seen in figure 14 below.

Test of CPPI return factor sensitivity to choice of p parameter
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Figure 14: CPPI total return factor as a function of p

Considering the meaning of the p parameter, the above pattern is not very sur-
prising. The parameter denotes the maximum investment in the risky asset as
fraction of the total portfolio value. If p is 1, the entire value can be put in the
risky asset and if p > 1, it is possible to short sell the risk free asset to increase
investment into the risky asset. Thus, if p is allowed to be very large, massive
short selling can occur, and if the risky asset decreases in value, the portfolio
sharply decreases in value since it is highly levered. It appears that p = 3 would
be a good choice.

For the m parameter, a similar test was made, both before and after the test for

p, to ensure that the m value suggested before determining a suitable p provides
good results also with the p that was chosen in the test for the p parameter. In
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figure 15 below, the results of the second test are shown. The results of the first
test are very similar and are thus not shown here.

Test of CPPI return factor sensitivity to choice of m parameter
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Figure 15: CPPI total return factor as a function of m

It appears that as long as m > 5, the actual value does not affect return very
much. This is reasonable, since p specifies an upper limit on the investment
in the risky asset. Increasing m would increase the suggested exposure to the
risky asset, but if it already is larger than the maximum allowed exposure, it
does not matter if m is increased. The actual exposure will be the one specified
by the value of p. In this thesis, m = 6 will be used. Higher values of both m
and p could be used to amplify returns, but that would also amplify risks, since
higher p values means that it is possible to short sell the riskfree asset more,
and higher m values means that the sensitivity for drops in the risky asset is
increased, as is shown in appendix A.3.

Using the parameters mentioned above and a portfolio consisting of the STOXX

and OMRX indices for the 1000 runs provides the histogram presented in figure
16 below.
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Figure 16: Histogram of the distribution of the X variable for CPPI on STOXX
and OMRX

The observed value of the t statistic is -8.4851, corresponding to a p value of
0.0000 with 999 degrees of freedom. There appears to be a significant negative
effect on return if CPPT is used compared to investing only in the STOXX index.
There is however a heavy right tail as for the other algorithms. The shape of
the distribution resembles the normal distribution.

When the actual STOXX and OMRX time series are used, with the same time
period as the previous experiments, the result is as in figure 17 below. The
value of the t statistic in this case is 0.8235 with one degree of freedom, which
corresponds to a p value of 0.5614. The null hypothesis can not be rejected on
any conventional level of significance. The behavior of the algorithm is similar
regardless of what index is used instead of STOXX. The algorithm is not very
well suited for other types of assets, so only pairs of OMRX and a broad index
have been tested.

The CPPI algorithm is very sensitive to presence of trading costs. Apart from
the empirical fact that CPPI proves to make large reallocations at each rebal-
ancing, the sensitivity can intuitively be understood, since an important feature
of the algorithm is to raise the floor to secure returns. If trading costs must be
paid, there is not room for raising the floor, and subsequent falls will affect the
portfolio more. In fact, for trading costs of only 0.20% of the traded volume,
the portfolio performance is at the same level as the underlying index.
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Performance of CPPI on STOXX and OMRX
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Figure 17: Performance of CPPI on actual time series compared to constituent
index

The Monte Carlo simulation technique does not quite capture the momentum
characteristic of the STOXX index, meaning that the potential for CPPI to
generate abnormal returns is significantly limited. Also, another point of the
CPPI algorithm is the guarantee provided by the floor. In appendix A.3, it is
shown that if the risky asset does not fall by a fraction larger than 1/m over
one period, the portfolio will not break through the floor. Thus, as is shown
in figure 17 above, CPPI would provide a guaranteed return that matches the
STOXX level at the height of the IT bubble, provided that STOXX never falls
more than 1/6 ~ 0.1667 = 16.67% over one period, i.e. over one day with daily
rebalancing. Over the 14 year period used, the maximum daily drop in STOXX
was 5.39%, so clearly, falls of more than 16% appear to be rare. Even if the
portfolio falls below the floor, it will then allocate fully into the risk free asset
and remain invested in it until wealth is above the floor again.

The Sharpe measure for the CPPI portfolio is 0.3885, which is clearly higher
than the Sharpe measure for the STOXX index. The average annual volatil-
ity is 11.32%, to be compared with 8.03% for the STOXX index. Combined
with the added insurance that the portfolio will not fall below the floor un-
less the STOXX index falls by more than 16% in one day, it appears that the
CPPI algorithm is indeed useful in reality despite the negative outcome of the
Monte Carlo simulation. The fact that CPPI structures are provided by large
investment banks also strengthens this view.
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6 Analysis

The experiments for the Universal Portfolio, EG and Anticor algorithms show
clearly significant positive results in Monte Carlo simulations. The CPPI algo-
rithm shows a significant negative result in Monte Carlo simulations, but the
corresponding result when using actual time series indicates that certain charac-
teristics of the underlying time series that are important to the CPPI algorithm
might not be captured by the Monte Carlo simulation.

For all algorithms, real time series results show economic significance, while
only Anticor manages to provide statistical significance at conventional levels
for these tests. Also, the Sharpe measures observed for the different algorithms
indicate that the algorithms manage to provide performance that is superior to
the underlying broad indices.

A natural question is why the EMH, which is certainly plausible on an intu-
itive level, appears to fail to hold even in the weak form. A possible explanation
is that while the EMH implicitly assumes perfect distribution of information to
allow for enlightened and equally knowledgeable investors, in reality not all in-
vestors might have access to all information. While the time series of past price
data certainly are available to a large share of investors and technical analy-
sis in many forms is commonly used, the knowledge of particular quantitative
techniques might not be widely available. Also, the very existance of the EMH
might discourage many investors from even trying to use insights from technical
analysis. Even for investors willing to use technical analysis, complexity of im-
plementation might discourage the use of certain algorithms in favor of simpler
methods.

It should also be noted that one of the delimitations made in this thesis is
that asset liquidity is not researched. While the broad market indices such as
the S&P500 and the STOXX are generally known to be highly liquid, volatility
indices such as VIX or VDAX might not be widely traded. Futures contracts
do exist for these indices, but they might not be widely traded. If liquidity is
limited, the actual usefulness of the results, at least for large scale investment
purposes, might be significantly reduced.

The algorithmic portfolios might be perceived as more risky by some investors.
However, apart from the potential liquidity risk, there is not much evidence of
significantly increased risk. Observed volatilities of the algorithmic portfolios
are not, substantially larger than those of the broad market indices themselves
and certainly not larger than typical single stock volatilities, indicating that
volatility is not a major concern.

Trading costs is an issue that might erode the economic significance of the
results. The experiments show that in particular CPPI is sensitive to trad-
ing costs and might thus be best suited for implementation in larger financial
institutions. In the presence of high trading costs, Anticor loses most of its ab-
normal performance, meaning that it might not be suitable for small investors.
EG proves to be very resistant to trading costs and might be interesting even
for individuals.
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7 Conclusions

Despite the plausibility of the EMH, technical analysis seems to improve in-
vestment performance. Clearly significant results in large simulations indicate
robustness of several purely technical investment strategies. Experiments on
actual time series do not consistently provide convincing statistical significance
in themselves, but evidence from the execution of hypothesis tests indicate that
there is an economically significant effect from using algorithmic techniques.
Also, it is clear that abnormal returns need to be very high to be statistically
significant in single tests on actual time series. Thus, economic significance can
clearly exist even in the absence of statistical significance.

Some concerns about the validity of the results can be raised, and among these,
the liquidity issue is arguably the most potentially troubling, possibly along with
the issue of trading costs. With low liquidity or high trading costs, scalability
and profitability might be limited.

In conclusion, within the delimitations of this thesis, there is strong evidence
that the EMH does not hold fully considering the performance of these algorith-
mic techniques. Assuming necessary liquidity and trading costs not exceeding
specified levels, there appears to be potential for persistent and economically
significant abnormal returns for the algorithms tested in this thesis.

7.1 Suggestions for further research

Limited length of actual time series data gives rise to concerns about sustain-
ability of the results over longer periods of time. While Monte Carlo simulations
can reduce this concern, it is not clear that the simulated time series mimic ac-
tual time series closely enough to be realistic. For instance, serial correlations
might not be captured. As time passes and longer actual time series are pos-
sible, tests could be run again to determine in hindsight whether there is any
sustainable profitability for any particular algorithmic strategy.

Another interesting topic would be to evaluate the psychological implications
of using algorithmic investment strategies. Investment managers might want
to add an element of fundamental analysis to create a strategy that does not
unconditionally follow the algorithm suggestions but under certain conditions
allows non-automated input as support for investment decisions. Helmbold et
al [13] expand on this by introducing the concept of side information. Hybrid
strategies of this kind is an interesting extension of the algorithmic approach
and could provide many further research topics.

The issue of liquidity might be addressed by either introducing significantly
increased trading costs for particular assets. Also, if the portfolio wealth needs
to be kept small to alleviate liquidity problems, it could be interesting to round
algorithm weights to multiples of some percentage® to handle problems with
large contract sizes and see if the observed patterns remain.

91f, for instance, contracts in a particular asset can only be integer multiples of 100 000
and liquidity is low, a portfolio wealth of 1 000 000 could be kept as a means of ensuring that
necessary liquidity is available, but in this case, weights for the non-liquid asset could only be
integer multiples of 100 000 as a fraction of 1 000 000, i.e. 10%.
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A Appendices

A.1 Derivation of Universal Portfolio weight formulas

As noted, this thesis uses the two variable Dirichlet distribution for Universal
Portfolio. To conveniently describe the two variable Dirichlet distribution, the
Gamma function must first be defined:

I(t) :/ e % dx, t>0
0

A property of this function is that if ¢ is an integer, T'(t) = (t — 1) - T'(t — 1),
and it is easily seen by solving the integral that I'(1) = 1. Using the Gamma
function, the Beta function can be written

B(t,u) = LO0(w) t,u>0

The two variable Dirichlet probability distribution has two parameters «; and
as and is characterised by the probability density function

r (2, o)
Abm—lbm—l - éb?l_lbgrl'

f (b) = H?:1 T (az) 1 2 B(Oq,()ég)

In addition the restrictions b; + by = 1 and 0 < by, by < 1 must hold, which
implies that the Universal Portfolio algorithm will not be able to short sell any
assets (since weights below zero are prohibited).

In the special case where a; = ap = 1, the density function becomes

)
bl 1 — bObO — 17
2 F(1)2 1Y2

r(1+1),,4
T2 1

f(b) = F(1)2

i.e. the uniform distribution (since I'(2) = 1-T'(1) = 1-1 = 1). If instead
a1 = ag = 1/2 the distribution becomes

f(b) = wbih—lbéh—l _ Ll)zbl—l/ngl/Q _ lb1—1/2b2—1/2
T(1/2) T(1/2) T

since I'(1/2) = /7 and T'(1) = 1.

Next, a derivation of a closed form solution of the obtained total return fac-
tor, Sy, will be performed for general oy and as, since it is contained in the
expression for the Universal Portfolio weights (2).

First, the general Universal Portfolio weight formula is restated for convenience
of reference.

k—
Bk — f b Ht:ll bTXt dlj’ (b) (4)

k)* )
J Ht:ll bTx, dyu (b)
To explicitly calculate the algorithm weights and the total return for Universal
Portfolio in the case when portfolios are limited to two assets, it is necessary to
find a closed form solution to the integrals in equation (4). Firstly, to reach an
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expression for Sn, rewrite the total return factor for an arbitrary CRP after n
rebalancing time points:

Hb Xt = H (b1 + baw2) = Z Hbjtmtjt =

t=1 Je{1,2}n t=1

n n

lin—I
)BT EDDN | E7N B
=0

JET (1) t=1

where T, (1) is the set of all sequences J € {1,2}"™ with [ occurences of 1 and
(n — 1) occurences of 2. Next, let

= > H (5)

JeT, (1) t=1

which gives
= BbTIX,()
1=0

To calculate the integrals in equation (4) above and the realized total return
factor of the Universal Portfolio, this expression is integrated over the Dirichlet
probability measure that was assumed to hold for the BCRP weights.

S, (x™) /Zbl WX, (1) dp (b) X,( /bl bt (
=0

By introducing the notation

Cn(l) = /bgbg*l dp (b)), (6)

the total return factor expression can be written

Using this result, a closed form expression for the Universal Portfolio weights
and also its realized total return factor at time n can be obtained. Continuing
from equation (4),

o JIIE L bTxibdy(b) _ 1 [fbl ”_1bTxtdu(b) ]
S, 1 (xn=1) Sp—1 (xn71) fb2Ht 1 b'x; du(b) |’

the weights can in fact be calculated using a procedure which is very similar to
the one just used to calculate the Universal Portfolio return. One can see that

SN S { 2o Xoo1() [ 01105717 dp (b) } _
Sy (x71) o Xna(l) [ BLb5 ™ dp (b)

_ 1 o X1 (DCa(1+1)
{ " X A ()Ca() ] @)
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Now, to obtain formulas that can be efficiently implemented in a program, the
integrals in equation (6) need to be solved. The Dirichlet density will now prove
to be a good choice. Recall that its density function is given by

1
b — bal —1 baz -1
f ( ) B(Oél, a2) 1 2 ’
meaning that the integrals in equation (6) can be solved relatively easily. Firstly,
note that

1
1
Cn(l):/bﬁbg’ldu(b):/o bgbg*lmb?rlbgrldbh

where by = 1 — b;.

Take the constant Beta function outside the integral and merge the b; and
by factors to obtain

1 ! I+a1—1gn—Il+as—1
Cn(l) = Blor,oa) /0 bi b, dby .
In this integral, we can see that the integrand is essentially a Dirichlet density
function. If it were completed with a constant factor containing suitable gamma
functions, it would become a true Dirichlet density function. Now, identify the
parameters of this distribution, calling them ~; and 7,. These new parameters
clearly have the following relation to the original distribution parameters oy
and as:
Y1 = I+ aq,

Yo =n—14+ as.
The general probability theory definition of a probability measure states

/du(b) =

The C,,(1) integrals in equation (6) can thus be solved. The solution is

B(v1,72) /1 1 —1y92—1
(1 b TIb2 T dby =
() B(aw,a2) Jo B(y1,72) ! ? '
)

B(v1,72) ~ B(y1,72)
= Blar,a) / W ®) = Blar,a)

Substituting the expressions introduced earlier for v; and 79 into this gives

C(l)_B(H—ahn—l—i—ag)_ 1 Fl+a)T(n—14ag)
" n B(Oq,OéQ) n B(Oél,OZQ) F(TL—FOll—FOéQ) '

Using equation (6), it is clear that Cy(0) = [du(b) = 1 regardless of what
values are chosen for the a; and ag parameters Usmg the rule that T(N +1) =
NT(N), C,(l) can now be expressed recursively as a function of the values of
a1 and aw, by relating Cy, (1) to C,,—1(I — 1) and C,,—1(1).

l+0&1—1

c, )= ———m——
() n+aoa+a;—1

Cp_1(l—1)
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n—Il+ay—1
—————Cna()

n+oa +ay—1

For X, (1) from equation (5), it is clear that when 1 <[ < n — 1, the following
recursion can be used:

Cn(l) =

Xn(l) = .’Eannfl(l — 1) + (Eannfl(l).
At the endpoints, two specific recursions hold:
Xn(O) = .L“nQXn_l(O)

Xn(n) =z, Xn-1(n—1).

To simplify further, note that in the expressions in equation (7) for the Uni-
versal Portfolio weights and also in the adjacent equation for the realized total
return factor, X, (1) and C,, (1) only occur multiplied by one another. Thus, by
introducing

the realized total return factor for Universal Portfolio after n rebalancings can
be more conveniently written:

Sp(x") =" Qu(l).
=0

Note that also the quantities C, (I + 1)X,,_1(1) and C,,(I)X,,—1(l), occuring in
equation (7), can be simplified by using the @Q,(!) notation. Use the C,(I)
recursions to see that:

1 -1
L1t m Cna(l+1-1)X, (1) =

Cn(l + 1>Xn71(l> = m n

l+0[1

= 7 Wn— la
n+a1+a2_1Q 1(1)
n—Il+ay—1
Cn()Xp1(l) = mra tag 1 n-1(D)Xn-1(l) =
n—1+ay—1

ETETE

Finally, insert the above expressions into equation (7), and the explicit Universal
Portfolio weight expression is obtained:

n—1 l+a
b ! =0 ey taz—1@n—1(!)

n = —n—1 ~ /i —1 —l4+as—1
;L:Ol Qn—l(l) ?:O nﬁ»alfazzfl anl(l>
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A.2 Description of Anticor weight calculation

To describe Anticor more thoroughly, we must first define
LX1¢ = [log(X¢—20+1), - - - log(xe—w)] ", LX3¢ = [log(X¢—w1); - - -, log(xe)] "

where log(xy,) denotes [log(z¢1), - - -, log(xtom)]T, to is a point in time and m is
the number of assets in the portfolio as before. Thus, LX7; and LX5; are w x m
matrices, containing logarithms of relative prices of assets over the windows
from t — 2w + 1 to t — w and from ¢t — w + 1 to ¢ respectively. Denote the jth
column of LX;; by LX;+(j) (where [ is 1 or 2). Also, let p; = [pu(1), ..., m(m)]
and o; = [0y(1),...,07(m)] denote the vectors of sample averages and sample
standard deviations of the columns of LX}; (i.e. the sample averages and sample
standard deviations over the two windows for all assets) respectively. Using this
notation, the cross correlation matrix can be calculated according to

1

m(LXlt(j) - Hl(j))T(LX%(k) - NQ(k))

Mcov,t (]7 k) =

Meora (G ) = { bt 1 o10)02(0) #0

' 0 otherwise.

Here, Mo (j, k) is the sample correlation between the log-relative prices of asset
4 over the window from ¢t — 2w+ 1 to t —w with those of asset k over the window
from t — w + 1 to ¢t. Should o1(j) or o2(k) be zero over either of the windows,
it means that the logarithm of the relative price of that asset is constant over
that interval. Anticor does not reallocate between assets j and k in this case.

The next step is to calculate the claim matriz. Here, claim;(j, k) denotes an
initial approximation of the amount of wealth to reallocate from asset j to asset
k.

Meor,t (4, k) + Au(4) + Ar(k) if pa(j) > pa(k) and Meori (5, k) > 0

claimy (4, k) = { 0 otherwise.

The A;(h) quantity in the above expression is calculated according to

B |Mcor’t(h7 h)| if Meor,t (R, h) <0
Au(h) = { 0 otherwise.

Intuitively, if Mcoy (4, k) > 0, one could argue that assets j and k are correlated
in consecutive windows, so that a rise in one predicts a future rise in the other,
and Mcor ¢(h, h) < 0 shows that asset h is negatively autocorrelated in consec-
utive windows.

Next, the transfers that are made are calculated:

. b i claime(G.k) e claim, (j, k 0
transfert(j7k):{ t(]>zk61almt(J,k) Ot}i«%ise (4, k) #

With the transfers calculated, the portfolio weights at time ¢+1 can be calculated
using the weights at time ¢ through the following relation:

bir1 =b, + Z [transfer,(k, j) — transfer,(j, k)] .
y
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A.3 Technical details of the CPPI algorithm

The moving floor version of CPPI takes advantage of increases in the value of
the risky asset to put more wealth into the secured floor part of the portfolio.
Enforcing the maximum relative exposure determined by p, there can now be
an excess cushion if the risky asset increases in value. The excess cushion is
given by
mC —pVe _ m(Ve =) —pVe _m-p, o
= = t— L't
m m m
and this should be added to the previous floor, F}, to limit the exposure to the

risky asset. The new floor is related to the old floor as follows:

m
FPld otherwise.

Fnew _ { mip‘/t lf mct > p‘/;f

new —
Intuitively, this can be interpreted as 'If the calculated exposure is larger than
the maximum allowed fraction of the portfolio wealth, the floor is moved up-
wards until the exposure becomes exactly the maximum allowed fraction of

portfolio wealth’. To see this, note that if mC; > pV;, we set

F=""ly
m
giving
Eth’tm(VtFt)m<V,}m_th) :m(thV;qL%V;) —
m

i.e. exactly the maximum exposure allowed.

In the base CPPI version, if the risky asset behaves like a geometric Brownian
motion, i.e. with normally distributed logarithmic returns, the CPPI algorithm
expected wealth at time T has been shown [5] to be

VT = ‘/0 —|— Coe_k"" (‘S'T) 5
So

where

o1 (22 1)

In the moving floor version, there exists no closed form solution for the portfolio
wealth, but the SDE can be expressed as

rVidt it V; < F}
d‘/vt = (‘/;5 — Ft)dZt + TFtdt if Ft < ‘/;5 < ml—th
VidX, it Vi > R

Here,
dZy = (m(p —7r) + r)dt + modWy,

dX; = (p(p —r) + r)dt + podW;.

Another version of the CPPI presented by Boulier and Kanniganti [5] instead
focuses on not letting the exposure to the risky asset grow too small in the case
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of a decline of the value of the risky asset, noting that a CPPI portfolio will
follow the floor if it ever reaches it and behave unpredictably in the case of
aggressive investing leading to a portfolio value below the floor.

Denote the initial margin My. Also, define E} as a lower limit for the exposure
at any time t. The margin version of CPPI states that, whenever E; < E} /2,

My

Ftnew _ FtOld o 5

Mtold
2 )
EPY = mCy = m(V; — F*V).

new __
M7V =

The lower limit can be set in several fashions. This CPPI version will not be
used in this thesis, and hence it is only covered shortly here.

There is a maximum limit on how much the risky asset can fall during one
investment period before the CPPI portfolio falls through the floor. Denote
this critical level expressed as a fraction by the letter d. The CPPI portfolio
development over one period can then be approximately written

‘/,5+1:Et(1*d)+(‘/t*Et)1

if the return on the riskfree asset can be approximated to have zero return over
one period. Here, By = mCy = m (V; — F;). Substitute to obtain

Vier=m (Vi = F)- (1 =d)+ (Vi =m (Vs — F))
Expand the above expression to obtain
Vigr =mVy —mE;, —dm (Vy — Fy) + Vi = mV, +mE; = Vi —dm (V; — Fy)
The portfolio has fallen through the floor if and only if
Vier < Fy
or equivalently if and only if
Vi—dm (V; — Fy) < Fy

Rearrange to obtain
dm (V; — Fy) >V, — Fy

Finally, divide through by m (V; — F}) to obtain

d> e

m
Thus, as long as the risky asset does not fall by a fraction larger than 1/m (or
slightly less if p > 1 and the riskless asset actually increases while the investor
is net a short position in it) over one period, the CPPI portfolio stays above its
floor. As a corollary, if m < 1, the portfolio will never break through the floor.

40



A.4 Glossary

Algorithm - A rule or a set of rules that unambiguously defines a process for
solving a particular task. In this thesis, it specifically refers to a process where
portfolio weights for a given portfolio are calculated using past asset prices.

Anticor - An algorithm which primarily benefits from negatively correlated
and mean reverting assets. It uses serial and cross correlations to determine
asset weights.

Best Constant Rebalanced Portfolio (BCRP) - For each set of assets,
the BCRP is the CRP which gives the highest total return factor. Its total
return factor is a strict upper bound for the total return factors of EG and
Universal Portfolio.

Constant Proportion Portfolio Insurance (CPPI) - An algorithm which
is conceptually limited to two asset portfolios, where one asset should be risk
free and the other risky. It is primarily suitable for insurance purposes and not
for return generation. A prominent feature is the floor, which is the guaranteed
level of wealth. The algorithm benefits from momentum in the risky asset.

Constant Rebalanced Portfolio (CRP) - A portfolio where weights are
kept constant over time. Rebalancings are only made to ensure that the same
weights are kept at all times.

Economic significance - In this thesis, the term economic significance is used
to describe the situation where a performance difference is likely to be consid-
ered relevant by an investor, regardless of whether the difference is found to
have a statistically significant deviation from zero or not.

Exponentiated Gradient (EG) - An algorithm which uses momentum ef-
fects to generate abnormal returns. It has only one parameter, the learning rate
7, and it tries to achieve BCRP performance.

Total return factor - The factor by which initial wealth has changed for
any algorithm at any time.

Universal Portfolio - Another algorithm which uses momentum effects. It
uses an assumption about BCRP weight distribution to calculate weights and
BCRP total return factor is an upper bound for the algorithm’s total return
factor. Due to computational complexity, it is only feasible for two asset port-
folios.
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